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Abstract

We complement investigations of the gauge structure of general
relativity with an analysis of the physical consequences of the sponta-
neous breaking of diffeomorphism invariance which manifests itself in
e.g. the socalled Einstein hole problem. We analyze the nature of the
gravitons as Goldstone excitations both in the classical and the quan-
tum case. We show that the metrical field and the classical space-time
manifold play the role of an order parameter field and order parameter
manifold as macroscopic super structures living in an underlying pre-
sumed quantum space-time. We furthermore relate our observations
to possible phase transitions in some pre big-bang era.
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1 Introduction

In classical general relativity (GR), in contrast to mathematical differential
geometry, it is kind of a dogma that the points of the space-time manifold
(S-T) have no real physical individuality. This was already realized in the
context of the socalled Einstein-Hole-Argument (see for example [1],[2],[3] or
sect.4 in [4]) and condensed in the mathematical statement

Observation 1.1 In classical general relativity all diffeomorphic S-T-manifolds
are physically indistinguishable. I.e., with Φ a diffeomorphism from M to M ′

(that is, not simply a coordinate transformation), and g′ := Φ∗ ◦ g (note that
Φ∗ denotes the push forward related to the pull back ((Φ−1)∗), (M,g) and
(M ′, g′) describe the same classical physics. In other words

S−T = Riem/Diff (1)

(cf. e.g. [5])
In the special case M ′ = M we would have a family of mathematically

discernible metrics at the same (coordinate) point, that is

g(x) 6= Φ∗ ◦ g(x) = g′(x) (2)

However one should note that, physically, we always have given a single
metric from the family on the S-T-manifold as, by construction, the met-
rical properties on the S-T-manifold are given by a concrete measurement
prescription which comes in a sense from outside in contrast to mathemat-
ics. We will come back to this topic below in the context of spontaneous
symmetry breaking (SSB).

The typical way how a metric is introduced in GR exploits the exis-
tence of local inertial frames (LIF) in which special relativity holds sway
and which allow to perform the usual length- and time-measurements. The
equivalence principle and general covariance then allow to transplant the
respective measurement results into arbitrary coordinate systems.

Conclusion 1.2 On a given S-T-manifold we can hypothetically envisage
several mathematically different but physically equivalent metrical tensors

g(x) , g′(x) = Φ∗ ◦ g(x) (3)

We would like to emphasize that in our context of SSB we always have
a large class of mathematically different but physically equivalent metrics
(in the above sense) on M . Typically, SSB is concerned with the ground
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state or vacuum state of a system. In our context of GR and/or quantum
gravity (QG) this means S-T devoid of macroscopic matter/energy content,
i.e. solutions with vanishing Ricci-curvature, that is

Rµν = 0 or Gµ,ν = 0 (4)

These vacuum solutions have a large class of diffeomorphisms connecting
them. Local deformations of the metric as in the hole-argument will for
example suffice.

While we will develop the subject matter from a direction starting with
a view on SSB as it occurs in systems of many degrees of freedom (DoF) like
e.g. condensed matter physics, there has been a chain of reasoning which
exploits similarities between GR and classical gauge theories.

A well written early paper, belonging to this class, is for example [6], in
which relations between the tetrad formalism of GR and socalled nonlinear
realizations of gauge groups on coset spaces in high energy physics are es-
tablished (having been of some prominence at that time). We mention also
[7]. Written in a similar vein are papers from the Russian school (up to very
recent times). To mention a few, [8],[9] or [10]. This approach relies mainly
on the fibre bundle framework of socalled gauge gravity theory and the reduc-
tion theory of principal bundles with respect to the structure groups being
used and is of a more formal character. A recent paper, also starting from
this group-reduction point of view in connection with SSB is [11].

It is our aim in the following to unify this more formal group-theoretic
approach with a different train of ideas which start from the more concretely
given implications of SSB and gravitons as Goldstone modes, thus empha-
sizing features which may establish a connection to an underlying bundle of
phenomena belonging to the not yet existing field of quantum gravity (QG).
Note for example the remark in [6]:

One does not expect any new development in the notoriously dif-
ficult problem of quantizing gravity to result from this modified
point of view. However some insight may be gained. . .

