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Abstract

General Relativity is today the best theory of gravity addressing a wide range of phenomena.
Our understanding of physical laws, from cosmology to local scales, cannot be properly formulated
without taking into account its concepts, procedures and formalim. It is based on one of the
most fundamental principles of Nature, the Equivalence Principle, which represents the core of the
Einstein theory of gravity describing, under the same standard, the metric and geodesic structure of
the spacetime. The confirmation of its validity at different scales and in different contexts represents
one of the main challenges of modern physics both from the theoretical and the experimental points
of view.

A major issue related to this principle is the fact that we actually do not know if it is valid or
not at quantum level. We are simply assuming its validity at fundamental scales. This question is
crucial in any self-consistent theory of gravity.

Furthermore, recent progress on relativistic theories of gravity, including deviations from Gen-
eral Relativity at various scales, such as extensions and alternatives to the Einstein theory, have
to take into account, besides the Equivalence Principle, new issues like Dark Matter and Dark
Energy, as well as the validity of fundamental principles like local Lorentz and position invari-
ance. The general trend is that high precision experiments are conceived and realized to test both
Einstein’s theory and its alternatives at fundamental level using established and novel methods.
For example, experiments based on quantum sensors (atomic clocks, accelerometers, gyroscopes,
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gravimeters, etc.) allow to set stringent constraints on well established symmetry laws (e.g. CPT
and Lorentz invariance), on the physics beyond the Standard Model of particles and interactions,
and on General Relativity and its possible extensions.
In this review, we discuss precision tests of gravity in General Relativity and alternative theo-
ries and their relation with the Equivalence Principle. In the first part, we discuss the Einstein
Equivalence Principle according to its weak and strong formulation. We recall some basic topics
of General Relativity and the necessity of its extension. Some models of modified gravity are pre-
sented in some details. This provides us the ground for discussing the Equivalence Principle also
in the framework of extended and alternative theories of gravity. In particular, we focus on the
possibility to violate the Equivalence Principle at finite temperature, both in the frameworks of
General Relativity and of modified gravity. Equivalence Principle violations in the Standard Model
Extension are also discussed. The second part of the paper is devoted to the experimental tests
of the Equivalence Principle in its weak formulation. We present the results and methods used in
high-precision experiments, and discuss the potential and prospects for future experimental tests.
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1 Introduction

General Relativity (GR) relies on the assumption that space and time are entangled into a unique
structure, i.e. the spacetime. It is assigned on a pseudo-Riemannian manifold endowed with a Lorenzian
signature. Dynamics has to reproduce, in the absence of a gravitational field, the Minkowski spacetime.

GR, as an extension of classical mechanics, has to match some minimal requirements to be considered
a self-consistent theory of gravitation: it has to reproduce results of Newton’s physics in the weak-energy
limit, hence it must be able to explain dynamics related to the planetary motion and the gravitating
structures such as stars, galaxies, clusters of galaxies. Moreover, it has to pass observational tests in
the Solar System. These facts constitute the experimental foundation on which GR is based. They are
usually called the ”classical tests of GR” [1, 2].

Beside the above ”mechanical issues”, GR has to explain Galactic dynamics, considering baryonic
constituents, like stars, planets, dust and gas, radiation. These components are tied together by the
Newtonian potential, which is supposed to work at any Galactic scales. Also, GR has to address the large
scale structure formation and dynamics. At cosmological scales, GR is required to address dynamics
of the whole universe and correctly reproduce cosmological parameters like the Hubble expansion rate,
the density parameters and the accelerated (decelerated) behavior of cosmic fluid. Cosmological and
astrophysical observations actually probe only the standard baryonic matter, the radiation and the
attractive overall interaction of gravity acting at all scales.

Furthermore, starting from Galileo, the free-fall of different bodies is assumed to be independent of
the nature of massive bodies on the Earth. The free-fall acceleration is unique and implies that gravi-
tational and inertial mass ratio is identical for different bodies. This experimental result is one of the
foundations of Einstein’s GR as well as of any metric theory of gravity. After Galileo’s experiment from
the leaning tower of Pisa, the free-fall acceleration uniqueness has been verified in many experiments,
as widely discussed in the second part of this review. Summarizing, we can say that GR is based on
four main assumptions:

The ”Relativity Principle” - there is no preferred inertial frames, i.e. all frames (accelerated
or not) are good frames for Physics.

The ”Equivalence Principle” (EP) - inertial effects are locally indistinguishable from grav-
itational effects (which means the equivalence between the inertial and the gravitational
masses). In other words, any gravitational field can be locally cancelled.

The ”General Covariance Principle” - field equations must be ”covariant” in form, i.e. they
must be invariant under the action of any spacetime diffeomorphisms.

The ”Causality Principle” - each point of space-time admits a universal notion of past,
present and future.

On these bases, Einstein postulated that, in a four-dimensional spacetime manifold, the gravitational
field is described by the metric tensor ds2 = gµνdx

µdxν , with the same signature of Minkowski metric.
The metric coefficients are the physical gravitational potentials. Moreover, spacetime is curved by the
distribution of energy-matter sources, e.g., the distribution of celestial bodies.

An important historical remark is necessary at this point. E. Kretschmann, in 1917 [3], criticized
the General Covariance Principle. In demanding General Covariance, he asserted that Einstein placed
no constraint on the physical content of his theory. Kretschmann stressed that any spacetime theory
could be formulated in a generally covariant way without any physical principle. In formulating GR,
Einstein used tensor calculus. Kretschmann pointed out that this calculus allowed for general covariant
formulations of theories while Einstein discussed general covariance as the form invariance of theory’s
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equations as soon as the spacetime coordinates are transformed. This can be considered as a ”passive”
point of view of General Covariance: if we have some system of fields, we can change our spacetime
coordinate system as we like and the new descriptions of the fields in the new coordinate systems
will still solve the theory’s equations. The answer by Einstein was that the form invariance of the
theory’s equations also allows a second version, the so-called ”active” General Covariance. It involves
no transformation of the spacetime coordinate system. In fact, active General Covariance gives rise
to the generation of new solutions of the equations of the theory in the same coordinate system once
one solution is given. According to this approach, General Covariance Principle can be considered a
physical principle.

The above principles require that the spacetime structure has to be determined by either one or
both of the two following fields: a Lorentzian metric g and a linear connection Γ, assumed by Einstein
to be torsionless because, at that time, the spin of particles was not considered a possible source for
the gravitational field. The physical meaning of these two fields is the following: The metric g fixes the
spacetime causal structure, that is the light cones. According to this statement, metric relations, i.e.
clocks and rods, are possible. On the other hand, the connection Γ fixes the free-fall of objects, that
is the local inertial observers according to the Equivalence Principle. Both fields, of course, have to
satisfy some compatibility relations like the requirement that photons follow null geodesics of Γ. This
means that Γ and g can be independent, a priori, but they are constrained, a posteriori, according to
some physical restrictions which impose that Γ has to be the Levi-Civita connection of g. However, in
more general approaches, Γ and g can be independent [4].

Despite the self-consistency and the solid foundation, there are several issues for GR, both from
the theoretical and the experimental (observational) points of view. The latter clearly points out that
GR is not capable of addressing Galactic, extra-galactic and cosmic dynamics unless a huge quantity
of some exotic forms of matter-energy is considered. These ingredients are usually called dark matter
and dark energy and constitute up to 95% of the total amount of cosmic matter-energy [5, 6].

On the other hand, instead of changing the source side of the Einstein field equations, a ”geometrical
view” can be taken into account to fit the missing matter-energy of the observed Universe. In such
a case, the dark side could be addressed by extending GR including further geometric invariants into
the Hilbert - Einstein Action besides the Ricci curvature scalar R. These effective Lagrangians can
be justified at the fundamental level considering the quantization of fields on curved spacetimes [6].
However, at the present stage of the research, there is no final probe discriminating between dark
matter-energy picture and extended (alternative) gravity1. Furthermore, the bulk of observations to be
considered is very large and then an effective Lagrangian or a single new particle, addressing the whole
phenomenology at all astrophysical and cosmic scales, would be very difficult to find.

An important discussion is related to the choice of the dynamical variables. In formulating GR,
Einstein assumed that the metric g is the fundamental object to describe gravity. The connection

Γα
µν =

! α
µν

"

g
is assumed, by construction, with no dynamics. Only g has dynamics. This means

that the metric g determines, at the same time, the causal structure (light cones), the measurements
(rods and clocks) and the free fall of test particles (geodesic structure). Spacetime is given by a couple
of mathematical objects {M, g} constituted by a Riemann manifold and a metric. Einstein realized
that gravity induces free fall and that the EP selects an object that cannot be a tensor because the
connection Γ can be switched off and set to zero at least in a point. According to this consideration,
Einstein was obliged to choose the Levi - Civita connection determined by the metric structure.

Alternatively, in the Palatini formalism a (symmetric) connection Γ and a metric g are assumed and

1An important remark is useful at this point. With the term Extended Gravity, we mean any class of theories by which
it is possible to recover Einstein GR as a particular case or in some post-Einstenian limit as in the case of f(R) gravity.
With Alternative Gravity, we mean a class of theories which considers different approach with respect to GR, for example
the Teleparallel Equivalent Gravity considering the torsion scalar instead of curvature scalar to describe dynamics.
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these two fields can varied independently. According to this picture, spacetime is a triple {M, g,Γ}
where the metric determines causal structure while Γ determines the free fall. This means that, in the
Palatini formalism, connections are differential equations determining dynamics. From this point of
view, Γ is the Levi-Civita connection of g as an outcome of the field equations.

The connection is the fundamental field in the Lagrangian while the metric g enters the Lagrangian
as the need to define lengths and distances to make experiments. It defines the causal structure but
has no dynamical role. As a consequence, there is no reason to assume g as the potential of Γ.

With this consideration in mind, we discuss here the role of the EP in the debate of theories of
gravity both from a theoretical and experimental point of view.

This review is organized as follows. In Section 2 we discuss the different formulations of the EP.
After summarizing the main topics of GR and Quantum Field Theory (QFT) in curved spacetimes, we
discuss metric theories of gravity considering possible extensions and modifications of GR. Motivations,
both theoretical and experimental, suggesting generalizations of GR, are considered. Specifically, these
theories have been introduced to account for shortcomings of GR, both at early and late phases of the
Universe evolution: Cosmological Inflation, Dark Matter and Dark Energy represent the main issues of
this debate. From the other side, GR is not a fundamental theory of physics because it should require
the inclusion of quantum effects. It is then natural to ask whether the Equivalence Principle still holds in
the framework of any modified gravity approach aimed to enclose quantum physics under the standard
of gravitational interaction. According to this requirement, we discuss the possibility to violate the EP
by considering QFT at finite temperature. Besides, violations of the EP also occur in the framework of
the extensions of Standard Model of particles. Section 3 is essentially devoted to experimental tests. We
present a wide class of experiments aiming to test the EP, in particular its weak formulation, with a high
accuracy. These include free falling tests, measurements based on Earth-to-Moon and Earth-to-satellite
distances, cold atoms and particles interferometry tests, spin-gravity coupling tests, matter-antimatter
tests. Conclusions are drawn in Section 4.

2 The Foundation of the Equivalence Principle

The EP is related to the above considerations and plays a relevant role to discriminate among concurring
theories of gravity. In particular, the role of g and Γ are related to the validity of EP. Specifically, precise
measurements of EP could say if Γ is only Levi - Civita or if a more general connection, disentangled
from g, is necessary to describe gravitational dynamics. Furthermore, possible violation of EP can
put in evidence other dynamical fields like torsion discriminating among the fundamental structure of
spacetime that can be Riemannian or not.

Summarizing, the relevance of EP comes from the following points:

• Competing theories of gravity can be discriminated according to the validity of EP;

• EP holds at classical level but it could be violated at quantum level;

• EP allows to investigate independently geodesic and causal structure of spacetime.If it is violated
at fundamental level, such structures could be independent.

From a theoretical point of view, EP constitutes the foundation of metric theories. The first formulation
of EP comes out from the formulation of gravity by Galileo and Newton, i.e. the Weak Equivalence
Principle (WEP) which states that the inertial massmi and the gravitational massmg of physical objects
are equivalent. The WEP implies that it is impossible to distinguish, locally, between the effects of
a gravitational field from those experienced in uniformly accelerated frames using the straightforward
observation of the free fall of physical objects.
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The first generalization of WEP states that Special Relativity is locally valid. Einstein obtained,
in the framework of Special Relativity, that mass can be reduced to a manifestation of energy and
momentum. As a consequence, it is impossible to distinguish between an uniform acceleration and an
external gravitational field, not only for free-falling objects, but whatever is the experiment. According
to this observation, Einstein EP states:

• The WEP is valid.

• The outcome of any local non-gravitational test experiment is independent of the velocity of
free-falling apparatus.

• The outcome of any local non-gravitational test experiment is independent of where and when it
is performed in the universe.

One can define a ”local non-gravitational experiment” as that performed in a small-size of a free-falling
laboratory. Immediately, it is possible to realize that gravitational interaction depends on the curvature
of spacetime. It means that the postulates of metric gravity theories have to be satisfied. Hence the
following statements hold:

• Spacetime is endowed with a metric gµν that constitutes the dynamic variables.

• The world lines of test bodies are geodesics of the metric.

• In local freely falling frames, i.e. the local Lorentz frames, the non-gravitational laws of physics
are those of Special Relativity.

One of the predictions of this principle is the gravitational red-shift, experimentally probed by Pound
and Rebka [1]. It is worth noticing that gravitational interactions are excluded from WEP and Einstein
EP.

To classify extended and alternative theories of gravity, the gravitational WEP and the Strong
Equivalence Principle (SEP) is introduced. The SEP extends the Einstein EP by including all the laws
of physics. It states:

• WEP is valid for self-gravitating bodies as well as for test bodies (gravitational WEP).

• The outcome of any local test is independent of the velocity of the free-falling apparatus.

• The outcome of any local test is independent of where and when it is performed in the universe.

The Einstein EP is recovered from SEP as soon as the gravitational forces are neglected. Several authors
claim that the only theory coherent with SEP is GR and then WEP has to be deeply investigated.

A very important issue is the consistency of EP with respect to Quantum Mechanics. GR is not the
only gravity theory and several alternatives have been investigated starting from the 60’s [6]. Some of
them are effective descriptions coming from quantum field theories on curved spacetime. Considering the
spacetime as special relativistic at a background level, gravitation can be treated as a Lorentz-invariant
perturbation field on the background. Assuming the possibility of GR extensions and alternatives, two
different classes of experiments can be conceived:

• Tests for the foundations of gravity according to the various formulations of EP.

• Tests of metric theories where spacetime is endowed with a metric tensor and where the Einstein
EP is assumed valid.
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The difference between the two classes of experiments consists in the fact that EP can be postulated ”a
priori” or ”recovered” from the self-consistency of the theory. What is clear is that, for several funda-
mental reasons, extra fields are necessary to describe gravity with respect to other interactions. Such
fields can be scalar fields or higher-order corrections of curvature and torsion invariants [6].According
to these reasons, two sets of field equations can be considered: The first couples the gravitational field
to non-gravitational fields, i.e. the matter distribution, the electromagnetic fields, etc. The second set
of equations considers dynamics of non-gravitational fields. In the framework of metric theories, these
laws depend only on the metric and this is a consequence of the Einstein EP. In the case where gravi-
tational field equations are modified with respect to the Einstein ones, and matter field are minimally
coupled with gravity, we are dealing with the Jordan frame. In the case where Einstein field equations
are preserved and matter field are non-minimally coupled, we are dealing with the Einstein frame. Both
frames are conformally related but the very final issue is to understand if passing from one frame to the
other (and vice versa) is physically significant. Clearly, EP plays a fundamental role in this discussion.
In particular, the main question is if EP is valid in any case or it is violated at quantum level.

2.1 The debate on gravitational theories

As discussed before, GR provides a comprehensive description of space, time, gravity, and matter under
the same standard at macroscopic level. Einstein formulated it in such a way that space and time are
dynamical and entangled quantities determined by the distribution and motion of matter and energy.
As a consequence, GR is related to a new conception of the universe which can be considered as a
dynamical system where precise physical measurements are possible.

In this perspective, cosmology is not only a philosophical branch of knowledge but can be legitimately
incorporated into science. Investigating scientifically the universe has led, along the last century, to
the formulation of the Standard Big Bang Model [7]which, in principle, matched most of the available
cosmological observations until more or less twenty years ago.

Deapite these successes, several shortcomings of Einstein’s theory emerged recently at ultraviolet
and infrared scales and scientists considered the hypothesis whether GR is the only fundamental the-
ory of gravitational interaction. This new point of view comes from cosmology (infrared scales) and
quantum field theory (ultraviolet scales). In the first case, the Big Bang singularity, the flatness, hori-
zon, and monopole problems [8] led to the conclusion that a cosmological model based on GR and
the Standard Model of particles is inadequate to describe the universe in extreme energy-curvature
regimes. Furthermore, GR cannot work as a fundamental theory of gravity if a quantum description of
spacetime is required. The Einstein theory is essentially a classical description. Due to these reasons,
and, in particular due to the lack of a self-consistent quantum theory of gravity, various alternative and
extensions of GR were proposed. The general approach is to formulate, at least, a semiclassical effective
theory where GR and its positive results can be recovered in some limit (e.g. the weak field limit or the
Solar System scales). A fruitful approach is the so-called Extended Theories of Gravity (ETGs) which
have recently become a paradigm to study the gravitational interaction. Essentially they are based on
corrections and extensions of Einstein’s GR. The paradigm consistsin adding higher order curvature
invariants and minimally or non-minimally coupled scalar fields into the dynamics. In this sense, we
can deal with effective gravity actions emerging from quantum field theory [6, 9].

Other reasons to modify GR are related to the issue of incorporating Mach’s principle into the
theory. GR is only partially Machian and allows solutions that are explicitly anti-Machian, e.g. the
Gödel solution [10] or exact pp-waves [11].

Mach’s principle states that local inertial frames are determined by the average motions of distant
astronomical objects [12]. This implies that the gravitational coupling can be determined by the sur-
rounding matter distribution and, therefore, becomes a spacetime function which can assume the form
of a scalar field. As a consequence, inertia and Equivalence Principle are concepts that have to be

8



revised. Brans-Dicke theory [13] is the first alternative to GR and the first attempt to fully incorporate
the Mach principle. It is considered the prototype of alternative theories of gravity and a straightfor-
ward GR extension. The gravitational “constant” is assumed ”variable” and corresponds to a scalar
field non-minimally coupled to geometry. This approach constitute a more satisfactory implementation
of Mach’s principle than GR [13–15].

Furthermore, any scheme unifying fundamental interactions with gravity, such as superstrings, su-
pergravity, or Grand-Unified Theories (GUTs) produces effective actions where non-minimal couplings
to the geometry are present. Also higher order curvature invariants are present in general. They emerge
as loop corrections in high-curvature regimes. This scheme has been adopted in quantizing matter fields
on curved spacetimes and the result is that interactions between quantum fields and background geom-
etry, or gravitational self-interactions give rise to corrections in the Hilbert-Einstein Lagrangian [16].
Furthermore, these corrections are unavoidable in the effective quantum gravity actions [17] and then
GR extensions are necessary. All these models do not constitute a self-consistent quantum gravity
theory, but are useful working schemes towards it.

To summarize, higher order curvature invariants like R2, RµνRµν , R
µναβRµναβ, R□R, R□kR, or

non-minimally couplings between matter fields and geometry such as φ2R have to be added to the
gravitational Lagrangian as soon as quantum corrections are introduced. For example, these terms
occur in the low-energy limit of string Lagrangian or in Kaluza-Klein theories where extra spatial
dimensions are taken into account [18].

Moreover, from a conceptual viewpoint, there is no a priori reason to restrict the gravitational
Lagrangian to a function, linear in the Ricci scalar R, minimally coupled to matter [19]. This concept
is in agreement with the idea that there are no “exact” laws of physics. It this case, the effective
Lagrangians of physical interactions would be given by the average quantities arising from the stochastic
behaviour of fields at a microscopic level. This approach means that the local gauge invariances and
the conservation laws are approximated and emerge only in the low-energy limit. In this perspective,
fundamental constants of physics can be assumed variable.

Furthermore, besides fundamental physics motivations, ETGs are interesting in cosmology because
they exhibit inflationary behaviours able to overcome shortcomings of Standard Big Bang model. The
related inflationary scenarios are realistic and match current observations coming from the cosmic
microwave background (CMB) [20, 21]. It can be been shown that, by conformal transformations, the
higher order and non-minimally coupled terms correspond to Einstein gravity plus one or more than one
scalar field(s) minimally coupled to the curvature [22–24]. Specifically,after conformal transformations,
higher order and non-minimally coupled terms appear as equivalent scalar fields in the Einstein field
equations. For example, in the Jordan frame, a term like R2 in the Lagrangian gives fourth order
field equations, R □R gives sixth order equations [25], R□2R yields eighth order equations [26], and
so on. After a conformal transformation, second order derivative terms corresponds to a scalar field:2

specifically, fourth order gravity is conformally equivalent to Einstein gravity plus a scalar field; sixth
order gravity is conformally equivalent to GR plus two scalar fields; and so on [27].

Furthermore, it is also possible to show that f(R) gravity to the Einstein theory minimally coupled
to an ideal fluid [28]. This feature is useful if multiple inflationary events are necessary for structure
formation. In fact, an early stage could produce large-scale structure with very long wavelengths which
after give rise to the observed clusters of galaxies. A later stage could select smaller scales observed as
galaxies today [25]. The underlying philosophy is that any inflationary era is related to the dynamics
of a related scalar field. Finally, these extended schemes could solve the graceful exit problem, avoiding
the shortcomings of other inflationary models [29].

The revision of early cosmological scenarios, leading to inflation, can imply that a new approach is
necessary also at late epochs: ETGs play a fundamental role also in today observed universe. In fact,

2Dynamics of any of these scalars fields is determined by a second order Klein-Gordon equation.
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the increasing amount of observational data, accumulated over the past decades, has given rise to a new
cosmological model, the so called Concordance Model or Λ-Cold Dark Matter (ΛCDM) model.

The Hubble diagram of type Ia Supernovae (hereafter SNeIa) was the first evidence that the universe
is today undergoing an accelerated expansion phase. Furthermore, balloon-born experiments [30] deter-
mined the location of the first two Doppler peaks in the spectrum of CMB anisotropies. These features
strongly suggest a spatially flat universe also if some recent data could question this result. If combined
with constraints on matter density parameter ΩM , these data point out that the universe is dominated
by an un-clustered fluid, with negative pressure, usually referred to as dark energy. Such a fluid drives
the accelerated expansion. This picture has been strengthened by other precise measurements on CMB
spectrum and by the extension of the SNeIa Hubble diagram to redshifts higher than one.

A huge amount of papers appeared following these observational results. They present several models
attempting to explain the cosmic acceleration. The simplest explanation is the well-known cosmological
constant Λ. Although this ingredient provides the best-fit to most of the available astrophysical data [31],
the ΛCDM model fails in explaining why the value of Λ is so tiny (120 orders of magnitude lower) if
compared with the typical vacuum energy density predicted by particle physics, and why its present
value is comparable to the matter density. This constitutes the so-called coincidence problem.

A possible solution is replacing the cosmological constant with a scalar field ϕ rolling slowly down a
flat section of a potential V (ϕ) and giving rise to the models known as quintessence [32, 33]. Also if it
is successfully fitting data with many models, the quintessence approach to dark energy is still plagued
by the coincidence problem since the dark energy and dark matter densities evolve in a different way
and reach comparable values only during a very short time of the history of the universe. In particular,
they coincide right at present era. In other words, the quintessence is tracking matter and evolves in the
same way for a long time; at late times, it changes its behaviour and no longer tracks the dark matter
but dominates dynamics as a cosmological constant. This is, specifically, the quintessence coincidence
problem.

The origin of this quintessence scalar field is one of the big mystery of modern cosmology. Although
several models have been proposed, a great deal of uncertainty is related to the choice of the scalar field
potential V (ϕ) necessary to achieve the late-time acceleration of the universe. The elusive nature of
dark energy has led many authors to look for a different explanation of the cosmic acceleration without
introducing exotic components. It is worth stressing that the present-day cosmic acceleration requires
a negative pressure that has to dominate dynamics after the matter era. However, we do not anything
about the nature and the number of the cosmic fluids filling the universe. This consideration suggests us
that the accelerated expansion could be explained with a single cosmic fluid characterized by an equation
of state acting like dark matter at high densities, and like dark energy at low densities. The relevant
feature of these models, referred as Unified Dark Energy (UDE) or Unified Dark Matter (UDM) models,
is that the coincidence problem is naturally solved. Examples are the Chaplying gas [34], tachyon
fields [35], and condensate cosmology [36]. These models are extremely interesting because they can be
interpreted both in the framework of UDE models or as two-fluid models representing the dark matter
and the dark energy regime. A main feature of this approach is that a generalized equation of state can
be easily obtained and the fit of observational data can be achieved.

There is another approach to face the problem of the cosmic acceleration. As reported in [37], it
is possible that the observed acceleration is not related to another cosmic ingredient, but rather the
signal of a breakdown, at infra-red scales, of the law of gravitation as a scale invariant interaction.
From this view point, modifying the Einstein-Friedmann equations, fitting the astrophysical data with
models containing only standard matter and without exotic fluids is another approach. Examples in
this direction are the Cardassian model [38] and Dvali-Gabadadze-Porrati (DGP) cosmology [39]. In
the same conceptual framework, it is possible to find alternative approaches where a quintessential
behavior is obtained by incorporating effective models coming from fundamental physics and giving rise
to extended gravity actions. For example, a cosmological constant can be recovered as a consequence
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of non-vanishing torsion fields. Also in this case, it is possible to build up models consistent with the
SNeIa Hubble diagram and the Sunyaev - Zel’dovich effect in galaxy clusters [40]. SNeIa data can also be
fitted by including higher-order curvature invariants. These models provide a cosmological component
with negative pressure which is originated by the geometry of the universe. According to this picture,
we do not need new particle counterparts to address the phenomenology.

The amount of cosmological models which are viable candidates to explain the observed accelerated
expansion is too wide to be reported here. This overabundance points out that only a few number
of cosmological tests is available to discriminate between competing approaches, so it is clear that
there is a high degeneracy of models. It s important to stress that both SNeIa Hubble diagram and
angular size-redshift relation of compact radio sources are distance-based probes of the cosmological
model and, therefore, systematic errors and biases could be iterated. According to this consideration,
it is interesting to search for tests based on time-dependent observables. For example, we can take into
account the lookback time to distant objects. This quantity discriminates among different cosmological
models. The lookback time is estimated as the difference between the age of the universe and the age
of a given object at redshift z. This estimate becomes realistic when the object is a galaxy observed in
more than one photometric band because its color is determined by the age as a consequence of stellar
evolution. Hence, it is possible to obtain the galaxy age by measuring its magnitude in different bands
and then using stellar evolutionary codes to best reproduce the observed colors.

In general, in the case of weak-field limit, which essentially coincides with Solar System scales, ETGs
are expected to reproduce GR which is precisely tested at these scales [1]. Even this limit is a matter
of debate because several theories do not reproduce exactly the Einstein theory in its Newtonian limit
but, in some sense, generalize it giving rise to Yukawa-like corrections to the Newtonian potential which
could be physically relevant already at Galactic scales [41–46].

