
ar
X

iv
:1

60
2.

06
77

6v
1 

 [
m

at
h-

ph
] 

 2
2 

Fe
b 

20
16

Lecture on Gauge Gravitation Theory.
Gravity as a Higgs Field

G. Sardanashvily

Moscow State University, Russia

Lepage Research Institute, Czech Republic

20th International Summer School on Global Analysis and its Applications ”General

Relativity: 100 years after Hilbert” (Stará Lesná, Slovakia, 2015)

Abstract. Gravitation theory is formulated as gauge theory on natural bundles with sponta-

neous symmetry breaking where gauge symmetries are general covariant transformations, gauge

fields are general linear connections, and Higgs fields are pseudo-Riemannian metrics.
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1 Introduction

Theory of classical fields admits a comprehensive mathematical formulation in the geometric

terms of smooth fibre bundles over X [11, 52, 55]. For instance, Yang–Mills gauge theory is

theory of principal connections on principal bundles.

Gravitation theory on a world manifold X is formulated as gauge theory on natural bundles

over X which admit general covariant transformations as the canonical functorial lift of diffeo-

morphisms of their base X [11, 54]. This is metric-affine gravitation theory where gauge fields

are general linear connections (Section 5), and a metric gravitational field is treated as a classi-

cal Higgs field responsible for reducing a structure group of natural bundles to a Lorentz group

(Section 6). The underlying physical reason of this reduction is both the geometric Equivalence

principle and the existence of Dirac spinor fields. Herewith, a structure Lorentz group always is

reducible to its maximal compact subgroup of spatial rotations that provides a world manifold

X with an associated space-time structure and metric space topology (Section 7).

Spontaneous symmetry breaking is a quantum phenomenon when automorphism of a quan-

tum algebra need not preserve its vacuum state [51, 58]. In this case, we have inequivalent

vacuum states of a quantum system which are classical objects. The physical nature of gravity

as a Higgs field is characterized by the fact that, given different gravitational fields, the rep-

resentations (11.30) of holonomic coframes {dxµ} on a world manifold X by γ-matrices acting

on spinor fields are non-equivalent and, consequently, the Dirac operators in the presence of

different gravitational field fails to be equivalent, too (Section 10). This fact motivates us to

think that a metric gravitational field is not quantized in principle.

2 History

A first model of gauge gravitation theory was suggested by R.Utiyama [69] in 1956 just two

years after the birth of gauge theory itself. He was first who generalized the original gauge

model of Yang and Mills for SU(2) to an arbitrary symmetry Lie group and, in particular, to

a Lorentz group in order to describe gravity. However, he met the problem of treating general

covariant transformations and a pseudo-Riemannian metric which had no partner in Yang–Mills

gauge theory.

To eliminate this drawback, representing a tetrad gravitational field as a gauge field of

a translation subgroup of a Poincaré group was attempted because, by analogy with gauge
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potentials in Yang–Mills gauge theory, the indices a of a tetrad field ha
µ were treated as those of

a translation group (see [1, 2, 6, 18, 21, 39, 49] and references therein). Since the Poincaré group

comes from the Wigner–Inönii contraction of de Sitter groups SO(2, 3) and SO(1, 4) and it is

a subgroup of a conformal group, gauge theories on fibre bundles Y → X with these structure

groups were also considered [13, 17, 22, 29, 63, 68]. Because these fibre bundles fail to be natural,

the lift of the group Diff(X) of diffeomorphisms of X onto Y should be defined [30, 31]. In

a general setting, one can study a gauge theory on a fibre bundle with the typical fibre Rn

and the topological structure group Diff(Rn) or its subgroup of analytical diffeomorphisms

[3, 25]. The Poincaré gauge theory also is generalized to the higher s-spin gauge theory of tensor

coframes and generalized Lorentz connections, which satisfy certain symmetry, skew symmetry

and traceless conditions [70].

A problem however is that that a non-linear (translation) summand of an affine connection

(Section 12) is a soldering form, but neither frame (vierbein) field nor tetrad field. The latter

thus has no the status of a gauge field [21, 41, 54]. At the same time, a translation part of

an affine connection on R3 characterizes an elastic distortion in gauge theory of dislocations

in continuous media [23, 32]. A similar gauge model of hypothetic deformations of a world

manifold has been developed and, in particular, they may be responsible for the so called ”fifth

force” [42, 43, 44].

At the same time, gauge theory in a case of spontaneous symmetry breaking also contains

classical Higgs fields, besides the gauge and matter ones [11, 21, 24, 36, 45, 50, 51, 56, 67].

Therefore, basing on the mathematical definition of a pseudo-Riemnnian metric, we have for-

mulated gravitation theory as gauge theory with a Lorentz reduced structure where a metric

gravitational field is treated as a Higgs field [11, 21, 40, 44, 49, 54].

3 Main Theses

Gauge gravitation theory in comparison with the Yang–Mills one possesses the following pecu-

liarities [11, 54].

• Gauge symmetries of gravitation theory are general covariant transformations which are

not vertical automorphisms of principal bundles in Yang–Mills gauge theory.

• Gauge gravitation theory necessarily is theory with spontaneous symmetry breaking in

the presence of the corresponding Higgs fields. Since gauge symmetries of gravitation theory

are general covariant transformations, but not vertical automorphisms of fibre bundles, these

Higgs fields, unlike Higgs fields in Yang–Mills gauge theory, are dynamic variables.

• In comparison with Yang–Mills gauge theory, e.g., the Standard Model of particle physics

[37, 61], matter fields in gauge gravitation theory admits only exact symmetries. These are

Dirac spinor fields with Lorentz spin symmetries, and there is a problem of describing their

general covariant transformations.
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• The gauge invariance gauge gravitation theory under general covariant transformation

leads to a conservation law of an energy-momentum symmetry current, but not the Noether

one in Yang–Mills gauge theory.

Studying gauge gravitation theory, we believe reasonable to require that it incorporates

Einstein’s General Relativity and, therefore, it should be based on Relativity and Equivalence

Principles reformulated in the fibre bundle terms [20, 21].

In these terms, Relativity Principle states that gauge symmetries of classical gravitation

theory are general covariant transformations [11, 54].

Let π : Y → X be a smooth fibre bundle. Any automorphism (Φ, f) of Y , by definition, is

projected as π ◦ Φ = f ◦ π onto a diffeomorphism f of its base X . The converse is not true.

A fibre bundle Y → X is called the natural bundle if there exists a monomorphism

DiffX ∋ f → f̃ ∈ AutY

of the group of diffeomorphisms of X to the group of bundle automorphisms of Y → X .

Automorphisms f̃ are called general covariant transformations of Y .

Accordingly, there is the functorial lift of any vector field τ on X to a vector field τ on Y

such that τ 7→ τ is a monomorphism of the Lie algebra T (X) of vector field on X to that T (T )

of vector fields on Y . This functorial lift τ is an infinitesimal generator of a local one-parameter

group of local general covariant transformations of Y .

As was mentioned above, general covariant transformations differ from gauge symmetries of

Yang–Mills gauge theory which are vertical automorphisms of principal bundles. Fibre bundles

possessing general covariant transformations constitute the category of so called natural bundles

[27, 65].

The tangent bundle TX ofX exemplifies a natural bundle. Any diffeomorphism f ofX gives

rise to the tangent automorphisms f̃ = Tf of TX which is a general covariant transformation

of TX . The associated principal bundle is a fibre bundle LX of linear frames in the tangent

spaces to X . It also is a natural bundle. Moreover, all fibre bundles associated to LX are

natural bundles, but not they are only. Principal connections on LX yield linear connections

on the tangent bundle TX and other associated bundles over a world manifold. They are called

the world connections.

Following Relativity Principle, one thus should develop gravitation theory as a gauge theory

of principal connections on a principal frame bundle LX over an oriented four-dimensional

connected smooth manifold X , called the world manifold.

Remark 3.1: Smooth manifolds throughout are assumed to be Hausdorff second-countable

(consequently, locally compact and paracompact) topological spaces. �

Equivalence Principle reformulated in geometric terms requires that the structure group

GL4 = GL+(4,R) (3.1)
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of a frame bundle LX and associated bundles over a world manifold X is reducible to a Lorentz

group SO(1, 3) [21, 44, 54]. It means that these fibre bundles admit atlases with SO(1, 3)-

valued transition functions or, equivalently, that there exist principal subbubdles of LX with a

Lorentz structure group. This is the case of spontaneous symmetry breaking in classical gauge

theory.

As was mentioned above, spontaneous symmetry breaking is a quantum phenomenon when

automorphism of a quantum algebra need not preserve its vacuum state [51, 58]. In this case,

we have inequivalent vacuum states of a quantum system which are classical objects. For

instance, spontaneous symmetry breaking in Standard Model of particle physics is ensured by

the existence of a constant vacuum Higgs field which takes a value into the quotient G/H of a

broken symmetry group G by the exact one H [37, 61].

Therefore, classical gauge theory on principal bundles with spontaneous symmetry breaking

also is considered. This phenomenon is characterized as a reduction of a structure Lie group G

of a principal bundle P → X to its closed Lie subgroup H [11, 50, 51, 56]. One refers to the

following reduction theorem [26].

Theorem 3.1: There exists one-to-one correspondence between the principal H-subbundles

P h of P and the global sections h of the quotient bundle P/H → X with a typical fibre G/H .

�

These global sections are treated as classical Higgs fields [11, 50, 56].

Accordingly, in gauge gravitation theory based on Equivalence Principle, there is one-to-

one correspondence between the Lorentz principal subbundles of a frame bundle LX (called

the Lorentz reduced structures) and the global sections of the quotient bundle

ΣPR = LX/SO(1, 3), (3.2)

which are pseudo-Riemannian metrics on a world manifold. In Einstein’s General Relativity,

they are identified with gravitational fields.

Thus, gauge gravitation theory leads us to metric-affine gravitation theory whose dynamic

variables are linear world connections and pseudo-Riemannian metrics on a world manifold X

(Section 8). They are treated as gauge fields and Higgs fields, respectively [11, 54].

There is the extensive literature on metric-affine gravitation theory [1, 18, 19, 39]. However,

one often formulates it as gauge theory of affine connections, that is incorrect (Section 12). Let

us also emphasize that gauge gravitation theory deals with general linear connections which

need not be the Lorentz connections.

The character of gravity as a Higgs field responsible for spontaneous breaking of general

covariant transformations is displayed as follows. Given different gravitational fields, the rep-

resentations (11.30) of holonomic coframes {dxµ} by γ-matrices acting on spinor fields are

inequivalent (Remark 10.6). In particular, it follows that a Dirac spinor field can be considered
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only in a pair with a certain gravitational field. A total system of such pairs is described by

sections of the composite bundle S → ΣT → X (11.25), where S → ΣT is a spinor bundle.

Being reduced to a Lorentz group, a structure group of a frame bundle LX also is reduced

to a maximal compact subgroup SO(3) of SO(1, 3). The associated Higgs field is a spatial

distribution which defines a space-time structure on a world manifold X (Section 7).

Since general covariant transformations are symmetries of a metric-affine gravitation La-

grangian, the corresponding conservation law holds (Section 9). It is an energy-momentum

conservation law. Because general covariant transformations are gauge transformations depend-

ing on derivatives of gauge parameters, the corresponding energy-momentum current reduces

to a superpotential [11, 53, 54]. This is the generalized Komar superpotential (9.5) .

4 Natural bundles

Let π : Y → X be a smooth fibre bundle coordinated by (xλ, yi). Given a one-parameter group

(Φt, ft) of automorphisms of Y , its infinitesimal generator is a projectable vector field

u = τλ(xµ)∂λ + ui(xµ, yj)∂i

on Y which is projected onto a vector field τ = τλ∂λ on X , whose flow is a one-parameter group

(ft) of diffeomorphisms of X . Conversely, let τ = τλ∂λ be a vector field on X . Its lift to some

projectable vector field on Y always exists. For instance, given a connection

Γ = dxλ ⊗ (∂λ + Γi
λ(x

µ, yj)∂i)

on Y → X , a vector field τ on X gives rise to a horizontal vector field

Γτ = τ⌋Γ = τλ(∂λ + Γi
λ∂i)

on Y . The horizontal lift τ → Γτ yields a monomorphism of a C∞(X)-module T (X) of vector

fields on X to a C∞(Y )-module T (Y ) of vector fields on Y , but this monomorphism is not a

Lie algebra morphism, unless Γ is flat.

We address the category of natural bundles Y → X admitting the functorial lift τ̃ onto

Y of any vector field τ on X such that τ → τ is a Lie algebra monomorphism T (X) → T (T ),

[τ̃ , τ̃ ′] = [̃τ, τ ′] [11, 27, 65]. This functorial lift τ̃ , by definition, is an infinitesimal generator of

a local one-parameter group of general covariant transformations of Y .