It is our impression that the observation that gravitons are the Goldstone
modes of SSB of diffeomorphism invariance will lead to real physical conse-
quences if one can relate the more formal and abstract aspects on the level
of classical gauge theory and fibre bundle reductions to the corresponding
physical implications on the deeper levels of quantum space-time physics.

2



2 Physical Considerations concerning SSB of Dif-

feomorphism Invariance

As the group theoretic aspects of SSB are represented in great detail in the
above mentioned literature, we begin our analysis with the development of
a more physical point of view concerning the subject matter which makes
contact with related phenomena of SSB in systems consisting of many degrees
of freedom.

There are two particular points to be mentioned which may shed some
light on the scene in GR and QG. We try to elucidate them by briefly dis-
cussing two characteristic examples taken from the field of SSB and phase
transitions in many-body physics. We will however only stress the points
which are of relevance for our corresponding analysis in gravitational physics.

To begin with, we discuss the phenomenon of breaking of translation
invariance by crystallization of a continous (quantum) many-body system.
In the symmetric unbroken phase the particle density ρ(x) :=< ρ̂ > is a
constant, i.e.

ρ(x+ a) = ρ(x) , x, a ∈ R
d (5)

Below some critical point or phase transition line we have instead a periodic
dependence of the particle density in the respective pure phases, i.e.

ρ(x+ a) 6= ρ(x) in general (6)

but
ρ(x+Ri) = ρ(x) (7)

for some discrete subgroup of Rd.

Definition 2.1 By a pure phase we mean in the above context a crystal
having a definite macroscopic position in space. Mixtures may occur if we
average over a group of such localized crystals. In a pure phase correlation
functions do decay but only slowly due to the existence of collective Goldstone
excitations.

Remark 2.2 A method of generating such localized crystal is the method of
Bogoliubov quasi-averages (an external localizing field which is switched off
in the end after the thermodynamic limit has been taken).

Observation 2.3 If this happens, both in the classical and the quantum
regime, long-lived collective excitations do emerge which induce long-range
correlations. In the case of a crystal they are called phonons.
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Representations of the Goldstone phenomenon in the quantum regime are
so numerous that we mention only very few sources. Almost every textbook
about quantum field theory contains a brief discussion (see e.g. [12]). As to
the older literature there is the nice comprehensive review [13]. A more recent
contribution is for example [14]. A detailed development of the Goldstone
phenomenon in the regime of classical statistical mechanics can be found in
[15].

There exists an important difference between Goldstone particles in say
QFT and in e.g. condensed matter physics and statistical mechanics. In
QFT the Goldstone particles are exact mass -zero particles, i.e. they have a
sharp excitation branch. On the other hand, in condensed matter physics,
or systems having a non-vanishing particle density in general, they aquire
an infinite lifetime only for momentum zero, while for non-vanishing mo-
menta they are usually still relatively stable collective excitations but have
only a finite lifetime (which typically decreases with increasing momentum)
resulting in a smeared dispersion law (cf. e.g. [14]). Furthermore, while in
RQFT their spin vanishes due to general principles (see [16]), this is not so
in the more general context. The underlying reason is the absence of Lorentz
covariance, Einstein causality and the socalled spectrum condition ( energy-
momentum concentrated in the forward cone). Furthermore, while in most
scenarios we can at least exploit translation invariance and the correspond-
ing Fourier-mode decomposition, this is absent in GR and QG. Therefore,
in the following, we will avoid all these concepts and discuss the Goldstone
phenomenon in a much broader framework.

The relevant point in our investigation will be the following:

Observation 2.4 For a hypothetical observer living inside one of the re-
spective pure phases, i.e. the crystal, being translated by some vector, a,
the internal physics is the same compared to a corresponding observer in a
crystal, being translated by some vector, a′ 6= a, provided corresponding coor-
dinate systems have been chosen. Only an outside observer is able to discern
the various translated pure phases.