As a general remark, relativistic gravity theories give rise to corrections to the weak-field gravita-
tional potentials which, at the post-Newtonian level and in the Parametrized Post-Newtonian (PPN)
formalism, constitute a test bed for these theories [1]. Furthermore, the gravitational lensing astron-
omy [47] provide additional tests over small, large, and very large scales which can provide measurements
on the variation of the Newton constant [48], the potential of galaxies, clusters of galaxies, and other
features of gravitating systems. In principle, such data can be capable of confirming or ruling out any
alternative to GR.

In ETGs, the Einstein field equations can be modified in two ways: i) the geometry part can be
non-minimally coupled to some scalar field, and/or ii) higher than second order derivatives of the metric
can appear. In the former case, we deal with scalar-tensor theories of gravity; in the latter, with higher
order theories of gravity. Combinations of non-minimally coupled and higher order components can
also emerge.

From the mathematical viewpoint, the problem of reducing more general theories to the Einstein
theory has been widely discussed. Through a Legendre transformation on the metric, higher order
theories with Lagrangians satisfying some regularity conditions assume the form of GR with (possibly
multiple) scalar field(s) as sources the gravitational field (e.g., [19, 49, 50]). The formal equivalence
between models with variable gravitational coupling and Einstein gravity via conformal transformations
is also well known [51]. This gave rise to the debate on whether the mathematical equivalence between
different conformal representations is also a physical equivalence [52, 53].

Another important issue is the Palatini approach: this problem was first proposed by Einstein
himself, but it was called the Palatini approach because the Italian mathematician Attilio Palatini
formalized it [4]. The main idea of this formalism is considering the connection Γµ

αβ as independent
of the metric gµν . It is well known that the Palatini formulation of GR is equivalent to the metric
formulation [7]. This result follows from the fact that the field equations for connection Γµ

αβ, also if
assumed independent of the metric, yield the Levi-Civita connection of gµν in GR. Therefore, the Palatini
variational principle in the Einstein theory gives exactly the same field equations of the metric variational
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principle. However, the situation changes if we consider ETGs formulated as functions of curvature
invariants, such as f(R), or as scalar-tensor theories. There, the Palatini and the metric variational
principles give rise to different field equations that could describe different physics. The relevance of
the Palatini formulation has been recently highlighted according to cosmological applications [54].

Another crucial problem is related to the Newtonian potential in alternative gravity and its relations
with the conformal factor [55]. From a physical point of view, considering the metric and the connection
as independent fields corresponds to decoupling the metric structure of spacetime from the geodesic
structure (with the connection being, in general, different from the Levi-Civita connection of the metric.
The causal structure of spacetime is governed by gµν , while the spacetime trajectories of particles are
governed by Γµ

αβ.
The decoupling of causal and geodesic structures enlarges the spacetime geometry and generalizes

the metric formalism. This metric-affine structure can be immediately translated, by means of the
Palatini field equations, into a bi-metric structure. In addition to the physical metric gµν , a second
metric hµν is present which is related, in the case of f(R) gravity, to the connection. As a matter
of fact, the connection Γµ

αβ turns out to be the Levi-Civita connection of this second metric hµν and
provides the geodesic structure of spacetime.

If we consider non-minimal couplings in gravitational Lagrangian, the further metric hµν is related
to the coupling. According to the Palatini formalism, non-minimal couplings and scalar fields entering
the evolution of the gravitational field are related by the metric structure of spacetime3

2.2 Einstein’s General Relativity

The Newton theory of gravity was the issue that Einstein needed to recover in the weak field limit and
slow motion. In Newton formulation, space and time are absolute entities and require particles to move,
in a preferred inertial frame, along curved trajectories, the curvature of which (i.e., the acceleration) is
a function of the intensity of the sources through the “forces”. According to this requirements, Einstein
postulated that the gravitational forces have to be described by the curvature of the metric tensor gµν
related to the line element ds2 = gµνdx

µdxν of a four-dimensional spacetime manifold. This metric has
the same signature of the Minkowski metric (the Lorentzian signature here assumed to be (−,+,+,+)).
Einstein postulated also that spacetime curves onto itself and that curvature is locally determined by
the distribution of the sources, that is by the four-dimensional generalization of the matter stress-energy
tensor (another rank-two symmetric tensor) T

(m)
µν of continuum mechanics.

Once a metric gµν is assigned, curvature is given by the Riemann (or curvature) tensor

Rαβµ
ν = Γν

αβ,µ − Γν
βµ,α + Γσ

αµΓ
ν
σβ − Γσ

βµΓ
ν
σα (1)

where the commas denote partial derivatives. Its contraction

Rαµ ≡ Rαβµ
β , (2)

is the Ricci tensor, while the contraction

R ≡ Rµ
µ = gµνRµν (3)

is the Ricci curvature scalar of gµν . Einstein initially derived the field equations Rµν = κ
2
T

(m)
µν , where

κ = 8πG (in units in which c = 1) is the gravitational coupling constant. These equations turned out
to be inconsistent as pointed out by Levi-Civita. Furthermore Hilbert stressed that they do not derive
from an action principle [57]. In fact, there is no action reproducing them exactly through a variation.

3Due to these features, the Palatini approach could play a main role in clarifying the physical aspects of conformal
transformations [56].
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Einstein’s answer was that he realized that the equations were physically inconsistent, since they were
incompatible with the continuity equation deemed to be satisfied by reasonable forms of matter.

Assuming matter consisting of perfect fluids with stress-energy tensor

T (m)
µν = (P + ρ) uµuν + P gµν , (4)

where uµ is the four-velocity of the particles, P and ρ the pressure and energy density of the fluid, respec-
tively, the continuity equation requires T

(m)
µν to be covariantly constant, i.e., to satisfy the conservation

law

∇µT (m)
µν = 0 , (5)

where ∇α denotes the covariant derivative operator of the metric gµν . In fact, ∇µRµν does not vanish,
except in the trivial case R ≡ 0. Einstein concluded that the field equations are

Gµν = κT (m)
µν (6)

where

Gµν ≡ Rµν −
1

2
gµνR (7)

is the Einstein tensor of gµν . These equations can be derived also by minimizing an action containing
R and satisfy the conservation law (5) since

∇µGµν = 0 , (8)

holds as a contraction of the Bianchi identities that the curvature tensor of gµν satisfies [7].

Specifically, the Lagrangian that, if varied, produces the field equations (6) is the sum of a “matter”
Lagrangian density L(m), whose variational derivative is

T (m)
µν =

δL(m)

δgµν
, (9)

and of the gravitational (Hilbert-Einstein) Lagrangian density

LHE =
√
−g gµνRµν =

√
−g R , (10)

where g is the determinant of the metric gµν .

Einstein’s choice was arbitrary but it was certainly the simplest. As clarified by Levi-Civita in 1919,
curvature is not a purely metric notion but it is also related to the linear connection of parallel transport
and covariant derivative. In some sense, this idea is the precursor of “gauge-theoretical framework” [58],
following the pioneering work by Cartan of 1925.

After, it was clarified that the principles of relativity, equivalence, and covariance, together with
causality, require only that the spacetime structure can be determined by a Lorentzian metric gµν and
a linear connection Γα

µν , assumed to be torsionless for the sake of simplicity. The metric fixes the
causal structure of spacetime (the light cones) as well as its metric relations measured by clocks and
rods and the lenghts of four-vectors. The connection determines the laws of free fall, that is the four-
dimensional spacetime trajectories followed by locally inertial observers. These observers must satisfy
some compatibility relations including the requirement that photons follow null geodesics, so that Γα

µν

and gµν can a priori be independent, but constrained a posteriori by the physics. These physical
constraints, however, do not necessarily impose that Γα

µν is the Levi-Civita connection of gµν [6].
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2.3 Quantum Gravity motivations

A challenge of modern physics is constructing a theory capable of describing the fundamental interac-
tions of nature under the same standard. This goal has led to formulate several unification schemes
which attempt to describe gravity together with the other interactions. All these schemes describe the
fields under the conceptual apparatus of Quantum Mechanics. This is based on the assumption that
the states of physical systems are described by vectors in a Hilbert space H and the physical fields
are linear operators defined on domains of H. Till now, any attempt to incorporate gravity into this
scheme is failed or revealed unsatisfactory. The main problem is that gravitational field describes, at
the same time, the gravitational degrees of freedom and the spacetime background where these degrees
of freedom are defined.

Owing to the difficulties of building up a self-consistent theory unifying interactions and particles,
the two fundamental theories of modern physics, GR and Quantum Mechanics, have been critically
re-analyzed. On the one hand, we assume that matter fields (bosons and fermions) come out from
superstructures (e.g., Higgs bosons or superstrings) that, undergoing certain phase transitions, generate
the known particles. On the other hand, it is assumed that the geometry interacts directly with quantum
matter fields which back-react on it. This interaction necessarily modifies the standard gravitational
theory, that is the Hilbert-Einstein Lagrangian. This fact leads to the ETGs.

From the point of view of cosmology, the modifications of GR provide inflationary scenarios of
remarkable interest. In any case, a condition that such theories have to respect in order to be physically
acceptable is that GR is recovered in the low-energy limit.

Although conceptual progresses have been made assuming generalized gravitational theories, at
the same time mathematical difficulties have increased. The corrections into the Lagrangian enlarge
the (intrinsic) non-linearity of the Einstein equations, making them more difficult to study because
differential equations of higher order than second are often obtained and because it is extremely difficult
to separate geometry from matter degrees of freedom. To overcome these difficulties and try to simplify
the field equations, one often looks for symmetries of dynamics and identifies conserved quantities which,
often, allow to find out exact solutions.

The necessity of quantum gravity was recognized at the end of 1950s, when physicists tried to
deal with all interactions at a fundamental level and describe them under the standard of quantum
field theory. The first attempts to quantize gravity adopted the canonical approach and the covariant
approache, which had been already applied with success to electromagnetism. In the first approach ap-
plied to electromagnetism, one takes into account electric and magnetic fields satisfying the Heisenberg
uncertainty principle and the quantum states are gauge-invariant functionals, generated by the vector
potential, defined on 3-surfaces labeled with constant time. In the second approach, one quantizes
the two degrees of freedom of the Maxwell field without (3+1) decomposition of the metric, while the
quantum states are elements of a Fock space [59]. These procedures are fully equivalent. The former
allows a well-defined measure, whereas the latter is more convenient for perturbative calculations such
as the computation of the S-matrix in Quanrum Electrodynamics (QED).

These methods have been adopted also in GR, but several difficulties arise in this case due to the
fact that GR cannot be formulated as a quantum field theory on a fixed Minkowski background. To
be specific, in GR the geometry of background spacetime cannot be given a priori: spacetime is itself
the dynamical variable. To introduce the notions of causality, time, and evolution, one has to solve
equations of motion and build up the related spacetime. For example, to know if a particular initial
condition will give rise to a black hole, it is necessary to evolve it by solving the Einstein equations.
Then, taking into account the causal structure of the solution, one has to study the asymptotic metric at
future null infinity in order to assess whether it is related, in the causal past, with that initial condition.
This problem become intractable at quantum level. Due to the uncertainty principle, in non-relativistic
quantum mechanics particles do not move along well-defined trajectories and one can only calculate
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the probability amplitude ψ(t, x) that a measurement at a given time t detects a particle at the spatial
point x. In the same way, in quantum gravity, the evolution of an initial state does not provide a given
spacetime (that is a metric). In absence of a spacetime, how is it possible to introduce basic concepts
as causality, time, scattering matrix, or black holes?

Canonical and covariant approaches provide different answers to these issues. The first is based on
the Hamiltonian formulation of GR and is adopting a canonical quantization procedure. The canonical
commutation relations are those that lead to the Heisenberg uncertainty principle; in fact, the commu-
tation of operators on a spatial 3-manifold at constant time is assumed, and this 3-manifold is fixed in
order to preserve the notion of causality. In the limit of asymptotically flat spacetime, motions related
to the Hamiltonian have to be interpreted as time evolution (in other words, as soon as the background
becomes the Minkowski spacetime, the Hamiltonian operator assumes again its role as the generator of
time translations). The canonical approach preserves the geometric structure of GR without introducing
perturbative methods.

On the other hand, the covariant approach adopts quantum field theory concepts. The basic idea is
that the shortcomings mentioned above can be circumvented by splitting the metric gµν into a kinematic
part ηµν (usually flat) and a dynamical part hµν . That is

gµν = ηµν + hµν . (11)

The background geometry is given by the flat metric tensor and it is the same of Special Relativity
and standard quantum field theory. It allows to define concepts of causality, time, and scattering.
The procedure of quantization is applied to the dynamical field, considered as a little deviation of the
metric from the flat background. Quanta are particles with spin two, i.e. gravitons, which propagate
in MInkowski spacetime and are defined by hµν . Substituting gµν into the GR action, it follows that
the gravitational Lagrangian contains a sum whose terms contains a different orders of approximation,
the interaction of gravitons and, eventually, terms describing matter-graviton interaction (if matter is
present). These terms are analyzed by the standard perturbation approach of quantum field theory.

These quantization approaches were both developed during the 1960s and 1970s. In the canonical
approach, Arnowitt, Deser, and Misner developed the Hamiltonian formulation of GR using methods
proposed by Dirac and Bergmann. In this scheme, the canonical variables are the 3-metric on the spatial
3-manifolds obtained by foliating the 4-dimensional manifold. It is worth noticing that this foliation is
arbitrary. Einstein’s field equations give constraints between the 3-metrics and their conjugate momenta
and the evolution equation for these fields is the so-called Wheeler-DeWitt (WDW) equation. In this
picture, GR is the dynamical theory of the 3-geometries, that is the geometrodynamics. The main
problems arising from this formulation are that the quantum equations involve products of operators
defined at the same spacetime point and, furthermore, they give rise to distributions whose physical
meaning is unclear. In any case, the main question is the absence of the Hilbert space of states and, as
consequence, the probabilistic interpretation of the quantities is not exactly defined.

The covariant quantization is much similar to the physics of particles and fields, because, in some
sense, it has been possible to extend QED perturbation methods to gravitation. This allowed the
analysis of mutual interaction between gravitons and of the matter-graviton interactions. The Feynman
rules for gravitons and the demonstration that the theory might be, in principle, unitary at any order
of expansion was achieved by DeWitt.

Further progress was reached by the Yang-Mills theories, describing the strong, weak, and electro-
magnetic interactions of particles by means of symmetries. These theories are renormalizable because
it is possible to give the particle masses through the mechanism of spontaneous symmetry breaking.
According to this principle, it is natural to try to consider gravitation as a Yang-Mills theory in the
covariant perturbation approach and search for its renormalization. However, gravity does not fit into
this scheme; it turns out to be non-renormalizable if we consider the graviton-graviton interactions
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(two-loops diagrams) and graviton-matter interactions (one-loop diagrams).4 In any case, the covariant
method allows to construct a gravity theory which is renormalizable at one-loop level in the perturbation
series [16].

Due to the non-renormalizability of gravity at higher orders, the validity of the approach is restricted
to the low-energy domain, that is, to infrared scales, while it fails at ultraviolet scales. This implies
that the theory of gravity is unknown near or at Planck scales. On the other hand, sufficiently far
from the Planck epoch, GR and its first loop approximation describe quite well gravitation. In this
context, it makes sense to add higher order and non-minimally coupled terms to the Hilbert-Einstein
action. Furthermore, if the free parameters are chosen appropriately, the theory has a better ultraviolet
behaviour and it is asymptotically free. Nevertheless, the Hamiltonian of these theories is not bounded
from below and they are unstable. Specifically, unitarity is violated and probability is not conserved.

Another approach to the search for quantum gravity comes from the study of the electroweak
interaction. Here, gravity is treated neglecting the other fundamental interactions. The unification of
electromagnetism and weak interaction suggests that it could be possible to obtain a consistent theory if
gravity is coupled to some kind of matter. This is the basic idea of Supergravity. In this kind of theories,
divergences due to the bosons (in this case the 2-spin gravitons) are cancelled exactly by those due to
the fermions. In this picture, it is possible to achieve a renormalized theory of gravity. Unfortunately,
the approach works only up to two-loop level and for matter-gravity couplings. The corresponding
Hamiltonian is positive-definite and the theory is unitary. However, including higher order loops, the
infinities appear and renormalizabilty is lost.

Perturbation methods are also adopted in string theories. In this case, the approach is different from
the previous one since particles are replaced by extended objects which are the fundamental strings. The
physical particles, including the spin two gravitons, correspond to excitations of the strings. The only
free parameter of the theory is the string tension and the interaction couplings are uniquely determined.
As a consequence, string theory contains all fundamental physics and it is considered a possible Theory
of Everything. String theory is unitary and the perturbation series converges implying finite terms. This
feature follows from the characteristic that strings are intrinsically extended objects, so that ultraviolet
divergencies, appearing at small scales or at large transferred impulses, are naturally cured. This means
that the natural cutoff is given by the string length, which is of Planck size lP . At larger scales than lP ,
the effective string action can be written as non-massive vibrational modes, that is, in terms of scalar
and tensor fields. This constitutes the tree-level effective action. This approach leads to an effective
theory of gravity non-minimally coupled with scalar fields, which are the so-called dilaton fields.

In conclusion, we can summarize the previous considerations: 1) a unitary and renormalizable
theory of gravity does not yet exists5. 2) In the quantization program of gravity, two approaches are
used: the covariant approach and the perturbation approach. They do not lead to a self-consistent
quantum gravity. 3) In the low-energy regime, with respect to the Planck energy, GR can be improved
by introducing, into the Hilbert-Einstein action, higher order terms of curvature invariants and non-
minimal couplings between matter and gravity. The approach leads, at least at one-loop level, to a
consistent and renormalizable theory.

4Higher order terms in the perturbative series imply an infinite number of free parameters. At the one-loop level, it is
sufficient to renormalize only the effective constants Geff and Λeff which, at low energy, reduce to the Newton constant
GN and the cosmological constant Λ.

5It is worth to mention that recently it has been shown that an infinite derivative theory of covariant gravity, which
is motivated from string theory, see [60,61], can be made ghost free and also singularity free [62,63] (see Refs. [64–67] for
some applications).
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2.4 Emergent gravity and thermodynamics of spacetime

Recently, several theoretical approaches towards the so-called emergent gravity theories have been pro-
posed. The main idea is that, given the lack of experimental data for quantum gravity at high-energies,
it is worth approaching gravity from low-energies considering some effective theories. Gravity emerges
from fundamental constituents, as a sort of “atoms of spacetime”, with metric and affine-connection
being collective variables similar to hydrodynamics, where a fluid description emerges from an aggregate
of microscopic particles. Emergent gravity attempts the reconstruction of microscopic system underly-
ing classical gravity. It is possible to constrain the microscopic features of the fundamental constituents
by requiring that the emergent gravity is similar to GR in weak field limit. This picture, however,
questions the principles constituting the foundations of gravitational theories.

A related research line is that of analogue models: if gravity emerges as a collective system made of
microscopic quantum constitutents, it could be possible to model it with the help of physical systems
where an effective metric and a connection govern the dynamics. For example one can study the Hawking
radiation coming from black holes adopting acoustic analogues (the so called “dumb holes”) [68–70], or
Bose-Einstein condensates (see [71] for a review of analogue models). If an effective metric is generated,
it is a kinematic, in the sense that field equations are not generated by it. However, some results are
able to generate a theory of scalar gravity [72] and progresses are possible in this direction. A standard
feature for emergent spacetimes is that they exhibit Lorentz invariance at low-energies. The Lorentz
symmetry is broken in the ultraviolet limit where the fundamental quantum constituents of gravity
cannot be avoided.

We mention these approaches here because they question the foundations of gravitational theory
and do not state that GR is the only theory to be reproduced at large scale in coarse-graining: the
message is that different theories with similar features are possible as well.

Another approach is based on the idea that gravity could be reproduced through a sort of spacetime
thermodynamics. This means that the Einstein field equations should be derived through local thermo-
dynamics at equilibrium. Using thermodynamics on the Rindler horizons associated to the worldlines
of physical observers and assuming the relation S = A/4 between entropy and horizon area (which
should be more fundamental than the Einstein field equations) Jacobson was able to derive the Einstein
equations as an equation of state derived for an ideal gas. The implication of this result is that it does
not make sense to quantize the field equations to learn about quantum gravity. The philosophy is that
by quantizing the equation of state of an atomic hydrogen gas, we do not learn anything about the
hydrogen atom and its energy levels. From this perspective, if a similar thermodynamics of spacetime
approach is applied to f(R) gravity, it is then necessary to consider near-equilibrium thermodynamics
in order to derive the field equations. This demonstrates that GR is just a state of gravity correspond-
ing to a given thermodynamic equilibrium and, when this equilibrium is perturbed, near-equilibrium
configurations correspond to alternative theories of gravity. According to this approach, this justify the
study of ETGs.

A result with a conceptual similar meaning is found in scalar-tensor cosmologies: they should relax
to GR during the evolution of the universe at recent epochs. This is another hint that GR could be only
a particular state of equilibrium, while an entire spectrum of theories should be considered at higher
energy excitations.

These results are very speculative and require further studies; however, they stress the necessity to
think about gravity outside of the strict GR scheme and hint to the fact that much more work needs
to be done before claiming for a self-consistent theory of gravity also at lower energies.
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2.5 Kaluza-Klein theories

The attempt to construct a unified theory of GR and electromagnetism was first proposed by Kaluza [73]
(for a review, see [74–77]). He showed that the electromagnetism and the gravitation interactions can be
described by making use of a single metric tensor if an additional spatial dimension is introduced. In a
Universe with 5-dimensions, the element line reads ds2 = GAB(x, y)dx

AdxB, where xA = (xµ, y), being y
the additional dimension (here A,B = 0, 1, 2, 3, 4, and xµ, with µ = 0, 1, 2, 3, the usual four dimensional

coordinates). In matrix form, the 5-dimensional metric tensor assumes the form GAB =

#
gµν gµ4
g4ν g44

$
.

From the metric tensor, one construct all geometric quantities such as the Riemann tensor, the Ricci
tensor and scalar curvature and then the field equations. The components of the metric tensor are
typically written in the following form: G44 = φ, G4µ = κφAµ, Gµν = gµν + κ2φAµAν . The fields
gµν(x, y), Aµ(x, y), and φ(x, y) transform as a tensor, a vector, and a scalar under diffeomorphisms
(four-dimensional general coordinate transformations), respectively. The field φ is the dilaton field. Is
it then natural to write down the The Einstein-Hilbert action in Kaluza-Klein five-dimensional gravity
SHE = 1

22

%
d5XR5, where κ5 represents the five-dimensional coupling constant while R5 the five-

dimensional scalar curvature. The field equations of gravity and electromagnetism can be derived from
the usual variational principles.

The extra dimension y is imposed to be become compact [78]. Hence y must satisfy the boundary
condition y = y + 2πR. This implies that the fields FA(x, y) = {gµν(x, y), Aµ(x, y),φ(x, y) are periodic
in y and may be expanded in a Fourier series as follows

FA =
+∞&

n=−∞
FAn e

iny/R ,

where R is the radius of the compactified dimension. The equations of motion are

□5FA =

#
□4 +

n2

R2

$
FA = 0 ,

where □5 = □4 − ∂y∂y and □4 = ∂µ∂µ is the usual 4-dimensional D’Alembert operator. Comparing
with the Klein-Gordon equation, one infers that only the massless zero modes n = 0 is observable at
our present energy, while all the excited states (Kaluza-Klein states) have a mass and charge given by
m ∼ |n|/R and q ∼ κn/R [17], with n the mode of excitation. In 4-dimensions, all these excited states
would appear with mass or momentum ∼ O(n/R). The natural radius of compactification is the Planck
length R = lPl = 1/MPl.

Concerning the number of degree of freedom present in the Kaluza-Klein theory, owing to the fact
that the metric is a 5 × 5 symmetric tensor, there are 15 independent components [77]. The gauge
fixings reduce the number of independent degrees of freedom to 5 (in 4-dimensions there are only 2
degrees of freedom for a massless graviton). Therefore the theory does contain particles other than
just ordinary four dimensional graviton. The zero-mode of five-dimensional graviton contains a four-
dimensional massless graviton with 2 physical degrees of freedom, a four-dimensional massless gauge
boson with 2 physical degrees of freedom, and a real scalar with 1 physical degree of freedom. The
non-zero mode of five-dimensional graviton is massive and has 5 physical degrees of freedom.

Kaluza-Klein theory, although flawed and is in contradiction with experimental data, has repre-
sented, nonetheless, an important model for building up the unification the forces of nature. Many
modified version of the Kaluxa-Klein theory, in fact, have been proposed in which higher and extremely
small extra dimensions have been taken into account. The higher dimensional unification approaches
mainly studied in literature are [77] : 1) The Compactified Approach; 2) The Projective Approach. 3)
The Noncompactified Approach.

The violation of the equivalence principle in Kaluza-Klein theories has been discussed in [79].
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2.6 Quantum field theory in curved spacetime

In this Section we point out that any attempt to formulate quantum field theory on curved spacetime
necessarily leads to modifying the Hilbert-Einstein action. This means adding terms containing non-
linear invariants of the curvature tensor or non-minimal couplings between matter and the curvature
originating in the perturbative expansion.

At high energies, a desription of matter as a hydrodynamical perfect fluid is inadequate: an accurate
description asks for quantum field theory formulated on a curved spacetime. Since, at scales comparable
to the Compton wavelength of particles, matter has to be quantized, one can adopt a semiclassical
description of gravitaty where the Einstein field equations assume the form

Gµν ≡ Rµν −
1

2
gµνR =< Tµν > , (12)

where the Einstein tensor Gµν is on the left hand side while the right hand contains the expectation
value of quantum stress-energy tensor which is the source of the gravitational field. Specifically, if |ψ >
is a quantum state, then < Tµν >≡< ψ|T̂µν |ψ >, where T̂µν is the quantum operator associated with
the classical energy-momentum tensor of the matter field with a regularized expectation value.

If the background is curved, , quantum fluctuations of matter fields give, even in absence of classical
matter and radiation, non-vanishing contributions to < Tµν > like it happens in QED [16]. If matter
fields are free, massless and conformally invariant, these corrections are

< Tµν >= k1
(1)Hµν + k3

(3)Hµν . (13)

Here k1,3 are numerical coefficients and

(1)Hµν = 2R;µν − 2gµν□R + 2RστRστgµν −
1

2
gµνR

2 , (14)

(3)Hµν = Rσ
µRνσ −

2

3
RRµν −

1

2
gµνR

στRστ +
1

4
gµνR

2 . (15)

(1)Hµν is a tensor derived by varying the local action,

(1)Hµν =
2√
−g

δ

δgµν
'√

−g R2
(
. (16)

It is divergence free, that is (1)Hν
µ;ν = 0.

