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General Relativity can be reformulated as a diffeomorphism invariant SU(2) gauge theory. A new
action principle for this ”pure connection” formulation of GR is described.

In [1] Plebanski has shown that instead of the space-
time metric the dynamical field of General Relativity
(GR) can be taken to be a collection (triple) of two-forms
satisfying a certain algebraic equation. This idea was
taken further in [2], [3], where it was suggested that the
two-form field (as well as the Lagrange multiplier field
of the Plebanski formulation) can be integrated out to
obtain a ”pure connection formulation” of GR. An ac-
tion principle realizing this idea in the case Λ = 0 of zero
cosmological constant GR was described in [2]. The case
Λ 6= 0 proved to be more difficult, and only a rather com-
plicated (and erroneous, see [4]) action was given in [3].
The purpose of this letter is to point out that an elegant
and simple ”pure connection” action principle for GR
encompassing both Λ 6= 0 and Λ = 0 cases is possible.
We start by describing the new variational princi-

ple, and then prove that solutions of the arising Euler-
Lagrange equations are in one-to-one correspondence
with solutions of Einstein equations. As in [2], [3], the
main dynamical field of our formulation is an SO(3) con-
nection field Ai, i = 1, 2, 3 over the spacetime manifold.
We take Ai to be a dimensionful quantity with dimen-
sions of A ∼ 1/L, where L is a unit of length. In con-
trast to [2], [3], our action will be a functional of only
the connection; no additional auxiliary field will be nec-
essary. Given a connection Ai, its curvature is given by
F i = dAi + (1/2)ǫijkAj ∧ Ak. Here the form notation
is used, and ∧ denotes the wedge product of forms. As
in [2], [3] we consider the 4-form F i ∧ F j, which is val-
ued in the second (symmetric) power of the Lie algebra
su(2). Using the density weight one anti-symmetric ten-
sor ǫ̃µνρσ , which does not need a metric for its definition
(here µ, ν, . . . are the spacetime indices), we can convert
the 4-form F i ∧ F j into a density weight one symmetric
3× 3 matrix

X̃ ij :=
1

4
ǫ̃µνρσF i

µνF
j
ρσ, (1)

so that F i ∧F j = X̃ ijd4x. We note that X̃ ij has dimen-
sions of 1/L4. Now consider an arbitrary homogeneous of
degree one, gauge invariant function f : Mat(3× 3) → C,

i.e., a function satisfying f(αX̃) = αf(X̃) as well as

f(OX̃OT ) = f(X̃), O ∈ SO(3). Then f(X̃ ij) is a density
weight one, and can be integrated over the spacetime to
produce an action. We refer the reader to e.g. [5] for more
details on this construction of diffeomorphism invariant
actions. We also note that the sketched construction of
actions is somewhat similar to that described in [6] in the
context of stable differential forms.

The simplest possible diffeomorphism invariant gauge
theory action corresponds to f(X̃) = Tr(X̃). This,
however, gives a topological theory without any inter-
esting dynamics. As we shall now see, general relativ-
ity (with Λ 6= 0) arises for a certain other choice of
f . To describe it, let us recall the notion of the ma-
trix square root. For a 3 × 3 symmetric matrix such

as (1), a square root (
√

X̃)ij is a symmetric matrix

such that (
√

X̃)ij(
√

X̃)jk = X̃ ik. Explicitly, if the ma-

trix X̃ ij is diagonalized by an orthogonal transformation
O ∈ SO(3), i.e., X̃ = ODOT , D = diag(λ̃1, λ̃2, λ̃3), then

(
√

X̃) = O
√
DOT ,

√
D = diag(

√

λ̃1,
√

λ̃2,
√

λ̃3). This
involves a choice of the branch of the square root func-
tion. For our purposes any of the two branches can be
taken; we shall see that the action is independent of this
choice. Indeed, consider the function

f(X̃) :=
1

16πGΛ

(

Tr
√

X̃
)2

. (2)

Here G,Λ are the Newton’s and cosmological constants
respectively. Note that because of the second power
present here the function (2) is independent of which
branch of the square root is used. The function (2) is
homogeneous of degree one and gauge invariant. Thus,
it satisfies all the requirements discussed above, and so
f(X̃) can be integrated over the spacetime to produce
an action. We note that in the units c = 1 used in this
letter the quantity 1/(GΛ) has dimensions of ~. Thus,
when (2) is integrated over the manifold the result will
have dimensions of ~, as is appropriate for the action.
Having in mind the construction just described, we can

write the following diffeomorphism invariant functional of
the connection:

SGR[A] =
1

16πiGΛ

∫

(

Tr
√
F i ∧ F j

)2

. (3)