Natural bundles are exemplified by tensor products

T = (
m
⊗TX)⊗ (

k
⊗T ∗X) (4.1)

of the tangent TX and cotangent T ∗X bundles of X . Given a coordinate atlas (xµ) of X , the

tangent bundle πX : TX → X is provided with holonomic bundle coordinates

(xµ, ẋµ), ẋ′µ =
∂x′µ

∂xν
ẋν ,
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where (ẋµ) are fibre coordinates with respect to holonomic frames {∂µ}. Accordingly, the tensor
bundle (4.1) is endowed with holonomic bundle coordinates (xµ, xα1···αm

β1···βk
), where

(xµ, ẋµ), ẋ′

µ =
∂xν

∂xµ

ẋν ,

are those on the cotangent bundle T ∗X of X . Then given a vector field τ on X , its functorial

lift onto the tensor bundle (4.1) takes a form

τ̃ = τµ∂µ + [∂ντ
α1 ẋνα2···αm

β1···βk
+ . . .− ∂β1

τ ν ẋα1···αm

νβ2···βk
− . . .]∂̇β1···βk

α1···αm
, ∂̇λ =

∂

∂ẋλ
.

Tensor bundles over a world manifold X have the structure group GL4 (3.1). An associated

principal bundle is the above mentioned frame bundle LX . Its (local) sections are called frame

(vierbein) fields. Given a holonomic atlas of the tangent bundle TX , every element {Ha} of a

frame bundle LX takes a form Ha = Hµ
a ∂µ, where H

µ
a is a matrix of the natural representation

of a group GL4 in R4. These matrices constitute bundle coordinates

(xλ, Hµ
a ), H ′µ

a =
∂x′µ

∂xλ
Hλ

a ,

on LX associated to its holonomic atlas

ΨT = {(Uι, zι = {∂µ})}, (4.2)

given by local frame fields zι = {∂µ}.
A frame bundle LX is equipped with a canonical R4-valued one-form

θLX = Ha
µdx

µ ⊗ ta, (4.3)

where {ta} is a fixed basis for R4 and Ha
µ is the inverse matrix of Hµ

a .

A frame bundle LX → X is natural. Indeed, any diffeomorphism f of X gives rise to an

automorphism

f̃ : (xλ, Hλ
a ) → (fλ(x), ∂µf

λHµ
a ) (4.4)

of LX which is its general covariant transformation. Given a (local) one-parameter group of

diffeomorphisms of X and its infinitesimal generator τ , the lift (4.4) yields a functorial lift

τ̃ = τµ∂µ + ∂ντ
αHν

a

∂

∂Hα
a

onto LX of a vector field τ on X which is defined by the condition Lτ̃θLX = 0.

Let Y = (LX × V )/GL4 be an LX-associated bundle with a typical fibre V . It admits a

lift of any diffeomorphism f of its base to an automorphism

fY (Y ) = (f̃(LX)× V )/GL4

7



of Y associated to the principal automorphism f̃ (4.4) of a frame bundle LX . Thus, all bundles

associated to a frame bundle LX are natural bundles.

Remark 4.1: In a general setting, one also considers the total group Aut(LX) of automor-

phisms of a frame bundle LX [18]. Such an automorphism is the composition of some general

covariant transformation and a vertical automorphism of LX , which is a non-holonomic frame

transformation. Subject to vertical automorphisms, the tangent bundle TX is provided with

non-holonomic frames {ϑa} and the corresponding bundle coordinates (xµ, ya). A problem is

that Lagrangians of gravitation theory which factorize through the Ricci tensor (5.5), e.g. the

Hilbert–Einstein Lagrangian (8.7) are not invariant under non-holonomic frame transformations

(see Remark 5.1 and Example 8.3). To overcome this difficulty, one can additionally introduce

frame ϑa = ϑµ
a∂µ (or coframe ϑa = ϑa

µdx
µ) fields, which are sections of a frame bundle LX .

These sections are necessarily local, unless LX is a trivial bundle, i.e., X is a parallelizable

manifold (Remark 5.2). In particular, this is the case of theory of teleparallel gravity [5, 38]. �

5 World connections

Let TX be the tangent bundle of a world manifold X . With respect to holonomic coordinates

(xλ, ẋλ), a linear connection on TX takes a form

Γ = dxλ ⊗ (∂λ + Γλ
µ
ν ẋ

ν ∂̇µ). (5.1)

It is called a linear world connection on X . Since TX is associated to a frame bundle LX ,

every linear connection (5.1) is associated to a principal connection on LX .

A curvature of a linear world connection is defined as that of the connection (5.1). It reads

R =
1

2
Rλµ

α
βẋ

βdxλ ∧ dxµ ⊗ ∂̇α, (5.2)

Rλµ
α
β = ∂λΓµ

α
β − ∂µΓλ

α
β + Γλ

γ
βΓµ

α
γ − Γµ

γ
βΓλ

α
γ.

Due to the canonical splitting of the vertical tangent bundle

V TX = TX × TX (5.3)

of TX , the curvature R (5.2) can be represented by a tangent-valued two-form

R =
1

2
Rλµ

α
βẋ

βdxλ ∧ dxµ ⊗ ∂α (5.4)

on TX . Due to this representation, the Ricci tensor

Rc =
1

2
Rλµ

λ
βdx

µ ⊗ dxβ (5.5)
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of a linear world connection Γ is defined.

Remark 5.1: The vertical splitting (5.3) with respect to the holonomic atlases (4.2) of TX

takes place only. Accordingly, the Ricci tensor (5.5) with respect to holonomic atlases is ill

defined. �

By a torsion of a linear world connection is meant that of the connection Γ (5.1) on the

tangent bundle TX with respect to the canonical soldering form

θJ = dxµ ⊗ ∂̇µ (5.6)

on TX . It reads

T =
1

2
Tµ

ν
λdx

λ ∧ dxµ ⊗ ∂̇ν , Tµ
ν
λ = Γµ

ν
λ − Γλ

ν
µ. (5.7)

A world connection is said to be symmetric if its torsion (5.7) vanishes, i.e., Γµ
ν
λ = Γλ

ν
µ.

Owing to the vertical splitting of V TX , the torsion form T (5.7) of Γ can be written as a

tangent-valued two-form

T =
1

2
Tµ

ν
λdx

λ ∧ dxµ ⊗ ∂ν (5.8)

on X .

Being associated to a principal connection on LX , a world connection is represented by a

section of the quotient bundle

CW = J1LX/GL4 → X, (5.9)

where J1LX is the first order jet manifold of sections of LX → X . We agree to call CW (5.9)

the bundle of world connections [11, 33, 55] . With respect to the holonomic atlas ΨT (4.2), it

is provided with the bundle coordinates (xλ, kλ
ν
α) so that, for any section Γ of CW → X , its

coordinates kλ
ν
α ◦ Γ = Γλ

ν
α are components of the world connection Γ (5.1).

Though the bundle of world connections CW → X (5.9) is not LX-associated, it is a natural

bundle. It admits a functorial lift

τ̃C = τµ∂µ + [∂ντ
αkµ

ν
β − ∂βτ

νkµ
α
ν − ∂µτ

νkν
α
β + ∂µβτ

α]
∂

∂kµαβ

of any vector field τ on X .

The first order jet manifold J1CW of a bundle of world connections possesses the canonical

splitting

kλµ
α
β =

1

2
(kλµ

α
β − kµλ

α
β + kλ

γ
βkµ

α
γ − kµ

γ
βkλ

α
γ) + (5.10)

1

2
(kλµ

α
β + kµλ

α
β − kλ

γ
βkµ

α
γ + kµ

γ
βkλ

α
γ) =

1

2
(Rλµ

α
β + Sλµ

α
β)

9



so that, if Γ is a section of CW → X , then Rλµ
α
β◦J1Γ = Rλµ

α
β are components of the curvature

(5.2) [11, 33].

Remark 5.2: A world manifold X is called flat if it admits a flat world connection Γ,

called the Weitzenböck connection. By virtue of the well-known theorem, there exists a bundle

atlas of TX with constant transition functions such that Γ = dxλ ⊗ ∂λ relative to this atlas.

However, such an atlas is not holonomic in general. Therefore, the torsion form T (5.7) of a

flat connection Γ need not vanish. A world manifold X is called parallelizable if the tangent

bundle TX → X is trivial. A parallelizable manifold is flat. A flat manifold is parallelizable

if it is simply connected. Flat connections together with global frame fields (Remark 4.1) on a

parallelizable world manifold are attributes of theory of teleparallel gravity [5, 38]. �

6 Lorentz reduced structure

As was mentioned above, gravitation theory on a world manifold X is classical field theory with

spontaneous symmetry breaking described by Lorentz reduced structures of a frame bundle LX

[11, 21, 44, 54]. We deal with the following Lorentz and proper Lorentz reduced structures.

By a Lorentz reduced structure is meant a reduced principal SO(1, 3)-subbundle LgX ,

called the Lorentz subbundle, of a frame bundle LX . By virtue of the Theorem 3.1, there is

one-to-one correspondence between the principal Lorentz subbundles LgX of a frame bundle

LX and the global sections of g the quotient bundle ΣPR (3.2) which are pseudo-Riemannian

metrics of signature (+,−−−) on a world manifoldX . For the sake of convenience, one usually

identifies the quotient bundle ΣPR (3.2), called the metric bundle, with an open subbundle of

the tensor bundle ΣPR ⊂
2
∨TX . Therefore, a metric bundle ΣPR can be equipped with bundle

coordinates (xλ, σµν).

Let L= SO0(1, 3) be a proper Lorentz group, i.e., a connected component of the unit

of SO(1, 3). Recall that SO(1, 3) = Z2×L, where Z2 is the total reflection group. A proper

Lorentz reduced structure is defined as a reduced L-subbundle LhX of LX . One needs the

proper Lorentz reduced structure when Dirac spinor fields in gravitation theory are considered

(Section 11).

If a world manifold X is simply connected, there is one-to-ne correspondence between the

Lorentz and proper Lorentz reduced structures.

One can show that different proper Lorentz subbundles LhX and Lh′

X of a frame bundle LX

are isomorphic as principal L-bundles. This means that there exists a vertical automorphism

of a frame bundle LX which sends LhX onto Lh′

X . If a world manifold X is simply connected,

the similar property of Lorentz subbundles also is true.

There is the well-known topological obstruction to the existence of a Lorentz structure on

a world manifold X . All non-compact manifolds and compact manifolds whose Euler charac-
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teristic equals zero admit a Lorentz reduced structure [9, 44].

By virtue of Theorem 3.1, there is one-to-one correspondence between the principal L-

subbundles LhX of a frame bundle LX and the global sections h of the quotient bundle

ΣT = LX/L → X, (6.1)

called the tetrad bundle. This is an LX-associated bundle with a typical fibre GL4/L. Its

global sections are named the tetrad fields. The fibre bundle (6.1) is a two-fold covering

ζ : ΣT → ΣPR of the metric bundle ΣPR (3.2). In particular, every tetrad field h defines a

unique pseudo-Riemannian metric g = ζ ◦ h.
Every tetrad field h defines an associated Lorentz bundle atlas

Ψh = {(Uι, z
h
ι = {ha})} (6.2)

of a frame bundle LX such that the corresponding local sections zhι of LX take their values into

a proper Lorentz subbundle LhX and the transition functions of Ψh (6.2) between the frames

{ha} are L-valued. The frames (6.2):

{ha = hµ
a(x)∂µ}, hµ

a = Hµ
a ◦ zhι , x ∈ Uι, (6.3)

are called the tetrad frames.

Given a Lorentz bundle atlas Ψh, the pull-back

h = ha ⊗ ta = zh∗ι θLX = ha
λ(x)dx

λ ⊗ ta (6.4)

of the canonical form θLX (4.3) by a local section zhι is called the (local) tetrad form. It

determines tetrad coframes

{ha = ha
µ(x)dx

µ}, x ∈ Uι, (6.5)

in the cotangent bundle T ∗X . They are the dual of the tetrad frames (6.3). The coefficients

hµ
a and ha

µ of the tetrad frames (6.3) and coframes (6.5) are called the tetrad functions. They

are transition functions between the holonomic atlas ΨT (4.2) and the Lorentz atlas Ψh (6.2)

of a frame bundle LX .

With respect to the Lorentz atlas Ψh (6.2), a tetrad field h can be represented by the R4-

valued tetrad form (6.4). Relative to this atlas, the corresponding pseudo-Riemannian metric

g = ζ ◦ h takes the well-known form

g = η(h⊗ h) = ηabh
a ⊗ hb, gµν = ha

µh
b
νηab, (6.6)

where η = diag(1,−1,−1,−1) is the Minkowski metric in R4 written with respect to its fixed

basis {ta}. It is readily observed that the tetrad coframes {ha} (6.5) and the tetrad frames

{ha} (6.3) are orthornormal relative to the pseudo-Riemannian metric (6.6), namely:

gµνha
µh

b
ν = ηab, gµνh

µ
ah

ν
b = ηab.
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Therefore, their components h0, h0 and hi, hi, i = 1, 2, 3, are called time-like and spatial,

respectively.