Infinities coming from < Tµν > are removed by introducing an infinite number of counterterms in
the Lagrangian density of gravitation. The procedure yields a renormalizable theory. For example, one
of these terms is CR2

√
−g, where with C indicates a parameter that diverges logarithmically. Eq. (12)

cannot be generated by a finite action because the gravitational field would be completely renormal-
izable, that is, it would eliminate a finite number of divergences to make gravitation similar to QED.
On the contrary, one can only construct a truncated quantum theory of gravity. The parameter used
for the expansion in loop is the Planck constant !. It follows that the truncated theory at the one-loop
level contains all terms of order !, that is the first quantum correction. Some points have to be stressed
now: 1) Matter fields are free and, if the Equivalence Principle is valid at quantum level, all forms of
matter couple in the same way to gravity. 2) The intrinsic non-linearity of gravity naturally arises,
and then a number of loops are nrcessary to take into account self-interactions interactions between
matter and gravitation. In view ofremoving divergences at one-loop order, one has to renormalize the
gravitational coupling Geff and the cosmological constant Λeff . One-loop contributions of < Tµν > are
the quantities introduced above, that is (1)Hµν and (3)Hµν . Furthermore, one has to consider

(2)Hµν = 2Rσ
µ;νσ −□Rµν −

1

2
gµν□R +Rσ

µRσν −
1

2
RστRστgµν . (17)
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In a conformally flat spacetime, one has (2)Hµν = 1
3

(1)
Hµν [16], so that only the first and third terms

of Hµν are present in (13). The tensor (3)Hµν is conserved only in conformally flat spacetimes and it
cannot be obtained by varying a local action. The trace of the energy-momentum tensor is null for
conformally invariant classical fields while, one finds that the expectation value of the tensor (13) has
non-vanishing trace. This result gives rise to the so-called trace anomaly [16].

By summing all the geometric terms in < T ρ
ρ >ren, deduced by the Riemann tensor and of the same

order, one derives the right hand side of (13). In the case in which the background metric is conformally
flat, it can be expressed in terms of Eqs. (14) and (15). We conclude that the trace anomaly, related
to the geometric terms emerges because the one-loop approach formulates quantum field theories on
curved spacetime.6

Masses of the matter fields and their mutual interactions can be neglected in the high curvature limit
because R ≫ m2. On the other hand, matter-graviton interactions generate non-minimal couplings in
the effective Lagrangian. The one-loop contributions of such terms are comparable to those given by
the trace anomaly and generate, by conformal transformations, the same effects on gravity.

The simplest effective Lagrangian taking into account these corrections is

LNMC = −1

2
∇αϕ∇αϕ− V (ϕ)− ξ

2
Rφ2 , (18)

where ξ is a dimensionless constant. The stress-energy tensor of the scalar field results modified ac-
cordingly but a conformal transformation can be found such that the modifications related to curvature
terms can be cast in the form of a matter-curvature interaction. The same argument holds for the trace
anomaly. Some Grand Unification Theories lead to polynomial couplings of the form 1+ ξφ2+ ζφ4 that
generalize the one in (18). An exponential coupling e−αϕR between a scalar field (dilaton) ϕ and the
Ricci scalar appears in the effective Lagrangian of strings.

Field equations derived by varying the action LNMC are

'
1− κξφ2

(
Gµν = κ

)
∇µφ∇νφ− 1

2
gµν ∇αφ∇αφ− V gµν

+ξ
*
gµν□

'
φ2
(
−∇µ∇ν

'
φ2
(+,

, (19)

□φ −dV

dφ
− ξRφ = 0 . (20)

The non-minimal coupling of the scalar field is similar to that derived for the 4-vector potential of
curved space in Maxwell theory. See below Eq. (36).

Several motivations can be provided for the non-minimal coupling in the Lagrangian LNMC . A
nonzero ξ is generated by first loop corrections even if it does not appear in the classical action [16,80–83].
Renormalization of a classical theory with ξ = 0 shifts this coupling constant to a value which is small
[84,85]. It can, however, affect drastically an inflationary cosmological scenario and determine its success
or failure [86–89]. A non-minimal coupling is expected at high curvatures [82, 83]. Furthermore, non-
minimal coupling solves potential problems of primordial nucleosynthesis [90] and, besides, the absence
of pathologies in the propagation of ϕ-waves requires conformal coupling for all non-gravitational fields
[91–95] 7.

6Eqs. (14) and (15) can include terms containing derivatives of the metric of order higher than fourth (fourth order
being the R2 term) if all possible Feynman diagrams are included. For example, corrections such as R□R or R2□R can
be present in (3)Hµν implying equations of motion that contain sixth order derivatives of the metric. Also these terms
can be treated by making use of conformal transformations [25].

7Note, however, that the distinction between gravitational and non-gravitational fields becomes representation-
dependent in ETGs, together with the various formulations of the EP [96].
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The conformal value ξ = 1/6 is fixed at infrared scales of renormalization group [97–102]. Non-
minimally coupled scalar fields have been used in inflationary scenarios [103–112]. The approach
adopted was considering ξ as a free parameter to fix problems of specific inflationary scenarios [89,113].
Cosmological reheating with strong coupling ξ >> 1 has also been studied [107, 114, 115] and con-
sidered in relation with wormholes [116–118], black holes [119, 120], and boson stars [121–123]. The
coupling ξ is not, in general, a free parameter but depends on the particular scalar field ϕ consid-
ered [82, 83, 88, 89, 113,124–126].

2.7 Higher-order gravitational theories

Let us take into account higher order theories and their relations to scalar-tensor gravity [127]. The
first straightforward generalizaion of GR is

L =
√
−g f(R) , (21)

The variation with respect to gµν yields the field equations

f ′(R)Rµν −
1

2
f(R)gµν −∇µ∇νf

′(R) + gµν□f ′(R) = 0 , (22)

with f ′ ≡ df(R)/dR. Equation (22) is a fourth-order field equations (in metric formalism). It is
convenient to introduce the new set of variables

p = f ′(R) = f ′ (gµν , ∂σgµν , ∂σ∂ρgµν) , (23)

g̃µν = p gµν . (24)

This choice links the Jordan frame variable gµν to the Einstein frame variables (p, g̃µν), where p is some
auxiliary scalar field. The term “Einstein frame” comes from the fact that the transformation g → (p, g̃)
allows to recast Eqs. (22) in a form similar to the Einstein field equations of GR. In absence of matter,

hence T
(m)
µν = 0, the Einstein equations in are

G̃µν =
1

p2

-
3

2
p,µp,ν −

3

4
g̃µν g̃

αβp,αp,β +
1

2
g̃µν (f(R)−Rp)

.
. (25)

These equation can be rewritten in a more attractive way by defining ϕ =
/

3
2
ln p, which implies

G̃µν =

-
ϕ,µϕ,ν −

1

2
g̃µνϕ,σϕ

,σ − g̃µνV (ϕ)

.
, (26)

where

V (ϕ) =
Rf ′(R)− f(R)

2f ′2(R)
|R=R(p(ϕ)) . (27)

The curvature R = R(p(ϕ)) is inferred by inverting the relation p = f ′(R) (provided f ′′(R) ∕= 0). The
field equation (26) can be obtained from the Lagrangian (21) rewritten in terms of ϕ and the tilded
quantities

L =
0

−g̃

#
1

2
R̃− 1

2
g̃µνϕµϕν − V (ϕ)

$
. (28)

which has the same form of Einstein gravity minimally coupled to a scalar field in presence of a self-
interaction potential. Equation Eq. (28) clearly suggests that why the set of variables (g̃µν , p) is called
Einstein frame [52,53, 128].
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A comment is in order. As we have seen, in the vacuumm, one can pass from the Einstein frame to
the Jordan frame. However, in the presence of matter fields, a caution is required since particles and
photons have to be dealt in different ways. In the case of photons, their worldlines are geodesics both
in the Jordan frame and in the Einstein frame. This is not the case for massive particles since their
geodesic in the Jordan frame are no longer transformed into geodesic in the Einstein frame, and vice-
versa, and therefore, the two frames are not equivalent. The consequence is that the physical meaning
of conformal transformations is not straightforward, although the mathematical transformations are, in
principle, always possible. These considerations extend to any higher-order or non-minimally coupled
theory.

2.8 Some aspects of the Equivalence Principle

As we have mentioned, in the previous Sections, the formulation of the EP is the equivalence between
inertial and gravitational mass mI = mG (Galieleo’s experiment), which implies that all bodies fall with
the same acceleration, independently of their mass and internal structure, in a given gravitational field
(universality of free fall or WEP). A more precise statement of WEP is [1]

“If an uncharged body is placed at an initial event in spacetime and given an initial velocity there,
then its subsequent trajectory will be independent of its internal structure and composition”

This formulation of WEP was enlarged by Einstein adding a new fundamental part: according to
which in a local inertial frame (the freely-falling elevator) not only the laws of mechanics behave in it
as if gravity were absent, but all physical laws (except those of gravitational physics) have the same
behaviour. The current terminology refers to this principle as the Einstein Equivalence Principle (EEP).
A more precise statement is [1]

“The outcome of any local non-gravitational test experiment is independent of the velocity of the
(free falling) apparatus and the outcome of any local non-gravitational test experiment8 is independent
of where and when in the universe it is performed ”.

From the EEP it follows that the gravitational interaction must be described in terms of a curved
spacetime, that is the postulates of the so-called metric theories of gravity have to be satisfied [1]:

1. spacetime is endowed with a metric gµν ;

2. the world lines of test bodies are geodesics of that metric;

3. in local freely falling frames (called local Lorentz frames), the non-gravitational laws of physics
are those of Special Relativity.

These definitions characterize the most fundamental feature of GR, hence the Equivalence Principle,
as well as the physical properties that allow to discriminate between GR and other metric theories of
gravity, In the ETGs some additional features arise because these defintions depend on the conformal
representation of the theory adopted. More precisely, in scalar-tensor gravity, massive test particles in
the Jordan frame follow geodesics, satisfying the WEP, but the same particles deviate from geodesic
motion in the Einstein frame (a property referred to as non-metricity of the theory). This difference
shows that the EP is formulated in a representation-dependent way [96]. This serious shortcoming has
not yet been addressed properly; for the moment we proceed ignoring this problem.

In what follows we shall discuss some specific features related to the Equivalence Principle:

8A “local non-gravitational experiment” is defined as an experiment performed in a small size freely falling laboratory,
in order to avoid the inhomogeneities of the external gravitational field, and in which any gravitational self-interaction
can be ignored. For example, the measurement of the fine structure constant is a local non-gravitational experiment,
while the Cavendish experiment is not.
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• Let us assume that WEP is violated. Let us assume, for example, that the inertial masses (mIi)
in a system differ from the passive ones,

mPi = mIi

#
1 + ΣAη

A EA

mIic2

$
, (29)

where EA is the internal energy of the body connected to the A-interaction and ηA is a dimen-
sionless parameter quantifying the violation of the WEP. It is then convenient to introduce a
new dimensionless parameter (the Eötvös ratio) considering, for example, two bodies moving with
accelerations

ai =

#
1 + ΣAη

A EA

mIic2

$
g (i = 1, 2) ; (30)

where g is now the acceleration of gravity. Then we define the Eötvos ratio as

η = 2
|a1 − a2|
|a1 + a2|

= ΣAη
A

#
EA

1

mI1c2
− EA

2

mI2c2

$
. (31)

The measured value of η provides information on the WEP-violation parameters ηA. Experimen-
tally, the equivalence between inertial and gravitational masses is strongly confirmed [1].

• The minimal coupling prescriptions. In electrodynamics the interaction is introduced replacing
the partial derivative with the covariant derivative ∂µ → Dµ ≡ ∂µ + ieAµ [129] (see also [59]). A
similar scheme is used to introduce the gravitational interaction

ηµν → gµν , ∂µ → ∇µ ,
√
−η d4x →

√
−g d4x , (32)

Here ηµν is the flat Minkowski metric and gµν is the Riemannian one, while η and g are their
determinants [130–132].

Consider the Maxwell equations in a curved spacetime

F αβ
;β = 4πJα , Fαβ;γ + Fβγ;α + Fγα;β = 0 , (33)

and the four-vector potential Aµ related to the Maxwell field by Fαβ = ∇αAβ − ∇βAα. In this
framework, however, a problem arises. Using the above-mentioned rule one obtains two possible
equations from the first of eqs. (33):

Aβ;α
;β − Aα;β

;β = 4πJα , (34)

or
Aβ;α

;β − Aα;β
;β +Rα

βA
β = 4πJα ; (35)

while the second of eqs. (33) yields, using the Lorentz gauge ∇µA
µ = 0,

(△dRA)
α = 4πJα , (36)

where
(△dRA)

α = −□Aα +Rα
βA

β (37)

and △dR is the de Rham vector wave operator. Now the question is: both Maxwell equations for
the four-potential Aµ are obtained using the “comma goes to semicolon” rule, but which is the
correct one? The answer is: the one obtained using the de Rham operator. As consequence, we
see that “correspondence rules” are not sufficient to write down equations in curved space from
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known physics in flat space when second derivatives are involved (that is, in most situations of
physical interest). In such cases, extra caution is needed9

The minimal coupling prescription here discussed is connected with the mathematical formulation
of the EEP (actually, to implement the EEP one needs to put in special-relativistic form the laws
under consideration and then proceed to find the general-relativistic formulation, switching on
gravity. In other words, we have to apply minimal coupling prescriptions with the caveat already
discussed).

• The last point is strictly related with the scalar-tensor theories of gravity, do these theories satisfy
the EEP?

To address this question one has to generalize the above two principles and introduce new concepts.
Following Will [1], one introduces the notion of “purely dynamical metric theory”, i.e. a theory
in which the behaviour of each field is influenced to some extent by a coupling to at least one of
the other fields in the theory [1]. In this respect, GR is a purely dynamical theory, as well as the
Brans-Dicke theory since the equations for the metric involve the scalar field, and vice-versa.

In these theories, the calculations of the metric is done in two stages: 1) the assignment of
boundary conditions “far” from the local system; 2) infer the solutions of equations for the fields
generated by the local system. Owing to the coupling of the metric with fields (for given boundary
conditions), the latter will influence the metric. This implies that local gravitational experiments
can depend on where the lab is located in the universe, as well as on its velocity relative to the
external world. One of the consequence of such a new physical scenario is that in a Brans-Dicke
theory, and more generally in Scalar Tensor Theories, the gravitational coupling “constant” turns
out to depend on the asymptotic value of the scalar field.

All these considerations are strictly related to the Strong Equivalence Principle (SEP) [1]:

(i) “WEP is valid for self-gravitating bodies as well for test bodies;
(ii) the outcome of any local test experiment is independent of the velocity of the (freely falling)
apparatus;
(iii) the outcome of any local test experiment is independent on where and when in the universe
it is performed” [1].

The SEP differs from the EEP because it includes the self-gravitating interactions of bodies (such
as planets or stars), and because of experiments involving gravitational forces (e.g., the Cavendish
experiment). SEP reduces to the EEP when gravitational forces are ignored. In connection
with the SEP, many authors have conjectured that the only theory compatible with the Strong
Equivalence Principle is GR (that is SEP −→ GR− only).

2.9 The Shiff conjecture

The Schiff conjecture represents one of the most important topic related to the foundations of the
gravitational physics. Its original formulation asserts that every theory of gravity that satisfies the
WEP and is relativistic necessarily satisfies the EEP, and is consequently a metric theory of gravity.
Hence WEP ⇒ EEP . Later, Will proposed a slight modification of Schiff conjecture: every theory of

9As stressed, for example, in [15], such a prescription does not work for interactions which do not have a “Minkowskian”
counterpart. These interactions are expressed in terms of the Riemann tensor or some function of it and occur, for example,
in the study of the free fall of a particle with spin: the corresponding equations of motion (Papapetrou equations) involve
a contribution in which the spin tensor couples to the Riemann tensor [15]. Such a contribution can not be obtained from
the prescriptions given above. This motion is described by the corrected geodesic equation [7].
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gravity that satisfies WEP and the principle of universality of gravitational red shift (UGH) necessarily
satisfies EEP. Hence in such a case WEP + UGR → EEP .

Let us discuss in some details these topics. Notice that the correctness Schiff’s conjecture implies that
the Eötvös and the gravitational red-shift experiments would provide a direct empirical confirmation
of the EEP, with the consequence that gravity can be interpreted as a geometrical (curved space-
time)phenomenon. The relevance of such a fundamental aspect of the gravitational physics led to
different mathematical approaches to prove the Schiff conjecture. These frameworks encompass all
metric theories, as well as non metric theories of gravity. Lightman and Lee [133, 134] proved Schiff’s
conjecture in the framework of the so called THεµ formalism. They consider the motion of a charged
particles (electromagnetic coupling) in a static spherically symmetric gravitational field U = GM/r

STHεµ = −
&

a

ma

1
dt
0

T −Hv2a +
&

a

ea

1
dtvµaAµ(x

µ
a) +

1

2

1
d4x

#
εE2 +

B2

µ

$
,

wherema, ea, v
µ
a ≡ dxµ

a

dt
represent the mass, the charge and the velocity of the particle a. The parameters

THεµ do depend on the gravitational field U , that is they essentially account for the response of the
electromagnetic fields to the external potential, and may vary from theory to theory. A metric theory

must satisfy the relation ε = µ =

2
H

T
for all U . In the case of non-metric theories, the parameters

THεµ may depend on the species of particles or on the field coupling to gravity. The metric is given
by ds2 = T (r)dt2 −H(r)(dr2 + r2dΩ). Lightmann and Lee showed in [133] that the rate of fall of a test
body made up of interacting charged particles does not depend on the structure of the body (WEP)

if and only if ε = µ =

2
H

T
. This implies WEP ⇒ EEP , satisfying hence the Schiff conjecture. Will

generalized the Dirac equation in THεµ formalism, and computed the gravitational red-shift experienced
by different atomic clocks showing that the red-shift is independent on the nature of clacks (Universality

of Gravitational Red-shift (UGR)) if and only if ε = µ =

2
H

T
[135]. Therefore UGR ⇒ EEP , verifying

in such a way another aspect of the Schiff conjecture (see also [136]).

W.-T. Ni was able to provide a counterexample to Schiff’s conjecture by considering the coupling
between a pseudoscalar field φ with the electromagnetism field LφF ∼ φεαβγδFαβFγδ, where ε

αβγδ is the
completely anti-symmetric Levi-Civita symbol [137]. In [138–140] the Schiff conjecture is analyzed in
the framework of gravitational non-minimally coupled theories. More specifically, the total Lagrangian

density considered is given by LNMC =
R

16πG
+ LM + LI(ψ

A, gµν), where LI(ψ
A, gµν) is the Lagrangian

density of some field ψA non-minimally coupled to gravity [139, 140], while LI = χαβγδRαβγδ in [138],
where χαβγδ depends on matter, for example χαβγδ = ψ̄σαβψψ̄σγδψ,ψαµψβν − ψβµψαν , where ψ is a
spin-half field and ψαβ is a (nongravitational) spin-2 field. Both results show that these gravitational
theories are in general, incompatible with Schiff’s conjecture.

These counterexample indicate that a rigorous proof of such a conjecture is impossible. However,
some powerful arguments of plausibility can be formulated. One of them is based upon the assumption
of energy conservation [141]. Following [142], consider a system in a quantum state |A〉 that decays in
a state |B〉, with the emission of a photon with frequency ν. The quantum system falls a height H in
an external gravitational field gH = ∆U , so that the system in state B falls with acceleration gB and
the photon frequency is shifted to ν ′. Assuming a violation of the WEP, the acceleration gA and gB of
the system A and B are

gA = g

#
1 +

αEA

mA

$
, gA = g

#
1 +

αEA

mA

$
, EB − EA = hν
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that is they depend on that portion of the internal energy of the states. Here ν is frequency of the
quantum emitted by the system |A〉. The conservation of energy implies that there must be a cor-

responding violation of local position invariance in the frequency shift given by
ν ′ − ν

ν
= (1 + α)∆U ,

where ν ′ is the frequency of the quantum at the bottom of the trajectory. The Eötvös parameter is (for
mA ∼ mB ∼ m)

η =
|gB − gA|
|gB + gA|

≃ α(EA − EB)

m
.

The Schiff conjecture is still nowadays an argument of a strong scientific debate and deep scrutiny.

2.10 Mach’s principle and the variation of G

Following Bondi [12] there are, at least in principle, two entirely different ways of measuring the rota-
tional velocity of Earth. The first is a purely terrestrial experiment (e.g., a Foucault pendulum), while
the second is an astronomical observation consisting of measuring the terrestrial rotation with respect to
the fixed stars. In the first type of experiment the motion of the Earth is referred to an idealized inertial
frame in which Newton’s laws are verified. However, a unique general relativistic approach to define
rotations has been introduced by Pirani considering the boucing photons [143, 144] (see also [145]). In
the second kind of experiment the frame of reference is connected to a matter distribution surrounding
the Earth and the motion of the latter is referred to this matter distribution. In this way we face
the problem of Mach’s principle, which essentially states that the local inertial frame is determined by
some average motion of distant astronomical objects [12, 15].10 Trying to incorporate Mach’s principle
into metric gravity, Brans and Dicke constructed a theory alternative to GR [13]. Taking into account
the influence that the total matter has at each point (constructing the “inertia”), these two authors
introduced, together with the standard metric tensor, a new scalar field of gravitational origin as the
effective gravitational coupling. This is why the theory is referred to as a “scalar-tensor” theory; actu-
ally, theories in this spirit had already been proposed years earlier by Jordan, Fierz, and Thiery (see the
book [147]). An important ingredient of this approach is that the gravitational “constant” is actually
a function of the total mass distribution, that is of the scalar field, and is actually variable. In this
picture, gravity is described by the Lagrangian density

LBD =
√
−g

-
ϕR− ω

ϕ
∇µϕ∇µϕ+ L(m)

.
, (38)

where ω is the dimensionless Brans-Dicke parameter and L(m) is the matter Lagrangian including all
the non-gravitational fields. As stressed by Dicke [51], the Lagrangian (38) has a property similar
to one already discussed in the context of higher order gravity. Under the conformal transformation
gµν → g̃µν = Ω2gµν with Ω =

√
G0ϕ, the Lagrangian (38) is mapped into

L =
0

−g̃
3
R̃ +G0L̃(m) +G0L̃(Ω)

4
, (39)

where

L̃(Ω) = −(2ω + 3)

4πG0Ω
(∇α

√
Ω)(∇α

√
Ω) , (40)

and L̃(m) is the conformally transformed Lagrangian density of matter. In this way the total matter
Lagrangian L̃tot = L̃(m) + L̃(Ω) has been introduced. The field equations are now written in te form of

10An interesting discussion on this topic, also connected with different theories of space, both in philosophy and in
physics, is found in Dicke’s contribution “The Many Faces of Mach” in Gravitation and Relativity [146]. This discussion
presents also the problematic position that Einstein had on Mach’s principle.
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Einstein-like equations as

R̃µν −
1

2
g̃µν R̃ = G0τ̃µν , (41)

where the stress-energy tensor is now the sum of two contributions,

τ̃µν = T (m)
µν + Λµν(Ω) . (42)

Dicke noted that this new (tilded, or Einstein frame) form of the scalar-tensor theory has certain
advantages over the theory expressed in the previous (non-tilded, or Jordan frame) form; the Einstein
frame representation, being similar to the Einstein standard description is familiar and easier to handle
in some respects. But, in this new form, Brans-Dicke theory also exhibits unpleasant features. If we
consider the motion of a spinless, electrically neutral, massive particle, we find that in the conformally
rescaled world its trajectory is no longer a geodesic. Only null rays are left unchanged by the conformal
rescaling. This is a manifestation of the fact that the rest mass is not constant in the conformally
transformed world and the equation of motion of massive particles is modified by the addition of an
extra force proportional to ∇µΩ [51]. Photon trajectories, on the other hand, are not modified because
the vanishing of the photon mass implies the absence of a preferred physical scale and photons stay
massless under the conformal rescaling, therefore their trajectories are unaffected.

This new approach to gravitation has increased the relevance of theories with varying gravitational
coupling. They are of particular interest in cosmology since, as we discuss in detail in the following
chapters, they have the potential to circumvent many shortcomings of the standard cosmological model.
We list here the Lagrangians of this type which are most relevant for this review.

• The low-energy limit of the bosonic string theory [148–150] produces the Lagrangian

L =
√
−g e−2φ (R + 4gµνφµφν − Λ) . (43)

• The general scalar-tensor Lagrangian is

LST =
√
−g

-
f(ϕ)R− ω(ϕ)

2
gαβ∇αφ∇βφ− V (ϕ)

.
, (44)

where f(ϕ) and ω(ϕ) are arbitrary coupling functions and V (ϕ) is a scalar field potential. The
original Brans-Dicke Lagrangian is contained as the special case f(ϕ) = ϕ,ω(ϕ) = ω0/ϕ (with ω0

a constant), and V (ϕ) ≡ 0.

• A special case of the previous general theory is that of a scalar field non-minimally coupled to
the Ricci curvature, which has received so much attention in the literature to deserve a separate
mention,

LNMC =
√
−g

-#
1

16πG
− ξ

2

$
R− 1

2
gµν∇µφ∇νφ− V (ϕ)

.
, (45)

where ξ is a dimensionless non-minimal coupling constant. This explicit non-minimal coupling
was originally introduced in the context of classical radiation problems [151] and, later, confor-
mal coupling with ξ = 1/6 was discovered to be necessary for the renormalizability of the λϕ4

theory on a curved spacetime [16,152]. The corresponding stress-energy tensor (“improved energy-
momentum tensor”) and the relevant equations will be discussed later. In particular, the theory
is conformally invariant when ξ = 1/6 and either V ≡ 0 or V = λϕ4 [16, 131,152,153].

All these theories exhibit a non-constant gravitational coupling. The Newton constantGN is replaced
by the effective gravitational coupling

Geff =
1

f(ϕ)
, (46)
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in eq. (44) which, in general, is different from GN (we use φ as the generic function describing the
effective gravitational coupling). In string theory or with non-minimally coupled scalars, such functions
are specified in (43) and (45). In particular, in spatially homogeneous and isotropic cosmology, the
coupling Geff can only be a function of the epoch, i.e., of the cosmological time.

We stress that all these scalar-tensor theories of gravity do not satisfy the SEP because of the
above mentioned feature: the variation of Geff implies that local gravitational physics depends on the
scalar field via φ. We have then motivated the introduction of a stronger version of the Equivalence
Principle, the SEP. General theories with such a peculiar aspect are called non-minimally coupled
theories. This generalizes older terminology in which the expression “non-minimally coupled scalar”
referred specifically to the field described by the Lagrangian LNMC of (45), which is a special case of
(44).

Let us consider, as in (44), a general scalar-tensor theory in presence of “standard” matter with total
Lagrangian density φR+L(φ) +L(m), where L(m) describes ordinary matter. The dynamical equations
for this matter are contained in the covariant conservation equation ∇νT

(m)
µν = 0 for the matter stress-

energy tensor T
(m)
µν , which is derived from the variation of the total Lagrangian with respect to gµν . In

other words: concerning standard matter, everything goes as in GR (i.e., ηµν → gµν , ∂µ → ∇µ) following
the minimal coupling prescription. What is new in these theories is the way in which the scalar and the
metric degrees of freedom appear: now there is a direct coupling between the scalar degree of freedom
and a function of the tensor degree of freedom (the metric) and its derivatives (specifically, with the
Ricci scalar of the metric R (g, ∂g, ∂2g)). Then, confining our analysis to the cosmological arena, we
face two alternatives. The first is

lim
t→∞

Geff (φ(t)) = GN ; (47)

this is the case in which standard GR cosmology is recovered at the present time in the history of the
universe. The second possibility occurs if the gravitational coupling is not constant today, i.e., Geff is
still varying with the epoch and Ġeff/Geff |now (in brief Ġ/G) is non-vanishing.