This is the action principle that is the subject of this
letter. Here i =

√
−1 is the imaginary unit. The fact

that there is a multiple of the imaginary unit in front of
the action has to do with (salient up to now) fact that in
the physically relevant case of spacetimes with metrics of
Lorentzian signature the SO(3) connection field in (3) is
complex-valued. As in [1], [3], the action is supplemented
with the reality conditions:

F i ∧ (F j)∗ = 0, Re(F i ∧ F i) = 0, (4)

which guarantee that real Lorentzian signature metrics
arise. The first of the reality conditions in (4) says that
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the curvature must be wedge-orthogonal to its complex
conjugate. The second condition says that the 4-form
F i ∧ F i is purely imaginary. This explains why a factor
of (1/i) is needed in (3). Note that there are 10 reality
conditions in (4), exactly the number that is needed to
require 10 metric components to be real. We also note the
changes that are necessary to get an action that describes
the Riemannian signature sector of general relativity. In
this case the connection field is real SO(3)-valued, no
reality conditions (4) is necessary, and there is no factor
of 1/i in front of the action. In both the Lorentzian
and Riemannian sectors we shall consider the variational
principle (3) for Ai varying in the subspace det(X̃) 6= 0,
which guarantees that the spacetime metrics described
by our connection field are non-degenerate.
To prove that (3) is indeed an action for general relativ-

ity in disguise, we need to find the corresponding Euler-
Lagrange equations. The matrix of partial derivatives of
the function (2) with respect to the components of the

matrix X̃ ij is given by:

∂f

∂X̃ ij
=

1

16πGΛ

(

Tr
√

X̃
)(√

X̃ −1

)ij

. (5)

Note that the inverse of X̃ ij exists as is guaranteed by our
restriction det(X̃) 6= 0. Note also that, as is appropriate
for a function of degree of homogeneity one, we have:

∂f

∂X̃ ij
X̃ ij = f(X). (6)

If we now define:

Bi :=
∂f

∂X̃ ij
F j , (7)

where the matrix of partial derivatives is evaluated at
(1), then the Euler-Lagrange equations for (3) read:

DAB
i = 0. (8)

Here DA is the covariant derivative with respect to the
connection Ai. We note that (8) is a set of 3× 4 second-
order differential equations for the 3 × 4 components of
the connection Ai.
We now show that (8), together with the definition

(7) of the two-form field Bi are equivalent to the field
equations of Plebanski formulation of GR [1]. To this
end we note that the two-form field (7) satisfies a set of
algebraic equations. Indeed, using the definition (1) we
have:

1

4
ǫ̃µνρσBi

µνB
j
ρσ =

∂f

∂X̃ ik

∂f

∂X̃jl
X̃kl =

(

Tr
√

X̃

16πGΛ

)2

δij .

Thus, the two-form field (7) satisfies:

Bi ∧Bj ∼ δij , (9)

which is the basic equation of Plebanski’s formulation of
GR [1]. The Einstein equations then arise as follows.
Given a triple of two-forms Bi satisfying (9) there is

a canonically defined spacetime metric (determined by
the condition that Bi are self-dual, and that a multi-
ple of Bi ∧ Bi is the volume form). This metric is real

Lorentzian in view of (4). When det(X̃) 6= 0 the equa-
tions (8) can be solved for the connection Ai and the
equation (9) implies that the resulting SO(3,C) connec-
tion is the self-dual part of the metric-compatible spin
connection. The equation (7) rewritten as

F i =

(

∂f

∂X̃ ij

)

−1

Bj (10)

then implies that the curvature of the self-dual part of
the spin connection is self-dual as a two-form, which is
equivalent to the Einstein condition Rµν ∼ gµν . For more
details on Plebanski formulation in the notations close
to those of this letter the reader is referred to [7]. We
have thus shown that the field equations following from
(3) are equivalent to those of the Plebanski formulation
[1]. Thus, any solution of Einstein’s theory gives rise
to a solution of the theory (3), and any (non-degenerate

det(X̃) 6= 0) solution of field equations of (3) gives rise
to an Einstein metric.
We note that the logic of the above proof of equiv-

alence to GR could be reversed, and one could derive

(2) as the only function of the matrix X̃ ij of curvature
wedge products such that the corresponding action pro-
duces Plebanski field equations. Indeed, it is clear that
the key point about the particular choice (2) is that it
leads to (9). This is the case for

∂f

∂X̃ ij
∼
(

Tr
√

X̃
)(√

X̃ −1

)ij

, (11)

where we need the trace prefactor in order to guarantee
that ∂f/∂X̃ is of degree of homogeneity zero. This then
integrates to (2).
So far we have discussed the case of GR with non-zero

cosmological constant. Indeed, in the limit Λ → 0 the
action (3) is singular. However, in this limit the (expo-
nential of the) action present in the quantum mechanical
path integral of the theory can be viewed as a delta-
function imposing the constraint:

Tr
√
F i ∧ F j = 0. (12)

This is the same equation as was found in [2] by rewrit-
ing the Λ = 0 general relativity in the pure connection
formalism. Indeed, the condition that the trace of the
square root of a matrix is equal to zero can be rewritten
as an equation on the matrix itself. For this we, as in [3],

denote Y ij ∼
√
F i ∧ F j , and write down the character-

istic equation for Y :

Y 3 − Tr(Y )Y 2 +
1

2

(

(Tr(Y ))2 − Tr(Y 2)
)

Y = det(Y ).