For illustrational purposes we mention another example, i.e. a lattice spin
system, being capable of spontaneous magnetization. A pure phase in this
scenario is described by a magnetization vector, pointing in a certain di-
rection in configuration space. Again, the internal physics relative to the
orientation of this magnetization vector is the same in all the different pure
phases. Only an external observer is able to see the different phases (that
is, the different directions of magnetization) by using his external reference
system.
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Remark 2.5 All the internal observers are however able to observe the long-
range collective Goldstone excitations, that is, phonons or magnons.

All this now winds up to the observation that all internal observers see
essentially the same physics provided they adapt their internal reference
systems appropriately. That is, the situation is completely the same as
compared to the case of diffeomorphism invariance of vacuum solutions in
GR or QG.

Conclusion 2.6 By the above observations we feel entitled to attribute to the
different members of the class of diffeomorphic realizations of S-T a perhaps
less than ephemeral or only formal existence as, by necessity, we are only
internal observers in the latter case.

We want to conclude this section with a brief analysis of the character of
the goldstone modes under discussion. Phonons are essentially lattice vibra-
tions in the crystal case, magnons are fluctuations of the local magnetization.
Phrasing it somewhat differently one can venture to say:

Observation 2.7 The Goldstone modes try to locally interpolate between
the different potentially coexisting pure phases. I.e., local distortions of the
crystal lattice can for example be regarded as local transitions into another
slightly shifted crystal configuration. The same holds in the magnon case.

Conclusion 2.8 Exploiting the above correspondence between our examples
and diffeomorphism invariance of S-T, one may conclude that the Goldstone
modes in the latter case are the gravitons, acting as local distortions of S-T.
They interpolate locally between the mathematically different but physically
only hypothetically coexisting realizations of S-T as we are living in only one
of these possible realizations.

3 The Conceptual Representation of SSB of Diffeo-

morphism Invariance in the Context of General

Relativity and Quantum Gravity

In this section we want to analyse the nature of SSB in our context. Note that
the different diffeomorphic realisations of S-T can be viewed as an underly-
ing differentiable manifold being equipped with different but diffeomorphic
pseudoriemannian metrics. Furthermore, as we are mainly interested in the
case of degenerate ground states (in a possibly underlying theory of QG), we
assume that the (macroscopic) energy-momentum tensor vanishes.
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The cornerstone of GR is the equivalence principle, that is, at every
point, P , of the S-T manifold there exists for a fixed metrical field, g(◦, ◦),
a class of LIF in which the laws of special relativity (SR) hold in an at least
infinitesimal neighborhood of the point P . Mathematically we can construct
such a local coordinate system as follows, while we take at the same time
the opportunity to introduce a number of useful concepts and notations (cf.
e.g. [17] sect. 9.6. As to the tetrad formalism see also [18] sect. I,3 ).

Definition 3.1 In a given coordinate system, x, a (contravariant) tetrad at
P is given by 4 pseudoorthogonal tangent vectors, ea = (eνa) with a = 0, 1, 2, 3
labelling the 4 vectors and ν denoting the indices with respect to the local
coordinate tangent vectors ∂0, ∂1, ∂2, ∂3. We have

eaν = gνµe
µ
a , eνaebν = ηab = g(ea, eb) (8)

with ηab the Minkowski tensor.

For formal reasons we introduce

eaν := ηabeνb , eaν := ηabebν (9)

Observation 3.2
eνae

b
ν = δba (10)

Lemma 3.3
eνae

a
µ = δνµ (11)

This follows from the preceding observation. I.e., we have

(eνae
a
µ)e

µ
b = eνa(e

a
µe

µ
b ) = eνaδ

a
b = eνb = δνµe

µ
b (12)

Remark 3.4 Note that ν, µ refer to the covariant coordinate indices and are
consequently raised and lowered with the help of gνµ, g

νµ while a, b as formal
indices are raised and lowered with the help of the Minkowski metric.