In many theories of gravity, then, it is perfectly conceivable that Geff varies with time: in some
solutions Geff does not even converge to the value observed today. What do we know, from the obser-
vational point of view, about this variability? There are three main avenues to analyze the variability
of Geff : the first is lunar laser ranging (LLR) monitoring the Earth-Moon distance; the second is
information from solar astronomy; the third consists of data from binary pulsars. The LLR consists
of measuring the round trip travel time and thus the distances between transmitter and reflector, and
monitoring them over an extended period of time. The change of round trip time contains information
about the Earth-Moon system. This round trip travel time has been measured for more than twenty-
five years in connection with the Apollo 11, 14, 15, and the Lunakhod 2 lunar missions. Combining
these data with those coming from the evolution of the Sun (the luminosity of main sequence stars is
quite sensitive to the value of G) and the Earth-Mars radar ranging, the current bounds on Ġ/G allow
at most 0.4 × 10−11 to 1.0 × 10−11 per year [154]. The third source of information on G-variability is
given by binary pulsars systems. In order to extract data from this type of system (the prototype is
the famous binary pulsar PSR 1913+16 of Hulse and Taylor [155]), it has been necessary to extend the
post-Newtonian approximation, which can be applied only to a weakly (gravitationally) interacting n-
body system, to strongly (gravitationally) interacting systems. The order of magnitude of Ġ/G allowed
by these strongly interacting systems is 2× 10−11 yr−1 [154].

A general remark is necessary at this point. According to the Mach Principle, gravity can be
considered as an average interaction given by the distribution of celestial bodies. This means that the
same gravitational coupling can be related to the spacetime scale, then supposing a variation of GN is
an issue to make more Machian the theory. From an experimental point of view, this fact reflects on
the uncertainties of the measurements of GN and it could constitute a test for any alternative theory
of gravity with respect to GR.
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Finally it is worth noticing that there exist also Higgs-scalar-tensor theories (see for example, [156–
158]) where inertia and gravity are strongly related. Such theories have been introduced to solve
the issues raised in the Brans-Dicke theory where the observational results, coming from the Mercury
perihelion shift, are not matched. In view of this shortcoming, Dicke postulated the existence of a
mass-quadrupole momentum giving rise to an oblateness correction of the Sun shape. Since this feature
was not detected, Higgs-scalar-tensor theories were deemed necessary.

2.11 Violation of the weak equivalence principle and quintesssence

In the previous Sections, we have pointed out that over the last years several, observations led to
the conclusions that the observed Universe is dominated by some form of (homogeneously distributed)
DE. In modified gravity the DE can be described by introducing one or more than one scalar fields
coupled (minimally or non-minimally) to gravity. A candidate for DE is quintessence (the energy density
associated a scalar field that evolves slowly in time) [159–163]. In this scenario, fundamental coupling
constants do depend on time even in late cosmology [159, 164–167]. This because, as we have seen,
it is usual that in modified models of gravity the fundamental coupling constants may depend on the
scalar field, that vary during the Universe evolution. Clearly, an observation of a possible time-variation
of fundamental constants could be a signal in favour of quintessence, and more generally, of modified
theories of gravity, since no such time dependence would be connected to DE in the case in which the
latter is described by a cosmological constant. 11

It is expected that, in a quintessence scenario, the gauge couplings may vary owing to the coupling
between the field φ(x) and the kinetic term for the gauge fields in a GUT [20]. For example, for the
electromagnetic field one has LF = 1

4
ZF (φ(x))F

2, where F 2 = FµνF
µν . Such a coupling preserves all

symmetries and makes the renormalized gauge coupling g ∼ Z
−1/2
F dependent on time through the

evolution of the field φ(x) [174]. As argued in [174], the coupling of the field φ(x) with matter induces a
new gravity-like force that does depend on the composition of the test bodies. In this respect a violation
of the equivalence principle arises [175].

Along these lines, very recently it have been proposed new and general models in which a light
scalar field (playing the role of scalar Dark Matter) is introduced in the gravity action (similar to Eq.
(72)). In the most and simplest general case, in fact, the light scalar field couples non-universally to
the standard matter fields, leading as a consequence to a violation of the Einstein equivalence principle
(EEP). As discussed in the previous Sections, the scalar fields are predicted in high dimensional theories,
in particular in string theory with the dilaton and the moduli fields [148,176,177]. It is worth to mention
that these models based on light scalar field provide galactic and cosmological predictions for low masses,
ranging from 10−24eV to 10−22eV (see for example, Refs. [178–181]. Here we recall the total action in
which a microscopic modeling for the coupling between the scalar field and standard matter has been
conveniently introduced [182,183]

S =

1
d4x[LNMC + LSM + Lint] , (48)

where LNMC is the Lagrangian density (72), LSM the Lagrangian density of the Standard Model, and
finally Lint is the Lagrangian density of the interaction, which can be of two form [182–184]

Lint = φa

5
d
(a)
e

4µ0

F 2 − d
(a)
g β3

2g3
(FA)2 −

&

i=e,u,d

'
d(a)mi

+ γmi
d(a)g

(
miψ̄iψi

6
(49)

11A low value of the electromagnetic fine structure constant αem was reported [168] for absorption lines in the light from
distant quasars. The data are consistent with a variation ∆αem/αem ≃ −0.7 × 10−5 for a cosmological red-shift z ≈ 2.
Such a result has renewed the interest on the variation of fundamental couplings (see for example [166,167,169–173]).
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Here a = 1 and a = 2 correspond to the linear and quadratic [184–186] coupling between scalar and
matter field, respectively, while Fµν and FA

µν are the electromagnetic and the gluon strength tensors, µ0

the magnetic permeability, g3 the QCD gauge coupling, β3 the β function for the running of g3, mi the
mass of the fermions (electron and light quarks u, d), γmi

the anomalous dimension giving the energy
running of the masses of the QCD coupled fermions, and finally da are the constants characterizing the
interaction between the light scalar field and the different matter sectors. The main consequence of the
model based on (48) is that the constants of nature turn out to be linearly or quadratically depending
on the scalar field [182,183]. For the electromagnetic fine structure constant αEM , the masses mi of the
fermions, and the QCD energy scale Λ3, one obtains

αEM(φ) = αEM

5
1 +

d
(a)
e φa

a

6

mi(φ) = mi

5
1 +

d
(a)
mi φ

a

a

6
i = e, u, d

Λ3(φ) = Λ3

5
1 +

d
(a)
g φa

a

6

with a = 1, 2 for the linear and the quadratic coupling. The dependence of the particle masses on the
scalar field suggests to study tests of the universality of free fall. Following [187], one gets that the
differential acceleration between two bodies A and B located at the same position in a gravitational
field generated by a body C, is

∆a ≡ aA − aB = −[αA(φ)− αB(φ)][∇φ+ vφ̇] , (50)

where αA,B =
∂ lnmA,B(φ)

∂φ
and v the particle velocity. Using the expressions for the scalar field derived

in the case of a spherically symmetric extended body with radius R and constant matter density with
mass M , one infers the explicit expression for the Eötvös parameter η (Eq. (64)) [187]

η = 2
|aA − aB|
|aA + aB|

=

7
889

88:

∆ã(1)s
(1)
C e−r/λφ

3
1 + r

λφ

4
(linear coupling)

∆α̃(2)s
(2)
C

φ0

2

3
1− s

(2)
C

GMC

r

4
(quadratic coupling)

(51)

Here∆α̃(a) = α̃
(a)
A −α̃

(a)
A , with a = 1, 2 and α̃(a) is a combination of the coefficients d

(a)
e,m,g and the dilatonic

charges associated to the bodies A and B, s
(1)
C = 3α̃

(1)
C

x cosh x− sinh x

x3
, with x =

R

λφ

(λφ = m−1
φ is

the Compton wavelength of the scalar field), and s
(2)
C = α̃

(2)
C J±(y), with y =

/
3|α̃(2)

C |GMA/RA and

J± = ±3
y − tanh y

y3
, and finally φ0 is the amplitude of the scalar field.

An interesting aspect of these results is that in the neighborhood region of a central body and in the

limit of strong coupling, for the quadratic coupling Eq. (51) assumes the form η ≃ ∆α̃(2)s
(2)
C φ2

0

h

RC + h
,

where h is the altitude with respect to the radius RC . On the other hand, for small coupling and far
from the gravitational source, one gets η ≃ s

(2)
C ∆α̃(2)φ2

0, that is the Eötvös parameter is independent
on the location of the two masses. As argued in [187], this particular forms of the Eötvös parameter
could be potentially tested in dedicated experiments.
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Finally we comment the possibility to violate the Einstein equivalence principle by measuring the
frequency ratio between two clocks located at the same position and working on different atomic tran-
sition. Defining Y = XA/XB, where XA,B are the specific transitions for each clocks, one finds [187]

Y (t,x)

Y0

=

7
8889

888:

K +∆κ(1)
;
φ0 cos(ωt− k · x+ δ)− s

(1)
A

GMA

r
e−r/λφ

<
(linear coupling)

K+∆κ(2) φ
2
0

2

-3
1− s

(2)
A

GMA

r

42

+ cos(2ωt+ 2δ)
3
1− s

(2)
A

GMC

r

42
.

(quadratic coupling)

(52)

where K is an unobservable constant and k(a), a = 1, 2 depend on the constants d
(a)
e,m,g.

2.12 Equivalence principle in screening mechanisms

As extensively discussed in the previous Sections, the introduction of the extended theories of gravity
have been motivated by the necessity to explain the observed cosmic acceleration, hence to provide a
”geometric” interpretation of the DE. In these models, gravity is modified on large distances. However,
although modifications to GR must be relevant on large scales, they are strongly constrained in Solar
System (in what follows we shall refer to [188]). In fact, any deviation is subdominant in Solar System
tests by a factor ≲ 10−5, and the latter is further reduced in some specific theories (in [189, 190] is
discussed the case of theory that predicts strong violations of the weak equivalence principle for which
deviations are constrained by a factor ≲ 10−15). As an example of extended theories of gravity, consider
once again the Brans-Dicke gravity (the scalar field φ couples to gravity and is parameterized by the
parameter ωBD). In the non-relativistic limit, one finds the equation of motion for φ

∇2φ = − 8πGρ

2 + 3ωBD

(53)

from which one derives the PPN parameter |γ − 1| = (2 + ωBG)
−1. The Cassini bound |γ − 1| <

2.11 × 10−5 [191] implies ωBD > 4 × 104. From (53) it follows that the effective coupling to matter
is αeff ∼ 1/ωBD ≲ 10−4. As a consequence, any Brans-Dicke like modifications of GR must be
subdominant on all scales by a factor ∼ 104, hence such theories are cosmologically irrelevant. A
similar conclusions follows if one assumes that the scalar field is massive, so that the field equation
(53) gets modified a (∇2 + m2)φ = −8πGαρ, yielding, for a a static, spherically symmetric body, a

Yukawa-like potential V (r) =
GM

r

'
1 + 2α2e−mr

(
(experiments constrained Yukawa-like potentials on

distances ranging from the Earth-Moon scale [191,192] to micron scales [193,194], so that m > (µm)−1

is required to evade Solar system tests).

These two examples show that solar system tests constraint these models with the consequence
that they do not have any cosmological relevance because the force must either be too weak, or too
short ranged. Such difficulties are avoided by screening mechanisms by nonlinear modifications of
the Poisson equation. The modifications are such that deviations from GR in the Solar system are
dynamically suppressed, without requiring a fine-tuning of the mass or the coupling to matter. Screening
mechanisms studied in literature are:

• Chameleon screening [195,196] (the mass of the field changes dynamically mediating short ranged
forces in the Solar System but may have effects on cosmological scales).

• Symmetron screening [195,196] (the coupling to matter varies dynamically so that it is uncoupled
in the Solar System and may induces deviations from GR on cosmological scales).
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• Vainshtein’s mechanism [197] (nonlinear kinetic terms alter the field profile sourced by massive
bodies. In such a case fifth forces are highly suppressed in the Solar System, while on cosmological
scales, theories that exhibit this mechanism can self-accelerate without a cosmological constant,
which makes them interesting alternatives to ΛCDM cosmologies).

An interesting aspect of screening mechanisms, is that they may violate the equivalence principle
[198] (see also [199]). For example, in chameleon theories one can define a scalar charge for an object [198]

Qi = Mi

#
1− Mi(rs)

Mi

$

so that the force on an object due to an externally applied chameleon field is FCh = αQi∇φext (this is
analogous to the gravitational charge M so that Fgrav = M∇φext

N where φext
N is an external Newtonian

potential). Two objects of different masses and internal compositions will have different scalar charges
and will therefore fall at different rates in an externally applied chameleon field, signifying a breakdown
of the weak equivalence principle (WEP). The chameleon force between two bodies, A and B, is [200]

FAB =
GMAMB

r2
'
1 + 2αQAQBe

−meff r
(

and as a result of this the PPN parameter γ is γ =
2

1 + 2αQAQBe−meff r
− 1 (see also [201–203]). Here

A refers to the body responsible for the deflection/time delay of light while the body B is a separate
body used to measure the mass of the body A (for example, for light bending by the Sun one would
take A as the Sun and B as the Earth).

2.13 Long-range forces and spin-gravity coupling terms

In this Section we discuss the possibility that the spin of particles can be present in gravitational
potentials. There are essentially some reasons for searching long-range forces that are depending on
spin of particles: 1) The role of spin in gravitation (see for example [204–206]). 2) The interaction
associated with the exchange of a light or massless pseudoscalar boson or similar interactions [207–212].

In fact, new particles predicted in theories that extend the standard model may induce modifications
to spin-spin interaction between fermions [213]. As an example, we recall the pseudoscalar fields, such
as the axion [212], and the axial-vector fields, such as paraphotons [214] and extra Z bosons [213,215],
the first associated with theories with spontaneously broken symmetries [207–209], the latter in new
gauge theories (these new particles, predicted also in string theories [216], are typically introduced to
explain the DE [217, 218] and the DM [219]). 3) A number of Kaluza-Klein theories [220, 221] and
supersymmetric theories [222], in the low-energy limit, predict couplings in which the spins of particles
are involved.

As an example we report the Yukawa-like potential between fermions in the case in which they
exchange a (new) vector or axial vector12 A [212,213]

VA(r) = ξA s1 · s2
e−r/λ

r
, (54)

12It is worth to recall that gravitational interactions between two objects that do not conserve the discrete symmetries
were proposed in [205]

U(r) =
GM

r

!
α1

s(1) · r̂
r

+ α2
s(1) · v

r
+ α3µr̂ · v

"
,

where α1,2,3 are generic coefficients, M is the total mass, µ the reduced mass, r the relative displacement, v the relative
velocity, and s(1) is the intrinsic spin of one of the objects (see also [223,224]).
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where ξA =
g
(e)
A g

(e)
A

4π
is the dimensionless axial-vector coupling constant between the electrons, s1 and

s2 represent the spins of the electrons, and r is the inter-particle separation, while the dipole-dipole
potential between electrons corresponding to the exchange of a new axion-like pseudoscalar particle P
is [212,213]

VP (r) = ξP
e−r/λ

4m2
e

-
s1 · s2

#
4π

3
δ3(r) +

1

λr2
+

1

r3

$
− (s1 · r̂)(s2 · r̂)

#
1

λ2r
+

3

λr2
3

r3

$.
, (55)

where ξP =
g
(e)
P g

(e)
P

4π
is the dimensionless pseudoscalar coupling constant between the electrons, me the

mass of the electron mass, and r̂ = r/r.
The general analysis of long-range forces between macroscopic objects (polarized spin medium)

mediated by light particles that include spin and velocity terms have been performed in [212, 213].
Experiments aimed to tests such new terms will be discussed in next Sections.

2.14 The equivalence principle in Poincare Gauge Theory and Torsion

As we have seen the equivalence principle sates that the effect of gravity on matter is locally equivalent to
the effect of a non-inertial reference frame in special relativity. The dynamical content of the equivalence
principle can be understood by considering an inertial frame in13 M4, in which matter field φ is described
by the Lagrangian LM(φ; ∂iφ). Passing to a noninertial frame, LM transforms into

√
−gLM(φ;∇iφ),

with ∇i = eµi (∂µ + ωµ) the covariant derivative (this is the minimal substitution discussed in the
previous Section). The gravitational field (equivalent to the non-inertial reference frame) appears in
the quantities

√
−g and ∇i, and can be eliminated on the whole spacetime by reducing to the global

inertial frame, while for real gravitational fields one has that they can be eliminated only locally. For
introducing a real gravitational field, hence, Einstein replaced M4 with a Riemann space V4. However,
also a Riemann-Cartan space U4 could have been chosen [225].

Another formulation of the Equivalence Principle asserts that the effect of gravity on matter can
be locally eliminated by a suitable choice of reference frame, and matter behaves following the laws of
Special Relativity [225], i.e. at any point P in spacetime an orthonormal reference frame ei can be chosen
such that ωij

µ = 0 and eµi = δµi at P. The important consequence of this statement is that it holds not
only in GR (i.e. V4), but also in Poincare Gauge Theory (i.e. U4) [226,227]. The Equivalence Principle
is not violated in manifolds with torsion, fitting in natural way into a U4 geometry of spacetime. It holds
in V4, as well as in T4. Notes however that in more general geometries, characterized by a symmetry of
the tangent space higher than the Poincare group, the usual form of the Equivalence Principle can be
violated, and local physics differs from Special Relativity [225,228].

2.15 The violation of the equivalence principle for charged particles

Let us discuss now the tests of Universality of Free Fall (UFF) for charged particles. The interest for
these studies follows from the fact that, in some frameworks, a violation of the UFF is related with
charge non-conservation [229]. Considering a connection of UFF and Universality of the Gravitational
Red-shift (UGR) [166], the most favourable model for a violation of the UGR is a time dependent fine-
structure constant caused by a time-varying electron charge. Therefore, tests of the UFF for charged
matter can be interpreted as UGR tests, too.

13In this Section, we follow the notation in [225]. A space (L4; g) with the most general metric compatible linear
connection Γ is called Riemann-Cartan space U4. If the torsion vanishes, a U4 becomes a Riemannian space V4 of GR;
if, alternatively, the curvature vanishes, a U4 becomes Weitzenbock’s teleparallel space T4. The condition Rα

βγχ = 0
transforms a V4 into a Minkowski space M4, and Tα

βγ = 0 transforms a T4 into an M4.
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To test the validity of the EP is analogue to test the minimal coupling procedure, hence to search
for an anomalous coupling of the gravitational field (as an extension of the standard minimal coupling
procedure, previously discussed). In the non-relativistic regime, the Hamiltonian of a charged particle
in a gravitational field is given by

H = − !2

2m

#
∇+

iq

!c
A

$2

+mU + κqU + λq2U , (56)

where κ and λ are free parameters with dimensions [κ] = [mass/charge] and [λ] = [mass/charge2]
respectively. In the Hamiltonian (56), one can define an effective mass meff = (m + κq)U that can
be interpreted as the charge dependence of the gravitational mass. Since the charge of a particle is
related to spacetime symmetries through the CPT theorem, the problem of violation of EP for charged
particles assumes a particular interest for anomalous charge couplings.

The stability of an non-pointlike electron requires an effective dependence on the square of the
electron charge [230]. Furthermore, the generalized Maxwell equations, in general, violate the UFF in
a way in which appears once more the square of the charge [137]. According to these considerations,
it makes sense to take into account a general model having chargedependent inertial and gravitational
masses [231]. One can choose the parameters in such a way that neutral systems, made up of bound
charged particles, exactly fulfill the UFF while isolated charged particles may violate it. Thus, one can
introduce an Eötvös coefficient that depends on the charge of particles, i.e. η = η0 + κ1

q1
m1

− κ2
q2
m2

.
Here only the linear charge dependence is considered and η0 indicates the ordinary Eötvös parameter
for the masses. These considerations then suggest a comparison between the free fall of a charged
and a neutral particle described by η = η0 + κ q

m
. By shielding all electromagnetic fields, neutral and

charged particles, without internal structure, must fall following the same path. Let us note that, in
this framework, experiments in space seem to be favoured in order to reduce the disturbances induced
by the stray fields [231].

2.16 Equivalence principle violation via quantum field theory

In this Section we discuss the EP violation in a QFT and GR framework [232,233] (for modified gravity,
see for example Refs. [234, 235] and Ref. [236] for the generalized uncertainty principle). The system
consists of an electron with mass m0 (the renormalized mass of the particle when the temperature
is zero) in thermal equilibrium with a photon heat bath. The aim of the analysis is the evaluation of
electron’s gravitational and inertial mass in the low-temperature limit (namely, T ≪ m0). The presence
of a non-zero temperature is crucial since mg = mi for T = 0.

The gravitational and inertial masses are derived by adopting a Foldy–Wouthuysen transforma-
tion [237] on the Dirac equation which allows to derive a Schrödinger equation (non-relativistic limit of
particles with spin half) in which the expression for the mass is easily recognizable.

In order to operationally define the inertial mass, one applies an electric field to charged particle
and study the consequent acceleration [232, 233]. One has therefore to evaluate the finite temperature
(radiative) corrections to the electromagnetic vertex. After the renormalization procedure and taking
into account the finite temperature contributions, one obtains [232,233]

3
/p−m0 −

α

4π2
/I
4
ψ = eΓµA

µψ. (57)

Here we ahve used the notation /a ≡ γµaµ, α is the fine-structure constant, γµ are the Dirac matrices,
Aµ is the electromagnetic four-potential, and the quantity Iµ is defined as

Iµ = 2

1
d3k

nB (k)

k0

kµ
ωpk0 − p · k , (58)
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with kµ = (k0,k) and where ωp and p are connected by ωp =
0

m2
0 + |p|2. In Eq. (58) nB(k) represents

the Bose-Einstein distribution:

nB(k) =
1

eβk − 1
, (59)

where β = 1/kBT , with kB being the Boltzmann constant. Finally, Γµ accounts for the finite tempera-
ture corrections to the electromagnetic vertex

Γµ = γµ

#
1− α

4π2

I0
E

$
+

α

4π2
Iµ. (60)

Applying the Foldy–Wouthuysen transformation, Eq. (57) reduces to a Schrödinger-like equation

i
∂ψs

∂t
=

=

>m0 +
απT 2

3m0

+
|p|2

2
3
m0 +

απT 2

3m0

4 + eφ+
p ·A+A · p
2
3
m0 +

απT 2

3m0

4 + . . .

?

@ψs (61)

= Hψs

To identify the inertial mass one calculates the acceleration

a = −[H, [H, r]] =
eE

m0 +
απT 2

3m

from which one identifies the inertial mass

mi = m0 +
απT 2

3m0

. (62)

This relation shows that the difference between the inertial mass of an electron at finite temperature
and m0 is due exclusively to the thermal radiative correction of Eq. (62). The fact that the inertial
mass mi increases with T is expected since it represents the increased inertia needed to travel through
the background heat bath.

An analogous procedure can be also performed for the gravitational mass mg. Calculations of
Refs. [232, 233] rely on the weak field approximation, i.e., to first order in the gravitational field (see
Eq. (11)), and consider the radiative corrections calculated in flat space. The Dirac equation that takes
into account the gravitational interaction reads [232,233]

3
/p−m0 −

α

4π2
/I
4
ψ =

1

2
hµντ

µνψ, (63)

where τµν is the renormalized stress-energy tensor while hµν = 2φg diag (1, 1, 1, 1), with φg the gravita-
tional potential. Once again, a Foldy–Wouthuysen transformation yields the Schrödinger-like equation

i
∂ψs

∂t
=

=

>m0 +
απT 2

3m0

+
|p|2

2
3
m0 +

απT 2

3m0

4 +
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m0 −

απT 2

3m0

$
φg

?

@ψs, (64)

= Hgψs

The calculation of the acceleration gives

a = −[Hg, [Hg, r]] =
m0 − απT 2/3m0

m0 + απT 2/3m0
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from which the identification of the gravitational mass gives

mg =

#
m0 −

απT 2

3m0

$
. (65)

Clearly, there is no difference between mg and mi at zero temperature, so that only radiative corrections
render the violation of the equivalence principle feasible. In principle, this result would yield a violation
of the equivalence principle in an Eötvös-type experiment, although at accessible temperatures the effect
is small. In fact, from Eqs. (62) and (65) one gets

mg

mi

= 1− 2απT 2

3m2
0

, (66)

in the first-order approximation in T 2. At temperature of the order T ∼ 300K the corrections is ∼ 10−17.
We point once more that these results hold in the approximation T ≪ me. Equation (66) is a direct
consequence of the fact that Lorentz invariance of the finite temperature vacuum is broken, which means
that it is possible to define an absolute motion through the vacuum (i.e. the one at rest with the heat
bath). The case of gravitational coupling of leptons in a medium has been studies in [238,239].

2.17 Equivalence principle violation via modified geodesic equation

Let us now discuss a different method, proposed in [240], that reproduces the previous results, in
particular Eq. (66).

The starting point is the analysis of a charged test particle of renormalized mass at zero temperature
m0 in thermal equilibrium with a photon heat bath in the low-temperature limit T ≪ m0. The dispersion
relation reads [232]

E =

2
m2

0 + |p|2 + 2

3
απT 2, (67)

which can be easily identified with the first-order correction in T 2 that descends from the finite tem-
perature analysis. The stress-energy tensor T µν related to the test particle, whose world line can be
contained in a narrow “world tube” in which T µν is non-vanishing. The conservation equation for the
stress-energy tensor can be integrated over a three-dimensional hyper-surface Σ and defined as:

1

Σ

d3x′√−gT µν (x′) =
pµpν

E
, (68)

where pµ is the four-momentum and E = p0 the energy, given by E =
%
Σ
d3x′√−gT 00 (x′) . These

equations hold in the limit where the world tube radius goes to zero [241].
As shown in [232], the source of gravity, at finite temperature and in weak-field approximation,

turns out to be (in the rest frame of the heat bath)

Ξµν = T µν − 2

3
απ

T 2

E2
δµ0δ

ν
0T

00, (69)

where Ξµν contains not only the information on the Einstein tensor Gµν , but also thermal corrections
to it14

14Eq. (69) is explicitly derived after the choice of the privileged reference frame at rest with the heat bath. The
latter give rises to a Lorentz invariance violation of the finite temperature vacuum. In fact, in the tangent space (flat
space), one cannot consider a Minkowski vacuum anymore owing to the fact that it is replaced by a thermal bath. As
a consequence, Lorentz group is no longer the symmetry group of the local tangent space to the Riemannian manifold,
even though general covariance still holds there. According to this, one can proceed keeping in mind that the situation
under investigation is slightly different from the usual GR scheme [240].
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The generalization of (69) to a curved space-time is [240]

Ξµν = T µν − 2

3
απ

T 2

E2
eµ

0̂
eν

0̂
T 0̂0̂, (70)

where eµ
0̂
denotes the vierbein field and the hatted indexes are the ones related to the flat tangent

space. The Einstein field equations are hence given by Gµν = Ξµν . The Bianchi identity ∇νG
µν = 0

implies
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so that, using
.
x
µ ≡ dxµ/ds and E = m

.
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Eq. (72) represents a generalization of the geodesic equation to the case in which the temperature is
non-vanishing.