Remark 6.1: It should be emphasized the difference between tetrad and frame fields. Tetrad

fields are global sections of the quotient bundle ΣT = LX/L (6.1), whereas frame fields are

local sections of a frame bundle LX . Since there is one-to-one correspondence between these

sections h and principal L-subbundles LhX of a frame bundle LX , a tetrad field h locally is

represented by a family of particular frame fields zhi (6.2) taking values into the corresponding

Lorentz subbundle LhX ⊂ LX , but modulo L-valued transition functions. �

Given a pseudo-Riemannian metric g, any linear world connection Γ (5.1) admits a splitting

Γµνα = {µνα}+ Sµνα +
1

2
Cµνα (6.7)

in Christoffel symbols

{µνα} = −1

2
(∂µgνα + ∂αgνµ − ∂νgµα), (6.8)

a non-metricity tensor

Cµνα = Cµαν = ∇Γ
µgνα = ∂µgνα + Γµνα + Γµαν , (6.9)

and a contorsion

Sµνα = −Sµαν =
1

2
(Tνµα + Tναµ + Tµνα + Cανµ − Cναµ), (6.10)

where Tµνα = −Tανµ are coefficients of the torsion form (5.8) of Γ. The tensor fields T and C,

in turn, are decomposed into three and four irreducible summands, respectively [18, 34].

A linear world connection Γ is called the metric connection for a pseudo-Riemannian

metric g if g is its integral section, i.e., the metricity condition

∇Γ
µgνα = 0 (6.11)

holds. A metric connection reads

Γµνα = {µνα}+
1

2
(Tνµα + Tναµ + Tµνα). (6.12)

The Levi–Civita connection, by definition, is a torsion-free metric connection Γµνα = {µνα}.
A principal connection on a proper Lorentz subbundle LhX of a frame bundle LX is called

the Lorentz connection. Since connections on a principal bundle are equivariant, this Lorentz

connection is extended to a principal connection Γ on a frame bundle LX . The associated linear

connection (5.1) on the tangent bundle TX with respect to the Lorentz atlas Ψh (6.2) reads

Γ = dxλ ⊗ (∂λ +
1

2
Aλ

abLab
c
dh

d
µẋ

µhν
c ∂̇ν) (6.13)
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where

Lab
c
d = ηbdδ

c
a − ηadδ

c
b

are generators of a right Lie algebra gL of a proper Lorentz group L in a Minkowski space R4.

Written relative to the holonomic atlas ΨT (4.2), the connection Γ (6.13) possesses components

Γλ
µ
ν = hk

ν∂λh
µ
k + ηkah

µ
bh

k
νAλ

ab. (6.14)

This also is called the Lorentz connection. Its holonomy group is a subgroup of the proper

Lorentz group L. Conversely, let Γ be a world connection with the holonomy group L. By

virtue of the well known theorem [26, 33], it defines a Lorentz subbundle of a frame bundle LX ,

and is a Lorentz connection on this subbundle (see also [60]).

One can show that any Lorentz connections is a metric world connection for some pseudo-

Riemannian metric g (which is not necessarily unique [66]), and vice versa [26, 33],.

At the same time, any linear world connection Γ (5.1) yields a Lorentz connection Γh on

each principal L-subbundle LhX of a frame bundle [11, 33, 54]. It follows from the fact that

the Lie algebra of GL4 is a direct sum

gGL4
= gL ⊕m (6.15)

of the Lie algebra gL of a Lorentz group and a subspace m such that [gL,m] ⊂ m. Therefore,

let us consider a local connection one-form of a connection Γ with respect to the Lorentz atlas

Ψh (6.2) of LX given by tetrad coframes ha (6.5). It reads

zh∗ι Γ = −Γλ
b
adx

λ ⊗ Lb
a, Γλ

b
a = −hb

µ∂λh
µ
a + Γλ

µ
νh

b
µh

ν
a,

where {La
b} is a basis for a Lie algebra gGL4

. The Lorentz part of this form is precisely a local

connection one-form of a connection Γh on LhX . We have

zh∗ζ Γh = −1

2
Aλ

abdxλ ⊗ Lab, Aλ
ab =

1

2
(ηkbha

µ − ηkahb
µ)(∂λh

µ
k − hν

kΓλ
µ
ν). (6.16)

Then combining this expression and the expression (6.13) gives a connection

Γh = dxλ ⊗ (∂λ +
1

4
(ηkbha

µ − ηkahb
µ)(∂λh

µ
k − hν

kΓλ
µ
ν)Lab

c
dh

d
µẋ

µhν
c ∂̇ν) (6.17)

with respect to a Lorentz atlas Ψh and this connection

Γh = dxλ ⊗ [∂λ +
1

2
(hk

αδ
β
µ − ηkcgµαh

β
c )(∂λh

µ
k − hν

kΓλ
µ
ν)ẋ

α∂β] (6.18)

relative to a holonomic atlas. If Γ is the Lorentz connection (6.14) extended from LhX , then

obviously Γh = Γ.
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7 Space-time structure

There is the well-known theorem [11, 50, 56].

Theorem 7.1: A structure Lie group G of a principal bundle over a paracompact manifold

always is reducible to its maximal compact subgroup H . �

This follows from Theorem 3.1 and the facts that the quotient G/H of a Lie group G by

its maximal compact subgroup H is diffeomorphic to an Euclidean space Rm and that a fibre

bundle over a paracompact manifold admits a global section if its typical fibre is an Euclidean

space Rm [62].

A corollary of Theorem 7.1) is that a structure group GL4 of a frame bundle LX is reducible

to its maximal compact subgroup SO(4). In gravitation theory, if a structure group GL4 of

LX is reducible to a proper Lorentz group L, it is always reducible to the maximal compact

subgroup SO(3) of L. Thus, there is a commutative diagram

GL4−→SO(4)

❄ ❄
L −→SO(3)

(7.1)

of the reduction of structure groups of a frame bundle LX in gravitation theory. This reduction

diagram results in the following.

• There is one-to-one correspondence between the reduced principal SO(4)-subbundles

LgRX of a frame bundle LX and the global sections of the quotient bundle LX/SO(4) → X .

Its global sections are Riemannian metrics gR on X . Thus, a Riemannian metric on a world

manifold always exists.

• As was mentioned above, a reduction of a structure group of a frame bundle LX to a

proper Lorentz group implies the existence of a reduced proper Lorentz subbundle LhX ⊂ LX

associated to a tetrad field h or a pseudo-Riemannian metric g = ζ ◦ h on X .

• Since a structure group L of this reduced Lorentz bundle LhX is reducible to a group

SO(3), there exists a reduced principal SO(3)-subbundle

Lh
0X ⊂ LhX ⊂ LX, (7.2)

called the spatial structure. The corresponding global section of the quotient fibre bundle

LhX/SO(3) → X with a typical fibre R3 is a one-codimensional spatial distribution F ⊂ TX

on X . Its annihilator is a one-dimensional codistribution F∗ ⊂ T ∗X .

Given the spatial structure Lh
0X (7.2), let us consider the Lorentz bundle atlas Ψh

0 (6.2)

given by local sections zι of LX taking their values into a reduced SO(3)-subbundle Lh
0X . Its

transition functions are SO(3)-valued.

14



It follows that, in gravitation theory on a world manifold X , one can always choose an atlas

of the tangent bundle TX and associated bundles with SO(3)-valued transition functions. It

is called the spatial bundle atlas.

Given a spatial bundle atlas Ψh
0 , its SO(3)-valued transition functions preserve a time-like

component

h0 = h0
λdx

λ (7.3)

of local tetrad forms (6.4) which, therefore, is globally defined. We agree to call it the time-like

tetrad form. Accordingly, the dual time-like vector field

h0 = hµ
0∂µ (7.4)

also is globally defined. In this case, a spatial distribution F is spanned by spatial components

hi, i = 1, 2, 3, of the tetrad frames (6.3), while the time-like tetrad form (7.3) spans the tetrad

codistribution F∗, i.e.,

h0⌋F = 0. (7.5)

Then the tangent bundle TX of a world manifold X admits a space-time decomposition

TX = F⊕ T 0X, (7.6)

where T 0X is a one-dimensional fibre bundle spanned by the time-like vector field h0 (7.4).

Due to the commutative diagram (7.1), the reduced L-subbundle Lh
0X (7.2) of a reduced

Lorentz bundle LhX is a reduced subbundle of some reduced SO(4)-bundle LgRX too, i.e.,

LhX ⊃ Lh
0X ⊂ LgRX. (7.7)

Let g = ζ ◦ h and gR be the corresponding pseudo-Riemannian and Riemannian metrics on X .

Written with respect to a spatial bundle atlas Ψh
0 , they read

g = ηabh
a ⊗ hb, gµν = ha

µh
b
νη

ab, (7.8)

gR = ηEabh
a ⊗ hb, gRµν = ha

µh
b
νη

E
ab, (7.9)

where ηE is an Euclidean metric in R4. The space-time decomposition (7.6) is orthonormal

with respect to both the metrics (7.8) and (7.9). Thus, we come to the following well-known

results [11, 16, 44].

• For any pseudo-Riemannian metric g on a world manifold X , there exist a normalized

time-like one-form h0 and a Riemannian metric gR such that

g = 2h0 ⊗ h0 − gR. (7.10)

Conversely, let a world manifold X admit a nowhere vanishing one-form σ (or, equivalently,

a nowhere vanishing vector field). Then any Riemannian world metric gR on X yields the

pseudo-Riemannian world metric g (7.10) where h0 = σ(gR(σ, σ))−1/2.
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• A world manifold X admits a pseudo-Riemannian metric iff there exists a nowhere van-

ishing one-form (or a vector field) on X .

Note that the condition (7.7) gives something more. Namely, there is one-to-one correspon-

dence between the reduced SO(3)-subbundles of a frame bundle LX and the triples (g,F, gR)

of a pseudo-Riemannian metric g, a spatial distribution F defined by the condition (7.5) and a

Riemannian metric gR which obey the relation (7.10). A spatial distribution F and a Rieman-

nian metric gR in the triple (g,F, gR) are called g-compatible. The corresponding space-time

decomposition is said to be a g-compatible space-time structure. A world manifold en-

dowed with a pseudo-Riemannian metric and a compatible space-time structure is called the

space-time.

Remark 7.1: A g-compatible Riemannian metric gR in a triple (g,F, gR) defines a g-

compatible distance function d(x, x′) on a world manifold X . Such a function brings X into

a metric space whose locally Euclidean topology is equivalent to a manifold topology on X .

Given a gravitational field g, the g-compatible Riemannian metrics and the corresponding dis-

tance functions are different for different spatial distributions F and F′. It follows that physical

observers associated to different spatial distributions F and F′ perceive a world manifold X

as different Riemannian spaces. The well-known relativistic changes of sizes of moving bodies

exemplify this phenomenon. Note that there were attempts of deriving a world topology di-

rectly from its pseudo-Riemannian structure (e.g., path topology, C0-topology, etc.) [12, 16].

However, these topologies are rather extraordinary, e.g., they are the non-Hausdorff ones. �

8 Metric-affine gauge gravitation theory

In the absence of matter fields, dynamic variables of gauge gravitation theory are linear world

connections and pseudo-Riemannian metrics on X [11, 33, 57]. Their Lagrangian LMA is in-

variant under general covariant transformations.

This is the case of metric-affine gravitation theory [1, 6, 18, 19, 34, 39]. Let us however

emphasize that we consider general linear connections which need not be metric (Lorentz)

connections.

Remark 8.1: In view of the decomposition (6.7), one can choose a different collection of

dynamic variables of metric-affine gauge gravitation theory. These are a pseudo-Riemannian

metric, the torsion (5.7) and the non-metricity tensor (6.9). �

World connections are represented by sections of the bundle of world connections CW (5.9).

World metrics are described by sections of the quotient bundle (3.2). Therefore, let us consider

the bundle product

YMA = ΣPR ×
X
CW, (8.1)
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coordinated by (xλ, σµν , kµ
α
β).

Let us restrict our consideration to first order Lagrangian theory on YMA. Then a configu-

ration space of gauge gravitation theory is the first order jet manifold

J1YMA = J1ΣPR ×
X
J1CW, (8.2)

coordinated by (xλ, σµν , kµ
α
β, σ

µν
λ , kλµ

α
β) [11, 54, 55]. A first order Lagrangian LMA of metric-

affine gauge gravitation theory is a defined as a density

LMA = LAM(x
λ, σµν , kµ

α
β, σ

µν
λ , kλµ

α
β)ω, ω = dx1 ∧ · · · ∧ dx4, (8.3)

on the configuration space J1Y (8.2). Its Euler–Lagrange operator is

δLMA = (Eαβdσαβ + Eµ
α
βdkµ

α
β) ∧ ω.

Eαβ =

(
∂

∂σαβ
− dλ

∂

∂σαβ
λ

)
LAM, Eµ

α
β =

(
∂

∂kµαβ
− dλ

∂

∂kλµαβ

)
LAM,

dλ = ∂λ + σαβ
λ

∂

∂σαβ
+ kλµ

α
β

∂

∂kµαβ
+ σαβ

λν

∂

∂σαβ
ν

+ kλνµ
α
β

∂

∂kνµαβ
.

The corresponding Euler–Lagrange equations read

Eαβ = 0, Eµ
α
β = 0.