Observation 3.5 Any two tetrades, (ea), (fb), at P are connected by a
Lorentz transformation, L, i.e.

eνa = L·b
a f

ν
b or ea = L·b

a fb (13)

6



Lemma 3.6
eaνf

ν
b = La

·b (14)

with
eaν = La

·bf
b
ν , f ν

b = La
·be

ν
a (15)

This follows from

(eaνf
ν
b )f

b
µ = eaν(f

ν
b f

b
µ) = eaνδ

ν
µ = eaµ (16)

and
ea = La

·bf
b (17)

Lemma 3.7 We have

ηab = g(ea, eb) = g(fa, fb) (18)

Proof: Under the assumption g(f c, fd) = ηcd we have

g(ea, eb) = gνµeaνe
b
µ = gνµf c

νf
d
µL

a
·cL

b
·d = ηcdLa

·cL
b
·d = ηab (19)

As shown in [17], l.c., one can easily construct a new local coordinate
system with the help of the tetrad at P :

(x′)i := eiν(x
ν − xνP ) , xν = xνP + eνk(x

′)k (20)

which is pseudo-orthogonal at P , i.e.

g′ik(P ) = eνi e
µ
kgνµ = ηik (21)

Other pseudo-orthogonal coordinate systems can be generated by Lorentz
transformations from the (ea)-system, i.e.

f ν
a = L·b

a e
ν
b and yi = f i

ν(x
ν − xνP ) (22)

It follows
yi = Li

·k(x
′)k (23)

However, a pseudo-orthogonal coordinate system at P is in general not
a LIF. Therefore, an observer at P in such a system still experiences a
gravitational field. This can be transformed away by means of a more general
coordinate transformation which leads to the
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Observation 3.8 There exists a coordinate transformation to socalled local
Lorentz-coordinates (e.g. Riemann normal coordinates) such that

gνµ(P ) = ηνµ and ∂gνµ(P )/∂xρ = 0 or Γρ
νµ(P ) = 0 (24)

which is the definition of a LIF. Further local Lorentz transformations leave
the class of LIF invariant while leading, of course, to another system of local
Lorentz-coordinates.

We now will establish the connection to SSB of diffeomorphism invari-
ance. Central in the context of SSB and phase transitions is the notion of
order parameter. In the above examples, taken from many-body theory, or-
der parameters are certain observable quantities which characterize the pure
spontaneously broken phases as e.g. the gradient of the particle density or
the magnetization. One can equally well use the corresponding quantum ob-
servables, that is, observables whose ground state expectation values vanish
in the ordered unbroken phase while being different from zero in the bro-
ken phases. Furthermore, the different ground state expectation values are
connected by the set of broken symmetry transformations.

More specifically, we have a large group, G, of symmetrie (some of which
are broken) containing a closed subgroup, H, of conserved symmetries. The
configuration manifold of ground states can be related to and parametrized
by the cosets of the homogeneous space G/H. We conclude, that it is im-
portant to study the structure of the space G/H with G a Lie group and H
a closed subgroup. This problem is in general not trivial and we will deal
with the more mathematical aspects of the problem in the following section.

We will now transplant this picture into the more general framework of
GR and/or QG. As configuration manifold (of minima of some functional of
the occurring fields) we take the set of vacuum solutions of GR. The group
G′ is the (in general) infinite dimensional group Diff . In the following we
restrict ourselves, for convenience, to a single orbit under Diff , that is, a
fixed vacuum solution together with its transforms under Diff . In a next
step we will shift our point of view to a more local one, i.e. we switch to the
action of the respective groups in the corresponding tangent bundle of S-T.

Observation 3.9 Locally the group Diff is realized by the group G :=
GL(n.R) of general linear transformations in the respective local coordinate
systems:

Diff → (∂(x′)i/∂xj)(P ) ∈ GL(n,R) (25)

One can equally well consider the local action on the (principal) frame
bundle over a fixed manifold M , i.e. the action of Diff in a local trivializa-
tion of the frame bundle.
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Definition 3.10 As a closed subgroup of GL(n.R) we take the orthochronous
Lorentz group, L, (the connected component of the group unit, e).

Remark 3.11 In a given coordinate system the local frames are in a one-one
relation to elements of GL(n,R), i.e.

vi = vki (∂/∂x
k) , i = 1, . . . , n (26)

with (vki ) ∈ GL(n.R).