2.18 Application to the Schwarzschild metric

We now analyze Eq. (72) for the Schwarzschild geometry. The metric tensor is given by

gµν = diag
'
eν ,−eλ,−r2,−r2sin2θ

(
, (73)

where

eν = e−λ = 1− 2φ = 1− 2M

r
.

For our purpose, we shall consider only radial motion (
.

ϑ =
.
ϕ = 0). The non-vanishing vierbeins for

the Schwarzschild metric are e0
0̂
= e−

ν
2 , e1

1̂
= e−
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2 .

The geodesic equation for µ = 0 is (here ′ ≡ ∂/∂r)
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and since E
m

=
.
x
0̂
=

.
x
α
e 0̂
α =

.
t eν/2, Eq. (74) can be cast in the form
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The radial contribution can be computed involving Eq. (72) for µ = 1
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An integration of Eq. (76) gives [240]

eλ
.
r
2 − eν

.
t
2
− 2απT 2

3m2
ν = const. (77)
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The constant is determined from the condition of normalization of the 4-velocity
.
x
µ .
xµ = −1 , i.e.

eλ
.
r
2 − eν

.
t
2
= −1 . (78)

In the limit of vanishing gravitational field (namely, ν,λ → 0 as r → ∞), Eq. (78) reduces to
.
r
2
∞−

.
t
2

∞ =
−1, which compared with Eq. (77), implies

eλ
.
r
2 − eν

.
t
2
− 2απT 2

3m2
ν = −1. (79)

In the weak-field approximation and owing to Eq. (79), it is immediate to find that Eq. (76) results
modified as:

..
r = −M

r2

#
1− 2απT 2

3m2

$
. (80)

To first-order approximation in T 2, as in the previous QFT treatment, one obtains

mg

mi

= 1− 2απT 2

3m2
0

,

which is exactly Eq. (66).

2.19 Application to the Brans-Dicke metric

In the case of the Brans-Dicke action, the action reads

SBD =

1
d4x

√
−g

#
ϕR− ω

1

ϕ
gµν∂µϕ∂νϕ+ Lmatter (ψ)

$
. (81)

where

ϕ =
1

16πGeff

, (82)

and such a result is traduced in the introduction of a new “effective” gravitational constant that has
to be identified with the scalar field. Here one assumes that ϕ is spatially uniform, and it must vary
slowly with cosmic time (this is consistent with experimental data)

Field equations derived from Eq. (81) are

2ϕGµν = Tµν + Tϕ
µν − 2 (gµν∇µ∇ν)ϕ, (83)

and
□ϕ = ζ2T, (84)

where ζ−2 = 6+4ω and T = gµνTµν . The symbol □ denotes the usual D’Alembert operator. In Eq. (83),
Tµν and Tϕ

µν are extracted by varying Lmatter and the kinetic term of SBD, respectively. As expected,
field equations for the metric tensor becomes the ones derived by GR in the limit ϕ = const = 1/16πG.

The field equations admit a static and isotropic solution so that the line element is:

ds2 = evdt2 − eu
*
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, (85)

with
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with α0, β0, B, C and λ being constants that can be connected to the free parameter of the theory
ω. Since it is a scalar-tensor theory, a solution for ϕ must also be found; in the considered case, the
outcome turns out to be

ϕ = ϕ0

A
1− B

r

1 + B
r

B−C
λ

, (87)

where ϕ0 is another constant.
Repeating the previous analysis leading to (80), for BD theory one gets
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From Eq. (88), one observes that there is not only the radiative correction to the ratio mg/mi,
but also another contribution which exclusively depends on ω and that correctly vanishes in the limit
ω → ∞, that is when GR is recovered. The evaluation of the second quantity of Eq. (88) allows to put
a lower bound to the parameter of the Brans-Dicke theory. In fact, in the weak field regime, imposing
|(mg −mi)/mi| < 10−14 [242] and using [243]

α0 = β0 = 0; C = − 1

2 + ω
; B =

GMλ

2
; λ =

2
2ω + 3

2ω + 4
. (89)

one infers

ω >
2GM

r
· 1014, (90)

which is the final expression for the lower bound of the Brans-Dicke parameter in the weak-field ap-
proximation. For the Earth M⊕ = 5.97 · 1024 Kg; R⊕ = 6.37 · 106 m. so that [244]

ω > 1.40 · 105, (91)

that is similar to a bound recently obtained [142], which gives ω > 3 ·105. For the sake of completeness,
it is useful to look at a table that contains a prediction of the most reliable bounds for ω [245].

Table 1: This table includes expected bounds on the parameter ω from different experiments (see [245]
and references therein).

Detector System Expected bound on ω

aLIGO (1.4 + 5)M⊙ ∼ 100
Einstein Telescope (1.4 + 5)M⊙ ∼ 105

Einstein Telescope (1.4 + 2)M⊙ ∼ 104

eLISA (1.4 + 400)M⊙ ∼ 104

LISA (1.4 + 400)M⊙ ∼ 105

DECIGO (1.4 + 10)M⊙ ∼ 106

Cassini Solar System ∼ 104

2.20 Standard Model Extensions and the Weak Equivalence Principle

As stated before, the EEP asserts that in any local Lorentz frame about any point in spacetime, the laws
of physics are described by the special relativity (including the standard model of particle physics) [130].
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As widely believed, general relativity and the standard model can be considered as the low energy
limit of some fundamental theory of physics at high energy scales, that, in turn, might give rise to
violations of EEP at some scale [246–248], although its exact form is not well defined. In this framework,
the standard model extension (SME) [248] represent a flexible and widely applied [249] context for
describing violations of EEP. The SME is an effective field theory that extend the standard model
action by adding new terms that break local Lorentz invariance and other tenets of EEP [250]. In this
model, the energy conservation, gauge invariance, and general covariance are preserved. As in other
models [246], EEP violation in the SME can manifest in different ways (for example, it may be strongly
suppressed in normal matter relative to antimatter [250]).

In the framework of SME, in Ref. [251] the authors show that EEP violation in antimatter can be
constrained by means of tests in which bound systems of normal matter are used. More specifically,
an anomaly that violates the WEP for free particles generates anomalous gravitational redshifts in the
energy of systems in which they are bound. For a nuclear shell model one can estimate the sensitivity
of a variety of atomic nuclei to EEP violation for matter and antimatter.

Focusing on conventional matter (made up of protons, neutrons, and electrons), the spin-independent
violations of EEP in the SME acting on a test particle of mass mw are described by the action [250]
(see also [249,252])

S = −
1 5

mw
0

[gµν − 2(c̃w)µν ]dxµdxν

1 + 5
3
(c̃w)00

+ (ãw)µdx
µ

6
, (92)

where the superscript w = p, n, e (for proton, neutron, or electron) indicates the type of particle in ques-
tion, gµν is the metric tensor, dxµ is the interval between two points in spacetime. The (c̃w)µν tensor de-
scribes a fixed background field that modifies the effective metric that the particle experiences, and thus,
its inertial mass relative to its gravitational mass. The four vector (ãweff )µ = ((1− αU)(ãweff )0, (ã

w
eff )j),

where U is the Newtonian potential, represents the particles coupling to a field with a nonmetric inter-
action α with gravity. As (ãweff )µ is CPT odd [248], this term enters with opposite sign in the action for
an antiparticle w̃. Both (c̃w)µν and (ãw)µ vanish if general relativity is valid. For convenience, Eq. (92)
includes an unobservable scaling of the particle mass by 1 + 5

3
(c̃w)00. Consider the isotropic subset of

the model [250], i.e. (c̃w)µν is diagonal and traceless, and the spatial terms in the vector (ãweff )µ vanish.
In the nonrelativistic, Newtonian limit, the single particle Hamiltonian produced by the action (92) is
given by

H =
1

2
mwv2 −mw

g U (93)

where the effective gravitational mass mw
g is given by

mw
g = mw

-
1− 2

3
(c̃w)00 +

2α

mw
(ãweff )0

.
. (94)

Experimentally observable EEP violations are proportional to the particles gravitational to inertial mass
ratio

mw
g

mw
= 1− 2

3
(c̃w)00 +

2α

mw
(ãweff )0 ≡ 1 + βw (95)

and are described by the parameter βw [252]. From Eq. (95), it follows that (c̃w)00 and (ãweff )0 are
responsible for violations of the WEP, an aspect of EEP [142], since they produce particle-dependent
rescalings of the effective gravitational potential. In addition, EEP violation is not apparent in the
nonrelativistic motion of a free particle if α(ãweff )0 = mw

3
(c̃w)00, although it remains manifest in the

motion of the antiparticle w̃, for which βw̃ = − 2α
mw (ã

w
eff )0 − 2

3
(c̃w)00, a limit discussed in [250]. The

antimatter anomaly βw̃ does contribute to tests involving nongravitationally bound systems of matter,
owing to the anomalous gravitational red-shift produced by (c̃w)00 in the energies of bound systems (for
details, see [252]).
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2.21 Strong Equivalence principle in modified theories of gravity

As we have discussed in the previous Sections, in modified or alternative theories of gravity, General
Relativity is generalized including extra degrees of freedoms, such as scalar, vector or tensor fields,
higher orders terms in the scalar invariants, and so on [1]. Typically, in these models the new degree
of freedoms couple non-minimally with, referring to Section 2, scalar curvature. More explicitly, this is
the case of the Brans-Dicke theory, the prototype of scalar tensor-theories, in which the scalar field φ
couples minimally to scalar curvature R, so that the action reads (81). The effects of the non-minimal
coupling is, in some regime, to generate new (gravitational) interactions among masses, modifying in a
different way the values of the perturbations of the metric (weak-field approximation) h00 = −2GMG/r,
related to the gravitational mass MG, and hij, related to the inertial mass MI [253, 254], i.e. MI =

1
16πG

%
d4x

√
−g(hi

i,j − hi
j,i)dS

j. In General Relativity, since hij = −2GMG/r (h00 = hij, one gets
MI = MG, while in Brans-Dicke theory (and hence in more general theories of gravity), since h00 ∕= hij

(weak-field limit of (86)), one gets MG = MI + f(ω, Eφ), where f(ω, Eφ) depends on the parameter ω
and the self-energy of the scalar field Eφ [253,254].

3 Experimental tests of the weak equivalence principle

The WEP has been experimentally verified to remarkable accuracy. This is made possible by the fact
that the universality of free fall (UFF) can be tested in null experiments, as the physical quantity of
interest is the relative acceleration between two free falling proof masses. If the gravitational mass mg of
a body differs from its inertial mass mI , the acceleration a of the body in a gravitational field g is given
by a = (mg/mI)g. Experiments determine upper limits to the differential acceleration |a1−a2| between
two free falling test masses of different composition. Possible violations of WEP are then quantified by
the Eötvös parameter defined in Eq. (31)

η = 2

DDDD
a1 − a2
a1 + a2

DDDD . (96)

Tests with increasing accuracy correspond to decreasing upper limits on η. As long as UFF is valid,
the differential acceleration and thus η must be null within experimental uncertainties. As for any null
experiment, no specific model is required to obtain the physical quantity of interest by comparing with
the measured signal.

Various kinds of null experiments are possible to test WEP, differing in the magnitude of the potential
signal and in the impact of noise sources and systematic effects. In the following of this paper we describe
past, ongoing and future WEP test experiments by grouping them into three main classes. Section 3.1
describes experiments in which the test masses are macroscopic bodies. In section 3.2 we present UFF
tests by the observation of celestial bodies and their movement with respect to each other. In section 3.3
we discuss experiments with microscopic test masses, i.e. atoms, molecules, and elementary particles.
WEP tests can be also classified according to different criteria. Sections 3.1 and 3.3 include ground
laboratory tests as well as experiments in space. Macroscopic proof masses in ground experiments can
be either suspended or left in free fall. The differences between experimental classes are discussed in
the following sections.

It is worth mentioning that other experiments, that strictly speaking cannot be considered as tests
of WEP, deeply rely on it for their validity. Relevant examples are the measurement of the Newtonian
gravitational constant G performed with freely falling samples [255,256] or the comparison of different
gravimeters for metrological purposes [257].
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3.1 Lab experiments with macroscopic masses

Laboratory WEP tests based on macroscopic masses are either performed with freely falling masses
or with suspended masses. The latter class of experiments compares the acceleration experienced by
two masses of different composition as they fall in the gravity field of the Earth. In this case, the
signal to be detected, namely a non-zero differential acceleration resulting from a WEP violation, is
maximum as it is proportional, via the Eötvös parameter, to the full gravitational acceleration of the
Earth. Unfortunately, the typical free fall time on Earth cannot be longer than a few seconds to
keep the height of the instrument within a reasonable size. This imposes a major limitation to the
measurement sensitivity. In addition, free-fall experiments are very much dependent from the initial
conditions (position and velocity) of the test masses as they are released and therefore to external
perturbations acting on the instrument.

Experiments with suspended masses are done, with a few exceptions, using a torsion balance, with
test masses of different composition suspended at the opposite ends of the beam. When the beam is
oriented along the East-West direction, the differential acceleration responsible for a WEP violation is
proportional to the centrifugal acceleration, which provides a driving signal for a WEP violation about
three orders of magnitude smaller than in a free-fall experiments. Despite the lower signal, torsion
balances are today providing the best laboratory tests of the Weak Equivalence Principle due to the
long measurement time at equilibrium and to the excellent control of systematic effects that they can
offer by spinning the instrument around its axis.

Experiments with suspended and freely falling macroscopic masses are described in the next sections.

3.1.1 Tests with suspended masses

As a cornerstone of mechanical theories, WEP has been experimentally investigated since the dawn of
modern age. First experimental tests of the UFF date back to the early 1600’s, when Galileo Galilei
compared the oscillation periods of two simple pendulums with different composition [258]. Considering
that the two masses are in free fall along the tangent to the trajectory of their respective oscillation,
Galilei managed to test the UFF with an accuracy at the 10−3 level [259]. Newton repeated the
experiment to test the equivalence of inertial and gravitational mass with similar precision [260], and
two centuries later Bessel improved it to an accuracy of 2×10−5 [261] with a more precise determination
of the pendulum length, and by comparing many different materials including gold, silver, lead, quartz,
marble, clay, loadstone, water. Pendulum WEP tests were also performed on radioactive materials in
the early XX century: Thomson [262] reached a 5 × 10−4 precision for radon, and Southerns [263],
achieved a 5×10−6 precision for uranium oxide. Further evolution of this method led to the remarkable
precision of 3 × 10−6 in the experiment of H. H. Potter in 1923 [264]. Simple pendulum experiments
are intrinsecally limited by the large impact of dissipative damping forces from suspension and from
air, as well as by geometrical asymmetries between the two pendulums to be compared. Moreover, with
increasing precision the anharmonic terms of the pendulum dynamics become relevant, and the period
depends on the amplitude which then has to be controlled with high precision.

A breakthrough occurred in the late 19th century, due to the intuition of Eötvös to employ a
Cavendish torsion balance (more precisely, Boy’s modification) to compare inertial and gravitational
mass in a null experiment. Eötvös’ first series [265], published in 1890, reached a precision of 5× 10−8.
Two decades later, with D. Pekar and E. Fekete, Eötvös improved it to 3 × 10−9 [266]. In Eötvös’
experiments, the inertial acceleration is given by the centrifugal force due to the Earth’s rotation,
while the gravitational acceleration is the component of g necessary to compensate it. Two masses
of different composition are suspended at opposite ends of the torsion balance beam; the centrifugal
forces on the two weights due to the Earth’s rotation are balanced against a component of the Earth’s
gravitational field. A WEP violation would produce a rotation of the torsion balance: if the ratio of
passive gravitational mass to inertial mass should differ from one test mass to the other, there would
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be a torque tending to twist the torsion balance. When the beam is oriented along the East-West
direction, the differential acceleration responsible for a WEP violation is proportional to the centrifugal
acceleration ac = Ω2

⊕R⊕ cos θ sin θ, where R⊕ and = Ω⊕ are the radius of our planet and the angular
velocity of its rotation motion, and θ is the latitude at the instrument location. For θ = π/4, the
centrifugal acceleration amounts to 16.8mm/s2 providing a driving signal for a WEP violation about
600 times smaller than in a free-fall experiments. One major limitation is given by the fact that a
potential violation would produce a static (DC) signal. The effect of a non-zero signal can be detected
by exchanging the position of the two masses, so that the sense of the twist from WEP violation would
be reversed.

Improved versions of Eötvös’ experiment were designed to produce an AC signal from potential
WEP violations, by spinning the instrument around its axis. The spin motion introduces a modulation
of the WEP violating signal without intervening on the balance configuration [267,268]. This is achieved
mainly in two different ways: by locking the torsion balance on the gravitational field of Sun at equilib-
rium with the inertia of the Earth that rotates around it, so that the violation signal is modulated by
the Earth’s spin with a 24 h period; or by actively rotating the torsion balance around the suspension
wire to up-convert possible violation signals from DC to the rotation frequency. Main advantage of
the former method is the natural modulation of the potential signal without potential systematics and
technical noises from active mechanical rotation of the apparatus. The main advantage of the latter
method is the higher modulation frequency of the signal, allowing to remove many low-frequency noise
sources and systematics. In particular, mechanical losses due to internal damping are lower at higher
frequencies, and up-conversion brings the signal to a region of reduced thermal noise. Combinations of
different up-conversions have also been designed, e.g. with rotating torsion balances in the field of the
Sun.

Earth rotation offers a natural platform for spinning a torsion balance with daily period against
the Sun. If the beam is aligned with the north-south direction, a WEP-violating differential accelera-
tion would produce a maximum torque when the Sun is at the astronomical horizon. The horizontal
component of the gravitational acceleration toward the Sun is at most 6mm/s2. Thus the signal for
UFF tests in the gravitational field of the Sun is smaller than for tests in the Earth’s field by about a
factor 3/8. Dicke’s torsion balance experiment provided the first UFF test in the field of the Sun [267],
reaching 10−11, followed by Braginsky and Panov down to 10−12. The latter experiment provided the
best estimate of the Eötvös parameter for nearly 30 years. A variant of the torsion balance is obtained
by replacing the suspension wire with a so-called fluid fiber, introduced by Keiser and Faller at the
end of the 1970s [269]. In this kind of setup, test masses made of hollow metal bodies float on fluids,
and their position is controlled by an electrostatic system. A potential WEP violation, inducing a
differential acceleration between the solid and the liquid, is measured on the control signal needed to
keep the test masses in constant position. WEP tests with fluid fibers were performed in 1979 with an
accuracy of 10−10 [269] and in 1982 with an accuracy of 4× 10−11 [270]. The potential accuracy of such
method was estimated at levels between 10−13 and 10−14 [271]. A similar experiment was performed
by Thieberger in 1986 by observing the horizontal drift of a hollow copper sphere floating freely in
water [272]. The driving horizontal gravitational force was generated by placing the setup near a steep
cliff; a differential acceleration between copper and water would result in a drift velocity of the sphere.
Indeed Thieberger measured a net differential acceleration, indicating a potential WEP violation with
η < 1.3 × 10−11 arising from a fifth force. A comparative experiment of the same kind was performed
with a more symmetric setup by Bizzeti et al. in 1989 [273]; no WEP violation was found, up to an
accuracy of 2.4× 10−12.

A disadvantage with the Sun as source is a weaker driving signal as compared to that in the field of the
Earth. Spinning a torsion balance by means of a uniformly rotating turntable allows the Earth to be used
as the attractor [274]. Moreover, driving force modulation can be kept at higher frequencies, reducing
the thermal noise [275] and disentangling the WEP violating signal from other effects, e.g. temperature
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variations, that naturally occur at the diurnal frequency, including thermal effects, microseismicity, local
mass motions. Such effects originate from the Sun through radiative heating of the Earth’s surface and
atmosphere, with a typical thermal time delay, rather than by gravitational interaction. Though Earth
tidal forces have no daily periodicity and can be neglected, gravity gradients originating from solar tides
occur mostly at twice the diurnal frequency, resulting in a spurious WEP violation of the order 10−12

for a balance arm of 15 cm.

Torsion balance experiments provided the best limits on potential WEP violations for ground tests
so far (see [274], Table 3). Such experiments have confirmed UFF both in the field of the Sun, up to
about 10−12, and in the field of the Earth, up to about 10−13, as well as in the field of local source
masses, up to about 5× 10−12.

The most precise torsion balance to date was realised by the so called Eöt-Wash research group.
A first experiment in 1989 provided a WEP test in the gravitational field of the Earth with 1 × 10−11

accuracy [276]. In the same year, a test with 5.3× 10−12 accuracy was done in the field of a local mass
distribution by placing the torsion balance near a river lock, resulting in a 12 min periodic modulation
of ∼ 2× 108 kg of water with known distribution as an attractor for copper and lead test masses [277].
The precision was improved to 1.9 × 10−12 in 1994 with test masses made of Beryllium and of an
Aluminum/Copper alloy in the field of the Earth, and later to 1.2 × 10−12 with Si and Al+Cu test
masses in the field of the Sun. In 1999 the Eöt-Wash group measured the differential acceleration of a
Cu test mass toward a Pb attractor to be aCu − aPb < (1.0 ± 2.8) × 10−15m/s2. Comparing to the
corresponding gravitational acceleration of 9.2× 10−7m/s2 this leads to η < 10−8 [278]. An experiment
performed in 2001 in the field of the Sun [279] improved the result of Braginsky and Panov to η < 10−13.
In 2008 the same group obtained η < (0.3± 1.8)× 10−13 with Be and Ti test masses in the field of the
Earth [280]. The latter result represents the most accurate WEP test on ground.

Another recent torsion balance experiment provided a WEP test at the 10−13 level on chiral masses
[281], using a pair of lef-handed and right-handed quartz crystals.

Current experiments with torsion balances are mainly limited by systematic effects arising from
gravity gradients coupling to geometrical asymmetries in the the torsion pendulum, and thus producing
differential directions for the forces on the test bodies. Several environmental parameters can produce
effects that mimic a WEP-violating signal. Tilts of the rotation axis with respect to local vertical, couple
the pendulum to gravity gradients; the same applies to temperature fluctuations, thermal gradients,
and magnetic fields. The main bias terms can be subtracted to some extent using the method described
in [282, 283]. For each driving term, the corresponding parameter is modulated with large amplitude
to calibrate its effect on the WEP-violating signal; calibration factors and measured parameters are
combined in post-processing of the actual WEP data to correct for the contribution of bias driving terms.
Gravity gradients can be measured with a gradiometer and compensated with a suitable configuration
of local source masses. Rotating the compensation system by 180◦ about its vertical principal axis
doubles the effect of ambient gradient. This allows to determine the corresponding systematic error on
the torsion balance WEP test, which is measured from the ratio of the torsion balance and gradiometer
signals in the two compensator positions. Additional sources of systematic errors originate from fibre
twisting due to residual tilts of the setup or wobbles of the rotary axis in combination with asymmetries
in the upper suspension point. Such effects can be corrected by carefully measuring the residual tilt, e.g
with a dual-axis tilt sensor placed above the upper attachment of the fibre and beneath the pendulum,
and controlling the rotation axis to be along the vertical direction. Temperature gradients and magnetic
effects are usually mitigated by multi-stage passive shielding. Changes in the balance spinning frequency
ωs are another source of systematic errors. A spurious signal would be proportional to the component of
the rate variation at the Fourier frequency ωs. As the corresponding torque scales as ω2

s , the effect can
be measured by operating the torsion pendulum at different spinning frequencies, and can be mitigated
by choosing the lowest spinning rate compatible with the technical noise floor.

A modern variant of Galileo’s simple pendulum WEP test in the field of the Sun has been proposed
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recently, [284]. The experiment is based on a differential accelerometer with zero baseline, measuring
the relative acceleration of two test masses of different materials suspended on a pendulum. Ensuring
a precise centering of the test masses the system should provide a high degree of attenuation of the
local seismic noise. With a cryogenic differential accelerometer under vacuum, the experiment should
provide a WEP test with 10−14 precision.

3.1.2 Freely falling masses

Unlike in torsion balances, mass drop WEP tests are done by leaving two test masses in free fall at the
same time, and measuring their relative displacement as a signature of differential acceleration. This
method was never used in high-precision experiments until the late 1980s. The legendary UFF test
by Galileo was indeed never done by dropping masses from the Pisa leaning tower, but rather using
pendulums

Free fall experiments in evacuated tubes, which are nowadays popular in science teaching and out-
reach, date back to the 17th century, when Boyle performed free fall tests with feathers or pieces of
paper [285]. Similar experiments with coins and feathers are reported in 1717, when Desaguliers demon-
strated the UFF to King George I and to the Royal Society led by Newton [286]. In 1971 Astronaut
Scott performed a UFF test on the Moon during the Apollo 15 mission, by dropping an Aluminum
hammer and a falcon feather from a height of about 1.6m and observing them hit the ground simulta-
neously [287].

A revival of UFF tests with freely falling test masses occurred during the 1980’s, in the attempt
to improve Eötvös’ WEP tests [288]. After Dicke’s and Braginsky’s experiments it was clear that
substantial progress required a rotation of the torsion balance; however the control of systematic effects
in rotating the setup in the laboratory, that was necessary for tests in the field of the Earth, was
considered extremely challenging. On the contrary, the recent progress in laser interferometry ranging
made mass drop tests more attractive. Moreover, free fall tests have the advantage of a much higher
driving acceleration (g ≃ 9.8m/s2 in mass drop tests versus g < 1.69 ·10−2m/s2 on the torsion balance).
A first precision mass drop WEP test was performed by Worden in 1982 at the 10−4 uncertainty level,
with a test mass constrained to 1D motion by means of a magnetic bearing [289]. This result was
improved in 1984 by Sakuma with an accuracy of 1× 10−8 [290]. In 1986, by observing the rotation of
a freely falling disc made of two halves of different materials, Cavasinni et al. confirmed the validity
of WEP with 1× 10−10 accuracy [291]. A high-precision mass drop experiment with two separate test
masses was performed for the first time in 1987 by Niebauer et al. [292]. Measuring the position of freely
falling Uranium and Copper test masses with an interferometer, they proved the WEP up to 5× 10−10.
The same experiment with different materials was repeated by Kuroda and Mio in 1989, reaching an
accuracy of 1× 10−10 [293,294]. The disc experiment of [291] was repeated in 1992 by Carusotto et al.
with Aluminum and Copper, reaching an accuracy of 7.2× 10−10 [295,296].

So far, the precision of drop tests was limited to a few parts in 1010, in spite of the 600-fold larger
driving signal strength compared to torsion balances. The improvements over Eötvös’ result was limited
to one order of magnitude, in contrast to the much more sophisticated technologies employed. More
recently this has been overwhelmed by the Eöt-Wash rotating balance. As discussed in [292, 295, 296]
the main limitations of mass drop experiments are from errors in initial conditions at release coupling
to the gravity gradient of the Earth to provide a differential acceleration error that mimics a violation
signal. In experiments with separate test masses, a laser interferometer tacks the differential trajectory

δx(t) = δx0 + δv0t(1 + γvt
2/6) + γht

2/2 (97)

where δX0, δv0, γv, γh represent the initial differential displacement, initial differential velocity, vertical
gravity gradient, and horizontal gravity gradient. The effect of vertical gradient is partly removed by
fitting the measured trajectory with Eq. 97. Further mitigation of the systematic error from vertical
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velocity differences is obtained by alternating the order in which the objects are dropped. Errors arising
from the horizontal gravity gradient are mitigated by alternating the position of the two masses. For
experiments with disk test masses, a major systematic error arises from the disk precession around
its angular momentum. The effect can be partly corrected by measuring the two components of the
angular momentum in the disk plane just after the release.