The fibre bundle YMA (8.1) is a natural bundle admitting the functorial lift

τ̃ΣC = τµ∂µ + (σνβ∂ντ
α + σαν∂ντ

β)
∂

∂σαβ
+ (8.4)

(∂ντ
αkµ

ν
β − ∂βτ

νkµ
α
ν − ∂µτ

νkν
α
β + ∂µβτ

α)
∂

∂kµαβ

of vector fields τ on X . It is an infinitesimal generator of general covariant transformations. At

the same time, τ̃ΣC (8.4) also is a gauge transformation whose gauge parameters are components

τλ(x) of vector fields τ on X .

By virtue of Relativity Principle, the Lagrangian LMA (8.3) of metric-affine gauge gravitation

theory is assumed to be invariant under general covariant transformations. Its Lie derivative

along the jet prolongation J1τ̃ΣC of the vector field τ̃ΣC (8.4) for any τ vanishes, i.e.,

LJ1τ̃ΣC
LMA = 0. (8.5)

Since a configuration space J1CW of world connections possesses the canonical splitting

(5.10), the following analogy to the well-known Utiyama theorem in Yang–Mills gauge theory

is true.

Theorem 8.1: If the first order Lagrangian LMA (8.3) on the configuration space (8.2) is

invariant under general covariant transformations and it does not depend on the jet coordinates
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σαβ
λ (i.e., derivatives of a metric), this Lagrangian factorizes through the terms Rλµ

α
β (5.10).

�

In contrast with the well-known Lagrangian of Yang–Mills gauge theory, different contrac-

tions of a curvature tensor Rλµ
α
β are possible. For instance, the Ricci tensor Rc (5.5) and a

scalar curvature R are defined. Moreover, a Lagrangian LMA also can depend separately on a

torsion

tµ
ν
λ = kµ

ν
λ − kλ

ν
µ. (8.6)

Example 8.2: In metric-affine gravitation theory, the Hilbert–Einstein Lagrangian of General

Relativity takes a form

LGR = R
√
σω = σµβRλµ

λ
β

√
σω. (8.7)

The corresponding Euler–Lagrange equations read

Eαβ = Rαβ −
1

2
σαβR = 0, (8.8)

Eν
α
β = −dα(σ

νβ
√
σ) + dλ(σ

λβ
√
σ)δνα + (8.9)

(σνγkα
β
γ − σλγδναkλ

β
γ − σνβkγ

γ
α + σλβkλ

ν
α)
√
σ = 0.

The equation (8.8) is an analogy of the Einstein equations, whereas the equation (8.9) describes

the torsion (8.6) and the non-metricity

cµνα = cµαν = dµσνα + kµ
β
ασνβ + kµ

β
νσβα

of a linear world connection. It is brought into a form

√
σ−1σνεσβµEν

α
β = cαεµ −

1

2
σµεσ

λγcαλγ − σαεσ
λβcλβµ +

1

2
σαεσ

λγcµλγ + tµεα + σµεtα
γ
γ + σαεtγ

γ
µ = 0.

�

Example 8.3: The Yang–Mills Lagrangian

LYM = σµλσνγRµν
α
βRλγ

β
α

√
σω

in metric-affine gauge gravitation theory also is considered. It is invariant under a total group

Aut(LX) of automorphisms of a frame bundle LX (Remark 4.1). In this case, metric variables

σµλ fail to be dynamic because they are brought into a constant Minkowski metric by general

frame transformations. �
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9 Energy-momentum conservation law

Since infinitesimal general covariant transformations τ̃ΣC (8.4) are exact symmetries of a metric-

affine gravitation Lagrangian, let us study the corresponding conservation law. This is the

energy-momentum conservation laws because vector fields τ̃ΣC are not vertical [11, 46]. More-

over, since infinitesimal general covariant transformations τ̃ΣC (8.4) are gauge transformations

depending on derivatives of gauge parameters, the corresponding energy-momentum current

reduces to a superpotential [11, 53].

In view of Theorem 8.1, let us assume that the metric-affine gravitation Lagrangian LMA

(8.3) is independent of the derivative coordinates σλ
αβ of a world metric and that it factorizes

through the curvature terms Rλµ
α
β (5.10). Then the following relations hold:

πλν
α
β = −πνλ

α
β, πλν

α
β =

∂LMA

∂kλναβ
,

∂LMA

∂kναβ

= πλν
α
σkλ

β
σ − πλν

σ
βkλ

σ
α.

Let us use the compact notation

yA = kµ
α
β, uµ

α
β
εσ
γ = δεµδ

σ
βδ

α
γ , uµ

α
β
ε
γ = kµ

ε
βδ

α
γ − kµ

α
γδ

ε
β − kγ

α
βδ

ε
µ.

Then the vector field (8.4) takes a form

τ̃ΣC = τλ∂λ + (σνβ∂ντ
α + σαν∂ντ

β)∂αβ + (uAβ
α∂βτ

α + uAβµ
α ∂βµτ

α)∂A.

Let LMA be invariant under general covariant transformations, i.e., the equality (8.5) for

any vector field τ is satisfied. On-shell, we then have a weak conservation law

0 ≈ −dλ[π
λ
A(y

A
α τ

α − uAβ
α∂βτ

α − uAεβ
α ∂εβτ

α)− τλLMA] (9.1)

of the energy-momentum current of metric-affine gravity

JMA
λ = πλ

A(y
A
α τ

α − uAβ
α∂βτ

α − uAεβ
α ∂εβτ

α)− τλLMA. (9.2)

Remark 9.1: It is readily observed that, with respect to a local coordinate system where

a vector field τ is constant, the energy-momentum current (9.2) leads to a canonical energy-

momentum tensor

JMA
λ
ατ

α = (πλµ
β
νkαµ

β
ν − δλαLMA)τ

α,

suggested in order to describe an energy-momentum complex in the Palatini model [8]. �
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Due to the arbitrariness of τλ, we have a set of equalities

π(λε
γ
σ) = 0,

(uAεσ
γ ∂A + uAε

γ∂
σ
A)LMA = 0,

δβαLMA + 2σβµδαµLMA + uAβ
αδALMA + dµ(π

µ
Au

Aβ
α)− yAαπ

β
A = 0, (9.3)

∂λLMA = 0.

Substituting the term yAαπ
β
A from the expression (9.3) in the energy-momentum conservation

law (9.1), one brings this conservation law into a form

0 ≈ −dλ[2σ
λµταδαµLMA + uAλ

ατ
αδALMA − πλ

Au
Aβ
α∂βτ

α + (9.4)

dµ(π
λµ

α
β)∂βτ

α + dµ(π
µ
Au

Aλ
α)τ

α − dµ(π
λµ

α
β∂βτ

α)].

After separating the variational derivatives, the energy-momentum conservation law (9.4) of a

metric-affine gravity takes a superpotential form

0 ≈ −dλ[2σ
λµταδαµLMA + (kµ

λ
γδ

µ
α
γLMA − kµ

σ
αδ

µ
σ
λLMA − kα

σ
γδ

λ
σ
γLMA)τ

α +

δλα
µLMA∂µτ

α − dµ(δ
µ
α
λLMA)τ

α + dµ(π
µλ

α
ν(∂ντ

α − kσ
α
ντ

σ))],

where an energy-momentum current on-shell reduces to a generalized Komar superpoten-

tial

UMA
µλ = 2

∂LMA

∂Rµλ
α
ν
(Dντ

α + tν
α
στ

σ), (9.5)

whereDν is a covariant derivative relative to a connection kν
α
σ and tν

α
σ is its torsion [10, 47, 54].

In particular, the Hilbert–Einstein Lagrangian (8.7) is invariant under general covariant

transformations. The corresponding generalized Komar superpotential (9.5) comes to the well-

known Komar superpotential if one substitutes the Levi–Civita connection kν
α
σ = {νασ}.

10 Spinor structure

In classical field theory, Dirac spinor fields usually are represented by sections of a spinor bundle

on a world manifold X whose typical fibre is a Dirac spinor space Ψ(1, 3) and whose structure

group is a Lorentz spin group Spin(1, 3). In order to introduce the Dirac operator, one however

must assume that Dirac spinors carry out a representation of a Clifford algebra. Moreover, we

describe spinor spaces as subspaces of Clifford algebras and define spinor bundles as subbundles

of fibre bundles in Clifford algebras [11, 54, 59].

Note that spinor representations of Lie algebras so(m,n − m) of pseudo-orthogonal Lie

groups SO(m,n − m), n ≥ 1, m = 0, 1, . . . , n, were discovered by E. Cartan in 1913, when

he classified finite-dimensional representations of simple Lie algebras [7]. Though, there is a
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problem of spinor representations of pseudo-orthogonal Lie groups SO(m,n−m) themselves.

Spinor representations are attributes of Spin groups Spin(m,n−m). Spin groups Spin(m,n−m)

are two-fold coverings (10.18) of pseudo-orthogonal groups SO(m,n−m).

Spin groups Spin(m,n − m) are defined as certain subgroups of real Clifford algebras

Cℓ(m,n−m) (10.16). Moreover, spinor representations of Spin groups in fact are the restriction

of spinor representation of real Clifford algebras to its Spin subgroups. As was mentioned above,

one needs an action of a whole real Clifford algebra in a spinor space in order to construct a

Dirac operator. In 1935, R. Brauer and H. Weyl described spinor representations in terms of

Clifford algebras [4, 28]. This description is based on the following.

• Real Clifford algebras Cℓ(m,n−m) and complex Clifford algebras CCℓ(n) of even dimen-

sion n are isomorphic to matrix algebras (Theorems 10.2 and 10.4, respectively). Therefore,

they are simple, and all their automorphisms are inner (Theorems 10.7 and 10.9). Their in-

vertible elements constitute general linear matrix groups. They act on Clifford algebras by

a left-regular representation, and their adjoint representation exhaust all automorphisms of

Clifford algebras.

• Given a real Clifford algebra Cℓ(m,n−m), the corresponding spinor space Ψ(m,n−m) is

defined as a carrier space of its exact irreducible representation. This representation of a real

Clifford algebra Cℓ(m,n − m) of even dimension n is unique up to an equivalence (Theorem

10.3).

However, spinor spaces Ψ(m,n−m) and Ψ(m′, n−m′) need not be isomorphic vector spaces

for m′ 6= m. For instance, a Dirac spinor space is defined to be a spinor space Ψ(1, 3) of a real

Clifford algebra Cℓ(1, 3). It differs from a Majorana spinor space Ψ(3, 1) of a real Clifford

algebra Cℓ(3, 1). In contrast with the four-dimensional real matrix representation (11.3) of

Cℓ(3, 1), the representation (11.5) of a real Clifford algebra Cℓ(3, 1) by complex Dirac’s matrices

is not a representation of a real Clifford algebra. By this reason and because, from the physical

viewpoint, Dirac spinor fields describing charged fermions are complex fields, we focus our

consideration on complex Clifford algebras and complex spinors.

• A complex Clifford algebra CCℓ(n) of even dimension n is proved to be isomorphic to a

ring Mat(2n/2,C) of complex (2n/2×2n/2)-matrices (Theorem 10.4). The corresponding complex

spinor space Ψ(n) is defined as a carrier space of its exact irreducible representation. Due to

the canonical monomorphism Cℓ(m,n −m) → CCℓ(n) (10.10) of real Clifford algebras to the

complex ones, a complex spinor space Ψ(n) admits a representation of a real Clifford algebra

Cℓ(m,n−m), though it need not be irreducible.

• Similarly to a case of real Clifford algebras, an exact irreducible representation of a complex

Clifford algebra CCℓ(n) of even dimension n is unique up to an equivalence (Theorem 10.6).

Therefore, we define a complex spinor space Ψ(n) in a case of even n as a minimal left ideal of

a complex Clifford algebra CCℓ(n). Thus, a spinor representation

γ : CCℓ(n)×Ψ(n) → Ψ(n) (10.1)
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of a Clifford algebra CCℓ(n) is equivalent to the canonical representation of Mat(2n/2,C) by

matrices in a complex vector space Ψ(n) = C2n/2
.

Treating a complex spinor space Ψ(n) as a subspace of a complex Clifford algebra CCℓ(n)
which carries out its left-regular representation (10.1), we believe reasonable to consider a fibre

bundle in spinor spaces Ψ(n) as a subbundle of a fibre bundle in Clifford algebras. However,

one usually considers fibre bundles in Clifford algebras whose structure group is a group of

automorphisms of these algebras [11, 28]. A problem is that this group fails to preserve spinor

subspaces Ψ(n) of a complex Clifford algebra CCℓ(n) (Remark 10.3) and, thus, it can not be a

structure group of spinor bundles.

