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Abstract

A general diffeomorphism invariant SU(2) gauge theory is a gravity theory with two propagat-
ing polarisations of the graviton. We develop this description of gravity, in particular for future
applications to the perturbative quantisation. Thus, the linearised theory, gauge symmetries, gauge
fixing are discussed in detail, and the propagator is obtained. The propagator takes a simple form
of that of Yang-Mills theory with an additional projector on diffeomorphism equivalence classes
of connections inserted. In our approach the gravitational perturbation theory takes a rather un-
usual form in that the Planck length determined from the self-coupling of the graviton is no longer
fundamental but becomes a derived quantity.

1 Introduction

The field theory approach to gravity, see e.g. [1], tells us that gravity is not a gauge theory. Indeed,
the carriers of force in a gauge theory (such as e.g. Maxwell electrodynamics) are spin one particles.
For this reason there are two types of charged objects interacting by exchange of carriers of force -
those negatively and positively charged. Like particles repel and unlikes attract. In contrast, there is
only one type of charge in gravity and everything attracts everything. Thus, gravity is not a gauge
theory, see [1] for a further discussion.

This simple argument forbids a direct gauge theory description of gravity. It says nothing, however,
about less direct possible relationships. And indeed, a relation of a completely different type is now
being very popular. This has its origin in the open-closed string duality, which implies that amplitudes
for closed strings are squares of those for open strings. Since the low energy limit of the closed string
theory is gravity, and that for open strings is gauge theory, this implies that scattering amplitudes
for gravitons must be expressible as squares of amplitudes for gluons, see e.g. a recent paper [2] and
references therein. The relationship is not direct, and it is in particular not easy to find a Lagrangian
version of the correspondence. However, it has recently led to some very interesting developments on
loop divergences in N = 8 supergravity.

The aim of the present paper is to develop yet another relationship between gravity and gauge
theory. To the best of this author’s understanding, there is no relation between the present story and
that of [2]. The relationship of interest for us here has its origins in the discovery of Plebanski [3]
that certain triple of self-dual two-forms can be used as the basic variables for gravity1. The same
”self-dual” formulation of general relativity (GR) has been rediscovered a decade later by Ashtekar
[5] via a completely different path of a canonical transformation on the phase space of GR. The two
discoveries were later linked in [6], and the outcome was a realisation that gravity can be reformulated
as a theory whose phase space coincides with that of an SU(2) gauge theory. This gravity/gauge
theory relationship was taken one step further in [7]. Thus, it was realised that the two-form fields of

1Similar ideas has appeared in the literature much earlier, see e.g. [4] for historical remarks, but it was Plebanski
who proposed to reformulate general relativity without the metric, with only two-forms as dynamical variables.
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Plebanski formulation of GR [3] can be integrated out to obtain a ”pure connection” formulation of
general relativity, where the only dynamical field is an SU(2) connection. The result was a completely
new perspective on general relativity, in which GR becomes reformulated as a novel type of a theory
of the gauge field — a diffeomorphism invariant gauge theory.

The work on ”pure connection” formulation of GR [7] has led to some further advances in that
it was realised in [8] that there is not a single diffeomorphism invariant gauge theory, but an infinite
parameter class of them. All these theories share the same key properties with GR, as they have the
same number of propagating degrees of freedom (DOF). Thus, for any theory in the class the phase
space is that of an SU(2) gauge theory. However, in addition to the usual SU(2) gauge rotations, there
are also diffeomorphisms acting on the phase space variables, which reduce the number of propagating
DOF from 6 of SU(2) gauge theory to 2 of GR.

Unfortunately, the new viewpoint on GR originating in [7] (and having its roots in Plebanski’s key
insight [3]) has not been significantly developed. The phase space version [5] of this story has formed
the foundation of the approach of loop quantum gravity [9], but the new pure connection formulation
of GR [7] and of the infinite-parameter family [8] of ”neighbours of GR” has not had any significant
applications, as far as the author is aware.

The author’s current interest in the subject started in [10] from a simple power counting argument
describing how the non-renormalisability of GR manifests itself in the Plebanski formulation [3]. The
outcome was an infinite-parameter family of Plebanski-like theories, where the constraint term of the
Plebanski action was replaced by a ”potential” term for the would-be Lagrange multipliers. Each of the
new theories is just the familiar from discussions of non-renormalisability counterterm corrected GR
(in disguise), and so the interpretation of the infinite number of new parameters is that they are related
to coefficients in front of counterterms constructed from the curvature and its derivatives in the usual
metric description of gravity. It was very quickly realised [11] that the new infinite-parameter family of
theories [10] is essentially the same as the one introduced and studied by Begtsson and collaborators
a decade earlier [8], with the difference being that [8] worked at the level of a ”pure connection”
formulation, while the theories [10] are formulated as Plebanski-like theories with two-form fields as
the basic variables.

The class of gravity theories [8], [10] can be thought of as summing at least some of the quantum
corrections that arise in the process of renormalisation of GR, and in [12] this was confirmed by directly
exhibiting the familiar GR counterterms as appearing from [10]. The work [10] also conjectured that
this class of gravity theories sums up all the arising quantum corrections; in other words, it was
conjectured that the class [10] is closed under the renormalisation, and that the arising renormalisation
group flow is that in the space of ”potential” functions defining the theory.

At the time of writing [10] the only motivation for this conjecture was the author’s optimism —
the conjecture did not contradict anything one knew about the non-renormalisability of GR, and was
the most optimistic scenario for how the divergences of GR might organise themselves. The remark
[11] relating the Plebanski-like theories [10] to the pure connection theories [8] brought with it an
additional justification. Thus, a closer look at these theories made it clear that they are just the
most general diffeomorphism invariant gauge theories. The class of such theories should therefore
be closed under the renormalisation, because any counterterm that can be needed for cancelling the
arising quantum divergences is already included into the action, see [13] for the first spell-out of this
argument.

The aim of the present paper is to set the stage for a systematic study of the quantum perturbation
theory for the gravitational theories introduced in [10] (and previously in [8]). Our final goal is to settle
the status of the conjecture of [10] that these class of theories is closed under the renormalisation,
and then to compute the resulting renormalisation group flow. However, it would be impractical to
try to write up all the necessary calculations in a single paper. For this reason, in the present paper
we develop the classical theory to the extent that the propagating degrees of freedom (gravitons) are
manifest. We also do some preliminary steps necessary for the perturbative loop computations in that
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the gauge fixing is discussed in details and the propagator is obtained. It is then straightforward to
start to compute loop diagrams. This is however not attempted in the present paper, and the task to
develop a sufficiently economical way to study the renormalisation is left to future work.

Apart from just setting up the stage for future quantum calculations, a somewhat unexpected
outcome of this work is a completely new viewpoint on the gravitational perturbation theory. As we
shall see, in the present diffeomorphism invariant gauge theoretic approach to gravity, the fundamental
scale is set not by the Newton’s constant, which does not appear in the original formulation of the
theory at all, but rather by the radius of curvature of the background that is used to expand the
theory around. Thus, the natural fundamental length scale is set by the cosmological constant, or,
more precisely by the combination Λ/G (of mass dimension 4). This has the effect that in our theory
the strength with which gravitons interact with each other — the Newton’s constant — is given by
a certain combination of the radius of curvature of the background and some dimensionless coupling
constant of the theory. Then the fact that the multiplicative factor required to go from one scale to
the other is so humongous has a possible explanation in our theory. Thus, the dimensionless quantity
in question turns out to be related to the derivative of the delta-function which the defining function
of our theory must be close to in order to reproduce GR at low energies, see [7]. Thus, the present
gauge-theoretic approach to gravity gives the famous ”cosmological constant problem” a new form, to
be further discussed in the last sections.

To summarise, the main aim of this work is to develop a new approach to the gravitational
perturbation theory, for future use in particular in the quantum loop calculations. What makes this
paper distinct from previous works (in particular of this author) is that here for the first time the
”pure connection” formalism close in spirit to the formulation in [8] is used as a starting point for
the gravitational perturbation theory. Thus, all previous works on theories [10] used the two-form
formulation. The gravitational perturbation theory in the two-form formulation is similar to that in
the usual metric approach, see [12]. In particular, the fundamental scale that determines the self-
coupling of the gravitons and sets the scale of the strong coupling regime is, as in the usual metric
case, the Planck scale. However, the number of field components one has to works with in the two-
form formulation is quite large — it is that of an SU(2) Lie algebra-valued two-form field. Moreover,
there are second class constraints that require the path integral measure to be somewhat non-trivial.
For all these reasons it proved to be rather difficult to set up an economical perturbation theory in
the two-form formalism. At the same time, for a long time it seemed that the ”pure connection”
formulation is ill suited for being a starting point of a perturbative description, as it was not at all
clear how one can expand the theory around the Minkowski spacetime background which corresponds
to a zero connection, see e.g. remarks in [15].