A way to improve drop tests is by increasing the free fall time, since the effect of a violation increases
quadratically with time. Experiments on balloons [297] and sounding rockets [298] have been proposed,
which would allow a free fall time of several tens of seconds. The effect of gravity gradients, which
would be a major source of systematic errors, can be separated from potential WEP violation signals
by spinning the system around a horizontal axis: in such way the signal from gravity gradient appears
at twice the rotation frequency while a violation signal would be at the rotation frequency.

In principle there is still more potential in mass drop experiments, especially with a longer free fall
time and sensors with a higher resolution. Similar tests are possible on ground in facilities such as
the drop tower of the ZARM center at the University of Bremen, where a free fall time of 4.74 s is
achievable (9.3 s using the catapult). A mass drop WEP test with 10−7 accuracy was performed in 2001
with highly sensitive SQUID sensors [299]. In free fall experiments the control of starting conditions for
positions and velocities of the test masses is crucial. An Electrostatic Positioning System (EPS) was
developed to this purpose [300]. For optimal conditions an accuracy of 1013 is expected with this setup.

Another free fall experiment is the project Principle Of the Equivalence Measurement (POEM) at
the Harvard- Smithsonian Center for Astrophysics [301, 302]. Two test masses in 0.5m distance in a
co-moving vacuum chamber were bounced on a kind of trampoline 0.9m up and down several times.
To test the WEP, the shifting between the test masses is measured. In principle, with a time average
over several bounces a sensitivity of 5 × 10−13 can be reached and an improvement on ground up to
1× 10−14 is possible.

Free fall experiments with microscopic test masses enable in principle a much better control over
systematic effects. They are discussed in section 3.3.

3.1.3 Experiments with macroscopic masses in space

Testing the Weak Equivalence Principle in a ground based laboratory has some obvious limitations that
can be overcome by going to space.

As discussed in the previous sections, experiments with freely falling masses exploit the full grav-
itational acceleration of the Earth to maximize the strength of a WEP violation; unfortunately, their
sensitivity is hampered by the short measurement time achievable in a ground-based laboratory and
their accuracy is limited by the poor control of systematic effects depending on the initial conditions
(position and velocity) of the test masses. On the contrary, experiments based on masses suspended
on a torsion balance allow for a long integration time and provide a much better control of systematic
effects, but their sensitivity is limited by the driving gravitational signal being three orders of magnitude
lower than the Earth gravity acceleration.

The next evolutionary step of these instruments is clearly space. The laboratory inside a freely
falling spacecraft is indeed the ideal environment to push WEP tests to their ultimate limits.

Under weightlessness conditions, the classical free fall experiment can still benefit from a WEP
violating signal proportional to the local acceleration of gravity (at the spacecraft height). More impor-
tantly, the experiment can now be executed in a compact apparatus, with the test masses still in the
spacecraft reference frame, where their relative motion can be observed over a long and unperturbed
measurement time. The reduced volume of the instrument, compared to the much larger drop towers or
free-fall capsules used on Earth, allows to better control the experiment against external perturbations.

A torsion balance in space would as well benefit from the full gravitational acceleration as a driving
signal, gaining almost three orders of magnitude on the effect to be measured with respect to an Earth-

46



based experiment having the same sensitivity to differential accelerations.

Concentric test masses are the common denominator of all the instruments proposed for a space test
of the Weak Equivalence Principle. This is the case for the space missions that will be described in this
section, MICROSCOPE, STEP and GG, which is the natural evolution of a torsion balance for space.
Such a design is possible in space because of the extremely small coupling forces needed to control the
masses position under weightlessness conditions. Small coupling constants directly translate into higher
instrument sensitivity to differential accelerations and therefore to WEP violations.

More importantly, a spinning spacecraft can be used to introduce a modulation of the differential
acceleration resulting from a WEP violation, both for a free-fall and a torsion balance experiment, to
distinguish the WEP violating signal from other effects appearing at different frequencies. In this case,
as the platform is rotating with the instrument itself, the mass distribution in the immediate vicinity
of the test bodies does not introduce any signal modulation as soon as there are no moving parts or
changes in the mass distribution of the spacecraft.

Still, gravity gradients remain one of the predominant sources of systematic error imposing an ad-hoc
design of the experimental setup and the test masses. Test masses of different shape couple differently to
gravity gradients due their different multipole moments. This effect produces a differential acceleration
competing with a violation of the Weak Equivalence Principle. Test masses shall therefore be designed
to approach the shape of a gravitational monopole or to have matching gravitational multipole moments
[303]. As a consequence, manufacturing processes shall ensure precise control on the shape of the masses
and the material itself shall be selected to be highly homogeneous and easily machinable [304]. On the
other hand, the gravity environment generated by the spacecraft surrounding the test masses, and
thus primarily interacting with them, can also be controlled. As already demonstrated by the LISA
Pathfinder mission, a protocol-based measurement of the mass and the distance of all satellite parts
can ensure a balance of the gravitational accelerations at the sub nms−2 level [305]. Such techniques
have proven to be very effective in reducing the systematic errors introduced by gravity gradients.

Differential accelerometers based on a nested test mass design are also affected by the radiometer
effect. The infrared radiation of the Earth is absorbed by the satellite and consequently by the instru-
ment housing, thus producing a temperature gradient that depends on the satellite’s orientation with
respect to the Earth-to-satellite direction. Due to the residual gas around the test masses, this temper-
ature gradient is responsible for a differential acceleration that is directly proportional to the pressure
of the residual gas and to the temperature gradient and that cannot be distinguished from a WEP
violating signal. The thermal design of the spacecraft and the instrument head as well as the design of
the vacuum system enclosing the test masses is therefore important to minimize this effect. In STEP,
where cryogenic temperatures are reached in a He dewar, the residual gas pressure and the temperature
gradients can be better controlled. In [306] the radiometer effect is calculated for MICROSCOPE,
STEP and GG and discussed with respect to the specific design of the three instruments.

In space, the test masses of the differential acceleration sensor can accumulate charges due to the
interaction with high energy charged particles travelling through the solar system. In the presence of
stray charges, the source mass interacts with the caging mechanism and readout system via Coulomb
forces introducing noise and bias on its position and on the measurement signal readout. Different
methods can be used to discharge the masses and counteract this effect. MICROSCOPE stray charges
are managed via a thin (0.7 µm) gold wire connected to a sole plate and driven by a control voltage [304].
A different discharging system has been demonstrated in space by the LISA Pathfinder mission. In this
case, an ultra-violet lamp illuminating both the test masses and the surrounding environment is used
to generate a current of photoelectrons [307] that can be tuned to null the charge of the test mass itself.
In this way, the corresponding noise and bias can be reduced to negligible levels.

Finally, external perturbations can be accurately controlled in space. Stabilization loops can be
implemented to reduce temperature fluctuation at the instrument head below 100 µK [308]. The
Newtonian noise, generated by fluctuations of terrestrial gravity and representing one of the most
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important limitations of ground-based tests of the Weak Equivalence Principle, is totally absent on a
spacecraft. In space, other perturbations, such as air drag or solar radiation pressure, can introduce
noise and bias affecting the WEP test. However, several drag free systems have already demonstrated
their ability to reduce residual accelerations below 3 × 10−11ms−2Hz−1/2, as in the MICROSCOPE
mission [308], or even better, down in the 10−15ms−2Hz−1/2 regime, as in LISA Pathfinder [309,310].

The MICROSCOPE (MICROSatellite à trainée Compensée pour l’Observation du Principe d’Equivalence)
mission provides the most accurate test of the Weak Equivalence Principle [304, 308]. The satellite
was launched from Kourou on 25 April 2016 on a Soyuz rocket and injected into a dawn-dusk Sun-
synchronous orbit with an altitude of 710 km. The spacecraft embarks two differential accelerometers,
each of them based on two hollow cylinders. They are aligned along the symmetry axis, precisely cen-
tered, and kept in their equilibrium position by capacitive electrodes. The two differential accelerometers
only vary for the test masses composition: Pt:Rh alloy for both cylinders of the reference sensor unit
(SUREF); Pt:Rd and Ti:Al:V for the inner and outer test mass of the unit sensitive to WEP violations
(SUEP). The test masses have been precisely machined to a relative difference between the momenta
of inertia smaller than 10−3 and a density homogeneity better than 0.1%, thus reducing differential
accelerations due to gravity gradients to negligible levels [304]. The same set of electrodes provides
measurement and control of both the position and the attitude of the test masses. They are machined
on a silica substrate to ensure high position stability. The voltage applied at the electrodes, which is
proportional to the force exerted on the test masses to keep them centered, represents the main data
output of the instrument from which the differential acceleration between the test masses is extracted.
Once the test masses are correctly aligned, if General Relativity holds, zero differential acceleration
at both the SUREF and SUEP sensor heads shall be read. The magnetic environment is controlled
by a magnetic shield surrounding the complete payload and modelled by a finite element calculation.
The tight housing allows the sensors to operate in the 105 Pa regime, where the radiometer effect is
strongly reduced. Radiometer effect and radiation pressure disturbances are kept below the damping
introduced by the 7 µm wire connecting the test masses and the cage to control electrical charging
effects [311]. Cold gas thrusters actuated by the accelerometers’ measurements reduce the effect of air
drag and, more generally, of non-gravitational forces acting on the spacecraft. The drag-free control
system relies on the linear and angular accelerations measured at one of the test masses. Residual
accelerations below 3× 10−11ms−2Hz−1/2 could be measured in closed-loop configuration. This result is
about a factor 10 better than originally specified. Star tracker measurements are also used to determine
the spacecraft attitude. To increase the modulation frequency of the gravitational signal provided by
the Earth, the satellite is rotated (∼1 mHz) around the orthogonal direction to the sensitive axis of the
differential accelerometers. The SUREP and SUEP power spectral density of differential acceleration
measurements along the axial direction (sensitive axis of the instrument) are 5.6 × 10−11ms−2Hz−1/2

and 1.8 × 10−11ms−2Hz−1/2, respectively, at the modulation frequency of a few mHz expected for the
WEP violation. This floor level is limited by the damping noise of the thin gold wire connected to the
test masses to control charging effects. Systematic errors are currently dominated by thermal effects,
which could be evaluated to < 67× 10−11ms−2. The instrument sensitivity was determined by applying
temperature variations both at the electronics and at its baseplate. Measurements revealed that the
sensor unit temperature coefficient is 2 orders of magnitude higher than expected. This issue is still
under investigation. On the positive side, the temperature stability of the instrument baseplate and the
electronics was measured to be better than 20 µK over 120 orbits, about 2 orders of magnitude smaller
than initial estimates, thus mitigating temperature-related effects. The contribution of self-gravity and
stray magnetic fields to the measurement error was estimated from finite element models and found
negligible. After analyzing the data corresponding to 120 satellite orbits, an Eötvös parameter of
[−1± 9 (stat)± 9 (syst)]× 10−15 could be estimated for titanium and platinum [308], improving by one
order of magnitude previous results obtained from torsion balance [274] and lunar laser ranging [312]
experiments. This measurement also establishes new constraints to modifications of the Newton’s law
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of gravity by a Yukawa-like coupling and improves existing constraints on WEP violations by a light
scalar field [313]. The MICROSCOPE mission has been decommissioned on 18 October 2018, after
accumulating about 1900 orbits of science data on the SUEP sensor, 900 on the SUREF sensor, and 300
orbits for calibration. This also includes 750 orbits of measurements for characterizing the on-board
temperature sensors and further reduce the systematic effects due to temperature variations. After the
first results reported in 2017, the complete data set delivered by the MICROSCOPE mission is still
under scrutiny to improve both the statistical and systematic error on the WEP test, hopefully going
below the 1× 10−15 accuracy level.

The STEP (Satellite Test of the Equivalence Principle) mission concept is similar to MICROSCOPE,
but it relies on a completely different technology, which is expected to push the accuracy of WEP tests
down to 1 part in 1018 [314, 315]. The STEP mission was selected for a phase A study in 1990. An
engineering model of the accelerometer to test the technology was built in 2004. The payload is com-
posed of 4 differential accelerometers (DAs) operating simultaneously with the following combination
of test masses: Be and Pt:Ir for DA1; Be and Nb for DA2; Nb and Pt:Ir for DA3; Be and Pt:Ir for
DA4. DA1 to DA3 measurements allow to check that the sum of the differential acceleration measured
at the 3 sensor heads between the three materials - Be, Pt:Ir, and Nb - is zero thus providing control on
measurements systematics. DA1 and DA4 differ for the shape of the test masses and for their coupling
to Earth and spacecraft gravity. As for MICROSCOPE, the differential accelerometers are composed of
two hollow masses with cylindrical symmetry, precisely centred and aligned along their axis. STEP DAs
are arranged in a helium dewar and operated at 2 K. The cryogenic environment is providing very good
thermal and mechanical stability for the DAs operation, ultra-high vacuum and reduced thermal noise
from gas damping, excellent shielding from external magnetic fields, reduced radiation pressure effects
due to temperature gradients. More importantly, it allows to use SQUID technology for high-sensitivity
position readout and for generating the weak reaction force that centers the test masses along the axial
direction. The gas generated by boiling helium is used by thrusters to stabilize the spacecraft against
non gravitational accelerations. In addition, when in drag-free, common mode accelerations can be
measured with respect to the spacecraft reference frame to 10−15 − 10−12 ms−2, well below the MOND
(MOdified Newtonian Dynamics) acceleration scale a0. Based on this performance, STEP has recently
been proposed for a test of MOND theories and of the Strong Equivalence Principle [316]. As discussed
in section 3.1.2, alternative WEP tests in microgravity are also possible on ground laboratories such as
the Bremen drop tower [299].

Galileo Galilei (GG) is an alternative proposal designed to test the Einstein WEP to better than
1 part in 1017 [317, 318]. Differently from MICROSCOPE and STEP, GG can be considered as the
space version of a beam balance. The test masses are two hollow cylinders of different composition that
are weakly coupled by means of mechanical suspensions. Once properly set into equilibrium by piezo
actuators, the beam of the balance is aligned along the symmetry axis of the cylinders, thus defining the
plane orthogonal to this direction as the sensitive plane of the instrument. This configuration provides
a rejection of common mode acceleration noise as high as 105, thus drastically relaxing the level of drag
control required at the spacecraft. Rapid rotation of the instrument is important to reduce the thermal
noise in the detection of WEP violations and to efficiently decouple it from systematic effects appearing
at different frequencies. In GG, the spin axis of the spacecraft coincides with the symmetry axis of the
instrument. Therefore, after initial spin up, the spacecraft co-rotates with the cylindrical test masses
around the principal axis of the system and it is passively stabilized to very fast rotation rates (∼1 Hz)
by angular momentum conservation. Due to the high mass of the GG test cylinders and the large gap
between them, thermal noise due to gas damping and to the radiometer effect become two orders of
magnitude smaller than in MICROSCOPE. Finally, the displacement of the GG test masses is read by a
laser interferometer gauge, which provides very low noise and fast integration times. An accuracy budget
of the GG instrument and an evaluation of the systematic effects is provided in [317]. A laboratory
demonstrator of the space instrument has been built and it is presently under test. On the ground the
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instrument has reached a sensitivity to differential acceleration measurements of ∼ 7× 10−11 ms−2 (at
1.7 × 10−4 Hz upconverted by rotation to 0.2 Hz), currently limited by Newtonian noise, mainly tilt,
acting on the ball bearings [319]. An optimized design based on low noise air bearings, low coupling
joints, and a laser interferometer readout system is under study to push the instrument performance
down to the 10−16 − 10−15 regime.

3.2 Tests based on the measurement of the Earth-to-Moon and Earth-to-
satellite distance

Lunar Laser Ranging (LLR) experiments are performed since 1969, when the first array of corner cube
reflectors was positioned on the Moon by Apollo 11. A review of LLR tests of gravity con be found
in [320]. To date, 5 arrays of retro-reflectors are operational on the Moon surface and routinely used for
ranging experiments: Apollo 11, 14 and 15, Lunokhod 1 and 2. Among them, Apollo 15 is the one with
the largest lidar cross section and therefore the most widely used for LLR (about 75% of normal point
data). In a LLR measurement, a short laser pulse is fired by a ground-based Satellite Laser Ranging
(SLR) station towards one of the Moon corner cube reflector arrays. The back reflection is collected
by the SLR station and the interval between the fire time and the reception time is recorded. Round-
trip travel time measurements are then fitted to a model of the solar system ephemeris including tidal
effects, relativistic effects, propagation in the atmosphere, plate motion, etc. The SLR stations mostly
contributing to LLR data are the Observatoire de la Côte dAzur (OCA) in France, the McDonald
Laser Ranging System (MLRS) and the Apache Point Observatory Lunar Laser-ranging Operation
(APOLLO), both in the US. Thanks to the 3.5 m diameter telescope and to the array of high-efficiency
avalanche detectors, the APOLLO station has today reached millimeter ranging precision and accuracy
to the Moon [321,322]. To this level, effects like regolith motion, thermal expansion of the retro-reflectors
array, oceans and atmosphere loading effects start to become relevant.

Earth and Moon are two celestial bodies freely falling in the gravitational field of the Sun (primary
body). If the Universality of Free Fall principle is violated, their accelerations towards the Sun are
different, thus introducing a polarization of the lunar orbit [323]. This effect manifests itself with the
appearance of a modulation of the Earth-Moon distance (LLR measurements) along the Earth-Sun
direction at the synodic period (29.53 day). For a relative differential acceleration between the Earth
and the Moon of ∆a/a, the perturbation δr to the Earth-Moon distance expressed in meters is given
by [324]

δr = −2.9427× 1010
∆a

a
cosD [m] , (98)

where D is the synodic angle. After the first LLR test of the Equivalence Principle in 1976 [325, 326],
the accuracy of relative differential acceleration measurements ∆a/a between Earth and Moon has
progressively improved to 1.4× 10−13 [312,327,328], to recently reach 5× 10−14 [329]. This result could
be obtained after modelling the effects of the gravitational interaction of the Sun and the planets on the
Moon, now treated as an extended body. High order terms of the Earth-Moon gravitational interaction
and the effect of solid Earth tides on the Moon orbit were also improved.

Celestial bodies have non negligible gravitational self-energy. This was already clear in 1968 [323],
when Nordtvedt proposed to use the Earth-Moon system to test the Strong Equivalence Principle. In
this case, the relative differential acceleration responsible for a violation of the Universality of Free Fall
principle can be expressed as

∆a

a
= ηCD + ηSEP

#
UE

MEc2
− UM

MMc2

$
, (99)

where ηCD is the composition-dependent violation parameter, ηSEP is the Nordtvedt parameter mea-
suring SEP violations, U and M represent the gravitational self-energy of the test body and its mass.
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Therefore, to exclude any cancellation effect between a composition-dependent WEP violation and an
equal and opposite SEP violation, an independent test of the Weak Equivalence Principle based on test
masses having similar composition to the Earth and Moon interior, but with negligible gravitational
self-energy is required. The experiment, performed in 1999 with the torsion balance apparatus of the
Washington group, confirmed the validity of WEP for two test bodies reproducing the Earth and the
Moon composition to 1.4× 10−13 [242, 279]. Combined with with LLR measurements, this test can be
used to constrain SEP violations. The best estimate of the Nordtvedt parameter based on laser ranging
measurements of the Earth-Moon system has reached an uncertainty of 1.1× 10−4 [329].

The Universality of Free Fall can also be tested by tracking satellites orbiting around the Earth,
e.g. LAGEOS, LAGEOS II and LARES [330]. As also discussed in [331], the sensitivity of a test based
on the Earth-LAGEOS system in the gravitational field of the Sun is a factor 300 worse than for the
Earth-Moon system. Indeed, LAGEOS and LARES satellites are much closer to the Earth compared
to the Moon. As a consequence, the effects of the Sun gravitational potential on the Moon orbit are
significantly stronger than for a satellite orbiting the Earth at low altitude. Even if not competitive
with LLR experiments, SLR tests still remain of interest to evaluate the impact of different systematic
errors in the final result. As an example, non-gravitational perturbations, which play a major role in
the determination of the LAGEOS and LARES orbits, are completely negligible for the Moon. On the
contrary, some gravitational perturbations (tidal effects) are important for the Moon and negligible for
an Earth-orbiting satellite. Finally, SLR measurements could also be combined with LLR measurements
in a grand-fit procedure to better estimate common parameters thus improving LLR and interplanetary
ranging [332].

Similar tests can be performed by ranging other gravitating bodies in the solar system. The MES-
SENGER mission with its Doppler tracking measurements collected over 7 years allows the precise
determination of Mercury’s ephemeris. This wealth of data has recently been used to test the Strong
Equivalence Principle with reduced uncertainty [333]. Spacecraft and planet orbits are numerically
integrated to provide a global solution from which parameters relevant for General Relativity, planetary
physics, and heliophysics can be extracted. This analysis is today constraining the Nordtvedt parameter
to 7× 10−5.

3.3 Tests with microscopic particles: atoms, molecules, neutrons, anti-
matter

This section is devoted to a review of the tests of the WEP with microscopic particles, mainly atoms.
Based on recent advances in cold atom optics, atomic sensors, namely atom interferometers [334,335]

and atomic clocks [336, 337], established themselves as new powerful tools for precision measurements
and fundamental tests in physics [338].

Atom interferometry enabled the realization of precision tests of the WEP that were previously
performed only with macroscopic classical masses. As will be clear from the data reported in this
review, the sensitivity of atomic experiments did not reach yet the one of the classical experiments but
predictions are that similar or even higher levels of sensitivity will be obtained both in Earth laboratories
and in experiments in space.

An important advantage of using atoms is, in a properly designed apparatus, the control of possible
systematics thanks to the well known and reproducible properties of the atoms, the possibility of
realizing an atomic probe of extremely small size and precisely controlling its position, the potential
immunity from stray field effects, and the availability of different states and different isotopes that in
some cases allows the rejection of common-mode spurious effects and/or a cross-check of the results.
Perhaps still more important is that new kinds of tests are possible that exploit the specific quantum
features of atomic probes: qualitatively new experiments can be performed with test masses having
well-defined properties in terms of, e.g., proton and neutron number, spin, internal quantum state,
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bosonic or fermionic nature.
In the final part of this section, tests with neutrons, with charged particles, and with anti-matter

are also described because of their fundamental interest but the precision achieved so far in these cases
is still much lower compared to the other tests.

It can be expected that in the future the development of matter-wave interferometry with molecules
will enable also the comparison of the free fall for such systems with different conformations, different
internal states, different chiralities; this will not be discussed in the present review because sensitivities
are still too low to be significant in this context but preliminary results and a discussion of future
prospects can be found in [339].

It should be noticed that all experiments so far were performed with systems consisting of particles
of the first elementary particle family and that direct tests for particles of the second and the third
families are missing until now (see, e.g., [340] and references therein).

3.3.1 Precision measurements of gravity with atom interferometry

The idea of an atom interferometer can be easily understood from the analogy with an optical interfer-
ometer: using suitable atom optics made of material structures or, more often, laser light, an atomic
wave packet is split, reflected and recombined: at the output, interference can be observed. In a more
general view, it can be considered as a quantum interference effect arising from the different paths
connecting the initial and final states of a system. Any effect affecting in a different way the different
paths will produce a change in the interference pattern at the output; by detecting this change, the
effect can be measured.

In most experiments, the best performances have been achieved using atom interferometry schemes
in which the wavepackets of freely falling samples of cold atoms are split and recombined using laser
pulses in a Raman [341, 342] or Bragg [343, 344] configuration. The effect of gravity leads to a phase
change ∆φ = kgT 2 where k is the effective wave-vector of the light used to split and recombine the
wave packet, g is gravity acceleration, and T is the time of free-fall of the atom between the laser pulses.
This corresponds indeed to the free-fall distance measured in terms of the laser wavelength.

Other schemes were developed to measure g based on Bloch oscillations ( [345] and references
therein). In this case, the atoms are not falling freely under the effect of gravity but the combined
effect of gravity and the periodical potential produced by the laser standing wave leads to oscillations
in momentum space with a frequency νBO = mgλ/2h, where m is the atomic mass, λ is the wavelength
of the laser producing the lattice and h is Planck’s constant. By measuring the frequency of the Bloch
oscillation νBO, g is determined. This method can also be interpreted as the measurement of the
gravitational potential difference between adjacent lattice wells which are separated by λ/2. A few
wells are filled with ultracold atoms so that the gravimeter has a sub-millimiter size down to a few
micrometers. For this reason, it was also proposed as a method to test the 1/r2 Newtonian law for
gravity at micrometric distances [345,346].

Atom interferometers enabled precise measurements of several physical effects; in particular, in
gravitational physics, the measurement of gravity acceleration [342, 347–354], gravity gradient [351,
355–360] and curvature [361, 362], determination of the gravitational constant G [256, 356, 363–368],
investigation of gravity at microscopic distances [345,346,369], search for dark energy and exotic forces
[370,371], applications to geodesy, geophysics, engineering prospecting, inertial navigation [372–374].

In [375], experiments measuring g with different atom interferometry methods [345, 347, 376] were
reinterpreted as measurements of the Einstein’s gravitational redshift, thus claiming an improvement
in precision by 4 orders of magnitude with respect to the Gravity Probe A test reported in [377]. This
paper started a controversy on such an interpretation and on the nature of the phase shift measurement
in an atom interferometer [252,375,378–385].

Atom interferometers and optical atomic clocks were proposed for the detection of gravitational
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waves on ground and in space [386–395] and the first prototypes are presently under construction
[396–398].

Experiments in space based on cold atom sensors were proposed since long [399–402], the required
technology development is in progress [403], and proof-of-principle experiments were recently performed
[404].

After the early observation of free fall of atoms using long beams of potassium and cesium atoms
[405], several experiments have compared the free fall of different atoms to test the WEP, as described
in detail in the following: 85Rb vs 87Rb [406–408], 39K vs 87Rb [409], the bosonic 88Sr vs the fermionic
87Sr [410], atoms in different spin orientations [410, 411]. The relative accuracy of these measure-
ments, reaching so far 10−8 - 10−9, is expected to improve by several orders of magnitude in the near
future thanks to the rapid progress of atom-optical elements based on multi-photon momentum trans-
fer [412, 413] and of large-scale facilities providing a few seconds of free fall during the interferometer
sequence [414–416]. Experiments testing the free fall of anti-hydrogen are in progress [417–419]. WEP
tests with a precision ∼ 10−15 using atom interferometers in space were proposed [399–401].

Concerns have been raised on the potential of atom interferometry for high precision tests of the
WEP [420]. A scheme to overcome these possible limitations was proposed in [421] and experimentally
demonstrated in [422,423].

3.3.2 Atoms vs macroscopic objects

In different experiments, gravity acceleration for atoms has been compared with the one for macroscopic
masses.