Therefore, we define fibre bundles C (10.24) in Clifford algebras CCℓ(n) whose structure

group is a general linear group GL(2n/2,C) of invertible elements of CCℓ(n) which acts on this

algebra by left multiplications [59]. Certainly, it preserves minimal left ideals of this algebra

and, consequently, is a structure group of spinor subbundles S of a Clifford algebra bundle C.
It should be emphasized that, though there is the ring monomorphism Cℓ(m,n − m) →

CCℓ(n) (10.10), the Clifford algebra bundle C (10.24) need not contain a subbundle in real

Clifford algebras Cℓ(m,n−m) unless a structure group GL(2n/2,C) of C is reducible to a group

GCℓ(m,n − m) of invertible elements of Cℓ(m,n − m). Let X be an n-dimensional smooth

manifold and LX a principal frame bundle over X . In accordance with Theorem 3.1, any

global section h of the quotient bundle Σ(m,n − m) = LX/O(m,n − m) → X (10.36) is

associated to the fibre bundle Ch → X (10.30) in complex Clifford algebras CCℓ(n) which

contains the subbundle Ch(m,n −m) → X (10.31) in real Clifford algebras Cℓ(m,n−m) and

a spinor subbundle Sh → X .

A key point is that, given different sections h and h′ of the quotient bundle Σ(m,n−m) → X

(10.36), the Clifford algebra bundles Ch and Ch′

need not be isomorphic.

In order to describe all these non-isomorphic Clifford algebra bundles Ch, we follow a con-

struction of composite bundles. We consider composite Clifford algebra bundles CΣ (10.43)

and C(m,n−m)Σ (10.44), and the spinor bundle SΣ (10.45) over a base Σ(m,n−m) (10.36).

Then given a global section h of the quotient bundle Σ(m,n − m) → X (10.36), the pull-

back bundles h∗CΣ, h∗C(m,n−m)Σ and h∗SΣ are the above mentioned fibre bundles Ch → X ,

Ch(m,n−m) → X and Sh → X , respectively.

10.1 Clifford algebras

A real Clifford algebra is defined as a ring (i.e., a unital associative algebra) possessing a certain

vector subspace of generating elements. However, such a ring can possess different generating

spaces. Therefore, we also consider a real Clifford algebra without specifying its generating

space.

Let V = Rn be an n-dimensional real vector space provided with a non-degenerate bilinear
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form (a pseudo-Euclidean metric) η. Let us consider a tensor algebra

⊗V = R⊕ V ⊕
2
⊗V ⊕ · · · ⊕

k
⊗V ⊕ · · ·

of V and its two-sided ideal Iη generated by the elements

v ⊗ v′ + v′ ⊗ v − 2η(v, v′)e, v, v′ ∈ V,

where e denotes the unit element of ⊗V . The quotient ⊗V/Iη is a real non-commutative ring.

A real ring ⊗V/Iη together with a fixed generating subspace (V, η) is called the real Clifford

algebra Cℓ(V, η) modelled over a pseudo-Euclidean space (V, η).

There is the canonical monomorphism of a real vector space V to the quotient ⊗V/Iη. It is

a generating subspace of a real ring ⊗V/Iη. Its elements obey the relations

vv′ + v′v − 2η(v, v′)e = 0, v, v′ ∈ V.

Given real Clifford algebras Cℓ(V, η) and Cℓ(V ′, η′), by their isomorphism is meant an iso-

morphism of them as rings:

φ : Cℓ(V, η) → Cℓ(V ′, η′), φ(qq′) = φ(q)φ(q′), (10.2)

which also is an isometric isomorphism of their generating pseudo-Euclidean spaces:

φ : Cℓ(V, η) ⊃ (V, η) → (V ′, η′) ⊂ Cℓ(V ′, η′), (10.3)

2η′(φ(v), φ(v′)) = φ(v)φ(v′) + φ(v′)φ(v) = φ(vv′ + v′v) = 2η(v, v′).

It follows from the isomorphism (10.3) that two real Clifford algebras Cℓ(V, η) and Cℓ(V ′, η′)

are isomorphic iff they are modelled over pseudo-Euclidean spaces (V, η) and (V ′, η′) of the same

signature. Let a pseudo-Euclidean metric η be of signature (m;n −m) = (1, ..., 1;−1, ...,−1).

Let {v1, ..., vn} be a basis for V such that η takes a diagonal form

ηab = η(va, vb) = ±δab.

Then a ring Cℓ(V, η) is generated by elements v1, ..., vn which obey relations

vavb + vbva = 2ηabe.

We agree to call {v1, ..., vn} the basis for a real Clifford algebra Cℓ(Rn, η). Given this basis, let

us denote Cℓ(Rn, η) = Cℓ(m,n−m).

Certainly, any isomorphism (10.2) – (10.3) of real Clifford algebras is their ring isomorphism

(10.2). However, the converse is not true, because their ring isomorphism (10.2) need not be
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the isometric isomorphism (10.3) of their generating spaces. Therefore, we also consider real

Clifford algebras, without specifying their generating spaces.

Lemma 10.1: Any isometric isomorphism (10.3) of generating vector spaces φ : V → V ′ of real

Clifford algebras Cℓ(V, η) and Cℓ(V ′, η′) is prolonged to their ring isomorphism (10.2):

φ : Cℓ(V, η) → Cℓ(V ′, η′) φ(v1 · · · vk) = φ(v1) · · ·φ(vk), (10.4)

which also is an isomorphism of real Clifford algebras. �

Remark 10.1: It may happen that a ring Cℓ(V, η) admits a generating pseudo-Euclidean

space (V ′, η′) whose signature differs from that of (V, η). In this case, Cℓ(V, η) possesses the

structure of a real Clifford algebra Cℓ(V ′, η′) which is not isomorphic to a real Clifford algebra

Cℓ(V, η). �
There is the following classification of real Clifford algebras [28, 59].

Theorem 10.2: Real Clifford algebras Cℓ(p, q) as rings are isomorphic to the following matrix

algebras.

Cℓ(p, q) =





Mat(2(p+q)/2,R) =
(p+q)/2

⊗
R

Mat(2,R) p− q = 0, 2 mod 8

Mat(2(p+q−1)/2,R)⊕Mat(2(p+q−1)/2,R) p− q = 1 mod 8

Mat(2(p+q−1)/2,C) p− q = 3, 7 mod 8

Mat(2(p+q−2)/2,H) p− q = 4, 6 mod 8

Mat(2(p+q−3)/2,H)⊕Mat(2(p+q−3)/2,H) p− q = 5 mod 8

(10.5)

�

Since matrix algebras Mat(r,K), K = R,C,H, are simple, a glance at Table 10.5 shows that

real Clifford algebras Cℓ(V, η) modelled over even dimensional vector spaces V (i.e., p − q is

even) are simple.

By a representation of a real Clifford algebra Cℓ(V, η) is meant its ring homomorphism ρ to a

real ring of linear endomorphisms of a finite-dimensional real vector space Ξ, whose dimension

is called the dimension of a representation. A representation is said to be exact if ρ is an

isomorphism. A representation is called irreducible if there is no proper subspace of Ξ which is

a carrier space of a representation of Cℓ(V, η).
Two representations ρ and ρ′ of a Clifford algebra Cℓ(V, η) in vector spaces Ξ and Ξ′ are

said to be equivalent if there is an isomorphism ξ : Ξ → Ξ′ of these vector spaces such that

ρ′ = ξ ◦ ρ ◦ ξ−1 is a real ring isomorphism of ρ(Cℓ(V, η)) and ρ′(Cℓ(V, η)). The following is a

corollary of Theorem 10.2 [28].

Theorem 10.3: If n = dim V is even, an exact irreducible representation of a real ring

Cℓ(m,n − m) is unique up to an equivalence. If n is odd there exist two inequivalent exact

irreducible representations of a real Clifford algebra Cℓ(m,n−m). �
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Now, let us consider the complexification

CCℓ(m,n−m) = C⊗
R
Cℓ(m,n−m) (10.6)

of a real ring Cℓ(m,n − m). It is readily observed that all complexifications CCℓ(m,n − m),

m = 0, . . . , n, are isomorphic:

CCℓ(m,n−m) = CCℓ(m′, n−m′), (10.7)

both as real and complex rings. Though the isomorphisms (10.7) are not unique, one can speak

about an abstract complex ring CCℓ(n) (10.7) so that, given a real Clifford algebra Cℓ(m,n−m)

and its complexification CCℓ(m,n − m) (10.6), there exists the complex ring isomorphism of

CCℓ(m,n−m) to CCℓ(n). We call CCℓ(n) (10.7) the complex Clifford algebra, and define

it as a complex ring

CCℓ(n) = C⊗
R
Cℓ(n, 0), (10.8)

generated by n elements (ei) such that

eiej + ejei == 2κ(ei, ej)e = 2δije. (10.9)

Let us call {ei} (10.9) the Euclidean basis for a complex Clifford algebra CCℓ(n). A complex

vector space V, spanned by an Euclidean basis {ei} and provided with the bilinear form κ (10.9),

is termed the Euclidean generating space of a complex Clifford algebra CCℓ(n). With this basis,

the complex ring CCℓ(n) (10.8) possesses a canonical real subring

Cℓ(m,n−m) → CCℓ(n) (10.10)

with a basis {e1, . . . , em, iem+1, . . . , ien}.
Theorem 10.2 provides the following classification of complex Clifford algebras CCℓ(n) (10.8)

[28, 59].

Theorem 10.4: Complex Clifford algebras are isomorphic to the following matrix ones

CCℓ(n) =




Mat(2n/2,C) =

n/2

⊗
C

Mat(2,C) =
n/2

⊗
C

CCℓ(2)n = 0 mod 2

Mat(2(n−1)/2,C)⊕Mat(2(n−1)/2,C) n = 1 mod 2
(10.11)

�

Corollary 10.5: Since matrix algebras Mat(n,C) are simple and central (i.e., their center is

proportional to the unit matrix), complex Clifford algebras CCℓ(n) of even n are central simple

algebras. �
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By a representation of a complex Clifford algebra CCℓ(n) is meant its morphism ρ to a

complex algebra of linear endomorphisms of a finite-dimensional complex vector space. The

following is a corollary of Theorem 10.4 [28].

Theorem 10.6: If n is even, an exact irreducible representation of a complex Clifford algebra

CCℓ(n) is unique up to an equivalence. If n is odd there exist two inequivalent exact irreducible

representations of a complex Clifford algebra CCℓ(n). �
In view of Corollary 10.5 and Theorem 10.6, we hereafter focus our consideration on real

and complex Clifford algebras modelled over even vector spaces.

10.2 Automorphisms of Clifford algebras

We consider both generic ring automorphisms of a Clifford algebra and its automorphisms

which preserve a specified generating space [59].

Let Cℓ(V, η) be a real Clifford algebra modelled over an even-dimensional pseudo-Euclidean

space (V, η). By Aut[Cℓ(V, η)] is denoted the group of automorphisms of a real ring Cℓ(V, η).
A key point is the following.

Theorem 10.7: Any automorphism of a real ring Cℓ(V, η) is inner. �
Indeed, Theorem 10.2 states that any real Clifford algebra Cℓ(p, q), p − q = 0 mod 2 as

a ring is isomorphic to some matrix algebra Mat(m,K), K = R,C,H. Such an algebra is

simple. Algebras Mat(m,K), K = R,H, are central simple real algebras with the center Z = R.

Algebras Mat(m,C) are central simple complex algebras with the center Z = C. In accordance

with the well-known Skolem–Noether theorem automorphisms of these algebras are inner.

Invertible elements of a real Clifford algebra Cℓ(V, η) = Mat(m,K) constitute a general

linear matrix group GCℓ(V, η) = Gl(m,K). In particular, this group contains all elements

v ∈ V ⊂ Cℓ(V, η) such that η(v, v) 6= 0. Acting in Cℓ(V, η) by left and right multiplications, the

group GCℓ(V, η) also acts in a real Clifford algebra by the adjoint representation

ĝ : q → gqg−1, g ∈ GCℓ(V, η), q ∈ Cℓ(V, η). (10.12)

By virtue of Theorem 10.7, this representation provides an epimorphism

ζ : GCℓ(V, η) = Gl(m,K) → Gl(m,K)/Z = Aut[Cℓ(V, η)]. (10.13)

Any ring automorphism g of Cℓ(V, η) sends a generating pseudo-Euclidean space (V, η) of

Cℓ(V, η) onto an isometrically isomorphic pseudo-Euclidean space (V ′, η′) such that

2η′(g(v), g(v′))e = g(v)g(v′) + g(v′)g(v) = 2η(v, v′)e, v, v′ ∈ V.

It also is a generating space of a ring Cℓ(V, η). Conversely, let (V, η) and (V ′, η′) be two different

pseudo-Euclidean generating spaces of the same signature of a ring Cℓ(V, η). In accordance with
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Lemma 10.1, their isometric isomorphism (V, η) → (V ′, η′) gives rise to an automorphism of a

ring Cℓ(V, η) which also is an isomorphism of Clifford algebras Cℓ(V, η) → Cℓ(V ′, η′).