In this paper the prejudices about the ”pure connection” formulation of gravity are put aside
and this formulation is used as a starting point for the gravitational perturbation theory. And, as
we hope to convince the reader, this formulation can be used rather effectively, in that the arising
perturbation theory is reasonably economical. In particular, the linearised theory is rather simple, and
the propagator can be obtained without too much difficulty. As we shall see, in the ”pure connection”
formalism developed here gravity becomes not too dissimilar to SU(2) gauge theory, the main difference
being that a certain additional projector on diffeomorphism equivalence classes is inserted into the
standard 1/k2 propagator of the gauge theory. This gives hope that the renormalisation in this class
of gravity theories will eventually become manageable. As we have already mentioned, this is left to
the future work.

What is new in this work as compared to previous works on the ”pure connection” formulation, in
particular the work [8] and works by Bengtsson and collaborators that followed, is that our treatment
uses in an essential way the formulation in terms of a homogeneous potential function applied to a
matrix-valued 4-form. This was developed in earlier works of the author, and first spelled out in [14]
for the version of the theory that uses a two-form field, and in [13] for the pure connection formulation.
This formulation makes it possible to set up the perturbation theory without too much difficulty.
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Before we proceed with a description of the theory, there are a few things that ought to be
emphasised to avoid misunderstanding. In our gauge-theoretic approach to gravity the theory (or any
of the class of theories that we study) remains as non-renormalisable as GR in the usual metric-based
treatment. Thus, as we shall explicitly see below, the coupling constant of our theory has a negative
mass dimension, which signals non-renormalisability by power counting. Thus, the final goal of our
enterprise is not to show that the theory is renormalisable — it is not — but rather to show that
the infinite-parameter class of theories that we study is closed under the renormalisation, and then to
compute the arising renormalisation group flow. In other words, we are not after the renormalisability
in the usual sense of quantum field theory, which is that a Lagrangian with a finite number of couplings
is closed under the renormalisation. Rather, we are after the renormalisability in the effective field
theory sense of Weinberg, see e.g. [16] for a recent discussion, where any theory is renormalisable once
all possible counterterms are added to the action. Our aim is then to show that in the case of gravity in
four spacetime dimensions it is sufficient to consider only those counterterms (infinite in number) that
can be compactly summed up into our diffeomorphism invariant gauge theory Lagrangian. Should
this indeed be the case, the renormalisation group flow in the infinite dimensional space of gravity
theories will be just a flow in the space of defining functions, and will become manageable. Note once
again, however, that the quantum theory, while being our main motivation, is not the subject of the
present work.

We would also like to explain at the outset how a gauge theory (with spin one excitations) can
describe gravity with its spin two excitations. This is a version of the story ”spin one plus spin
one is spin two”, of relevance for the gauge theory gravity relationship [2]. There are, however, also
significant differences. Thus, the main dynamical field of our theories is an SU(2) connection Ai

µ,
where µ is a spacetime index, and i = 1, 2, 3 is a Lie algebra one. Let us recall that in the usual
gauge theories in Minkowski spacetime the temporal component Ai

0 of the connection field becomes a
Lagrange multiplier — the generator of the gauge rotations. Then of the spatial components Ai

a, where
a = 1, 2, 3 is a spatial index, some components are pure gauge in that they can be set to any desired
value by a gauge transformation. The physical propagating degrees of freedom of the theory can be
described as the gauge equivalence classes of the spatial projection of the connection. In the case of
gauge group SU(2), the gauge invariance removes 3 of the 9 components of the spatial connection Ai

a,
leaving two propagating polarisations per each Lie algebra generator.

As we shall see below, in the case of our gravitational theories the situation is very similar, with
the exception that the Lagrangian is in addition invariant under diffeomorphisms. The way this is
realised in our theories is that the Lagrangian is simply independent of certain 4 combinations of the
connection field Ai

µ. This is where the spin two comes from. Thus, consider once again the spatial
projection of the connection Ai

a. We shall see that (using the background) it will be possible to identify
two types of indices — the spatial and the internal Lie algebra ones. Once this is done, the spatial
connection can be thought of as a 3 × 3 matrix, or, in representation theoretic terms, it constitutes
the spin one tensor spin one representation. This decomposes as spin two plus spin one plus spin
zero. On the other hand, the temporal component of the connection Ai

0 forms the spin one (adjoint)
representation of SU(2). The diffeomorphism invariance projects out the spin zero components of the
spatial connection Ai

a, as well as a certain combination of the spin one component of Ai
a and Ai

0,
leaving only one of these spin one components in the game. Thus, after the projection induced by the
diffeomorphisms, the Lagrangian depends only on the spin two component of Ai

a, as well as on the
spin one set of Lagrange multipliers — generators of SU(2) rotations. These make the 3 longitudinal
components of the 5 component spin two field unphysical, leaving only 2 propagating physical modes.
To summarise, in our version of gauge theory/gravity correspondence the spin two also comes from
the tensor product of two spin one representations. As in any gauge theory in Minkowski space, one of
these spin one representations is supplied by the spatial projection of the connection field. The other
spin one is provided by the adjoint representation of the SU(2) Lie algebra in which the connection
field takes values.
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With these preparatory remarks having been made, we can proceed to describe how gravity can be
reformulated as a diffeomorphism invariant gauge theory. The organisation of the paper is as follows.
In Section 2 we define an action principle for our theories, explain how their parameterisation by
a homogenous function works, derive the field equations and verify gauge invariances of the action.
Section 3 studies the theory linearised around a constant curvature background. In particular, a
simple quadratic in the gauge field fluctuations action is obtained, and its Hamiltonian analysis is
performed. This confirms the outlined above picture of how the spin two nature of excitations comes
about. Section 4 is central to our analysis. It discusses the gauge-fixing appropriate to the situation
at hand, and inverts the gauge-fixed quadratic form to obtain the propagator. In Section 5 we obtain
the cubic interaction term, and show how the Planck constant measuring the graviton self-interaction
strength becomes a derived quantity in our theory. We conclude with a brief discussion.

2 Diffeomorphism invariant gauge theories

2.1 Gravity as a gauge theory

In the pure connection formulation gravity becomes the most general diffeomorphism invariant gauge
theory. In the case of a purely gravitational theory2 the gauge group is (complexified) SU(2). The
action is a functional of an SU(2) connection Ai, i = 1, 2, 3 on a spacetime manifold M . Let F i =
dAi + (1/2)ǫijkAj ∧ Ak be the curvature of Ai. The action is given by the following gauge and
diffeomorphism invariant functional of the connection:

S[A] = (1/i)

∫

M

f(F i ∧ F j). (1)

Here i =
√
−1 is a factor introduced for future convenience, and f is a function with properties to be

spelled out below.
We shall refer to f as the defining function of our theory. It is a holomorphic, homogeneous

of degree one and gauge invariant function of its matrix (and 4-form) valued argument. Thus, let
Xij ∈ su(2)⊗S su(2) be a matrix valued in the second symmetric power of the Lie algebra. The gauge
group SU(2) ∼ SO(3) acts in the space of such matrices via X → gXgT , where T is the operation of
the transpose. We first consider scalar valued functions f : su(2)⊗S su(2) → C that are holomorphic,
gauge-invariant f(gXgT ) = f(X) and homogeneous of degree one f(αX) = αf(X). A convenient
for practical computations parameterisation of such functions is as follows. Consider the following 3
SU(2) invariants of Xij :

Tr(X), Tr(X2), Tr(X3), (2)

where the traces (and powers of X) are computed using the Killing metric on the Lie algebra for which
we take δij . When Tr(X) 6= 0 we can parameterise the defining function f as follows:

f(X) = Tr(X)χ

(

Tr(X2)

(Tr(X))2
,
Tr(X3)

(Tr(X))3

)

, (3)

where χ is now an arbitrary holomorphic function of its two arguments.
Given f with the properties as spelled out above, e.g. one parameterised as in (3), it can be

seen that this function can be applied to a matrix valued 4-form, with the result being a 4-form.
Indeed, consider F i ∧ F j, which is a su(2) ⊗S su(2) valued 4-form. Choose a reference volume form
on M (we assume that M is orientable), and denote it by (vol). Of course, (vol) is only defined
modulo the multiplication by a nowhere zero function. Using this reference volume form we can

2One can also consider unified Yang-Mills-gravity theories of the same sort, see [17].
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write F i ∧ F j = Xij(vol), where Xij is again defined only modulo rescalings. We can now use the
homogeneity of f to write

f(F i ∧ F j) = (vol)f(X). (4)

It is moreover clear that the result on the right-hand-side does not depend on which reference volume
form is used in this argument. This is again due to the homogeneity of f . This shows that the
integrand in (1) is a well-defined 4-form that can be integrated to obtain the action. This finishes the
formulation of our theory.