The field on M we are mainly interested in is the classical metric field
gνµ(x) or

gνµ(x) :=< ĝνµ(x) > (27)

with ĝ its quantum version (in some framework of semiclassical QG).

Definition 3.12 We call gνµ(x) an order parameter field, thus generalizing
the notion of order parameter. An order parameter manifold, (M,g), is M
plus a fixed metrical field gνµ(x).

Observation 3.13 In a given fixed coordinate patch the group Diff acts
on the metrical field gνµ(x) by acting at each point P via GL(n,R) (in a
tensorial way)

Diff : g(x) → g′(x) (28)

The hole-problem was solved by Einstein (cf. [4] l.c.) by introducing for
example four particles A,B,C,D with A,B meeting in point xi inside the
hole and C,D in point xj. He observed that the diffeomorphism now trans-
forms both the metric tensor g(x) and the trajectories of the test particles so
that they get shifted as well with their distance becoming equal with respect
to the transformed metric compared to their distance relative to the original
metric g(x).

Observation 3.14 This is exactly the situation we discussed in section 2 in
the context of e.g. many-body physics. I.e., physically the different phases
become indistinguishable if the respective reference frames are appropriately
reoriented. In the hole argument the reference system is provided by the 4
particle trajectories and their intersection points. Put differently, the Ein-
stein hole argument is in fact an illustration of our concept of SSB in general
relativity.
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As a last point in this section we discuss what a local observer in a LIF
physically experiences concerning the SSB of diffeomorphism invariance. We
again emphasize that we have one metric field, g(x), with the other poten-
tially existing fields g′ := Φ∗ ◦ g being unobservable for the local observer.
What is actually at his disposal are passive coordinate transformations. He
can for example apply Lorentz transformations.

Observation 3.15 We learned above that with (ea) a Lorentz-orthonormal
frame, g(ea, eb) = ηab, the same holds for the Lorentz transformed tetrad,
(fa), i.e. g(fa, fb) = ηab.

That is, if the local observer uses a LIF (local Lorentz coordinates) he ob-
serves that gravitational forces are locally absent. The same holds then
when he applies the Lorentz group L↑

+ (and extending the new frame ap-
propriately to a local Lorentz coordinate system). If, on the other hand, he
applies general elements from GL(n,R) he will observe gravitational forces
in the transformed coordinate frame.

Conclusion 3.16 In our view this is the local manifestation of the breaking
of diffeomorphism invariance.

In the next section we will relate our physical observations with the more
abstract formalism of reduction of pricipal bundles.

4 SSB and Reducible Principal Bundles

A large part of the above mentioned literature is concerned with the re-
ducibility of the frame bundle with structure group GL(n,R) to a subgroup,

in our case the Lorentz group L↑
+ or SO(n − 1, 1;R). Frequently this phe-

nomenon is already considered as a case of SSB. In our view reducibility as
such is a widespread phenomenon in the field of principal bundles. So we
regard it rather as a necessary prerequisite for SSB, not as the phenomenon
itself! The mathematical results we are using in the follwing can be found in
the following books, [19],[20],[21],[22]. We take some pains of mentioning the
places where the results (and more) can be found because exact citations of
the sometimes quite nontrivial results are frequently missing in the physical
literature.

We denote a general bundle by (E,B,G,F ) or simply E, E → B. E is
the total space, B the base space (typically in our case the space-time man-
ifold S − T ), G is the structure group (in physics called the gauge group),
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F the typical fibre (sometimes F is a vector space). Both E,B are differen-
tiable manifolds. Points in E,B are denoted by p, x. E is continuously and
surjectively projected by π on B. With x ∈ B, π−1(x) = E(x) or Ex is the
fibre over x. G acts on F from the left via homeomorphisms or (in case of a
vector space) as linear automorphisms. All fibre bundles are assumed to be
locally trivial, that is, it exists a covering of B by open sets, Ui, so that it
exists φi with

φi : π
−1(Ui) ≃ Ui × F (29)

In particular
φ′
i : π

−1(x) = Ex ≃ F (30)

with
φi(p) = (π(p), φ′

i(p) (31)

If x ∈ Ui ∩ Uj the transition maps

φ′
i ◦ φ

′−1
j : F → F (32)

are elements of the structure group.