In particular, any (isometric) automorphism

g : V ∋ v → g(v) ∈ V, η(g(v), g(v′)) = η(v, v′), g ∈ O(V, η),

of a pseudo-Euclidean generating space (V, η) is prolonged to an automorphism of a ring Cℓ(V, η)
which also is an automorphism of a real Clifford algebra Cℓ(V, η). Then we have a monomor-

phism

O(V, η) → Aut[Cℓ(V, η) ] (10.14)

of a group O(V, η) of automorphisms of a pseudo-Euclidean space (V, η) to a group of ring

automorphisms of Cℓ(V, η). Herewith, an automorphism g ∈ O(V, η) of a ring Cℓ(V, η) is the

identity one iff its restriction to V is an identity map of V . Consequently, the following is true.

Theorem 10.8: A subgroup O(V, η) ⊂ Aut[Cℓ(V, η) ] (10.14) exhausts all automorphisms of a

ring Cℓ(V, η) which are automorphisms of a Clifford algebra Cℓ(V, η). �
Let us consider a subgroup Cliff(V, η) ⊂ GCℓ(V, η) generated by all invertible elements of

V ⊂ Cℓ(V, η). It is called the Clifford group. One can show that the homomorphism ζ (10.13)

of a Clifford group Cliff(V, η) to Aut[Cℓ(V, η)] is its epimorphism

ζ : GCℓ(V, η) ⊃ Cliff(V, η) → O(V, η) ⊂ Aut[Cℓ(V, η)] (10.15)

onto O(V, η). Due to the factorization (10.15), any ring automorphism v̂, v ∈ Cliff(V, η), of

Cℓ(V, η) also is an automorphism of a real Clifford algebra Cℓ(V, η).
The epimorphism (10.15) yields an action of a Clifford group Cliff(V, η) in a pseudo-

Euclidean space (V, η) by the adjoint representation (10.12). However, this action is not effec-

tive. Therefore, one consider subgroups Pin(V, η) and Spin(V, η) of Cliff(V, η). The first one

is generated by elements v ∈ V such that η(v, v) = ±1. A group Spin(V, η) is defined as an

intersection

Spin(V, η) = Pin(V, η) ∩ Cℓ0(V, η) (10.16)

of a group Pin(V, η) and the even subring Cℓ0(V, η) of a real Clifford algebra Cℓ(V, η). In

particular, generating elements v ∈ V of Pin(V, η) do not belong to its subgroup Spin(V, η).

The epimorphism (10.15) restricted to the Pin and Spin groups leads to short exact sequences

of groups

e → Z2 −→ Pin(V, η)
ζ−→O(V, η) → e. (10.17)

e → Z2 −→ Spin(V, η)
ζ−→SO(V, η) → e, (10.18)
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where Z2 → (e,−e) ⊂ Spin(V, η).

Remark 10.2: It should be emphasized that an epimorphism ζ in (10.17) and (10.18) is not

a trivial bundle unless η is of signature (1, 1). It is a universal coverings over each component

of O(V, η). �

Let CCℓ(n) be the complex Clifford algebra (10.8) of even n.

Theorem 10.9: All automorphisms of a complex Clifford algebra CCℓ(n) are inner. �

Indeed, by virtue of Theorem 10.4, there is the ring isomorphism (10.11):

CCℓ(n) = Mat(2n/2,C). (10.19)

In accordance with Corollary 10.5, this algebra is a central simple complex algebra with the

center Z = C. In accordance with the above-mentioned Skolem–Noether theorem automor-

phisms of these algebras are inner. Invertible elements of the Clifford algebra (10.19) constitute

a general linear group

GCCℓ(n) = GL(2n/2,C). (10.20)

Acting in CCℓ(n) by left and right multiplications, this group also acts in a Clifford algebra by

the adjoint representation, and we obtain its epimorphism

GL(2n/2,C) → Aut[Cℓ(n)] = PGL(2n/2,C) = (10.21)

GL(2n/2,C)/C = SL(2n/2,C)/Z2n/2

onto a projective linear group PGL(2n/2,C).

Any automorphism g of a complex Clifford algebra CCℓ(n) sends its Euclidean generating

space (V, κ) onto some generating space

(V ′, κ′), κ′(g(v), g(v′)) = κ(v, v′), v, v′ ∈ V,

which is the Euclidean one with respect to the basis {g(ei}. Conversely, any automorphism of

an Euclidean generating space (V, κ) is prolonged to an automorphism of a ring CCℓ(n). Then
we have a monomorphism

O(n,C) → Aut[CCℓ(n)] (10.22)

of a group O(n,C) of automorphisms of an Euclidean generating space (V, κ) to a group of

ring automorphisms of CCℓ(n). Herewith, an automorphism g ∈ O(n,C) of a complex ring

CCℓ(n) is the identity one iff its restriction to V is an identity map of V. Consequently, all ring
automorphisms of a complex Clifford algebra CCℓ(n) preserving its Euclidean generating space

form a group O(n,C).
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Given a complex Clifford algebra CCℓ(n), let Cℓ(m,n−m) be a real Clifford algebra. Due

to the canonical ring monomorphism Cℓ(m,n − m) → CCℓ(n) (10.10), there is the canonical

group monomorphism

GCℓ(m,n−m) → GCCℓ(n) = GL(2n/2,C). (10.23)

Since all ring automorphisms of a real Clifford algebra are inner (Theorem 10.7), they are

extended to inner automorphisms of a complex Clifford algebra CCℓ(n).

10.3 Spinor spaces

As was mentioned above, we define spinor spaces in terms of Clifford algebras [11, 59].

A real spinor space Ψ(m,n − m) is defined as a carrier space of an irreducible repre-

sentation of a real Clifford algebra Cℓ(m,n − m). It also carries out a representation of the

corresponding group Spin(m,n−m) ⊂ Cℓ(m,n−m) [28].

If n is even, such a real spinor space is unique up to an equivalence in accordance with

Theorem 10.3. However, spinor spaces Ψ(m,n−m) and Ψ(m′, n−m′) need not be isomorphic

vector spaces for m′ 6= m.

A complex spinor space Ψ(n) is defined as a carrier space of an irreducible representation

of a complex Clifford algebra CCℓ(n).
Since n is even, a representation Ψ(n) is unique up to an equivalence in accordance with

Theorem 10.6. Therefore, it is sufficient to describe a complex spinor space Ψ(n) as a subspace

of a complex Clifford algebra CCℓ(n) which acts on Ψ(n) by left multiplications.

Given a complex Clifford algebra CCℓ(n), let us consider its non-zero minimal left ideal which

Cℓ(n) acts on by left multiplications. It is a finite-dimensional complex vector space. Therefore,

an action of a complex Clifford algebra CCℓ(n) in a minimal left ideal by left multiplications

defines a linear representation of CCℓ(n). It obviously is irreducible. In this case, a minimal

left ideal of CCℓ(n) is a complex spinor space Ψ(n). Thus, we come to an equivalent definition

of a complex spinor space as a minimal left ideal of a complex Clifford algebra CCℓ(n) which
carry out its irreducible representation (10.1) [59].

By virtue of Theorem 10.4, there is a ring isomorphism CCℓ(n) = Mat(2n/2,C) (10.19).

Consequently, a spinor representation of a complex Clifford algebra CCℓ(n) is equivalent to

the canonical representation of Mat(2n/2,C) by matrices in a complex vector space C2n/2
, i.e.,

Ψ(n) = C2n/2
. A spinor space Ψ(n) ⊂ CCℓ(n) also carries out the left-regular irreducible

representation of the group GCCℓ(n) = GL(2n/2,C) (10.20) which is equivalent to the natural

matrix representation of GL(2n/2,C) in C2n/2
.

Owing to the monomorphism Cℓ(m,n − m) → CCℓ(n) (10.10), a spinor space Ψ(n) also

carries out a representation of real Clifford algebras Cℓ(m,n−m), their Pin and Spin groups,

though these representation need not be reducible.

Remark 10.3: Certainly, an automorphism of a Clifford algebra CCℓ(n) sends a spinor space
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onto a spinor space, but not the same one. An action of a group PGL(2n/2,C) of automorphisms

of CCℓ(n) in a set SΨ(n) of spinor spaces is transitive. �

10.4 Clifford algebra bundles and spinor bundles

Treating spinor spaces as subspaces of Clifford algebras, we can describe spinor bundles as

subbundles of a fibre bundle in complex Clifford algebras [59].

One usually consider fibre bundles in Clifford algebras whose structure group is a group

of automorphisms of these algebras [11, 28]. A problem is that, as was mentioned above, this

group fails to preserve spinor subspaces of a complex Clifford algebra (Remark 10.3) and, thus,

it can not be a structure group of spinor bundles. Therefore, we define fibre bundles in Clifford

algebras whose structure group is a group of invertible elements of a complex Clifford algebra

which acts on this algebra by left multiplications. Certainly, it preserves minimal left ideals of

this algebra and, consequently, it is a structure group of spinor bundles.

Let CCℓ(n) be a complex Clifford algebra modelled over an even dimensional complex space

Cn. It is isomorphic to a ring Mat(2n/2,C) of complex (2n/2×2n/2)-matrices (Theorem 10.4). Its

invertible elements constitute the general linear group GCCℓ(n) = GL(2n/2,C) (10.20) whose

adjoint representation in CCℓ(n) yields the projective linear group PGL(2n/2,C) (10.21) of

automorphisms of CCℓ(n) (Theorem 10.9).

Given a smooth manifold X , let us consider a principal bundle P → X with a structure

group GL(2n/2,C). A fibre bundle in complex Clifford algebras CCℓ(n) is defined to be the

P -associated bundle:

C = (P ×Mat(2n/2,C))/GL(2n/2,C) → X (10.24)

with a typical fibre CCℓ(n) = Mat(2n/2,C) which carries out the left-regular representation of

a group GL(2n/2,C).

Owing to the canonical inclusion GL(2n/2,C) → Mat(2n/2,C), a principal GL(2n/2,C)-

bundle P is a subbundle P ⊂ C of the Clifford algebra bundle C (10.24). Herewith, the canonical

right action of a structure groupGL(2n/2,C) on a principal bundle P is extended to the fibrewise

action of GL(2n/2,C) on the Clifford algebra bundle C (10.24) by right multiplications. This

action is globally defined because it is commutative with transition functions of C acting on its

typical fibre Mat(2n/2,C) on the left.

Remark 10.4: As was mentioned above, one usually considers a fibre bundle in Clifford

algebras CCℓ(n) = Mat(2n/2) (10.19) whose structure group is the group PGL(2n/2,C) (10.21)

of automorphisms of CCℓ(n). This also is a P -associated bundle

AC = (P × CCℓ(n))/GL(2n/2,C) → X (10.25)

where GL(2n/2,C) acts on CCℓ(n) by the adjoint representation. �
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Let Ψ(n) be a spinor space of a complex Clifford algebra CCℓ(n). Being a minimal left ideal

of CCℓ(n), it is a subspace Ψ(n) of CCℓ(n) which inherits the left-regular representation of a

group GL(2n/2,C) in CCℓ(n). Given a principal GL(2n/2,C)-bundle P , a spinor bundle then

is defined as a P -associated bundle

S = (P ×Ψ(n))/GL(2n/2,C) → X (10.26)

with a typical fibre Ψ(n) = C2n/2
and a structure group GL(2n/2,C) which acts on Ψ(n) by left

multiplications.

Obviously, the spinor bundle S (10.26) is a subbundle of the Clifford algebra bundle C
(10.24). However, S (10.26) need not be a subbundle of the fibre bundle AC (10.25) in Clifford

algebras because a spinor space Ψ(n) is not stable under automorphisms of a complex Clifford

algebra CCℓ(n).
At the same time, given the spinor representation (10.1) of a complex Clifford algebra, there

is a fibrewise representation morphism

γ : AC ×
X
S−→

X
S, (10.27)

γ : (P × (CCℓ(n)×Ψ(n)))/GCCℓ(n) → (P × γ(CCℓ(n)×Ψ(n)))/GCCℓ(n),

of the P -associated fibre bundles AC (10.25) and S (10.26) with a structure group GCCℓ(n).
It should be emphasized that, though there is the ring monomorphism Cℓ(m,n − m) →

CCℓ(n) (10.10), the Clifford algebra bundle C (10.24) need not contains a subbundle in real

Clifford algebras Cℓ(m,n − m), unless a structure group GL(2n/2,C) of C is reducible to a

subgroup GCℓ(m,n−m). This problem can be solved as follows.

LetX be a smooth real manifold of even dimension n. Let T ∗X be the cotangent bundle over

X and LX the associated principal frame bundle. Let us assume that their structure group is

GL(n,R) is reducible to a pseudo-ortohogonal subgroup O(m,n−m). In particular, a structure

group GL(n,R) always is reducible to a maximal compact subgroup O(n,R) (Theorem 7.1).

There is the exact sequence of groups (10.17):

e → Z2 −→ Pin(m,n−m)
ζ−→O(m,n−m) → e. (10.28)

A problem is that this exact sequence need not be split, i.e., there is no monomorphism κ :

O(m,n−m) → Pin(m,n−m) so that ζ ◦ κ = Id , in general.

In this case, we say that a principal Pin(m,n − m)-bundle Ỹ → X is an extension of a

principal O(m,n−m)-bundle Y → X if there is an epimorphism of principal bundles

Ỹ −→
X

Y. (10.29)

Such an extension need not exist.