We note that, as formulated, there are no dimensionful parameters in our theory. Indeed, we
assume the connection field Ai to have the usual mass dimension one, so that the curvature has the
mass dimension two, and the matrix of the wedge products [X] = 4. The defining function f is
essentially the function χ of ratios of powers of Xij that are dimensionless, and so does not contain
any dimensionful parameters (but contains an infinite number of dimensionless ”coupling constants”,
once expanded appropriately). Thus, due to the homogeneity of f , its mass dimension is the same as
that of X (in the parameterisation (3) the mass dimension is carried by the first term Tr(X), while the
function χ is dimensionless). The function f can then be integrated to produce a dimensionless action
(as usual we work in the units c = ~ = 1). As we shall see, the fact that there are no dimensionful
coupling constants in our theory has profound implications for the structure of its perturbation theory.

Classically (1) is a theory that can be shown to propagate two (complex for the time being, reality
conditions will be discussed below) degrees of freedom. We will see a version of the argument that leads
to this conclusion below when we consider the perturbation theory. The theory (1) is a gravity theory,
in spite of the fact that no metric is present anywhere. However, it can be reformulated explicitly as
a theory of metrics via a sequence of transformations. The main idea is to note that declaring the
3 two-forms F i to span the space of (anti-) self-dual two-forms determines a conformal metric on M
whenever the matrix Xij defined from the wedge product of curvatures is non-degenerate. One can
then rewrite the theory (1) explicitly as the theory of this metric, see [12] for details. However, in this
paper, we shall not need this relation to metric theories. Our plan is to study (1) as is. We shall set
the stage for its perturbative quantisation and a study of its renormalisation. The main justification
for this undertaking is that a whole class of gravity theories (for varying defining functions f) can be
treated in one go. Moreover, our theories are theories of a connection, and we can hope to use the
expertise that was accumulated in quantum field theory for dealing with quantum gauge theories.

2.2 First variation and field equations

The first variation of the action (1) gives us field equations. To write these down, let us give a
parameterisation of the matrix Xij useful for practical computations. Thus, let ǫ̃µνρσ be a completely
anti-symmetric rank 4 vector, which is a density of weight one (as is indicated by the tilde over its
symbol). This object exists on any orientable manifold and does not need a metric for its definition.
Consider:

X̃ij :=
1

4
ǫ̃µνρσF i

µνF
j
ρσ, (5)

where as before F i
µν is the curvature two-form, with its spacetime indices now indicated explicitly.

The quantity X̃ij is a su(2) ⊗S su(2) valued matrix, and a density of weight one. One takes the
defining function f to be a function of X̃ij given by the same expression as in (3). With convention
dxµ ∧ dxν ∧ dxρ ∧ dxσ = ǫ̃µνρσd4x we can write the action (1) as

S[A] = (1/i)

∫

M

d4x f(X̃ij) . (6)
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The first variation of the action can now be easily computed and reads:

δS[A] = (1/i)

∫

M

d4x
∂f

∂X̃ij

1

2
ǫ̃µνρσF i

µνDAρδA
j
σ . (7)

Integrating by parts, we see that the field equations for (1) can be written as

DAB
i = 0, (8)

where we have used the form notations again, and the two-form Bi is defined via

Bi :=
∂f

∂X̃ij
F j. (9)

We note that the matrix of first derivatives that appear on the right-hand-side of this expression is a
symmetric matrix, and has density weight zero (as the ratio of the density weight one function f(X̃)
and the density weight one quantity X̃). Thus, (9) is a well-defined two-form.

2.3 Symplectic structure

The computation of the first variation in the previous subsection also gives us the symplectic structure
of the theory. Thus, the phase space of the theory is the space of all solutions of (8), and the symplectic
structure can be obtained by considering the boundary term that was neglected in passing from (7) to
(8). The integral of the boundary term gives rise to an integral over the spatial slice Σ of the following
quantity

Θ :=
1

2i

∫

Σ
Bi ∧ δAi, (10)

where Bi is as in (9). This is a one-form on the phase space of the theory. Its exterior derivative
produces the symplectic two-form. We see that the significance of the quantity Bi defined by (9) is that
its spatial projection plays the role of the momentum canonically conjugate to the spatial projection
of the connection Ai. We emphasise that in the present ”pure gauge” formulation, the two-form Bi

is not independent and is a function of the connection field. A formulation that ”integrates in” the
two-form field as an independent variable is possible, and has been studied in previous works by the
author, but will not be considered here.

2.4 Gauge invariance

Let us now verify by an explicit computation that our theory is invariant under diffeomorphisms as
well as SO(3,C) rotations. This is of course expected, because the action was constructed in the
way that these invariances should hold. However, an explicit verification of this fact will allow us to
establish some identities for use in what follows. The gauge transformations act on the connection
field as follows

δξA
i
µ = ξαF i

µα, δφA
i
µ = DAµφ

i. (11)

The first of these transformations can be seen to be a diffeomorphism corrected by a gauge transfor-
mation, while the second one is the usual gauge rotation with the parameter φi.

It is not too difficult to prove the invariance of our action (1) under these transformations. Let us
first consider the diffeomorphisms. The variation of the action (7) becomes proportional to

∫

M

d4x
∂f

∂X̃ij
ǫ̃µνρσF i

µνDAρξ
αF j

σα. (12)

7



We now need some identities. First we note that one can write the Bianchi identity DAF
i = 0 as

DA [µF
i
ν]ρ = −1

2
DAρF

i
µν . (13)

Another identity that we need is

ǫ̃µνρσF (i
µνF

j)
σα = −1

4
δραǫ̃

µνγδF i
µνF

j
γδ = −δραX̃ij , (14)

where δρα is the Kronecker delta. Note that the symmetrisation is taken on the left hand-side. The
above two identities, as well as the definition (5) of the matrix X̃ij , allow us to rewrite (12) as

−
∫

M

d4x
∂f

∂X̃ij

(

X̃ij∂αξ
α +

1

2
ǫ̃µνρσF i

µνξ
αDAαF

j
ρσ

)

= −
∫

M

d4x
∂f

∂X̃ij
DAα(ξ

αX̃ij). (15)

Integrating by parts, this becomes equal to
∫

M

d4x ξαX̃ijDAα
∂f

∂X̃ij
. (16)

We should now see that the integrand here is zero. This follows from the homogeneity of the function
f . Indeed, we have

X̃ij ∂f

∂X̃ij
= f (17)

from the fact that f is a homogeneous function of degree one. Let us now apply the operator of partial
derivative ∂µ to both sides of this equation. We get

(∂µX̃
ij)

∂f

∂X̃ij
+ X̃ij∂µ

∂f

∂X̃ij
= ∂µf =

∂f

∂X̃ij
∂µX̃

ij . (18)

Comparing the two sides we see that

X̃ij∂µ
∂f

∂X̃ij
= 0, (19)

which is almost the integrand in (16), except for the fact that we have the covariant derivative in (16).
Let us now consider the difference between the covariant and the usual derivatives. We have

X̃ij(DAµ − ∂µ)
∂f

∂X̃ij
= 2X̃ijǫiklAk

µ

∂f

∂X̃ lj
. (20)

The quantity here is zero in view of the gauge invariance of the function f . Indeed, under infinitesimal
gauge transformations an su(2)⊗S su(2)-valued matrix X̃ij transforms as

δφX̃
ij = ǫiklφkX̃ lj + ǫjklφkX̃il. (21)

Then the statement that f is an SO(3,C) invariant function becomes

ǫiklX̃kj ∂f

∂X̃ lj
= 0, (22)

which can be expressed in words by saying that the commutator of the matrix X̃ij with the matrix
∂f/∂X̃ij of the first derivatives of the defining function is zero.

The identity (22) immediately implies that the difference of the derivatives in (20) is zero and thus

X̃ijDAµ
∂f

∂X̃ij
= 0, (23)
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which proves the invariance of the action (1) under diffeomorphisms.
Let us now prove the invariance of (1) under the gauge rotations. The variation of the action in

this case becomes proportional to

∫

M

d4x
∂f

∂X̃ij
ǫ̃µνρσF i

µνDAρDAσφ
j . (24)

Expressing the commutator of the covariant derivatives as the commutator with the curvature, and
recalling the definition (5) of the matrix X̃ij we get

4

∫

M

d4x
∂f

∂X̃ij
ǫjklX̃ikφl, (25)

which is zero in view of (22). This proves the invariance of the action (1) under the SO(3,C) rotations.