Already in the first demonstration of a high-precision atom interferometry gravimeter with Cs atoms,
a classical gravimeter based on a Michelson optical interferometer with a vertical arm containing a
freely falling corner-cube was used for comparison. The atom gravimeter was realized with a Raman
interferometry scheme. An uncertainty of ∆g/g = 3 × 10−9 was achieved with a free-fall time 2T =
320 ms. The comparison between the two gravimeters was interpreted as the demonstration that the
macroscopic glass mirror falls with the same acceleration, to within 7 parts in 109, as the quantum-
mechanical Cs atom [347].

In [257,424], comparisons between a mobile Raman atom gravimeter with 87Rb and classical absolute
gravimeters were performed with comparable uncertainties.

A conceptually different scheme was used in [425]. The experiment was based on Bloch oscillations
of Sr atoms in a vertical optical lattice. In order to increase the sensitivity, in this work a method
to measure the frequency of higher harmonics of the Bloch frequency was adopted. The value of the
acceleration measured with this atomic sensor was compared with the one obtained in the same lab
with a classical FG5 gravimeter. The two values agreed within 140 ppb.

3.3.3 Different isotopes

Experiments were performed testing WEP for different isotopes of an atomic species. Compared to
the experiments discussed in the following in which different atomic species are compared, these are
somehow simpler; the similar masses and nearby transition frequencies make the apparatus and the
control of systematics less complex.

In [406], an atom interferometer based on the diffraction of atoms from standing optical waves
acting as effective absorption gratings was used to compare the two stable isotopes of rubidium, 85Rb
and 87Rb, with a relative accuracy of 1.7× 10−7. In this work, a test for a possible difference of the free
fall acceleration as a function of relative orientation of nuclear and electron spin was also performed
with a differential accuracy of 1.2 × 10−7 by comparing interference patterns for 85Rb atoms in two
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different hyperfine ground states (see sect. 3.3.5). A comparable precision for the differential free fall
measurement of 85Rb and 87Rb was later obtained in [407] using Raman atom interferometry.

About one order of magnitude improvement in precision was obtained in [408]. A four-wave double-
diffraction Raman transition scheme was used for the simultaneous dual-species atom interferometer to
compare 85Rb and 87Rb. The value obtained for the Eötvös parameter is η = (2.8± 3.0× 10−8).

Ongoing experiments in large baseline interferometers aim to a final precision in the 10−15 range
and beyond [414–416]. Limiting factors due to the gravity gradients were discussed [420] and possible
solutions were proposed in [421] and demonstrated in [422, 423]. In [423] the gravity gradient compen-
sation in a long duration and large momentum transfer dual-species interferometer with 85Rb and 87Rb
allowed to reach a relative precision of ∆g/g ≈ 6 × 10−11/shot or 3 × 10−10/

√
Hz that makes such a

WEP test realistically feasible at the 10−14 level.
In [410], the WEP was tested for the bosonic and fermionic isotopes of strontium atoms, namely,

88Sr and 87Sr. As in [425], gravity acceleration for the two isotopes was determined by measuring
the frequency of the Bloch oscillations for the atoms in a vertical optical lattice. By detecting the
coherent delocalization of matter waves induced by an amplitude modulation of the lattice potential at
a frequency corresponding to a multiple of the Bloch frequency, the limit obtained in this work for the
Eötvös parameter is η = (0.2± 1.6× 10−7). As discussed in the following, the results of this experiment
are also relevant as a WEP test for bosons vs fermions and for the search of spin-gravity coupling.

3.3.4 Different atomic species

Recently, experiments were performed to test WEP with different atomic species. This requires the
development of more complex experimental setups and a more difficult control of systematics. The
theoretical framework to interpret the experimental results can be found in Refs. [426–428].

The possibility of a test using rubidium and potassium atoms was discussed in [429]. The first results
were reported in [409]; in this work, 87Rb and 39K were compared using two Raman interferometers.
The result was an Eötvös ratio η = (0.3±5.4×10−7) mainly limited by the quadratic Zeeman effect and
the wave front curvature of the Raman beams. The choice of atomic species in this paper was compared
with others in terms of sensitivity to possible violations of the EP predicted by a dilaton model [426]
and by standard-model extensions [427].

The ongoing activity for a test with rubidium and ytterbium atoms in a 10-m baseline atom inter-
ferometer was discussed in [428] with the goal to reach an Eötvös ratio in the 10−12 − 10−13 range.

3.3.5 Atoms in different quantum states

While it can be argued that some of the experiments with atoms described above are not qualitatively
different from the ones performed with macroscopic classical systems as far as the physics which is tested
is concerned, the experiments described in this section take full advantage of the quantum nature of
the atoms as probes of the gravitational interaction.

• Atoms in different energy eigenstates and in superposition states
The mass-energy relation E = mc2 in special relativity implies that the internal energy of a
system affects its mass. It is then of interest to verify the validity of the equivalence of the inertial
and gravitational mass for systems in different internal quantum states. This was theoretically
discussed in [430,431] and possible experimental tests with atoms in different internal states were
proposed. In particular, the importance of tests involving atoms in superpositions of the internal
energy eigenstates was highlighted because this corresponds to a genuine quantum test. Another
possible experimental test of the quantum formulation of the equivalence principle was proposed
in [432].
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A first experimental test of the equivalence principle in this quantum formulation was reported
in [433]. A Bragg atom interferometer was used to compare the free fall of 87Rb atoms prepared
in two hyperfine states |1〉 = |F = 1,mF = 0〉 and |2〉 = |F = 2,mF = 0〉, and in their coherent
superposition |s〉 = (|1〉 + eiγ|2〉)/

√
2. In order to increase the measurement sensitivity, the

atom interferometer was operated at the 3rd Bragg diffraction order, corresponding to 6!k total
momentum transfer between the atoms and the radiation field.
The comparison of the free-fall acceleration for atoms in the |1〉 and |s〉 states led to the first
experimental upper bound of 5×10−8 for the parameter corresponding to a violation of the WEP
for a quantum superposition state.
Based on models in which WEP violations increase with the energy difference between the internal
levels [426], in this paper the prospect to use states with an energy separation larger than the
hyperfine splitting was also proposed considering optically separated levels in strontium for which
the relevant atom interferometry schemes were already demonstrated [434–436].
The comparison of gravity acceleration for atoms in the |1〉 and |2〉 hyperfine states led to an
Eötvös ratio η1−2 = (1.0± 1.4× 10−9) that corresponds to an improvement by about two orders
of magnitude with respect to the previous limit set in [406]. A further improvement by a factor
of 5 in the precision of this test was recently reported in [437], approaching the 10−10 level.

• Atoms in entangled states
In [438] a quantum test of the WEP with entangled atoms was proposed. In the proposed ex-
periment, a measurement of the differential gravity acceleration between the two atomic species
would be performed by entangling two atom interferometers operating on the two species. The
example of 85Rb and 87Rb was analyzed in detail showing that an accuracy better than 10−7 on
the Eötvös parameter can be achieved.
Although no theoretical model is available predicting a WEP violation in the presence of entan-
glement, this is clearly a case of a purely quantum system to be further investigated.
The free fall of particles in quantum states without a classical analogue and in particular for
Schrödinger cat states in the configuration space was studied theoretically in [439].

• Atoms in different spin states
As discussed above (see in particular Sect. 2.13), spin-gravity coupling and torsion of space-time
were extensively investigated theoretically [6, 440,441].
Different experiments were performed using macroscopic test masses [281, 283, 441], atomic mag-
netometers [442, 443], and by measuring hyperfine resonances in trapped ions [444]. The dif-
ferential free-fall experiments with atoms in different hyperfine states are also relevant in this
frame [406,433,437].
Recently, experiments were performed using atom interferometry to search for the coupling of the
atomic spin with gravity.

In [410], the experimental comparison of the gravitational interaction for the bosonic isotope of
strontium 88Sr, which has zero total spin in its ground state, with that of the fermionic isotope
87Sr, which has a half-integer nuclear spin I = 9/2, was performed based on the measurement of
the frequency of Bloch oscillations for the atoms in a vertical optical lattice under the effect of
Earth’s gravity.
A modified gravitational potential including a possible violation of WEP and the presence of a
spin-dependent gravitational mass was considered in the form Vg,A(z) = (1 + βA + kSz)mAgz,
where mA is the rest mass of the atom, βA is the anomalous acceleration generated by a nonzero
difference between gravitational and inertial mass due to a coupling with a field with nonmetric
interaction with gravity, k is a model-dependent spin-gravity coupling strength, and Sz is the
projection of the atomic spin along gravity direction.

55



As already described above, the Bloch frequency corresponds to the site-to-site energy difference
induced by the gravitational interaction; by measuring the frequency of Bloch oscillations for 88Sr
and 87Sr an Eötvös parameter (0.2 ± 1.6) × 10−7 was obtained. Since the frequency of Bloch
oscillations depends on the mass of the particle, in the analysis of the data the m88/m87 mass
ratio was taken into account which is known with a relative precision ∼ 10−10. The analysis
of the Bloch resonance spectrum for 87Sr provided an upper limit for the spin-gravity coupling
strength k = (0.5± 1.1)× 10−7. This result also sets a bound for an anomalous acceleration and
a spin-gravity coupling for the neutron either as a difference in the gravitational mass depending
on the spin direction or as a coupling to a finite-range interaction [441,442].

In [411], a Mach-Zehnder-type Raman atom interferometer was used to compare the gravity
acceleration of freely-falling 87Rb atoms in different Zeeman sublevels mF = +1 and mF = −1,
corresponding to opposite spin orientations. The experiment required a special care to control the
high sensitivity of these states to magnetic field inhomogeneity. The Eötvös parameter obtained
in this experiment was (0.2± 1.6)× 10−7. The data were also interpreted as providing an upper
limit of 5.4× 10−6 m−2 for a possible gradient field of the spacetime torsion.

In [339], based on recent advances of matter-wave interferometry with large molecules, the prospect
of a test of WEP for molecules with opposite chiralities was proposed.

It should be noted that a complete analysis connecting theoretically the models tested in the
different experiments performed so far in this frame is still missing.

• Atoms in a Bose-Einstein condensate
Possible differences in the gravitational interaction for bosons and fermions were investigated
theoretically [445] and tested experimentally [410].

Violations of the WEP for atoms in a quantum state such as a Bose-Einstein condensate were
discussed in ( [446,447] and references therein). Since in quantum physics particles are described
by an extended wave packet, the validity of the WEP which refers to point-like particles can be
questioned. A model based on spacetime fluctuations allows to predict a possible difference in the
observed free fall for different particles because the different spatial extensions of the wavefunction
of particles of different masses would lead to an averaging of the metric fluctuations over different
spatial volumes. Also, the metric fluctuations would produce decoherence.
Such elusive effects, if ever observable, would require atom interferometers with extremely high
sensitivity, that is, a very long evolution time. For this and other scientific goals, the technol-
ogy needed to perform experiments in microgravity is being developed [300, 401, 404, 448, 449] as
described in detail in the following.

3.3.6 Experiments with atoms in microgravity

The ultimate performance of atomic sensors for WEP tests can be reached in a space-based laboratory.
In space atoms can rely on a very quiet environment where Newtonian noise is absent and microvibra-
tions and non-gravitational accelerations can be reduced to very low levels. Very long and unperturbed
free fall conditions can be obtained, allowing atomic wavepackets to evolve, sense the space-time metric,
and record its signature in their phase. At the same time, very long and unperturbed interaction times
between the atomic ensemble and the interrogation fields can be achieved. This is translating into a
significant increase of the instrument sensitivity and a better control of the systematic errors.

As an example, the phase accumulated in a Mach-Zehnder interferometer, ∆φ = kgT 2, is directly
proportional to the square of the free evolution time T between the three laser pulses of the interfer-
ometry sequence. The typical duration of an atom interferometry sequence on the ground is 2T ≈ 1 s,
which corresponds to a free fall distance of about 10 m in the gravity field of the Earth. In space, both
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the atoms and the instrument platform are in free fall and interrogation times of 2T = 10 s or longer
can be achieved, improving the instrument sensitivity by a factor 100 or more with respect to a similar
instrument operated on the ground.

Achieving a free evolution time of 2T ≈ 10 s on the ground would require an atomic fountain
apparatus with several hundred meters of free-fall length, showing another important aspect of atom-
based sensors designed for space compared to their laboratory counterpart, i.e. the compactness. In
space, atoms interrogation can take place in a small vacuum chamber with a typical size of a few liters.
This volume can be better controlled against external perturbations, such as temperature, magnetic
fields, etc. As an example, the development of large size mu-metal shields to accurately control the
external magnetic field along the free evolution trajectories of a long atomic fountain (10 m or longer)
remains a non negligible technology challenge.

Finally, a technique to counteract the effect of gravity gradients has recently been developed [421]
and experimentally demonstrated [422], reducing to a negligible level one important source of instability
and systematic error in precision measurements by atom interferometry.

STE-QUEST (Space-Time Explorer and QUantum Equivalence Space Test) is a mission designed
to test different aspects of the Einstein Equivalence principle in space [401]. The STE-QUEST sci-
entific objectives include an atom interferometry test of the Weak Equivalence Principle, an absolute
measurement of the Einstein’s gravitational redshift, and tests of Standard Model Extension (SME).
Here, we will only focus on the WEP test. The on-board instrument dedicated to this measurement
is a differential atom interferometer. Originally designed to compare the free fall of the 85 and 87
rubidium isotopes, the instrument has recently been re-adapted to operate on potassium and rubidium
that, due to the larger difference in neutrons and protons, are expected to provide higher sensitivity in
the detection of a WEP violation [450]. The two atomic ensembles would be cooled down to very cold
temperatures (100 pK regime) and simultaneously interrogated in the atom interferometry sequence by
using the double-diffraction technique [451]. The simultaneous interrogation provides rejection ratio of
common mode acceleration noise (e.g. air drag and mechanical vibrations), which can vary from 10−9

for 85Rb-87Rb simultaneous interferometers [403] to < 10−3 for the 87Rb-39K couple. The requirements
on the control of non-gravitational acceleration acting on the spacecraft are therefore very modest for
a 85Rb-87Rb differential interferometer and significantly more stringent for the 87Rb-39K one, but still
well within the available technology as demonstrated in the MICROSCOPE [308] and LISA Pathfinder
missions [310]. A design description of the STE-QUEST differential atom interferometer can be found
in [452]. The expected error budget is presented in [403]. The instrument will be able to measure
differential accelerations down to 8× 10−15ms−2 corresponding to a WEP test at the 1× 10−15 level.

A similar instrument has also been proposed for a WEP test on the International Space Station
(ISS) [453]. The ISS is a harsh environment for what concerns non gravitational accelerations, rotations,
tilt noise, and mechanical vibrations. The instrument is therefore designed to ensure optimal control on
systematic errors and high rejection of common mode effects. The differential accelerometer compares
the free fall acceleration of 85Rb and 87Rb atomic samples in a symmetric configuration with two
separate source regions. Bragg lasers tuned to the wavelength for which the two rubidium isotopes have
the same polarizability are used to simultaneously interrogate the atomic samples in the interferometric
sequence. This approach ensures a very high suppression of laser noise and common mode acceleration
noise. The instrument will be accommodated on a rotating platform to control gravity gradient effects.

The SAGE (Space Atomic Gravity Explorer) mission proposal [402] has the scientific objective to
investigate gravitational waves, dark matter, and other fundamental aspects of gravity such as the WEP
as well as the connection between gravitational physics and quantum physics using optical atomic clocks
and atom interferometers based on ultracold strontium atoms.

Several experiments and test activities are currently in progress to demonstrate the maturity of
atom-based sensors for space operation and to evaluate the ultimate stability and accuracy that can be
reached in differential acceleration measurements for WEP tests.
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In 23 January 2017, the MAIUS-1 experiment was launched in a sounding rocket to a height of
243 km. During the lift-off phase and the 360 min of free-fall conditions, 110 experiments involving
atoms cooling and manipulation were performed. They include laser cooling and trapping of atoms,
observation of the BEC phase transition, BEC transport on the atom chip, and study of BEC collective
oscillations under weightlessness conditions [404]. This experiment demonstrates the building blocks of
future atom interferometry experiments in space.

The Cold Atom Lab (CAL) is a multiuser facility launched to the ISS in 21 May 2018. The CAL
instrument is designed to produce ultracold atomic samples of 39Rb, and 41K [454] down to quantum
degeneracy. In the microgravity environment of the ISS, it is possible to decompress the atomic traps
to very low levels thus achieving ultra-low densities and picokelvin temperatures. The experiment will
test different atomic sources for atom interferometry in weightlessness conditions.

Significant progress has also been achieved by making use of microgravity facilities available on the
ground, in particular the Bremen drop tower and the zero-gravity parabolic airplane.

Mach-Zehnder interferometry experiments on a Bose-Einstein condensate have been performed in
the Bremen drop tower [455]. The drop tower capsule was operated both in drop and catapult mode,
providing a free fall duration of 4.7 s and 9.4 s, respectively. The atom interferometer could then
demonstrate a shot-noise limited resolution of 6.2× 10−11 ms−2 in the drop mode and 5.5× 10−12 ms−2

in the catapult mode. With this performance, a sensitivity of a few parts in 1013 for a WEP test should
be possible in less than 100 drops (also see [447]). Unfortunately, the study of systematic effects of a
WEP test would result very unpractical in the drop tower facility.

A WEP test on 87Rb and 39K has been performed in the microgravity conditions of an airplane
in parabolic flight. The Eötvös ratio was measured to 3.0 × 10−4, limited by the noisy acceleration
environment (10−2g Hz−1/2). This result, certainly not competitive with respect to other WEP tests,
remains important as it demonstrates the possibility of using correlated interference fringes to perform
a WEP test with an accuracy two orders of magnitude below the level of ambient vibration noise. The
experiment could therefore confirm the expected rejection to common mode vibration for a 87Rb-39K
differential interferometer [429,456].

3.3.7 Tests with neutrons

As for the atoms, the first low-precision measurements of gravity acceleration for neutrons were per-
formed by measuring the drop of collimated beams of thermal neutrons [457, 458]. They were also
interpreted as tests of the universality of free fall. In [458], a test of a possible dependence of neutron
acceleration on the two vertical neutron-spin projections ±1

2
was performed finding no difference within

the experimental sensitivity.

After the first observation of gravitationally induced interference in a neutron interferometer [459],
tests of WEP were performed using neutron interferometers reaching a precision of 10−3 [460, 461], an
accelerated interferometer [462], and by a slow neutron gravity refractometer with a quoted relative
uncertainty of 3× 10−4 [463,464].

More recently, gravity acceleration for neutrons was measured with a cold neutron interferometer
[465] and with a spin-echo spectrometer [466] with a relative precision of 10−3.

In [467] prospects to achieve a relative precision ∆g/g ∼ 10−5 using a three phase-grating moiré
large area neutron interferometer were discussed proposing also a measurement of the value of the grav-
itational constant G with neutrons.
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3.3.8 Tests with antimatter and with charged particles

In principle, gravitation for antimatter may obey different laws than for ordinary matter. Measuring
and comparing the gravitational properties of matter and antimatter may probe different aspects of
SME [250] and quantum vacuum [468]. Theoretical considerations based on energy conservation in the
gravitational field and on arguments from QFT constrain the validity of the WEP for antimatter up to
an accuracy of 10−14 [469,470]. Nevertheless, these arguments are indirect and need some experimental
validation by comparing the effect of gravity on antiparticles on and their corresponding ordinary matter
particles.

Experiments to test gravity on elementary particles and antiparticles were proposed and developed
since the 1960’s. Electrically charged antiparticles (e.g. positrons and antiprotons) can be either
observed in beams under free fall conditions, or trapped within a combination of magnetic and electric
fields, as in Penning traps [471]. In 1967 Witteborn and Fairbank observed the time-of-flight distribution
of electrons and positrons in free fall inside a drift tube. Two decades later, an experiment was performed
at the CERN Low Energy Antiproton Ring to measure the gravitational acceleration of antiprotons [472].
p̄ were collected and cooled in a Penning trap, then released in a vertical drift tube. However both
freely falling and trap-based systems of charged antiparticles are affected by errors from residual stray
electric and magnetic fields [473] which make any gravitational measurement extremely difficult. The
static electric field mg/q required to compensate gravity acceleration is only 56 pV/m for positrons, and
about 100 nV/m for antiprotons. Even in case of perfect shielding from stray fields, the gravitational
sag of electrons in a drift tube produces charge density anisotropies resulting in a electric forces of the
same order of gravity [474]. WEP tests with electrons under weightless conditions have been proposed
to get rid of gravity-induced electric fields [231]. On the other hand, current experiments to test
WEP on anti-matter are focusing on neutral systems such as positronium [475], muonium [340, 476],
antihydrogen [417, 477–480], and on particle-antiparticle pairs [481], for which the effect of stray fields
is strongly suppressed.

The first evidence of antihydrogen was achieved at the European Organization for Nuclear Research
(CERN) in 1995 [482] and confirmed two years later at Fermilab [483]. The recombination of electron-
positron pairs produced from the collision of relativistic antiprotons with Xenon targets formed H̄ atoms
at relativistic energies, unsuitable for precision measurements. A breakthrough occurred when H̄ at
thermal energies (few hundreds K) was first produced in 2002 by the ATHENA experiment [484], via
three-body reaction by mixing trapped antiprotons (p̄) with positrons (e+) at low energies. This result,
shortly followed by a similar achievement from the ATRAP experiment [485] opened the possibility to
test WEP on neutral antimatter.

However the gravitational force is so weak that a WEP experiment requires further cooling of anti-
matter down to cryogenic temperatures. Several second-generation experiments with antimatter have
been then developed at CERN, where the only intense source of low energy antiprotons is available
worldwide, i.e. the Antiproton Decelerator (AD) currently under upgrade to Extra Low ENergy An-
tiproton ring (ELENA). Such experiments must face several challenges. Neutral antimatter particles
are produced from their charged constituents. This requires complex experiments combining advanced
methods from high-energy physics for particle beams optics and detectors, with advanced methods for
ion trapping and atom optics. Moreover neutral antiparticles are produced at much lower rates and at
much higher temperatures than in the typical quantum sensors described in section 3.3. The various
experiments at AD developed different methods to produce H̄ at rates and temperatures suited for
precision measurements.

The ALPHA experiment, designed to perform high resolution spectroscopy on H̄, generates anti-
hydrogen by three-body recombination between trapped, evaporatively cooled antiprotons and trapped
positrons. The low-energy tail of the H̄ distribution is captured in a magnetic trap at a rate of about
10 atoms on cycles of 4 minutes [486]. ALPHA performed a preliminary measurement of the Earths
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gravitational effect on magnetically trapped H̄. The resulting gravitational acceleration of H̄ was
constrained to within 100 times the g value for matter [487].

The GBAR experiment aims to generate ultracold antihydrogen through the anti-ion H̄+ [477,478].
The H̄+ ion is produced via two cascaded charge exchange processes from the interaction of p̄ with
a positronium target, then of the generated H̄ with the same target. H̄+ ion can be sympathetically
cooled with laser cooled Be+ ions down to µK temperatures. The excess positron can then be laser
detached in order to recover the neutral H̄ with very low temperature. A high-intensity positron source
has been developed for H̄+ production.

The projects Antimatter Experiment: Gravity, Interferometry, Spectroscopy (AEgIS) [417], which
is operating since 2012, has been designed to measure the gravitational acceleration with matter-wave
interferometry on a pulsed H̄ beam at sub-kelvin temperatures. In AEgIS, antihydrogen atoms are pro-
duced via a charge exchange reaction between Rydberg-excited positronium atoms and cold antiprotons
within an electromagnetic trap. The resulting Rydberg antihydrogen atoms will be horizontally accel-
erated by an electric field gradient (Stark effect), then they will pass through a moiré deflectometer.
The vertical deflection caused by the Earth’s gravitational field will provide a Weak Equivalence Prin-
ciple test for antimatter. Detection will be undertaken via a position sensitive detector. Around 103

antihydrogen atoms are needed for the gravitational measurement to be completed. The generation of
antihydrogen via charge-exchange process was already demonstrated in the ATRAP experiment [488],
where Ps were excited toward a Rydberg state by collisions with laser-excited cesium atoms. AEgIS
rather plans to directly laser excite positronium.

An alternative to testing UFF on bound antimatter systems is the search for mass differences on
particle-antiparticle pairs. In particular, neutral kaon is the only system where particle-antiparticle
differences are detected; this is explained as arising from CP-violating terms in the K0 − K̄0 mass
matrix. In [481] upper limits on possible K0 − K̄0 mass difference were determined from the analysis
of data on tagged K0 and K̄0 decays into π+π− from the CPLEAR experiment over three years. The
results are in agreement with the Equivalence Principle to a level of 6.5, 4.3 and 1.8×10−9 respectively,
for scalar, vector and tensor potentials originating from the Sun. Such determination of mass difference
for kaon is ten orders of magnitude more precise than for p− p̄ [489].

High precision gravity measurements will require the application of interferometric methods. While
the most precise quantum sensors are based on light pulse matter-wave interferometry, see section 3.3,
such method is not readily applied on antimatter systems. This is mostly due to the comparably
high temperatures currently achievable and to the extremely short wavelength of resonance optical
transitions in H̄ and in ps. Inertial sensing with Talbot-Lau interferometry [490] allows to work with
low-intensity, weakly coherent beams. This method has been recently demonstrated on a beam of low
energy positrons [491].

4 Conclusions and outlook

General Relativity and metric theories of gravity are based on the validity of the Equivalence Principle,
according to which the gravitational acceleration is (locally) indistinguishable from acceleration caused
by mechanical (apparent) forces. The consequence of the Equivalence Principle is that gravitational
mass is equal to inertial mass, mg = mI . This identity was already pointed out by Galileo and Newton,
but Einstein recognizes it as a fundamental aspect involving also accelerations and forces and then
elevating it to a principle. Equivalence Principle allowed Einstein to construct a theory capable of
explaining gravity and acceleration under the same physical standard. Based on this assumption,
he stated the following fundamental postulated: in a free falling frame, all non-gravitational laws
of physics (hence not only the mechanical ones) behave as if gravity was absent. More generally,
Equivalence Principle asserts that objects with different (internal) composition are subject to the same

60



acceleration when moving in a gravitational field. This new principle of nature led Einstein to the
revolutionary interpretation of gravitation: gravity can be described as a curvature effect of space-time.
as a consequence, the Einstein Equivalence Principle plays a crucial role in all metric theories of gravity,
as well as in the Standard Model of particle physics which is not in conflict with GR.

As we have seen in this review, the Equivalence Principle essentially encodes the local Lorentz invari-
ance (clock rates are independent of the clocks velocities), the local position invariance (the universality
of red-shift) and the universality of free fall (all free falling point particles follow the same trajectories
independently of their internal structure and composition). The first to two principle, i.e. the Lorentz
and position invariance, are hence related to the local properties of physics, so that they can be tested
by using atomic clocks and measurements of spectroscopy, while the third one, the universality of free
falling point-like particles, can be tested by tracking trajectories, hence freely falling test masses as
discussed in the experimental part of this Review paper.