Remark 10.5: The topological obstruction to that a principal O(m,n−m)-bundle Y → X

lifts to a principal Pin(m,n − m)-bundle Ỹ → X is given by the Čech cohomology group
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H2(X ;Z2) of X [11, 15, 28]. Namely, a principal bundle Y defines an element of H2(X ;Z2)

which must be zero so that Y → X can give rise to Ỹ → X . Inequivalent lifts of Y → X

to principal Pin(m,n − m)-bundles are classified by elements of the Čech cohomology group

H1(X ;Z2). �

Let LhX be a reduced principal O(m,n − m)-subbundle of a frame bundle LX . In this

case, the above mentioned topological obstruction to that this bundle LhX is extended to a

principal Pin(m,n−m)-bundle L̃hX (Remark 10.5) is the second Stiefel–Whitney class w2(X) ∈
H2(X ;Z2) of X [28]. Let us assume that a manifold X is orientable, i.e., the Čech cohomology

group H1(X ;Z2) is trivial, and that the second Stiefel–Whitney class w2(X) ∈ H2(X ;Z2) of X

also is trivial. Let L̃hX be the desired Pin(m,n −m)-lift (10.29) of a principal O(m,n−m)-

bundle LhX . Owing to the canonical monomorphism (10.10) of Clifford algebras, there is the

group monomorphism Pin(m,n −m) → GCCℓ(n) (10.23). Due to this monomorphism, there

exists a principal GCCℓ(n)-bundle P h whose reduced Pin(m,n − m)-subbundle is L̃hX , and

whose structure group GCCℓ(n) = GL(2n/2,C) (10.20) thus is reducible to Pin(m,n−m). Let

Ch = (P h ×Mat(2n/2,C))/GL(2n/2,C) → X (10.30)

be the P h-associated bundle (10.24) in complex Clifford algebras CCℓ(n). Then it contains a

subbundle

Ch(m,n−m) = (L̃hX × Cℓ(m,n−m))/Pin(m,n−m) → X (10.31)

in real Clifford algebras Cℓ(m,n − m). The Clifford algebra bundle Ch (10.30) also contains

spinor subbundles (10.26):

Sh = (P h ×Ψ(4))/GL(2n/2,C) → X. (10.32)

Let us consider a P h-associated fibre bundle ACh (10.25) in complex Clifford algebras

CCℓ(n) whose structure group acts on CCℓ(n) by the adjoint representation and, thus, it is

the group Aut[Cℓ(n)] (10.21) of its automorphisms. Since a structure group of P h is reducible

to Pin(m,n−m), a fibre bundle ACh contains a L̃hX-associated subbundle

ACh(m,n−m) = (L̃hX × Cℓ(m,n−m))/Pin(m,n−m) → X (10.33)

in real Clifford algebras Cℓ(m,n−m) where the group Pin(m,n−m) acts on Cℓ(m,n−m) by

the adjoint representation. Then there is the fibrewise representation (10.27):

γ : ACh(m,n−m)×
X
Sh−→

X
Sh. (10.34)

Due to the epimorphism ζ (10.28), the Clifford algebra bundle ACh(m,n − m) contains

a subbundle MhX in pseudo-Euclidean generating spaces of fibres of ACh(m,n − m)with a

structure group O(m,n−m). It is associated to an original reduced principal subbundle LhX
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of a frame bundle LX and, thus, is isomorphic to the cotangent bundle T ∗X of X . Accordingly,

the fibrewise representation γ (10.34) leads to a fibrewise Clifford algebra representation

γ : MhX ×
X
Sh −→

X
Sh (10.35)

of elements of the cotangent bundle TX = MhX .

Of course, with a different reduced principal O(m,n−m)-subbundle Lh′

X of LX , we come

to a different Clifford algebra bundle Ch′

(10.30). By virtue of Theorem 3.1, there is one-to-one

correspondence between the reduced principal O(m,n − m)-subbundle LhX of LX and the

global sections h of the quotient bundle

Σ(m,n−m) = LX/O(m,n−m) → X, (10.36)

which are pseudo-Riemannian metrics of signature (m,n−m) on X .

Remark 10.6: A key point is that, given different global sections h and h′ of the quotient

bundle Σ(m,n −m) (10.36), neither complex Clifford algebra bundles Ch and Ch′

(10.30) nor

real Clifford algebra bundles ACh(m,n − m) and ACh′

(m,n − m) are not isomorphic. These

fibre bundles are associated to principal Pin(m,n−m)-bundles L̃hX and L̃h′

X which are the

two-fold covers (10.29) of the reduced principal O(m,n − m)-subbundles LhX and Lh′

X of

a frame bundle LX , respectively. These subbundles need not be isomorphic, and then the

principal bundles L̃hX and L̃h′

X are well. Moreover, let principal bundles LhX and Lh′

X

be isomorphic. For instance, this is the case of an orthogonal group O(n,R). However, their

covers L̃hX and L̃h′

X need not be isomorphic. An isomorphism of LhX and Lh′

X yields an

isomorphism of fibre bundles MhX and Mh′

X in generating pseudo-Euclidean spaces, but it is

not isometric, and, therefore, fails to provide an isomorphism of real Clifford algebra bundles

ACh(m,n−m) and ACh′

(m,n−m). Consequently, a Clifford algebra bundle must be considered

only in a pair with a certain pseudo-Riemannian metric h. �

In order to describe a whole family of non-isomorphic Clifford algebra bundles Ch, let us

call into play a composite bundle

LX −→
X

Σ(m,n−m)−→X (10.37)

where

LX −→
X

Σ(m,n−m) (10.38)

is a principal bundle with a structure group O(m,n − m) [59]. Let us consider its principal

Pin(m,n−m)-lift (10.29):

L̃X −→
X

Σ(m,n−m), (10.39)

if this exists. It is a composite bundle

L̃X −→
X

Σ(m,n−m)−→X. (10.40)
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Then, given a global section h of Σ(m,n − m) → X (10.36), the pull-back h∗LX of LX →
Σ(m,n −m) (10.38) is a reduced principal O(m,n −m)-subbundle LhX of the frame bundle

LX → X (10.37). Accordingly, the pull-back h∗L̃X of L̃X → Σ(m,n−m) (10.39) is a principal

Pin(m,n−m)-subbundle of the composite bundle L̃X → X (10.40), and it is a Pin(m,n−m)-lift

h∗L̃X = L̃hX −→
X

LhX (10.41)

of LhX = h∗LX .

Owing to the group monomorphism Pin(m,n − m) → GCCℓ(n) (10.23), there exists a

principal GCCℓ(n)-bundle
PΣ −→

X
Σ(m,n−m), (10.42)

whose reduced principal Pin(m,n−m)-subbundle is the fibre bundle (10.39). Let

CΣ −→
X

Σ(m,n−m) (10.43)

be the PΣ-associated bundle (10.24) in complex Clifford algebras CCℓ(n). It contains a L̃X-

associated subbundle

CΣ(m,n−m)−→
X

Σ(m,n−m) (10.44)

in real Clifford algebras Cℓ(m,n − m). The Clifford algebra bundle CΣ (10.43) also has PΣ-

associated spinor subbundles

SΣ −→
X

Σ(m,n−m). (10.45)

Given a global section h of Σ(m,n − m) → X (10.36), the pull-back bundles h∗CΣ → X ,

h∗CΣ(m,n − m) → X and h∗SΣ → X are subbundles of the composite bundles CΣ → X ,

CΣ(m,n − m) → X and SΣ → X and are the bundles Ch → X (10.30), Ch(m,n − m) → X

(10.31) and Sh → X (10.32), respectively.

Similarly, we define an L̃X-associated bundle

ACΣ(m,n−m)−→
X

Σ(m,n−m) (10.46)

in real Clifford algebras Cℓ(m,n−m) where the group Pin(m,n−m) acts on Cℓ(m,n−m) by

the adjoint representation. Then there is a fibrewise Clifford algebra representation

γ : ACΣ(m,n−m)×
Σ
SΣ −→

Σ
SΣ. (10.47)

Given a global section h of Σ(m,n−m) → X (10.36), the pull-back bundle h∗ACΣ(m,n−m) →
X restarts the Clifford algebra bundle ACh(m,n−m) (10.33) and the fibrewise representation

γ (10.34).

Due to the epimorphism ζ (10.28), the Clifford algebra bundle ACΣ(m,n − m) (10.46)

contains a subbundle MΣ in pseudo-Euclidean generating spaces of fibres of ACΣ(m,n − m)
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with a structure group O(m,n−m). This fibre bundle is associated to the principal O(m,n−m)-

bundle (10.38), and it inherits the fibrewise representation (10.47):

γ : MΣ ×
Σ
SΣ −→

Σ
SΣ. (10.48)

Given a global section h of Σ(m,n−m) → X (10.36), its pull-back h∗MΣ → X coincides with a

fibre bundle MhX in pseudo-Euclidean generating spaces, and it is isomorphic to the cotangent

bundle T ∗X of X . Accordingly, the fibrewise representation γ (10.48) reproduces that (10.35).

11 Dirac spinor fields in gauge gravitation theory

A Dirac spinor space is defined to be a spinor space Ψ(1, 3) of an irreducible representation of

real Clifford algebra Cℓ(1, 3).
There are ring isomorphisms of real Clifford algebras

Cℓ(1, 3) = Cℓ(4, 0) = Cℓ(0, 4) = Mat(2,H), (11.1)

which as rings fail to be isomorphic to real Clifford algebras

Cℓ(3, 1) = Cℓ(2, 2) = Mat(4,R). (11.2)

Due to the isomorphism (11.2), a real Clifford algebra Cℓ(3, 1) possesses an irreducible four-

dimensional representation by real matrices

(
0 1

1 0

)
,

(
0−1

1 0

)
,

(
σ1 0

0 −σ1

)
,

(
σ3 0

0 −σ3

)
, (11.3)

where 1 is the unit (2× 2)-matrix and σk, k = 1, 2, 3, are Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0−i

i 0

)
, σ3 =

(
1 0

0−1

)
. (11.4)

By virtue of Theorem 10.3, the representation (11.3) is unique up to an equivalence. Its carrier

space is Ψ(3, 1) of real Majorana spinors.

In contrast with the representation (11.3) of Cℓ(3, 1), a representation of a real Clifford

algebra Cℓ(3, 1), the matrix representation Cℓ(1, 3) = Mat(2,H) (11.1) by Dirac’s γ-matrices

γ0 =

(
0 1

1 0

)
, γj =

(
0 −σj

σj 0

)
(11.5)

is not real. As was mentioned above, we therefore consider complex spinors which form a

carrier space Ψ(4) of an irreducible representation of a complex Clifford algebra CCℓ(4). This

representation is unique up to an equivalence in accordance with Theorem 10.6.
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Let {e0, ei} be the Euclidean basis (10.9) for a complex Clifford algebra CCℓ(4). With

this basis, the complex ring CCℓ(4) possesses a canonical real subring Cℓ(1, 3) (10.10) with a

basis {e0, iei}. Then Ψ(4) admits a representation of a complex Clifford algebra CCℓ(4) by the

matrices e0 = γ0, ei = −iγi whose restriction to a real Clifford algebra Cℓ(1, 3) restarts its

representation (11.5) and provides a representation of a group Spin(1, 3).

A group Spin(1, 3) contains two connected components Spin+(1, 3) and Spin−(1, 3). Being

a connected component of the unity, the first one is a group SL(2,C). We have the exact

sequence (10.18):

e → Z2 −→ Spin(1, 3)
ζ−→SO(1, 3) → e.

It is restricted to the exact sequence

e → Z2 −→ Spin+(1, 3)
ζ−→L → e, (11.6)

where a proper Lorentz group L is a connected component of the unit of SO(1, 3). Let us call

Ls = Spin+(1, 3) = SL(2,C) (11.7)

the Lorentz spin group.

Group spaces of Ls and L are topological spaces S3×R3 and RP 3×R3, respectively. Their Lie

algebras coincide with each other. It can be provided with a basis {Iab = −Iba}, a, b = 0, 1, 2, 3

whose elements obey the commutation relations

[Iab, Icd] = ηadIbc + ηbcIad − ηacIbd − ηbdIac,

where η is the Minkowski metric. Its representation (11.5) in Ψ(4) reads

Iab =
1

4
[γa, γb]. (11.8)

Let X be a world manifold. Let us assume that the second Stiefel–Whitney class w2(X) ∈
H2(X ;Z2) of X is trivial (Remark 10.5). We follow the procedure in Section 10 in order to

describe a Dirac spinor structure on X [11, 48, 54].

For this purpose, let us assume that the structure group GL4 (3.1) of a linear frame bundle

LX is reducible to a proper Lorentz group L. By virtue of Theorem 3.1, there is one-to-one

correspondence between the principal L-subbundles LhX of a frame bundle LX and the global

sections h of the quotient bundle ΣT → X (6.1) called the tetrad fields. Let us consider the

composite bundle (10.37):

LX −→
X

ΣT −→X, (11.9)

where

LX −→
X

ΣT (11.10)
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is a principal bundle with a structure group L. Given a tetrad field h, the pull-back h∗LX of

LX → ΣT (11.10) is a reduced principal L-subbundle LhX of a frame bundle LX → X .