2.5 Second variation

We can now compute the second variation, in preparation for the next section treatment. We have

δ2S[A] = (1/i)

∫

M

d4x

(

∂2f

∂X̃ij∂X̃kl
δX̃ijδX̃kl +

∂f

∂X̃ij
δ2X̃ij

)

. (26)

Here the first variation of X̃ij was already computed above and reads

δX̃ij =
1

2
ǫ̃µνρσF (i

µνDAρδA
j)
σ . (27)

The second variation reads

δ2X̃ij =
1

2
ǫ̃µνρσDAµδA

i
νDAρδA

j
σ +

1

2
ǫ̃µνρσF (i

µνǫ
j)klδAk

ρδA
l
σ . (28)

3 Constant curvature background

In this and the next section, to get a better feel for our theory and also to prepare for its quantisation,
we consider the action (1) expanded around a specific background connection Ai.

3.1 Second order action around a general background

We now write our connection as the background Ai plus a fluctuation Ai, and obtain the part of the
action quadratic in Ai directly from (26). Thus, we divide the second variation by 2, replace δAi

µ by
Ai

µ, and get the following Lagrangian

(8i)LA =
∂2f

∂X̃ij∂X̃kl
(ǫ̃µνρσF i

µνDAρAj
σ)(ǫ̃

αβγδF k
αβDAγAl

δ) (29)

+2
∂f

∂X̃ij
ǫ̃µνρσ

(

DAµAi
νDAρAj

σ + F i
µνǫ

jklAk
ρAl

σ

)

.

In the following works this action will be used for a background field method one-loop computation,
but here we specialise to a particular background.
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3.2 The background

The background that we take is a constant curvature one and can be defined as follows. Let ds2 be
the interval for a constant curvature metric in 4 spacetime dimensions. It does not matter whether
we take a positive or negative curvature background, as later we are going to take the limit when
the curvature goes to zero, or, equivalently, work at energy scales larger than the energy scale set by
the curvature of the background. Let θI , I = 0, 1, 2, 3 be a collection of tetrads for the corresponding
metric. We then define the following triple of two-forms:

Σi := iθ0 ∧ θi − 1

2
ǫijkθj ∧ θk, (30)

where, as before i = 1, 2, 3. As is not hard to check, these two-forms are anti-self-dual

i

2
ǫµν

ρσΣi
ρσ = Σi

µν (31)

with respect to the Hodge star operation on two-forms defined by the metric ds2 = θI ⊗ θJηIJ , where
ηIJ = diag(−1, 1, 1, 1). It can be shown that the constant curvature condition can be rewritten as
follows. Let us introduce an SU(2) connection Ai

0 such that the covariant exterior derivative of Σi

with respect to Ai
0 is zero. In other words:

0 = DA0
Σi = dΣi + ǫijkAj

0 ∧ Σk. (32)

It is not hard to solve this equation for Ai
0 explicitly (in terms of derivatives of tetrads θI), but we

will not need the corresponding expression. Then the constant curvature condition can be written as

F i(A0) =M2
0Σ

i, (33)

where we have introduced a dimensionful parameter M0 = 1/L0, where 1/L2
0 is the (constant) curva-

ture of the background. We take such a constant curvature connection Ai
0 as the background for a

perturbative expansion of (1). We shall soon see that for the linearised theory around this background
it will be possible to take the limit M0 → 0 without any difficulty, and so we will be effectively con-
sidering a (linearised) gauge theory in Minkowski spacetime. An alternative way to think about the
limit M0 → 0 is to say that one works at energies E ≫M0 (or at length scales much smaller than the
radius of curvature L0 of the background).

3.3 The cosmological constant

It is not hard to see that the dimensionful parameter M0 that was introduced by the background is
related to the cosmological constant. For this we need some preliminary results. Using

ǫ̃µνρσθ0µθ
i
νθ

j
ρθ

k
σ =

√−gǫijk, (34)

where
√−g is the square root of the determinant of the metric ds2 = θI ⊗ θJηIJ , we easily get

Σi ∧ Σj = −2i
√−g δijd4x , (35)

where Σi are the anti-self-dual forms (30). Thus, the matrix X̃ij at the background is equal to

X̃ij
0 = −2iM4

0

√−g δij , (36)

i.e., is proportional to the identity matrix. Thus, the value of the action (1) at the background is

S[A0] = −2M4
0 f0

∫ √−g d4x, (37)
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where f0 := f(δ) is the value of the defining function at the identity matrix Xij = δij .
On the other hand, the Einstein-Hilbert action for the signature (−,+,+,+) reads

SEH[g] = − 1

16πG

∫

(R − 2Λ)
√−g d4x. (38)

On a constant curvature background (in 4 dimensions) R = 4Λ and we get

S0
EH = − Λ

8πG

∫ √−g d4x. (39)

Comparing to (37) we see that

M4
0 f0 =

Λ

8πG
. (40)

For the observed value Λ ∼ 10−35(1/s2) of the cosmological constant the quantity on the right-
hand-side, if measured in electron-volts, is equal to approximately (10−2eV )4 (again, our units are
c = ~ = 1). Thus, if the value f0 is not too far from unity, then the natural energy scale for the
background to expand the theory about is of the order M0 ∼ 10−2eV . Below we will see that the
usual Newton’s constant that in the perturbative approach to gravity determines the strength of the
graviton self-coupling becomes in this theory a derived quantity, built fromM0 as well as the derivative
of the defining function f at the identity. We shall see that this derivative must be very large.

3.4 Substituting the background

We now check that the constant curvature background is a solution of (8) and then evaluate the second
variation of the action (26) at the background.

The derivatives of (3) at the identity matrix are easily computed. Let us first write down the
general expression for the first derivative. We omit the tilde from X for brevity (we can always pull
out the density weight factor from the function f using the homogeneity). We have

∂f

∂Xij
= δijχ(X) + Tr(X)χ′

1(X)

(

2Xij

(Tr(X))2
− 2Tr(X2)

(Tr(X))3
δij

)

(41)

+Tr(X)χ′
2(X)

(

3(X2)ij

(Tr(X))3
− 3Tr(X3)

(Tr(X))4
δij

)

,

where χ′
1,2(X) are the derivatives of the function χ with respect to the first and second arguments,

evaluated at X. It is easy to check that for Xij
0 ∼ δij the second and third terms on the right are

zero, and we have:

∂f

∂Xij

∣

∣

∣

X0

= δijχ(X0) =
f0
3
δij . (42)

We note that this is M0 independent. We remind the reader that the background value of X0 matrix
is given by (36) above.

Let us now compute the matrix of second derivatives of the defining function. Since the expressions
in brackets in (41) become zero when evaluated on X0, the only way to get a non-zero result in the
second derivative is to act by a derivative on these expressions. We get

∂2f

∂Xij∂Xkl

∣

∣

∣

X0

=
2(χ′

1(X0) + χ′
2(X0))

Tr(X0)
P ij|kl , (43)

where

P ij|kl := Iij|kl − 1

3
δijδkl, Iij|kl :=

1

2

(

δikδjl + δilδjk
)

. (44)
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We have introduced a special notation P ij|kl for the matrix that appeared in (43), as this is just the
projector on the symmetric traceless part P ij|klδij = 0, and similarly for the contraction with δkl.

Having evaluated the derivatives of the defining function at the background, we are ready to
specialise (29) for our constant curvature background. However, let us first check that our chosen
background is indeed a solution of field equations (8). With the quantity χ(X0) being a constant,
the background Bi

0 ∼ F i(A0), and thus the field equations (8) are satisfied (in view of the Bianchi
identity).