Definition 4.1 A principal bundle, P , is a fibre bundle in which the typical
fibre F and the structure group G are identical or, equivalently, Ex or Px are
diffeomorphic to G (as Lie groups).

Observation 4.2 It is important that one can define a right action of G on
the fibres, Px, i.e.

Rg ◦ p = p · g or Rg ◦ p = φ−1
i ◦ (φi(p) ◦ g) (33)

under which G acts freely on Px.

Remark 4.3 Note that left action is in general not! fibre preserving (i.e.
independent of the choice of patch Ui).

In our context we are typically concerned with the bundle of frames,
L(M), over a manifold M . A linear frame at x ∈ M is an ordered basis of
the tangent space Tx(M). The linear group acts on L(M) from the right in
the following way.

Yj = Ai
jxi (34)

(Yj), (Xi) linear frames at x ∈ M . Taking a coordinate basis (∂xi) each
frame at x can be expressed as

Xj = Xi
j∂xi (35)
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for some (Xi
j) ∈ GL(n,R). This shows at the same time the local triviality

of the frame bundle, i.e.:

π−1(U) ≃ U ×GL(n,R) (36)

Definition 4.4 Let P (M,G) be a principal bundle. Let P ′ be a submanifold
of P and H a Lie-subgroup of G so that P ′(M,H) is again a principal bundle
with structure group H. We call P ′(M,H) a reduction of P (M,G). We say,
the structure group G is reduced to H ⊂ G.

Remark 4.5 This property is a nontrivial! result. It has a variety of inter-
esting applications (cf. e.g. [19] or [20]).

In the reduction process an important role is played by the coset space
G/H, or in our contex, GL(n,R)/L↑

+. In most of the mathematical litera-

ture it is dealt with the case GL(n,R)/O(n,R), i.e. O(n,R) instead of L↑
+.

The latter situation is technically much simpler (as is the case for Rieman-
nian geometry in general compared to Lorentzian geometry) but one finds
frequently the slightly erroneous statement in the physical literature that the
former case is more or less equivalent. Therefore we want to briefly comment
on this point.

We have the general result (cf. [19] p.43 or [20] p.109)

Theorem 4.6 G/H is an analytic manifold , in particular the projection
G → G/H is real analytic. Furthermore, G is locally diffeomorphic to G/H×
H, i.e. G(G/H,H) with H as structure group is a principal bundle (cf. [19]
p.55).

In special cases, e.g. if H is a maximal compact subgroup, stronger results
hold.

Theorem 4.7 With H a maximal compact subgroup

G ≃ H × R
m (37)

This is a result by Iwasara (cf. [20] p.386 or[21] p.109ff.

Corollary 4.8 We have

GL(n,R)/O(n) ≃ R
n(n+1)/2 (38)

with dim(O(n)) = n(n− 1)/2.
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Remark 4.9 One should note that L↑
+ is not compact and (to our knowl-

edge) a corresponding result does not hold for L↑
+ instead of O(n).

The reason why such a result holds for O(n) can be understood rela-
tively easily. The wellknown polar decomposition tells us that there exists
an essentially unique (global!) decomposition.

Theorem 4.10 (Polar Decomposition) It exists an essentially unique de-
composition

L = O · |L| (39)

with O orthogonal and L ∈ GL(n,R), |L| positive semidefinite, more specif-
ically

|L| = (L+ · L)1/2 (40)

and L+ the adjoint of L.