Now, multiplying by Y , taking the trace and using
Tr(Y ) = 0 we get:

Tr(Y 4)− 1

2
(Tr(Y 2))2 = 0. (13)
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Rewriting this in terms of X = Y 2, X ij ∼ F i ∧ F j we
get:

Tr(X2)− 1

2
(Tr(X))2 = 0, (14)

which is just the condition found in [2], [3]. Thus, in the
sense described, our action (3) encompasses both Λ 6= 0
and Λ = 0 cases.
Finally, we present an alternative derivation of the ac-

tion (3) directly from the Plebanski formulation of GR,
via the same procedure as is followed in [3]. The Ple-
banski action for GR with a cosmological constant Λ is
a functional of the connection Ai, an su(2)-valued two-
form Bi, as well as a field of Lagrange multipliers Ψij . It
is given by

SPleb =
1

8πiG

∫
[

Bi ∧ F i − 1

2

(

Ψij +
Λ

3
δij
)

Bi ∧Bj

]

.

More details on this formulation can be found in e.g. [7].
Integrating out the two-form field one gets the following
action

S[A,Ψ] =
1

16πiG

∫
(

Ψij +
Λ

3
δij
)

−1

F i ∧ F j , (15)

where it is assumed that the matrix
(

Ψij + (Λ/3)δij
)

is
invertible. It is now convenient to rescale the Lagrange
multipliers field and write the action as

S[A, Ψ̃] =
1

i

∫

(

Ψ̃ij + αδij
)

−1

F i ∧ F j, (16)

where

α :=
16πGΛ

3
, (17)

in units ~ = c = 1, is a dimensionless quantity. Note
that α ∼ M2

Λ
/M2

p and so, for the observed value of the

cosmological constant, is of the order α ∼ 10−120.
In the final step we integrate out the Lagrange multi-

plier field Ψ̃ij . Let us drop the tilde on the symbol for
brevity. We can the rewrite the above action as

S[A,Ψ] =
1

i

∫

(vol)Tr
(

(Ψ + αId)−1X
)

, (18)

where we have introduced F i ∧ F j = (vol)X ij , and (vol)
is an arbitrary auxiliary 4-form on our manifold. To in-
tegrate out the matrix Ψ we have to solve the field equa-
tions for it, and then substitute the result back into the
action. Assuming that the solution for Ψ can be written
as a matrix function of X , we conclude that Ψ will be
diagonal if X is. Thus, we can simplify the problem of
finding Ψ by using an SO(3) rotation to go to a basis
in which X is diagonal. This is always possible at least
locally. We then look for a solution in which Ψ is also
diagonal. Denoting by λ1, λ2, λ3 the eigenvalues of X ij,
and by a, b,−(a+ b) the components of the diagonal ma-
trix Ψ, we get the following action functional to consider

F [a, b, λ] =
λ1

α+ a
+

λ2

α+ b
+

λ3

α− (a+ b)
. (19)

We now have to vary this with respect to a, b and substi-
tute the solution back to obtain the defining function as
a function of λi. Assuming that no of the denominators
in (19) are zero we get the following two equations

(α+ a)2λ3 = (α− (a+ b))2λ1, (20)

(α+ b)2λ3 = (α− (a+ b))2λ2.

Taking the (positive branch of the) square root and
adding the results we get a + b, which is most conve-
niently written as

α− (a+ b) = 3α

√
λ3√

λ1 +
√
λ2 +

√
λ3

. (21)

The other two combinations that appear in (19) are given
by similar expressions:

α+ a = 3α

√
λ1√

λ1 +
√
λ2 +

√
λ3

, (22)

α+ b = 3α

√
λ2√

λ1 +
√
λ2 +

√
λ3

.

It is now clear that the sought function of the matrix X
is given by

fGR(λ) =
1

3α

(

√

λ1 +
√

λ2 +
√

λ3

)2

=
1

3α

(

Tr
√
X
)2

.