Let us now consider the second term in (26). Since the matrix of the first derivatives is proportional
to the identity matrix (42) with a constant proportionality coefficient we need to consider the integral
of δijδ

2X̃ij over the manifold. Let us see that this is a total derivative. We have:

∫

M

d4x δijδ
2X̃ij =

1

2

∫

M

(

DAδA
i ∧DAδA

i + F i(A) ∧ ǫijkδAj ∧ δAk
)

, (45)

where we wrote everything in terms of forms (our form convention is F = (1/2)Fµνdx
µ ∧ dxν). Inte-

grating by parts in the first term (and neglecting the total derivative term), the first term becomes

1

2

∫

M

δAi ∧DADAδA
i =

1

2

∫

M

δAi ∧ ǫijkF j(A) ∧ δAk, (46)

which is minus the second term in (45), and so (45) is a total derivative.
We therefore only need to consider the first term in (26). Let us write this directly in terms

of the two-forms Σi by substituting the expression (33) for the background curvature. Using the
anti-self-duality (31) of Σi we have the following compact expression for the second variation

δ2S
∣

∣

∣

A0

= −g0
∫

M

d4x
√−g P ij|kl(Σi µνDA0 µδA

j
ν)(Σ

k ρσDA0 ρδA
l
σ), (47)

where we have introduced a notation

g0 :=
χ′
1(X0) + χ′

2(X0)

3
. (48)

Note that the factors ofM0 have cancelled from this result. The combination (48) of the first derivatives
of the defining function plays an important role below. Thus, we shall see that the Newton’s constant
will be built from M0 and g0.

3.5 Taking the flat limit and the linearised action

We could have continued to work on a general constant curvature background. However, most of
the quantum field theory technology is developed for the Minkowski background. For this reason
it is very convenient to take the limit M0 → 0 and consider the flat (zero) background connection.
Alternatively, since we are after the UV behaviour of our theory, we are interested in its behaviour at
energies E ≫M0. In this case we can neglect the fact that the background is curved, and consider an
effective theory in Minkowski space.

In the limit M0 → 0 the background matrix Xij
0 ∼M4

0 δ
ij goes to zero. However, the values of the

two arguments of the function χ in (3) remain finite. Indeed, in this limit they are just 1/3, 1/9. If the
function χ is differentiable at this point, which we assume, then the constant g0 introduced in (48) is
also finite. Absorbing this constant into the linearised fields by rescaling we and taking the limit and
obtain the following linearised action in Minkowski space

Slin[a] = −1

2

∫

M

d4xP ij|kl(Σi µν∂µa
j
ν)(Σ

k ρσ∂ρa
l
σ), (49)
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where the (rescaled) linearised field is now called aiµ =
√
g0(δA

i
µ), and we have divided the second

variation of the action by 2 to get the correct linearised action. The two-forms Σi
µν are now those

corresponding to the Minkowski spacetime

Σi = idt ∧ dxi − 1

2
ǫijkdxj ∧ dxk. (50)

A quick note about dimensions of all the fields. As we have already mentioned, we take the
connection to have the mass dimension one, as is appropriate for a field that can be combined into a
derivative operator. Then the curvature has mass dimension two, the matrix Xij has mass dimension
4, the matrix of first derivatives of the defining function is dimensionless, and the matrix of second
derivatives has dimension minus 4. The two-forms Σi that are constructed from the dimensionless
metric are dimensionless. The constant g0 introduced in (48) is a sum of derivatives of a function of
dimensionless arguments, and thus is dimensionless. Overall, we see that the mass dimension of the
integrand in (49) is 4, as needed.

3.6 Symmetries

We have started from a diffeomorphism invariant action (1) and linearised it around the constant
curvature (and then zero curvature) background. We should check that the linearised action that we
have obtained is still diffeomorphism invariant. As before, the diffeomorphisms can be lifted to the
SU(2) bundle as follows:

δηA
i
µ = ηαF i

µα(A). (51)

Here ηµ is the vector field (of mass dimension minus one) - generator of an infinitesimal diffeomorphism,
and F i

µν(A) is the curvature of Ai
µ. It can be checked that the above formula is a diffeomorphism

corrected by a gauge transformation. Replacing the background curvature by its value (33) we get
the following formula for an infinitesimal variation

δηa
i
µ =M2

0 η
αΣi

µα. (52)

This suggests that we consider vector fields ξµ = M2
0 η

µ of mass dimension one that are finite in the
limit M0 → 0. Thus, let us consider the following variations

δξa
i
µ = ξαΣi

µα, (53)

which will play the role of an infinitesimal diffeomorphism for the theory (49).
Another set of transformations that we have to consider are gauge symmetries. An infinitesimal

gauge transformation is given by

δφa
i
µ = ∂µφ

i. (54)

Let us now verify that the linearised action is invariant under (53) and (54). For this we will need
the following identity

Σi µνΣj
νρ = −δijηµρ + ǫijkΣk µ

ρ , (55)

which can be verified by a direct computation. Here ηµν is the Minkowski metric. Let us first consider
diffeomorphisms. Thus, consider the quantity

Σi µν∂µδξa
j
ν = Σi µν∂µξ

αΣj
να. (56)

Using (55) we see that ij-symmetric part of this quantity is proportional to δij . However this, when
contracted with the projector in (49) gives zero. Thus, the invariance under infinitesimal changes of
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coordinates is established. The invariance under gauge transformations (54) follows by noting that
the quantity Σi µν is anti-symmetric and therefore Σi µν∂µδφa

j
ν = 0.

Since our gauge theory action (49) is both diffeomorphism and gauge invariant we can already
make a suspected count of the number of propagating DOF. Indeed, the configurational variable
of the theory should be the spatial projection of the connection. This has 3 × 3 = 9 components.
Subtracting 4 diffeomorphisms and 3 gauge DOF leaves us with 2 suspected propagating DOF. Let
us confirm this count by the Hamiltonian analysis of the linearised theory. This will also help us to
see the gravitons explicitly.

3.7 Hamiltonian analysis

In this subsection we give a more detailed demonstration of the spin two nature of our theory given
in the introduction.

To obtain the action in the Hamiltonian form let us expand the quantity that appears as the main
building block of the linearised action (49). We have

Σµν
i ∂µa

j
ν = i∂ia

j
0 − iȧji − ǫkli ∂ka

j
l . (57)

Here we have identified the spatial a and internal i indices using e.g. the component δia := Σi
0a of the

background two-form, and ∂i are the partial derivatives with respect to spatial coordinates. We raise
and lower spatial indices freely using δij metric.

It is now easy to compute the conjugate momenta. Since the time derivatives that appear in the
action are those of the spatial projection of the connection, it is clear that only these components
can have non-zero momenta. However, since the projector is involved in (49), we see that only the
symmetric tracefree part of aji has non-zero momenta. These are

πij = P ij|kl (ȧkl − ∂ka0 l − iǫkmn∂man l) . (58)

We note that the action (49) does not at all depend on the trace part of the spatial connection aji .
However, there is a dependence on the anti-symmetric (and of course symmetric) parts. Let us separate
the trace, symmetric and anti-symmetric parts of aji and write

aij = asij + bδij + ǫijkck. (59)

Here asij is the symmetric and tracefree part, and b, ci parameterise the trace and anti-symmetric parts
respectively. Let us now rewrite the expression for the momentum using this decomposition. We have

πij = ȧs ij − iǫikl∂ka
s j
l + P ij|kl∂k(icl − a0 l). (60)

We note that the second term here is automatically symmetric and tracefree. On the other hand, it
is clear that the Lagrangian density in (49) is

L =
(πij)2

2
. (61)

We see that the Lagrangian (density) is independent of b. This has a simple interpretation. Indeed,
computing the infinitesimal diffeomorphism action on the temporal and spatial projections of the
connection we find

δai0 = iξi, δξa
i
j = −iξ0δij − ǫijkξ

k. (62)

This in particular means that the trace part b of the matrix aji is a pure gauge quantity that can be set
to zero by a temporal diffeomorphism. We also see that the Lagrangian depends on the anti-symmetric
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part of spatial and temporal components of the connection only in the combination ici − a0 i. Indeed,
it is easy to check that precisely this combination is invariant under spatial diffeomorphisms, as the
anti-symmetric component transforms as δξci = ξi. Let us denote the invariant combination by φi.
As we shall soon see, it will become a generator of infinitesimal gauge rotations in our theory. Thus,
we finally rewrite the momentum as

πij = ȧs ij − iǫikl∂ka
s j
l + P ij|kl∂kφl, (63)

and compute the Hamiltonian density as H = πij ȧsij − L. We get

H =
(πij)2

2
+ iπijǫi

kl∂kalj + φi∂jπ
ij , (64)

where we have dropped the index s from asij for brevity. Thus, now all the dynamical fields appearing
in the Hamiltonian are symmetric tracefree tensors. The quantity φi is the Lagrange multiplier,
which serves as a generator of SU(2) rotations on the connection. Indeed, the Poisson bracket of the
integrated last term with the connection gives

δφaij = ∂(iφj), (65)

which is just the (symmetrised) gauge transformation. To see the structure of the arising Hamiltonian
it is convenient to fix the gauge and require the connection to be transverse

∂iaij = 0. (66)

The momentum is required to be transverse by the condition obtained varying the action with respect
to the Lagrange multipliers φi. So, it is now clear that the reduced phase space of our linearised system
is parameterised by two symmetric, tracefree and transverse matrices aij and πij . This corresponds
to two propagating DOF.