Remark 4.11 This important result is much more general and holds also
for closable (unbounded) operators (cf. e.g. [23] vol.I)

It is crucial for such a result to hold that one can exploit the spectral theorem,
i.e. that for example |L| is well-defined and, a fortiori, selfadjoint. Nothing
in that direction holds (to our knowledge) if O is replaced by an element of

L↑
+. In the latter case one only has a weaker result of a (in our view) quite

different nature (which is however sufficient in our case).
With G a Lie group, H a closed subgroup, let Ĝ, Ĥ be the respective

Lie algebras, M̂ some vector subspace of Ĝ so that Ĝ is the direct sum,
Ĝ = M̂ + Ĥ, (note that M̂ is not! unique in general). Let expM̂ be the

restriction of the exponential map to M̂ and ê := e ·H = H the element in
G/H under the projection π : G → G/H.

Theorem 4.12 (cf. e.g. [22] p.113) There exists a neighborhood, U , of 0
in M̂ which is mapped homeomorphically under expM̂ onto expM̂ (U) ⊂ G so
that π maps expM̂ (U) homeomorphically onto a neighborhood of ê in G/H.

To prove this important theorem, one needs the following lemma ([22] p.105),
which is useful in various contexts.

Lemma 4.13 With Ĝ = M̂ + Ĥ there exist open neighborhoods UM̂ , UĤ of

0 in M̂, Ĥ so that the map

(A,B) → exp(A) · exp(B) (41)

is a diffeomorphism of UM̂ × UĤ onto an open neighborhood of e in G.
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Remark 4.14 It is remarkable that this map generates a full neighborhood of
e in G as it is, at first glance, only a product set. It follows from the particular
situation in Lie groups. It hinges in particular on the non-vanishing of a
certain functional determinant around e in G. This guarantees the bijectivity
of the map near e. But one does not know how large this neighborhood
actually is.

Conclusion 4.15 The above theorem says essentially that with the help of
M̂ we get locally! a transversial submanifold relative to H which yields a
parametrization of the fibres around ê ∈ G/H. Via group multiplication we
can then transport this parametrization to a neighborhood of any coset g ·H.

Theorem 4.16 In the case of GL(n,R), L↑
+(n,R), matrices with

η ·AT = A · η (pseudosymmetric) (42)

span a n(n+1)/2-dimensional submanifold being locally transversal to L↑
+(n,R),

i.e. they locally coordinatize GL(n,R)/L↑
+(n,R). That is, in a neighborhood

of e ∈ GL(n,R) each element L ∈ GL(n,R) can be written uniquely as

L = Λ · A (43)

with Λ ∈ L↑
+(n,R) and A pseudosymmetric.

Remark 4.17 Note that e.g. matrices with AT = A do not have this prop-
erty while also spanning a n(n+ 1)/2-dimensional submanifold. There exist
Lorentz boosts being even positive!. The above local decomposition with A
pseudosymmetric was used in [6].

Proof of theorem: We show that no element in L↑
+ different from e is pseu-

dosymmetric. We have with Λ ∈ L↑
+:

ΛT ηΛ = η (44)

Assume that
ΛT = ηΛη (45)

we get
ηΛη2Λ = η → ηΛ2 = η (46)

hence
Λ2 = e → Λ = e (47)
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which proves the theorem as it holds n(n − 1)/2 + n(n + 1)/2 = n2 =
Dim(GL(n,R).

There is an important theorem in the reduction theory of principal bun-
dles ([19] p.57) saying the following:

Theorem 4.18 The principal bundle P (M,G) is reducible to P ′(M,H) iff
P/H admits a cross section.

Remark 4.19 The meaning of P/H is the following. The fibres of P are
diffeomorphic to G, hence the fibres of the bundle P/H are diffeomorphic to
the typical fibre G/H. The structure group is again G (multiplication from
the left).

In the case of O(n)
GL(n,R)/O(n) ≃ R

n(n+1)/2 (48)

it is easy to see that local cross sections can be pasted together and extended
to a global cross section (cf. [20] p.385) because R

m is a vector space and
assuming that M is paracompact.

Observation 4.20 In the case of L↑
+ as subgroup we have local cross sec-

tions around every point of P/H or rather L(M)/L↑
+ (L(M) the frame

bundle) as a consequence of our above results. But (to our knowledge)

GL(n,R)/L↑
+ is not diffeomorphic to a vector space.

We can however proceed as follows. We assume that a Lorentzian metric,
g, is given on our space-time manifold M = S − T .