Integrated over the spacetime manifold this is just our ac-
tion (3). This concludes our proof of the classical equiva-
lence of General Relativity with a non-zero cosmological
constant and the theory of connections (3).
A number of remarks is in order. First, the formulation

(3) can be used as the starting point for a new type of the
gravitational perturbation theory. Here one expands the
action around the constant curvature background, and
the usual linearized GR solutions (gravitons) can be seen
to appear [5]. It would be very interesting to develop
this line of thought further and compute the graviton
scattering amplitudes as well as loop corrections using
this formalism. Work on these issues is in progress.
Another remark is that the usual metric based GR

and the theory of connections (3) may well be different
as quantum theories. Indeed, the transformation from
the set of metric variables of GR to the set of connection
components in (3) is highly non-trivial, and so the nat-
ural path integral measures for the two theories do not
have to coincide. It is thus not impossible that quantum
mechanical calculations based on (3) will produce quan-
titatively different results from those in perturbative GR.
It will then be a matter of choice to select the ”correct”
quantum theory. Note, however, that the theory (3) ex-
panded around a constant curvature background is as
non-renormalizable as GR (in that the coupling constant
has a negative mass dimension), see [5].
Another (potentially important) point about the for-

mulation (3) is that it immediately allows for a very large
class of generalisations. Indeed, we have seen that the
construction of the action goes through for any homoge-
neous order one and gauge invariant function f(X̃). The
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function in (3) is special because it guarantees (9), but
other functions can be considered. A large class of diffeo-
morphism invariant SU(2) gauge theories is then possible,
see e.g. [5] and [8] for earlier work. A very interesting
feature of all these new theories is that they describe just
two propagating degrees of freedom, see [9], exactly like
general relativity. These theories could be of importance
for understanding the ultra-violet behaviour of gravity,
see [5] for more details on such potential applications.
Let us also comment on the fact that for the currently

accepted value of the cosmological constant the coeffi-
cient 1/GΛ in front of the action (3) is so exceedingly
large (approximately 10120 if measured in the units of ~).
Thus, in the language of our ”pure connection” formula-
tion the famous cosmological constant problem becomes
a question of why the dimensionless parameter that mul-
tiplies the gravitational action is so enormous. It could
be that the answer is given by an appropriate renormal-
isation group flow, see [5] for more discussion.
Note also that it is a very interesting point about (3)

that it requires a non-zero Λ. Given that there is now a
strong observational evidence for a non-zero cosmological
constant, this seems to be a step in the right direction
as compared to the usual metric based GR whose action
principle works equally well with or without Λ.
Apart from possible applications in quantum gravity,

the new formulation (3) may prove instrumental in the
classical domain. One promising direction appears to be
to questions about the moduli spaces of Einstein metrics
on 4-manifolds, see e.g. [10], Chapter 12. The point is
that the linearization of the new functional (3) behaves
differently with respect to diffeomorphisms than the lin-
earization of the Einstein-Hilbert functional. Indeed, at
least for the linearization around the constant curvature
background [5] one finds the linearized action to be sim-
ply indepedent of certain components of the connection
(those which can be changed by an action of a diffeomor-
phism). This is completely different from the case of the
Einstein-Hilbert functional, where diffeomorphisms need
to be gauge-fixed in a rather non-trivial fashion. Opti-
mistically, this different behaviour may make some open
rigidity questions about Einstein metrics easier to tackle.

Apart from the above positive features, the new formu-
lation (3) has some difficulties that must be mentioned.
The first and foremost is that for applications in physics
one needs to know how all other matter couples to grav-
ity. It is not easy to describe this once gravity has been
reformulated as a theory of connections. Fortunately, a
simple way to couple the usual Yang-Mills gauge fields
exists, see [11], [12], and also [13] for earlier work. The
main idea here is that enlarging the gauge group ap-
propriately and expanding the theory around the con-
stant curvature background in the gravitational sector,
one finds the usual Yang-Mills action functional as de-
scribing the low energy physics of the non-gravitational
gauge fields. It is much more difficult to couple to (3)
fermionic matter, and it is clear that new ideas will be
required here. Work on this is in progress.
Another difficulty with the formulation (3), as well as

with the original Plebanski formulation [1], is that the
connection field is required to be complex-valued (if one
is to reproduce the Lorentzian signature sector of GR).
Then reality conditions (4) need to be imposed, so that
the action (3) is varied among the gauge fields satisfy-
ing (4). For the classical theory this is not much of a
problem, but if one wants to base on (3) a quantum me-
chanical treatment, one has to take into account (4) in
the path integral, which is a difficult task. One possible
way around this problem could be to resort to the ana-
lytic continuation to the Riemannian signature metrics,
where the reality is trivial to impose. However, it is not
at all clear if there is a consistent way to do this in the
quantum theory. More work on these issues is required.

In spite of some questions remaining open, we feel
that the action principle (3) has a potential to become
a starting point for new developments in both classical
and quantum General Relativity.
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