Let us now see what the dynamics becomes. To unravel the structure of the arising expression for
the (reduced) Hamiltonian let us further rewrite it as

H =
1

2
(πij + iǫikl∂ka

j
l )

2 +
1

2
(∂kaij)

2. (67)

Up to this point no reality conditions for the fields were specified. We can now deduce the linearised
theory reality conditions from the Hamiltonian (67). Indeed, declaring the symmetric tracefree trans-
verse connection field aij to be real, and defining a new real momentum field

pij := πij + iǫikl∂ka
j
l , pij ∈ R (68)

we can rewrite the linearised Hamiltonian in an explicitly positive definite form

H =
1

2
(pij)2 +

1

2
(∂kaij)

2. (69)

The field equations that follow are now the usual

� aij = 0, (70)

which is just the wave equation for the two components of the connection field aij . This is how
gravitons are described by our gauge theory approach. We note that one can recognise in the analysis
of this section the linearised version of the new Hamiltonian formulation of gravity [18]. In particular,
the arising reality conditions for the phase space fields are the same as in this formulation. Thus,
even though our starting point of a gauge theory is a bit unconventional, the linearised theory mimics
constructions familiar from other formulations.

What is different about our linearised theory (49) from the more familiar treatment in [18] is
that no diffeomorphism constraints are left in the final result. Instead, our linearised action is simply
independent of certain components of the connection field, so the theory is formulated on a smaller
configuration space to start with.
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4 Propagator

In this section we invert the quadratic form that we have obtained by expanding the theory around
the Minkowski spacetime background. In doing this we must decide on the gauge fixing.

4.1 Gauge fixing

We have seen that the action (49) is invariant under both gauge and diffeomorphism transformations,
but we have also seen above that this invariance is manifested very differently in the two cases. Thus,
in the case of the gauge invariance the situation is completely standard in that some of the field
components have zero momenta and are thus Lagrange multipliers — generators of gauge symmetries.
In the case of diffeomorphisms the situation is very different — we have seen that the action is simply
independent of some components of the field, exactly those components that can be freely changed
by performing a diffeomorphism. Thus, while there is very little choice for dealing with the gauge
rotations — we have to treat them in the usual way by fixing the gauge and thus making the unphysical
components of the gauge field propagate — we will need a different procedure for dealing with those
components of the connection that gets affected by diffeomorphisms.

A useful analogy here is as follows. Let us consider a theory of two scalar fields φ,ψ with the
Lagrangian

L = −1

2
(∂µ(φ− ψ))2. (71)

It is clear that the Lagrangian is invariant under a simultaneous shift of both of the fields by some
function. The way this is realised is that the Lagrangian is simply independent of a certain combination
of the fields, namely of φ+ψ, being only a function of the combination φ−ψ. A natural quantisation
strategy in this case is to introduce a new field φ−ψ and rewrite the Lagrangian in terms of the new
field only. Then only this combination of the fields is a propagating field, while the other combination
φ+ ψ is a fiction.

In the case of the simple Lagrangian above it is very easy to see what the propagating field is. In
our case (49) this is much harder. Thus, we will not be able to rewrite the Lagrangian in a way that
has only diffeomorphism invariant combinations of the connection components appearing. However,
an appropriate strategy is as follows. We can consider the quadratic form (49) as a form on the space
of diffeomorphism invariant classes of connections aiµ, i.e. connections related via

aiµ ∼ aiµ + ξνΣi
µν . (72)

The quadratic form in (49) is degenerate on this space because there is still the usual gauge invariance
to be taken care of. However, this gauge invariance can be dealt with in the usual way, by fixing the
gauge. As we shall see below, it will be possible to find a gauge-fixing condition that is invariant under
(72). After doing this we obtain a non-degenerate quadratic form on the space of diffeomorphism
classes (72). It can be inverted, to obtain a propagator on the space of diffeomorphism classes of
connections. As is standard for gauge-fixing, this procedure will make the temporal and longitudinal
components of the connection propagate (and will add ghosts that will offset the effect of making this
components propagating). At the same time, the components of the connection that are identified in
(72) will not be propagating, as the propagator will involve a projector on the space of diffeomorphism
equivalence classes. This way of dealing with the gauge symmetries of our theory is a bit non-standard,
but is quite natural given that the two gauge symmetries are realised differently.

Having explained the logic of our procedure it remains to find a gauge-fixing condition that is
diffeomorphism invariant. After some trial and error we found the following gauge-fixing condition to
be useful:

∂µΠµi|νjaνj =
2

3
∂µ

(

aiµ +
1

2
ǫijkΣk

µ
νajν

)

= 0, (73)
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where

Πµi|νj := ηµνδij +
1

3
Σi µρΣj

ρ
ν =

2

3

(

ηµνδij +
1

2
ǫijkΣk µν

)

(74)

is a projector operator whose meaning is to be clarified below. The projector property

Πµi|νjΠνj
ρk = Πµi|ρk, (75)

can be checked by an elementary computation. It is easy to see that our gauge-fixing condition is
diffeomorphism invariant. Indeed, consider

ξνΣi
µν +

1

2
ǫijkΣk

µ
νξρΣj

νρ. (76)

Using the algebra (55) of Σi
µν matrices we see that the last term here equals

1

2
ǫijkǫkjlξρΣl

µρ = −ξνΣi
µν . (77)

Thus, the quantity in (76) is zero, and the gauge-fixing condition (73) is diffeomorphism-invariant. It
is also clear that as far as the gauge transformations are concerned the last term in (73) is inessential,
for it is zero for any aiµ that is a pure gauge aiµ = ∂µφ

i. Thus, (73) is the usual gauge theory
gauge-fixing condition, corrected by a term that is inessential as far as the behaviour under the gauge
transformations is concerned.

Let us now confirm that the projector Πµi|νj is just that on diffeomorphism equivalence classes of
connections, and so it is natural to apply it before the usual gauge-fixing condition is imposed (to make
this condition diffeomorphism invariant). We compute the action of the projector on the connection
ajν decomposed as in the previous subsection

ajν = aj0(dt)ν + (asij + bδij + ǫijkck)(dx
i)ν . (78)

The result is

Πµi|νjajν =
2

3

(

δij
(

∂

∂t

)µ

+
i

2
ǫijk

(

∂

∂xk

)µ)

(aj0 − icj) + asij

(

∂

∂xj

)µ

. (79)

We note the the quantity b got projected out, and the projected connection only depends on the
temporal and the anti-symmetric spatial components of the connection in the combination ai0− ici, as
expected from the previous section. Thus, the projector Πµi|νj is indeed just that on the diffeomor-
phism invariant subspace, and selects the components ai0 − ici, which play the role of the generators
of the Gauss constraints, as well as asij , which are the two propagating DOF plus three longitudinal
modes of the connection. As usual for a gauge theory we shall make the components generators of the
Gauss constraints as well as the longitudinal components of the connection propagating by adding a
gauge fixing term, and then offset their effects by adding ghosts.

We now add the gauge-fixing condition squared with some parameter to the Lagrangian. Thus,
we consider the following gauge-fixed Lagrangian on the space of diffeomorphism equivalence classes
of connections

Lgf = −1

2
P ij|kl(Σi µν∂µa

j
ν)(Σ

k ρσ∂ρa
l
σ)−

α

2

(

∂µaiµ − 1

2
ǫijkΣj µν∂µa

k
ν

)2

, (80)

where we have changed the order of indices jk in the gauge-fixing term for convenience, and absorbed
the (2/3)2 factor into the gauge-fixing parameter α. As in the case of Yang-Mills theory, the idea is
now to select the gauge-fixing parameter α so that the gauge-fixed action is as simple as possible.
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4.2 The algebra of gauge-fixing

In this subsection we will simplify the expression for the gauge-fixed Lagrangian and find a useful value
for the gauge-fixing parameter α. To this end, let us first write the Lagrangian in the momentum
space. Omitting the argument ±k from the Fourier components aiµ(k) of aiµ for brevity we have the
following expression

Lgf = −1

2
P ij|kl(Σi µνkµa

j
ν)(Σ

k ρσkρa
l
σ)−

α

2

(

kµaiµ − 1

2
ǫijkΣj µνkµa

k
ν

)2

. (81)

Let us expand the last term. Introducing a compact notation (kai) := kµaiµ and expanding the product
of two ǫ’s we have

(

(kai)− 1

2
ǫijkΣj µνkµa

k
ν

)2

= (kai)2 − (kai)ǫijkΣj µνkµa
k
ν (82)

+
1

4
ΣiµνΣi ρσkµkρa

j
νa

j
σ − 1

4
(Σiµνkµa

j
ν)(Σ

j ρσkρa
i
σ).