Remark 4.21 In contrast to the Riemannian case (paracompact manifold)
this is not automatic (cf. e.g. [20] p.293).

With the help of g we generate the set of pseudoorthogonal tetrads (ea) at

every point x of M . This set is invariant under L↑
+ as we have seen in section

3.

Observation 4.22 The subset of L(M) consisting of pseudoorthogonal tetrads
at each x ∈ M is a reduced subbundle Q(M) ⊂ L(M) with structure group

L↑
+.

In each fibre of Q(M) L↑
+ acts freely from the right. Therefore the projection

pr : L(M) → L(M)/L↑
+ (49)

is constant on the fibres of Q as subsets of the fibres of L(M).
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Observation 4.23 Thus pr induces a mapping

s : M → L(M)/L↑
+ (50)

via
s(x) := pr(I(ea(x)) (51)

with πQ(ea(x)) = x the projection map in the subbundle Q(M) and I the
injection (imbedding) map

I : Q(M) → L(M) (52)

It is obvious that s(x) determines a cross section in L(M)/L↑
+.

Remark 4.24 Note that s(x) represents the equivalence class of Lorentz

frames in L(M)/L↑
+ over x. That this is a well defined mapping is obvious.

The continuity or differentiability of the cross section is the crucial point.
This follows from the properties of the composition of the above maps all of
which are differentiable. Furthermore, with the help of this cross section we
get back exactly the subbundle Q(X) we started from.

5 Conclusion

We have learned in the preceeding sections that the gravitational field (or,
rather, the metrical field), g, can be regarded as an orderparameter field and
the macroscopic, smooth space-time manifold (S − T ; g) as an order param-
eter manifold, lying above a presumed microscopic (irregular and erratic)
quantum space-time consisting of an array of many interacting DoF.

We have invoked the situation of quantum many-body systems for several
times. There the situation is the following. We usually have a symmetric
unbroken phase with the order parameter being zero, and, in another region
of certain parameters, a phase transition to a set of physically more or less
identical spontaneously broken phases characterized by certain non-vanishing
values of the order parameter.

Transferring these observations to our field we may venture to say:

Conjecture 5.1 We associate the presumed unbroken phase of our (quan-
tum) space-time, that is, the absence of a classical, macroscopic metrical
field, g, to some pre-big-bang era. The emergence of classical space-time is
then the result of a phase transition (which may have happened before or near
the big-bang).
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Another interesting point concerns the nature of the gravitons them-
selves. In many-body physics the corresponding excitations are the phonons
with the ordered phase being the crystal phase and the relatively long-lived
lattice phonons as Goldstone particles. On the other hand, phonons do al-
ready exist in quantum fluids but they happen to be more strongly damped.
The phonons which occur e.g. in fluids can be associated with the SSB of
Galilei invariance (cf. e.g. [14].

Conjecture 5.2 We think that in our context gravitons, while being more
stable in the ordered phase, i.e. S − T plus a non-vanishing g-field, have al-
ready existed in the unordered phase (quantum vacuum with vanishing clas-
sical g). In this phase they represented certain types of more primordial
excitations not being related to deformatons of classical S−T . They perhaps
do reflect, as in the above Galilei-case, the existence of a quantum vacuum
as such.

Remark 5.3 This may be interesting in connection with string theory. While
string theory, at least as a starting point, exploits a classical embedding or tar-
get space, gravitons are associated with certain low-lying excitations of closed
strings. Our above observations concerning the possible nature of gravitons
may perhaps shed some light on a certain connection to string theory and the
role of gravitons in this framework.

The last point we want to address is whether there exists an objective
correlate to the different hypothetical phases being described by the different
diffeomorphic metrical fields. In SSB of many-body systems all the different
phases can really exist while only one is realized in each case. In the corre-
sponding situation of GR we are less accustomed to such a picture. However,
in more recent times the general perspective has changed a little bit, given
the discussion about the landscape in string theory and cosmology or in-
duced/entropic gravity which employ more or less openly some microscopic
baclground substrate as supposed carrier of the concepts of physics.
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