Let us note that a structure group GL4 of a frame bundle LX is not simply-connected. Its

first homotopy group is

π1(GL4) = π1(SO(4)) = Z2

[14]. Therefore, a group GL4 also admits the universal two-fold covering group G̃L4 such that

the diagram

G̃L4−→GL4

✻ ✻

Ls
ζ−→ L

(11.11)

is commutative [18, 28, 64].

Remark 11.1: Though a group G̃L4 admits finite-dimensional representations, its fundamen-

tal spinor representation is infinite-dimensional [18, 35]. Elements of this representation are

called world spinors. Their field model has been developed (see [18] and references therein).

�

Given a group G̃L4, there exists a unique principal G̃L4-bundle L̃X → X which is a two-fold

cover

L̃X
z−→
X

LX (11.12)

of a frame bundle LX . Due to the commutative diagram (11.11), there is a commutative

diagram of principal bundles

L̃X −→LX

❅
❅❘

�
�✠

ΣT

where

L̃X −→
X

L̃X/Ls = ΣT (11.13)

is a principal Ls-bundle. It is just the Ls-lift (10.39) of the principal L-bundle LX → ΣT (11.10).

Let us consider the composite bundle (10.40):

L̃X −→
X

ΣT −→X. (11.14)

Given a tetrad field h, the pull-back h∗L̃X of L̃X → ΣT (11.13) is a reduced principal Ls-

subbundle L̃hX of the composite bundle L̃X → X (11.14). Due to the commutative diagram

37



(11.11), there is a commutative diagram of principal bundles

L̃X
z−→ LX

✻ ✻

L̃hX
zh−→LhX

(11.15)

Owing to the group monomorphism (11.6):

Ls → GCCℓ(4) = GL(4,C),

there exists a principal GL(4,C)-bundle

PΣ −→
X

ΣT, (11.16)

whose reduced principal Ls-subbundle is the fibre bundle (11.13). Let

CΣ −→
X

ΣT (11.17)

be the PΣ-associated bundle (10.24) in complex Clifford algebras CCℓ(4). It contains a L∼-

associated subbundle

CΣ(1, 3)−→
X

ΣT (11.18)

in real Clifford algebras Cℓ(1, 3). The Clifford algebra bundle CΣ (11.17) also has PΣ-associated

spinor subbundles

SΣ −→
X

ΣT (11.19)

with a typical fibre Ψ(4).

Similarly, we define a L̃X-associated bundle

ACΣ(1, 3)−→
X

ΣT (11.20)

in real Clifford algebras Cℓ(1, 3) where a group Ls acts on Cℓ(1, 3) by the adjoint representation.

Then there is a fibrewise representation morphism

γ : ACΣ(1, 3) ×
ΣT

SΣ −→
ΣT

SΣ. (11.21)

Due to the epimorphism ζ (11.6), the Clifford algebra bundle ACΣ(1, 3) (11.20) contains a
subbundle MΣ x in Minkowski generating spaces R4 ⊂ Cℓ(1, 3) with a structure group L. This

fibre bundle

MΣ = (L̃X × R4)/Ls = (LX × R4)/L (11.22)

is associated to the principal L-bundle (11.10), and it inherits the fibrewise representation

(11.21):

γ : MΣ ×
ΣT

SΣ −→
ΣT

SΣ. (11.23)
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Given a tetrad field h,

Sh = h∗SΣ → X (11.24)

of the spinor bundle SΣ (11.19) is a subbundle of a composite bundle

S = SΣ−→
X

ΣT → X (11.25)

and, in view of the commutative diagram (11.15), it is a L̃hX-associated bundle with the

structure Lorentz spin group Ls (11.7).

With a tetrad field h, let us consider the pull-back

ACh(1, 3) = h∗AC(1, 3) → X (11.26)

of the Clifford algebra bundle ACΣ(1, 3) (11.21). It contains the pull-back bundle

MhX = h∗MΣ = (LhX × R4)/L (11.27)

of generating Minkowski spaces. It is isomorphic to the cotangent bundle

T ∗X = (LhX × R4)/L

of X if it is endowed the Lorentz atlas Ψh (6.2). The fibre bundle ACh(1, 3) (11.26) inherits

the fibrewise representation (11.21):

γh : ACh(1, 3)×
X
Sh−→

X
Sh, (11.28)

and MhX (11.27) does fibrewise representation (11.23):

γh : MhX ×
X
Sh−→

X
Sh. (11.29)

Remark 11.2: Given a tetrad field, let the Lorentz bundle atlas Ψh = {zhι } (6.2) of a reduced

Lorentz bundle LhX gives rise to an atlas Ψ
h
= {zhι }, zhι = zh ◦ zhι , of the principal Ls-bundle

L̃hX in the diagram (11.15). With respect to these and associated atlases the representations

(11.28) – (11.29) takes a form

ĥa = γh(h
a) = γa, d̂xλ = γh(dx

λ) = hλ
a(x)γ

a, (11.30)

where γa are Dirac’s γ-matrices (11.5) and ha are the tetrad coframes (6.5). �

In view of the representations (11.28) – (11.29), one can treat sections of the fibre bundle

Sh (11.24) as Dirac spinor fields in the presence of a tetrad field h.
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However, the representations γh and γh′ (11.30) for different tetrad fields h and h′ are

inequivalent. Indeed, given elements t = tµdx
µ = tah

a = t′ah
′a of T ∗X , their representations γh

and γh′ (11.30) read

γh(t) = taγ
a = tµh

µ
aγ

a, γh′(t) = t′aγ
a = tµh

′µ
aγ

a,

and lead to non-isomorphic Clifford algebras because γh(t)γh(t
′) 6= γh′(t)γh′(tt′).

Treating sections of spinor bundles Sh as Dirac spinor fields in the presence of tetrad fields

h, one can consider the composite spinor bundle S (11.25) in order to describe the totality of

Dirac spinor fields in the presence of gravitational field in gauge gravitation theory [11, 48, 54].

We agree to call it the universal spinor bundle because, given a tetrad field h, the pull-

back Sh = h∗S → X (11.24) of SΣ (11.19) is a spinor bundle on X which is associated to

an Ls-principal bundle L̃hX . A universal spinor bundle S is endowed with bundle coordinates

(xλ, σµ
a , y

A), where (xλ, σµ
a ) are bundle coordinates on ΣT and yA are coordinates on a spinor

space Ψ(4). A universal spinor bundle S → ΣT is a subbundle of the bundle in Clifford algebras

(11.20) which is generated by the bundle MΣ (11.22) in Minkowski spaces associated to an L-

principal bundle LX → ΣT (11.10). As a consequence, the fibrewise representation (11.23) is

defined. It reads

γ(dxλ) = σλ
aγ

a. (11.31)

Given the fibrewise Clifford algebra representation (11.31), one can introduce a Dirac oper-

ator on a spinor bundle Sh for each tetrad field h as the pull-back of the total Dirac operator

D (11.35) on the universal spinor bundle S as follows [11, 48, 54].

One can show that, due to the splitting (6.15), any world connection Γ (5.1) on X yields a

connection

AΣ = dxλ ⊗ (∂λ −
1

4
(ηkbσa

µ − ηkaσb
µ)σ

ν
kΓλ

µ
νIab

A
By

B∂A) + (11.32)

dσµ
k ⊗ (∂k

µ +
1

4
(ηkbσa

µ − ηkaσb
µ)Iab

A
By

B∂A)

on the spinor bundle SΣ → ΣT (11.19), where Iab are the generators (11.8). Its pall-back to Sh

is the spin Lorentz connection

Γs = dxλ ⊗ [∂λ +
1

4
(ηkbha

µ − ηkahb
µ)(∂λh

µ
k − hν

kΓλ
µ
ν)Iab

A
By

B∂A] (11.33)

associated to the Lorentz connection Γh (6.17) defined by Γ on a reduced Lorentz bundle LhX

. The connection (11.32) yields the vertical covariant differential

D̃ = dxλ ⊗ [yAλ − 1

4
(ηkbσa

µ − ηkaσb
µ)(σ

µ
λk − σν

kΓλ
µ
ν)Lab

A
By

B]∂A, (11.34)
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on the universal spinor bundle S → X (11.25). Its restriction to Sh ⊂ S recovers the familiar

covariant differential on the spinor bundle Sh → X relative to the spin connection (11.33).

Combining (11.31) and (11.34) gives the first order differential operator

D = σλ
aγ

aB
A[y

A
λ − 1

4
(ηkbσa

µ − ηkaσb
µ)(σ

µ
λk − σν

kΓλ
µ
ν)Lab

A
By

B], (11.35)

on the universal spinor bundle S → X (11.25). Its restriction to Sh ⊂ S is the familiar Dirac

operator on a spinor bundle Sh in the presence of a background tetrad field h and a general

world connection Γ.

12 Affine world connections

The tangent bundle TX of a world manifold X as like as any vector bundle possesses a natural

structure of an affine bundle. It is associated to a principal bundle AX of oriented affine frames

in TX whose structure group is a general affine group GA(4,R). This structure group is always

reducible to a linear subgroup GL4 since the quotient GA(4,R)/GL4 is a vector space R4.

Treating as an affine bundle, the tangent bundle TX admits affine connections

A = dxλ ⊗ (∂λ + Γλ
α
µ(x)ẋ

µ∂̇α + σα
λ (x)∂̇α), (12.1)

called the affine world connections. They are associated to principal connections on an affine

frame bundle AX . Every affine connection Γ (12.1) on TX yields a unique linear connection

Γ = dxλ ⊗ (∂λ + Γλ
α
µ(x)ẋ

µ∂̇α) (12.2)

on TX . It is associated to a principal connection on a frame bundle LX ⊂ AX . Conversely,

being equivariant, any principal connection on a frame bundle LX ⊂ AX gives rise to a

principal connection on an affine frame bundle AX , i.e., every linear connection on TX can

be seen as the affine one. It follows that any affine connection A (12.1) on the tangent bundle

TX is represented by a sum of the associated linear connection Γ (12.2) and a soldering form

σ = σα
λ (x)dx

λ ⊗ ∂̇α on TX , which is a (1, 1)-tensor field

σ = σα
λ (x)dx

λ ⊗ ∂α (12.3)

on X due to the canonical splitting V TX = TX × TX .

In particular, let us consider the canonical soldering form θJ (5.6) on TX . Given an arbitrary

world connection Γ (5.1) on TX , the corresponding affine connection on TX is a Cartan

connection

A = Γ + θX , Aµ
λ = Γλ

µ
ν ẋ

ν + δµλ .
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There is a problem of a physical meaning of the tensor field σ (12.3).

In the framework of above mentioned Poincaré gauge theory, it is treated as a non-holonomic

frame field or a tetrad field (Remark 6.1). This treatment of σ is wrong because a soldering

form and a frame field are different mathematical objects. A frame field is a (local) section of

a principal frame bundle LX , while a soldering form is a global section of the LX-associated

tensor bundle

TX ⊗T ∗X = (LX ×Mat(4,R))/GL4

whose typical fibre is an algebra Mat(4,R) of four-dimensional real matrices. It contains a

group GL4 which acts on Mat(4,R) by the adjoint representation, but not left multiplications.

At the same time, a translation part of an affine connection on R3 characterizes an elastic

distortion in gauge theory of dislocations in continuous media [23, 32]. By analogy with this

gauge theory, a gauge model of hypothetic deformations of a world manifold has been developed.

They are described by the translation part σ (12.3) of affine world connections on X and, in

particular, they are responsible for the so called ”fifth force” [42, 43, 44].
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[2] M.Blagojević and F.Hehl (Eds), Gauge Theories of Gravitation. A Reader with Commen-

taries (Imperial College Press, London, 2013).

[3] A.Borisov, The unitary representations of the general covariance algebra, J. Phys. A 11

(1978) 1057.

[4] R.Brauer and H.Weyl, Spinors in n-dimensions, Amer. J. Math. 57 (1935) 425.

[5] Yi-Fu Cai, S.Capozziello, M. De Laurentis and E.Saridakis, f(R) Teleparallel gravity and

cosmology, arXiv : 1511.07586.

[6] S.Capozziello and M. De Laurentis, Extended theories of gravity, Phys. Rep. 509 (2011)

167.

[7] E.Cartan, Les groupes projectifs qui ne laissant invariante aucune multiplicit plane, Bull.

Soc. Math. France 41 (1913) 53.

[8] R.Dick, Covariant conservation laws from the Palatini formalism, Int. J. Theor. Phys. 32

(1993) 109.

[9] C.Dodson, Categories, Bundles and Spacetime Topology (Shiva Publishing Limited, Orp-

ington, 1980).

42



[10] G.Giachetta and G.Sardanashvily, Stress-energy-momentum of affine-metric gravity. Gen-

eralized Komar superportential, Class. Quant. Grav. 13 (1996) L67.

[11] G.Giachetta, L.Mangiarotti and G.Sardanashvily, Advanced Classical Field Theory (World

Scientific, 2009).
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