Let us now expand the first term of the Lagrangian. We have

P ij|kl(Σi µνkµa
j
ν)(Σ

k ρσkρa
l
σ) =

1

2
ΣiµνΣi ρσkµkρa

j
νa

j
σ (83)

+
1

2
(Σiµνkµa

j
ν)(Σ

j ρσkρa
i
σ)−

1

3
(Σi µνkµa

i
ν)(Σ

j ρσkρa
j
σ).

We can now use the following two identities

ΣiµνΣi ρσ = ηµρηνσ − ηνρηµσ − iǫµνρσ (84)

and

ΣiµνΣj ρσ − ΣjµνΣi ρσ = ǫijk
(

Σk µσηνρ − Σk νσηµρ − Σk µρηνσ +Σk νρηµσ
)

. (85)

We can now use the identity (84) to rewrite the first term in (83), and the identity (85) to rewrite the
last term as a multiple of the second plus some extra terms. We get

1

2
(k2(aiµ)

2 − (kai)2) +
1

6
(Σiµνkµa

j
ν)(Σ

j ρσkρa
i
σ) +

1

3

(

k2ǫijkΣi µνajµa
k
ν + 2(kai)ǫijkΣj µνkµa

k
ν

)

. (86)

We now note that if we make a choice

α =
2

3
(87)

then the terms (Σiµνkµa
j
ν)(Σj ρσkρa

i
σ), as well as (ka

i)2 and (kai)ǫijkΣj µνkµa
k
ν cancel out and we get

the following simple gauge-fixed action

Lgf = −k
2

3

(

(aiµ)
2 +

1

2
ǫijkΣk µνaiµa

j
ν

)

= −k
2

2
Πµi|νjaµiaνj, (88)

where Πµi|νj is the projector (74). Because the projector on diffeomorphism equivalence classes appears
here explicitly, it is obvious that this action is still invariant under the diffeomorphisms (72), and so
is now a non-degenerate quadratic form on the space of diffeomorphism equivalence classes.
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4.3 Propagator

We now invert the quadratic form in (88). Thus, we add a current term to the action

Sgf =

∫

d4k

(2π)4

[

−k
2

2
Πµi|νjaµi(−k)aνj(k) + Jµ i(−k)aiµ(k)

]

, (89)

and then integrate the field aiµ out. This can be easily done in the space of diffeomorphism equivalence
classes, and we immediately see that the action with the original connection field integrated out is
given by

S[J ] =

∫

d4k

(2π)4
1

2k2
Πµi|νjJ i

µ(−k)J j
ν (k). (90)

In other words, the propagator of our theory is given by

〈aµi(−k)aνj(k)〉 = (1/i)2
δ

δJ i
µ(−k)

δ

δJ j
ν (k)

eiS[J ]
∣

∣

∣

J=0
= (1/i)

1

k2
Πµi|νj , (91)

which is just the usual 1/k2 term times the projector onto the space of diffeomorphism equivalence
classes of connections, times the (convention dependent) 1/i factor.

This finishes our discussion of the free theory of gravitons on the Minkowski spacetime background
(or gravitons with energy E ≫ M0 much greater than the energy scale of our constant curvature
background). We refrain from considering ghosts that are irrelevant for our purely classical purposes
in this paper. Instead, let us now consider the lowest order interactions.

5 Interactions

In this section we consider graviton self-interactions.

5.1 Third variation of the action

The third variation of the action is easily computed from (26). We get

δ3S[A] = (1/i)

∫

M

d4x

(

∂3f

∂X̃ij∂X̃kl∂X̃pq
δX̃ijδX̃klδX̃pq + 3

∂2f

∂X̃ij∂X̃kl
δ2X̃ijδXkl +

∂f

∂X̃ij
δ3Xij

)

. (92)

We have already computed the first and second variations of the matrix X̃ij in (27), (28). The
third variation is given by

δ3X̃ij =
3

2
ǫ̃µνρσDAµδA

(i
ν ǫ

j)klδAk
ρδA

l
σ . (93)

We also note that the fourth variation, of relevance for higher-order interaction vertices, is zero, which
follows by expanding the product of two ǫ’s and noting that there is always a δij-contraction of two
variations of the connection. On the other hand, spacetime indices of all 4 variations of the connection
are contracted with ǫ̃µνρσ , and so the result is zero.

5.2 Cubic interaction

We have already computed the first and second derivatives of the defining function at the identity
matrix in (42), (43). Let us now compute the third derivative. We get:

∂3f

∂Xij∂Xkl∂Xpq

∣

∣

∣

X0

= − 2g0
3(−2iM4

0 )
2

(

δijP kl|pq + δklP ij|pq + δpqP ij|kl
)

, (94)
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where g0 is the dimensionless constant given by (48), and P ij|kl is the projector on the symmetric
traceless part that we already encountered above.

We now compute the cubic interaction term. We evaluate (92) at the constant curvature back-
ground connection A0. The last term in (92) is then seen to be a total derivative. We can also note
that of the two terms coming from δ2Xij one term is proportional to (DδA)2, while the other is of the
order M2

0 (δA)
2. For energies E ≫M0 we can neglect the term M2

0 (δA)
2. Then, after some rewriting

we get

δ3S
∣

∣

∣

A0

=
g0

2M2
0

∫

d4x
√−g P ij|kl(Σi µνDA0 µδA

j
ν)
[

(Σk ρσDA0 ρδA
l
σ)(Σ

mαβDA0 αδA
m
β ) (95)

−3i ǫαβγδDA0 αδA
k
β DA0 γδA

l
δ

]

.

Now passing to the high-energy limit E ≫ M0 we replace the covariant derivatives by the usual
coordinate ones, and then rewrite the interaction term in terms of the connection field aiµ =

√
g0(δA

i
µ),

for which the kinetic term (49) is canonically normalised. We also need to divide the third variation
by 3! to get the correct cubic interaction term. We get:

S(3) =
1

12
√
g0M2

0

∫

d4xP ij|kl(Σi µν∂µa
j
ν)
[

(Σk ρσ∂ρa
l
σ)(Σ

mαβ∂αa
m
β )− 3i ǫαβγδ∂αa

k
β∂γa

l
δ

]

. (96)

This is trivially invariant under (54), and can be checked to be diffeomorphism invariant if one takes
into account the second-order contribution to the connection transformation law and the resulting
order three contribution from the quadratic part of the action.

To summarise, schematically, the cubic interaction is of the form

L(3) ∼ 1
√
g0M2

0

(∂a)3. (97)

We learn that our theory of gravity has a negative mass dimension coupling constant, and so is non-
renormalisable in the usual sense of the word, as it should be. We can also determines the Newton’s
constant and thus the Planck mass from the graviton self-coupling. We see that Mp is a derived
quantity in our theory, given by

M4
p ∼ g0M

4
0 , (98)

where g0 is the dimensionless parameter (48).
Before we turn to a discussion of implications of (98), let us briefly compare the obtained interaction

term (97) with that in the usual metric description. Note, however, that the precise form of the
interaction vertex depends on details of the gauge-fixing (and can be simplified by a careful choice of
the latter, see e.g. [19]). But we can compare the general structure of our cubic interaction vertex
with that in the metric approach. One immediately notes that the cubic interaction in our gauge
theory approach contains three derivatives, while that in the metric approach contains only two. This
is why the dimension of the coefficient in front of our cubic term is 1/M2, while that in the usual case
is 1/M . The reason for this seeming discrepancy is that the relation between our gravitons and those
of the metric treatment is quite non-trivial. Essentially, we describe gravitons using the components
of the gravitational spin connection, which are given by the derivative of the metric perturbations.
Thus, a derivative operator is involved in the relation between our gauge theory description and the
usual metric one. This is why the power of the derivative operator in the vertices can be different in
the two theories.

An attempt at a detailed comparison between the two perturbation theories would take us too far.
Let us just say that one possible way to do this is to ”integrate in” the two-form field as an independent
field, and then re-express the perturbation theory in the language of the two-form perturbations, as
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was done in [12]. Thus, it is clear that the relation between our description in terms of a connection A
and the usual metric one is that of duality, in the sense that a new field, say B, is introduced, such that
when B is integrated out the original ”pure-A” formulation results. Then one can instead integrate
out the field A of the original formulation, and obtain a dual formulation in terms of B. This trick
is used in theoretical physics on many occasions, and the relationship between our gauge-theoretic
formulation and the usual metric one is of the same sort.

5.3 The cosmological constant problem

In order for our gauge theory (around the background chosen) to describe the usual gravitons whose
self-interaction is controlled by the coupling constant of the known value Mp ∼ 1019GeV , the dimen-
sionless parameters of our theory f0, see (40), and g0, see (48), must satisfy

g0 ∼ 10120f0. (99)

Note that this relation is independent of the chosen value of the background curvature controlling
parameter M0. In words, the ratio of the sum of the two first derivatives of the defining function
evaluated at the identity matrix, to its value at this point must be of the order 10120. Thus, the defining
function that would reproduce the known graviton self-interaction must be very special indeed!

Recalling that the constants g0, f0 appear as the dimensionless parameters multiplying the matrices
of second and first derivatives of the defining function, we can rephrase our condition (99) by saying
that the matrix of the second derivatives of the defining function must be much larger than that of
the first derivatives:

∣

∣

∣

∣

∣

Tr(X0)

(

∂2f

∂Xij∂Xkl

)

X0

∣

∣

∣

∣

∣

∼ 10120

∣

∣

∣

∣

∣

(

∂f

∂Xij

)

X0

∣

∣

∣

∣

∣

. (100)

In other words, the defining function that reproduces GR at low energies should be very steep at the
point corresponding to a constant curvature connection.

It is clear that the famous cosmological constant problem, which is to explain how such a large
dichotomy of scales as in (99) can exist in Nature, has received in our theory a new form. Indeed,
the famous ratio of scales present in (99) has been encoded into properties of the low energy defining
function of the theory. Recall now that the defining function for this theory should be expected to run
with energy. Thus, once the corresponding renormalisation group flow is obtained, the theory must
explain how the condition (99) can arise at low energies. The only currently imaginable to the author
explanation of this phenomenon is that the fine-tuning (99) at low energies is necessary in order for
the renormalisation group flow to arrive at some desired (fixed) point at high energies. But at this
point of the development of the theory it remains a speculation. A derivation and analysis of the RG
flow for our theories is left to future work.

We also note that the need for a defining function with property (99) will seem much less strange
if we recall the result obtained in [7]. Indeed, this work showed that general relativity can be written
in the form of a diffeomorphism invariant gauge theory provided the defining function is chosen to be
a δ-function imposing the condition

Tr(X)2 =
1

2
(Tr(X))2. (101)

In the paper [7] this condition has been imposed via an extra Lagrange multiplier field. However, we
can also impose it in our framework, by choosing the function χ appropriately. Then the first derivative
of the function χ with respect to the argument Tr(X)2/(Tr(X))2, evaluated at the value 1/3 of this
argument corresponding to the identity matrix, can be quite large for the function χ being close to
a δ-function. We refrain from making any estimates here because at this stage of the development
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of the theory it is hard to guess what kind of functions χ are natural from the point of view of the
renormalisation group flow. But the fact that general relativity (in Minkowski spacetime) arises for a
very special δ-function-like choice [7] of the defining function makes the property (99) that must hold
at low energies less surprising.

6 Discussion

In this paper we have proposed a new approach to the gravitational perturbation theory. While our
main motivation was the quantum theory (renormalisation), in the present paper we remained in the
classical domain. We have recalled how a diffeomorphims invariant gauge theory can be formulated
using a homogeneous degree one defining function, and how such a theory for the gauge group SU(2) is
a gravity theory describing two propagating degree of freedom. Our main interest here was in the per-
turbation theory. Hence, we expanded our general diffeomorphims invariant gauge theory Lagrangian
around a constant curvature connection. The original theory does not have any dimensionful param-
eters, and we have seen that it is the choice of the background that brings in a dimensionful quantity
into the game, in our case the radius of curvature of the background. We then took a limit of the radius
of curvature becoming very large (or working at energies such that the curvature of the background
can be neglected). This way we obtained a theory on the Minkowski spacetime background.

The linearised action (49) we obtained is quite simple, and can be seen to be a natural construct
involving the linearised connection, as well as the basic (anti-) self-dual two-forms Σi

µν . Indeed, as
is sometimes done in the literature, one can introduce the derivative operators ∂µ i := Σµν i∂ν . The
basic building block of our linearised action is then ∂µ iajµ, where this quantity is symmetrised and
then its tracefree part is squared to form the action. Note that the projector P ij|kl on the symmetric
tracefree part is just that on the spin two part of the tensor product of two spin one representations,
and this is another manifestation of how the spin two appears in the game. Indeed, one could rewrite

our linearised gauge theory action using the spinor notation as a multiple of (Σµν (AB∂µa
CD)
ν )2, where

the brackets denote the symmetrisation. A completely symmetrised rank 4 spinor is the standard
realisation of the spin two representation.

What we are seeing here is the appearance of a new type of gauge theory actions in Minkowski
space, constructed using the two-forms Σi

µν instead of the metric. We have also seen that the effect

of the spin two projector P ij|kl in the action is that the linearised action is independent of some of
the components of the gauge field, and this is how the diffeomorphism invariance is realised in our
theory. The Hamiltonian analysis of the linearised theory then confirmed the count of the number of
propagating modes, and also exhibited the standard spin two graviton Hamiltonian.

A bit non-strandard point of our construction was our strategy of dealing with the diffeomor-
phisms. Thus, we did not fix the gauge for them as is usual in field theory (making the unphysical
modes propagate and adding ghosts). Instead, we decided to simply project these components out.
The justification for this procedure is that the linearised action is independent of the projected out
components, and so it is certainly a legitimate procedure at the linearised level. We have then dealt
with the other gauge symmetry, the usual SU(2) gauge rotations, in the standard way. Our procedure
of projecting out the diffeomorphism equivalent components of the connection requires some thought
if it is to be extended to the full interacting theory, but we believe that it is still a viable procedure
for the theory linearised around an arbitrary background, and thus for the background field method.
This is to be developed in the forthcoming works.

Another justification for our strategy of dealing with the diffeomorphisms is that the gauge-fixed
action that we obtained is extremely simple. It is just the simplest possible a�a type action, with
an additional projector on diffeomorphism equivalence classes inserted. This simplification of the
propagator should be of great help in the future quantum calculations. The obtained simple form of
the gauge-fixed action gives one more justification for the name of our approach to gravity. Indeed,
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the gauge-fixed linearised action is quite clearly just the usual gauge-fixed gauge theory, with, in
addition, a projector taking into account the diffeomorphisms inserted. Thus, our gravity theory is
just a diffeomorphism invariant gauge theory, precisely as the title of this paper suggests.

Apart from the quantum aspects, which we purposefully decided to avoid here, we did not comment
much on the subtle issue of the reality conditions for our theory. Indeed, these were discussed at the
linearised level, where their treatment is no different from that in the Ashtekar formulation, see [18].
It is clear, however, that the full interacting action will require a much more sophisticated choice of
the reality conditions. For the quantum calculations to be carried out with this formalism this is not
much of an issue, because all loops are computed via the trick of the analytic continuation, and under
this all factors of

√
−1 in our formulas disappear and fields become real. However, these issues do

matter for the questions of the unitarity of the arising quantum theory. We expect that these subtle
issues will take some time to be settled, and refrain from trying to address them in this work.

Let us close by making some further comments on the type of gravitational perturbation theory
that we have seen arising in this approach. Thus, (98) tell us that the strength of the graviton self-
interactions is determined in this theory by a dimensionful parameter that arises as a combination of
the radius of curvature of the background with a certain dimensionless coupling constant g0 of the
theory. This implies that the Newton’s constant is no longer a fundamental parameter of our theory.
We have also seen that the cosmological constant (or rather the combination Λ/G) can be expressed
in terms of the radius of curvature and a dimensionless parameter as well, see (40). If the expectation
that it is the defining function f that runs with energy in this theory is correct, then both Λ/G and
1/G2 would run as f0 and g0 parameters respectively (provided the background curvature can be
chosen to be constant). Given the dimensionless nature of the latter couplings, this may be quite
different from the running expected from the mass dimensions of Λ/G and 1/G2. However, at this
stage it is hard to say anything concrete about how the resulting flow might look like. It is only clear
from the estimate (99) that this renormalisation group flow might have some important cosmological
constant problem message to tell us.

To conclude, we hope to have convinced the reader that the present gauge-theoretic approach to
gravity brings with itself many rather exciting opportunities that are simply unavailable, or impractical
in the usual metric setting. It now seems within reach that, with the new tools developed here, the
renormalisation group flow for an infinite parametric class of gravity theories can be computed. Once
this is achieved, ideas about the ultra-violet behaviour of gravity, e.g. the asymptotic safety conjecture
[16], can be explicitly tested.
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