The Equivalence Principle can be formulated in two different forms: the weak and the strong form.
The weak form of the Equivalence Principle states that the gravitational properties of the interaction

of particle physics of the Standard Model, hence the strong and electro-weak interactions, obey the EP.
As we have pointed out, the equality mg = mi implies that, in an external gravitational field, different
(and neutral) test particles undergo to the same free fall acceleration, and in a free falling inertial frame
only tidal forces may appear (apart the latter, free falling bodies behave as if the gravity is absent).
However, it is worth noticing that in many extensions of the Standard Model, new interactions (quantum
exchange forces) are introduced, and, in general, they may violate the weak equivalence principle owing
to the coupling with generalized charges, rather than mass/energy as happens in gravity.

The second form, the strong Equivalence Principle, is such that it extends the weak one including
the gravitational energy. In GR, the strong Equivalence Principle is fulfilled thanks to the gravitational
stress-energy tensor, while it can be violated in some extension of GR (as, for example, scalar tensor
theories discussed above where a scalar field is present in the gravitational interaction and can be
non-minimally coupled with geometry).

As a final remark, an important issue has to be discussed. It is related to the parameterized
post-Newtonian (PPN) formalism [1, 492] and the Equivalence Principle. In a nutshell, the PPN ap-
proximation is a method for obtaining the motion of the system in terms of higher powers of the small
parameters (gravitational potential and velocity square) with respect the ones given by Newtonian
mechanics. The relevant aspect is that this formalism allows to describe the motion of Mq celestial
bodies that is common to many theories of gravity. The acceleration of a body can be written in the
form r̈p = r̈GR

p + δr̈PPN
p , where r̈GR

p is the usual acceleration derived in GR, while r̈PPN
p is the PPN

corrections [1, 492]

r̈PPN
p =

&

q ∕=p

GMq(rq − rp)

|rq − rp|3

EA-
Mg

MI

.

q

− 1
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− 2(β + γ − 2)
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&

r ∕=p
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− 2(β − 1)
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+
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|rp − rq|

-
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[(rp − rq) · (ṙp − ṙq)](ṙp − ṙq)
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.

Some comments are in order: 1 ) The correction r̈PPN
p vanishes in the case of GR, that is when the

PPN parameter γ and β assume the values: γ = 1 = β. 2 ) The expression for r̈PPN
p does contain the

variation of the gravitational constant G, the Ġ/G-term, typical of scalar tensor theories of gravity; 3 )

In r̈PPN
p a term related to the strong equivalence principle appears, i.e.

;
Mg

MI

<
− 1, which is typically

expressed in the form
;
Mg

MI

<
= 1 + η

'
E

mc2

(
, where the parameter η, depending on PPN parameters as

η = 4β − γ − 3, encodes deviations from GR, and it is therefore related to the violation of the strong
Equivalence Principle (η = 0 in GR), while m and E are the mass and gravitational self-energy of the
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body, respectively. Taking, for example, a uniform sphere of radius R one gets

-
E

mc2

.
= − G

2mc2

1
d3x d3x′ρ(x)ρ(x

′)

|x− x′| = −3

5

GM

c2R
. (100)

This relation shows that, for Solar System it is
*

E
mc2

+
⊙ ∼ 10−6, while for bodies of lab test one gets*

E
mc2

+
lab

∼ 10−25. This suggests that planet-size bodies are required for testing the strong Equivalence
Principle with a certain confidence level.

Finally, we discussed the possibility to violate the Equivalence Principle considering systems at fi-
nite temperature. Although the Equivalence Principle asserts (in the weak form) that the gravitational
acceleration is identical for all bodies, i.e. mI = mg, the latter equality can be violated in quantum field
theory considering a finite temperature framework. In fact, as shown in a series of seminal papers [232],
a fraction of the mass of a particle arises through the finite-temperature component of the radiative
corrections. This result is a consequence of the Lorentz non-invariance of the finite temperature vac-
uum. According to this result, theories at finite temperature could be the straightforward way to test
Equivalence Principle at fundamental quantum level.

In conclusion, various issues in modern physics, both from gravitational and particle physics sectors,
predict violations of the Equivalence Principle. Given the importance of this question, the experimental
challenge is to look for frameworks where possible violations could manifest. Besides, one has to improve
the limits of experimental tests. As we have shown in this review, matching experiments from laboratory
and satellites is an important complement to probing fundamental physics at very high precision level,
and, in turn, possible results could open new and unexpected scenarios.
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[3] E. Kretschmann, Über den Physikalischen Sinn der Relativitätspostulate, Annalen Der Physik 53
(1917) 575–614.

[4] M. Ferraris, J. Kijowski, On the equivalence of the relativistic theories of gravitation, Gen. Rel.
Grav. 14 (1982) 165–180. doi:10.1007/BF00756921.

[5] S. Capozziello, G. Lambiase, New Adv. in Physics 7 (2013) 13.

[6] S. Capozziello, M. De Laurentis, Extended Theories of Gravity, Phys. Rept. 509 (2011) 167–321.
arXiv:1108.6266, doi:10.1016/j.physrep.2011.09.003.

62



[7] S. Weinberg, Gravitation and Cosmology, John Wiley and Sons, New York, 1972.

[8] A. H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flat-
ness Problems, Phys. Rev. D23 (1981) 347–356, [Adv. Ser. Astrophys. Cosmol.3,139(1987)].
doi:10.1103/PhysRevD.23.347.

[9] S. Capozziello, V. Faraoni, Beyond Einstein Gravity, Vol. 170, Springer, Dordrecht, 2011.
doi:10.1007/978-94-007-0165-6.

[10] K. Godel, An Example of a new type of cosmological solutions of Einstein’s field equations of
graviation, Rev. Mod. Phys. 21 (1949) 447–450. doi:10.1103/RevModPhys.21.447.

[11] E. S. I. Ozsvath, Recent Developments in General Relativity, Pergamon, New York, 1962.

[12] M. Bondi, Cosmology, Cambridge University Press, Cambridge, 1952.

[13] C. Brans, R. H. Dicke, Mach’s principle and a relativistic theory of gravitation, Phys. Rev. 124
(1961) 925–935. doi:10.1103/PhysRev.124.925.

[14] S. Capozziello, R. De Ritis, C. Rubano, P. Scudellaro, Noether symmetries in cosmology, Riv.
Nuovo Cim. 19N4 (1996) 1–114. doi:10.1007/BF02742992.

[15] D. W. Sciama, On the origin of inertia, Mon. Not. Roy. Astron. Soc. 113 (1953) 34.

[16] N. D. Birrell, P. C. W. Davies, Quantum Fields in Curved Space, Cambridge Univ. Press, Cam-
bridge, UK, 1984.

[17] G. A. Vilkovisky, Effective action in quantum gravity, Class. Quant. Grav. 9 (1992) 895–903.
doi:10.1088/0264-9381/9/4/008.

[18] M. Gasperini, G. Veneziano, O(d,d) covariant string cosmology, Phys. Lett. B277 (1992) 256–264.
arXiv:hep-th/9112044, doi:10.1016/0370-2693(92)90744-O.

[19] G. Magnano, M. Ferraris, M. Francaviglia, Nonlinear gravitational Lagrangians, Gen. Rel. Grav.
19 (1987) 465. doi:10.1007/BF00760651.

[20] A. A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Phys.
Lett. B91 (1980) 99–102. doi:10.1016/0370-2693(80)90670-X.

[21] J. P. Duruisseau, R. Kerner, The Effective Gravitational Lagrangian and the Energy Momentum
Tensor in the Inflationary Universe, Class. Quant. Grav. 3 (1986) 817–824. doi:10.1088/0264-
9381/3/5/012.

[22] P. Teyssandier, P. Tourrenc, The Cauchy problem for the R + R2 theories of gravity without
torsion, J. Math. Phys. 24 (1983) 2793. doi:10.1063/1.525659.

[23] K. Maeda, Towards the Einstein-Hilbert Action via Conformal Transformation, Phys. Rev. D39
(1989) 3159. doi:10.1103/PhysRevD.39.3159.

[24] D. Wands, Extended gravity theories and the Einstein-Hilbert action, Class. Quant. Grav. 11
(1994) 269–280. arXiv:gr-qc/9307034, doi:10.1088/0264-9381/11/1/025.

[25] L. Amendola, A. Battaglia Mayer, S. Capozziello, F. Occhionero, S. Gottlober, V. Muller, H. J.
Schmidt, Generalized sixth order gravity and inflation, Class. Quant. Grav. 10 (1993) L43–L47.
doi:10.1088/0264-9381/10/5/001.

63



[26] A. Battaglia Mayer, H. J. Schmidt, The de Sitter space-time as attractor solution in eighth order
gravity, Class. Quant. Grav. 10 (1993) 2441–2446. doi:10.1088/0264-9381/10/11/026.

[27] H. J. Schmidt, Variational derivatives of arbitrarily high order and multiinflation cosmological
models, Class. Quant. Grav. 7 (1990) 1023–1031. doi:10.1088/0264-9381/7/6/011.

[28] S. Capozziello, S. Nojiri, S. D. Odintsov, A. Troisi, Cosmological viability of f(R)-gravity as an
ideal fluid and its compatibility with a matter dominated phase, Phys. Lett. B639 (2006) 135–143.
arXiv:astro-ph/0604431, doi:10.1016/j.physletb.2006.06.034.

[29] L. Amendola, S. Capozziello, M. Litterio, F. Occhionero, Coupling first order phase transitions
to curvature squared inflation, Phys. Rev. D45 (1992) 417–425. doi:10.1103/PhysRevD.45.417.

[30] R. Stompor, et al., Cosmological implications of the MAXIMA-I high resolution cosmic microwave
background anisotropy measurement, Astrophys. J. 561 (2001) L7–L10. arXiv:astro-ph/0105062,
doi:10.1086/324438.

[31] D. N. Spergel, et al., First year Wilkinson Microwave Anisotropy Probe (WMAP) observations:
Determination of cosmological parameters, Astrophys. J. Suppl. 148 (2003) 175–194. arXiv:astro-
ph/0302209, doi:10.1086/377226.

[32] T. Padmanabhan, Gravity and the thermodynamics of horizons, Phys. Rept. 406 (2005) 49–125.
arXiv:gr-qc/0311036, doi:10.1016/j.physrep.2004.10.003.

[33] E. J. Copeland, M. Sami, S. Tsujikawa, Dynamics of dark energy, Int. J. Mod. Phys. D15 (2006)
1753–1936. arXiv:hep-th/0603057, doi:10.1142/S021827180600942X.

[34] A. Yu. Kamenshchik, U. Moschella, V. Pasquier, An Alternative to quintessence, Phys. Lett. B511
(2001) 265–268. arXiv:gr-qc/0103004, doi:10.1016/S0370-2693(01)00571-8.

[35] T. Padmanabhan, Accelerated expansion of the universe driven by tachyonic matter, Phys. Rev.
D66 (2002) 021301. arXiv:hep-th/0204150, doi:10.1103/PhysRevD.66.021301.

[36] B. A. Bassett, M. Kunz, D. Parkinson, C. Ungarelli, Condensate cosmology - Dark
energy from dark matter, Phys. Rev. D68 (2003) 043504. arXiv:astro-ph/0211303,
doi:10.1103/PhysRevD.68.043504.

[37] A. Lue, R. Scoccimarro, G. Starkman, Differentiating between modified gravity and dark energy,
Phys. Rev. D69 (2004) 044005. arXiv:astro-ph/0307034, doi:10.1103/PhysRevD.69.044005.

[38] K. Freese, M. Lewis, Cardassian expansion: A Model in which the universe is flat, matter domi-
nated, and accelerating, Phys. Lett. B540 (2002) 1–8. arXiv:astro-ph/0201229, doi:10.1016/S0370-
2693(02)02122-6.

[39] G. R. Dvali, G. Gabadadze, M. Porrati, 4-D gravity on a brane in 5-D Minkowski space, Phys.
Lett. B485 (2000) 208–214. arXiv:hep-th/0005016, doi:10.1016/S0370-2693(00)00669-9.

[40] S. Capozziello, V. F. Cardone, E. Piedipalumbo, M. Sereno, A. Troisi, Matching torsion Lambda
- term with observations, Int. J. Mod. Phys. D12 (2003) 381–394. arXiv:astro-ph/0209610,
doi:10.1142/S0218271803003074.

[41] O. Bertolami, C. G. Boehmer, T. Harko, F. S. N. Lobo, Extra force in f(R) modified theories of
gravity, Phys. Rev. D75 (2007) 104016. arXiv:0704.1733, doi:10.1103/PhysRevD.75.104016.

64



[42] S. Capozziello, G. Lambiase, The emission of Gamma Ray Bursts as a test-bed for modified
gravity, Phys. Lett. B750 (2015) 344–347. arXiv:1504.03900, doi:10.1016/j.physletb.2015.09.048.

[43] S. Capozziello, G. Lambiase, M. Sakellariadou, A. Stabile, Constraining models of extended
gravity using Gravity Probe B and LARES experiments, Phys. Rev. D91 (4) (2015) 044012.
arXiv:1410.8316, doi:10.1103/PhysRevD.91.044012.

[44] G. Lambiase, A. Stabile, A. Stabile, Casimir effect in Extended Theories of Gravity, Phys. Rev.
D95 (8) (2017) 084019. arXiv:1611.06494, doi:10.1103/PhysRevD.95.084019.

[45] M. Blasone, G. Lambiase, L. Petruzziello, A. Stabile, Casimir effect in Post-Newtonian
Gravity with Lorentz-violation, Eur. Phys. J. C78 (11) (2018) 976. arXiv:1808.04425,
doi:10.1140/epjc/s10052-018-6464-y.

[46] L. Buoninfante, G. Lambiase, L. Petruzziello, A. Stabile, Casimir effect in quadratic theories of
gravity, Eur. Phys. J. C79 (1) (2019) 41. arXiv:1811.12261, doi:10.1140/epjc/s10052-019-6574-1.

[47] J. Ehlers, P. Schneider, Gravitational lensing, in: Proceedings, 13th International Conference on
General Relativity and Gravitation: Cordoba, Argentina, June 28-July 4, 1992, 1993, pp. 21–40.

[48] L. M. Krauss, Implications of the WMAP age measurement for stellar evolution and dark energy,
Astrophys. J. 596 (2003) L1–L3. arXiv:astro-ph/0305556, doi:10.1086/379030.

[49] L. M. Sokolowski, Physical Versions of Nonlinear Gravity Theories and Positivity of Energy, Class.
Quant. Grav. 6 (1989) 2045. doi:10.1088/0264-9381/6/12/029.

[50] M. Ferraris, M. Francaviglia, G. Magnano, Do non-linear metric theories of gravitation really
exist?, Class. Quant. Grav. 5 (1988) L95. doi:10.1088/0264-9381/5/6/002.

[51] R. H. Dicke, Mach’s principle and invariance under transformation of units, Phys. Rev. 125 (1962)
2163–2167. doi:10.1103/PhysRev.125.2163.

[52] V. Faraoni, Matter instability in modified gravity, Phys. Rev. D74 (2006) 104017. arXiv:astro-
ph/0610734, doi:10.1103/PhysRevD.74.104017.

[53] V. Faraoni, S. Nadeau, The (pseudo)issue of the conformal frame revisited, Phys. Rev. D75 (2007)
023501. arXiv:gr-qc/0612075, doi:10.1103/PhysRevD.75.023501.

[54] D. N. Vollick, 1/R Curvature corrections as the source of the cosmological acceleration, Phys.
Rev. D68 (2003) 063510. arXiv:astro-ph/0306630, doi:10.1103/PhysRevD.68.063510.

[55] X.-H. Meng, P. Wang, Gravitational potential in Palatini formulation of modified gravity, Gen.
Rel. Grav. 36 (2004) 1947–1954. arXiv:gr-qc/0311019, doi:10.1023/B:GERG.0000036052.81522.fe.

[56] G. Allemandi, M. Capone, S. Capozziello, M. Francaviglia, Conformal aspects of Palatini ap-
proach in extended theories of gravity, Gen. Rel. Grav. 38 (2006) 33–60. arXiv:hep-th/0409198,
doi:10.1007/s10714-005-0208-7.

[57] E. Schrodinger, Space-Time Structure, Cambridge University Press, 2011.

[58] O. Klein, On the Theory of Charged Fields, Surveys High Energ. Phys. 5 (1986) 269–285.
doi:10.1080/01422418608228775.

65



[59] C. Itzykson, J. B. Zuber, Quantum Field Theory, International Series In Pure and Applied Physics,
McGraw-Hill, New York, 1980.
URL http://dx.doi.org/10.1063/1.2916419

[60] A. A. Tseytlin, On singularities of spherically symmetric backgrounds in string theory, Phys. Lett.
B363 (1995) 223–229. arXiv:hep-th/9509050, doi:10.1016/0370-2693(95)01228-7.

[61] W. Siegel, Stringy gravity at short distancesarXiv:hep-th/0309093.

[62] T. Biswas, E. Gerwick, T. Koivisto, A. Mazumdar, Towards singularity and ghost
free theories of gravity, Phys. Rev. Lett. 108 (2012) 031101. arXiv:1110.5249,
doi:10.1103/PhysRevLett.108.031101.

[63] T. Biswas, A. Mazumdar, W. Siegel, Bouncing universes in string-inspired gravity, JCAP 0603
(2006) 009. arXiv:hep-th/0508194, doi:10.1088/1475-7516/2006/03/009.

[64] L. Buoninfante, A. S. Koshelev, G. Lambiase, A. Mazumdar, Classical properties of non-
local, ghost- and singularity-free gravity, JCAP 1809 (09) (2018) 034. arXiv:1802.00399,
doi:10.1088/1475-7516/2018/09/034.

[65] L. Buoninfante, A. S. Koshelev, G. Lambiase, J. Marto, A. Mazumdar, Conformally-flat, non-
singular static metric in infinite derivative gravity, JCAP 1806 (06) (2018) 014. arXiv:1804.08195,
doi:10.1088/1475-7516/2018/06/014.

[66] L. Buoninfante, G. Lambiase, A. Mazumdar, Ghost-free infinite derivative quantum field theory,
Nucl. Phys. B944 (2019) 114646. arXiv:1805.03559, doi:10.1016/j.nuclphysb.2019.114646.

[67] L. Buoninfante, A. S. Cornell, G. Harmsen, A. S. Koshelev, G. Lambiase, J. Marto, A. Mazumdar,
Towards nonsingular rotating compact object in ghost-free infinite derivative gravity, Phys. Rev.
D98 (8) (2018) 084041. arXiv:1807.08896, doi:10.1103/PhysRevD.98.084041.

[68] W. G. Unruh, Experimental black hole evaporation, Phys. Rev. Lett. 46 (1981) 1351–1353.
doi:10.1103/PhysRevLett.46.1351.

[69] M. Visser, Acoustic black holes: Horizons, ergospheres, and Hawking radiation, Class. Quant.
Grav. 15 (1998) 1767–1791. arXiv:gr-qc/9712010, doi:10.1088/0264-9381/15/6/024.

[70] M. Novello, M. Visser, G. Volovik (Eds.), Artificial black holes, 2002.

[71] C. Barcelo, S. Liberati, M. Visser, Analogue gravity, Living Rev. Rel. 8 (2005) 12, [Living Rev.
Rel.14,3(2011)]. arXiv:gr-qc/0505065, doi:10.12942/lrr-2005-12.

[72] F. Girelli, S. Liberati, L. Sindoni, Gravitational dynamics in Bose Einstein condensates, Phys.
Rev. D78 (2008) 084013. arXiv:0807.4910, doi:10.1103/PhysRevD.78.084013.

[73] T. Kaluza, Zum Unittsproblem der Physik, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math.
Phys.) 1921 (1921) 966–972, [Int. J. Mod. Phys.D27,no.14,1870001(2018)]. arXiv:1803.08616,
doi:10.1142/S0218271818700017.

[74] M. J. Duff, Kaluza-Klein theory in perspective, in: The Oskar Klein centenary. Proceedings,
Symposium, Stockholm, Sweden, September 19-21, 1994, 1994, pp. 22–35. arXiv:hep-th/9410046.

[75] J. M. Overduin, P. S. Wesson, Kaluza-Klein gravity, Phys. Rept. 283 (1997) 303–380. arXiv:gr-
qc/9805018, doi:10.1016/S0370-1573(96)00046-4.

66



[76] A. Salam, J. A. Strathdee, On Kaluza-Klein Theory, Annals Phys. 141 (1982) 316–352.
doi:10.1016/0003-4916(82)90291-3.

[77] V. H. Satheesh Kumar, P. K. Suresh, Understanding gravity: Some extra dimen-
sional perspectives, ISRN Astron. Astrophys. 2011 (2011) 131473. arXiv:gr-qc/0605152,
doi:10.5402/2011/131473.

[78] O. Klein, The Atomicity of Electricity as a Quantum Theory Law, Nature 118 (1926) 516.
doi:10.1038/118516a0.

[79] J. Ponce de Leon, The Equivalence principle in Kaluza-Klein gravity, Int. J. Mod. Phys. D18
(2009) 251–273. arXiv:gr-qc/0703094, doi:10.1142/S0218271809014418.

[80] N. D. Birrell, P. C. W. Davies, Conformal Symmetry Breaking and Cosmological Particle Creation
in λφ4 Theory, Phys. Rev. D22 (1980) 322. doi:10.1103/PhysRevD.22.322.

[81] B. L. Nelson, P. Panangaden, Scaling behavior on interacting quantum fields in curved space-time,
Phys. Rev. D25 (1982) 1019–1027. doi:10.1103/PhysRevD.25.1019.

[82] L. H. Ford, D. J. Toms, Dynamical Symmetry Breaking Due to Radiative Corrections in Cosmol-
ogy, Phys. Rev. D25 (1982) 1510. doi:10.1103/PhysRevD.25.1510.

[83] L. H. Ford, Cosmological constant damping by unstable scalar fields, Phys. Rev. D35 (1987) 2339.
doi:10.1103/PhysRevD.35.2339.

[84] B. Allen, Phase Transitions in de Sitter Space, Nucl. Phys. B226 (1983) 228–252.
doi:10.1016/0550-3213(83)90470-4.

[85] K. Ishikawa, Gravitational effect on effective potential, Phys. Rev. D28 (1983) 2445.
doi:10.1103/PhysRevD.28.2445.

[86] L. F. Abbott, Gravitational Effects on the SU(5) Breaking Phase Transition for a Coleman-
Weinberg Potential, Nucl. Phys. B185 (1981) 233–238. doi:10.1016/0550-3213(81)90374-6.

[87] T. Futamase, T. Rothman, R. Matzner, Behavior of Chaotic Inflation in Anisotropic Cosmologies
With Nonminimal Coupling, Phys. Rev. D39 (1989) 405–411. doi:10.1103/PhysRevD.39.405.

[88] V. Faraoni, Nonminimal coupling of the scalar field and inflation, Phys. Rev. D53 (1996) 6813–
6821. arXiv:astro-ph/9602111, doi:10.1103/PhysRevD.53.6813.

[89] V. Faraoni, Cosmology in scalar tensor gravity, Vol. 139, 2004. doi:10.1007/978-1-4020-1989-0.

[90] X.-l. Chen, R. J. Scherrer, G. Steigman, Extended quintessence and the primordial helium abun-
dance, Phys. Rev. D63 (2001) 123504. arXiv:astro-ph/0011531, doi:10.1103/PhysRevD.63.123504.

[91] S. Sonego, V. Faraoni, Coupling to the curvature for a scalar field from the equivalence principle,
Class. Quant. Grav. 10 (1993) 1185–1187. doi:10.1088/0264-9381/10/6/015.

[92] A. A. Grib, E. A. Poberii, On the difference between conformal and minimal couplings in general
relativity, Helv. Phys. Acta 68 (1995) 380–395.

[93] A. A. Grib, W. A. Rodrigues, On the problem of conformal coupling in field theory in curved
space-time, Grav. Cosmol. 1 (1995) 273–276.

67



[94] S. Deser, R. I. Nepomechie, Gauge Invariance Versus Masslessness in De Sitter Space, Annals
Phys. 154 (1984) 396. doi:10.1016/0003-4916(84)90156-8.

[95] V. Faraoni, E. Gunzig, Einstein frame or Jordan frame?, Int. J. Theor. Phys. 38 (1999) 217–225.
arXiv:astro-ph/9910176, doi:10.1023/A:1026645510351.

[96] T. P. Sotiriou, V. Faraoni, S. Liberati, Theory of gravitation theories: A No-progress report, Int.
J. Mod. Phys. D17 (2008) 399–423. arXiv:0707.2748, doi:10.1142/S0218271808012097.

[97] I. L. Buchbinder, S. D. Odintsov, Renormalization group equation for the vacuum energy of a
scalar field in curved space-time, Sov. Phys. J. 26 (1983) 721–725. doi:10.1007/BF00898882.

[98] I. L. Buchbinder, S. D. Odintsov, Asymptotical conformal invariance in curved space-time, Lett.
Nuovo Cim. 42 (1985) 379–381. doi:10.1007/BF02747058.

[99] T. Muta, S. D. Odintsov, Model dependence of the nonminimal scalar graviton effec-
tive coupling constant in curved space-time, Mod. Phys. Lett. A6 (1991) 3641–3646.
doi:10.1142/S0217732391004206.

[100] E. Elizalde, S. D. Odintsov, Renormalization group improved effective potential for finite grand
unified theories in curved space-time, Phys. Lett. B333 (1994) 331–336. arXiv:hep-th/9403132,
doi:10.1016/0370-2693(94)90151-1.

[101] I. L. Buchbinder, S. D. Odintsov, I. L. Shapiro, Effective action in quantum gravity, Bristol, UK,
1992.

[102] M. Reuter, Nonminimal gravitational coupling of scalar bound states, Phys. Rev. D49 (1994)
6379–6384. doi:10.1103/PhysRevD.49.6379.

[103] A. Barroso, J. Casasayas, P. Crawford, P. Moniz, A. Nunes, Inflation in the presence of a non-
minimal coupling, Phys. Lett. B275 (1992) 264–272. doi:10.1016/0370-2693(92)91588-Z.

[104] R. Fakir, S. Habib, Quantum fluctuations with strong curvature coupling, Mod. Phys. Lett. A8
(1993) 2827–2842. doi:10.1142/S0217732393003214.

[105] J. Garcia-Bellido, A. D. Linde, Stationary solutions in Brans-Dicke stochastic inflationary cos-
mology, Phys. Rev. D52 (1995) 6730–6738. arXiv:gr-qc/9504022, doi:10.1103/PhysRevD.52.6730.

[106] E. Komatsu, T. Futamase, Constraints on the chaotic inflationary scenario with a nonmini-
mally coupled ’inflaton’ field from the cosmic microwave background radiation anisotropy, Phys.
Rev. D58 (1998) 023004, [Erratum: Phys. Rev.D58,089902(1998)]. arXiv:astro-ph/9711340,
doi:10.1103/PhysRevD.58.023004, 10.1103/PhysRevD.58.089902.

[107] B. A. Bassett, S. Liberati, Geometric reheating after inflation, Phys. Rev. D58 (1998) 021302, [Er-
ratum: Phys. Rev.D60,049902(1999)]. arXiv:hep-ph/9709417, doi:10.1103/PhysRevD.60.049902,
10.1103/PhysRevD.58.021302.

[108] T. Futamase, M. Tanaka, Chaotic inflation with running nonminimal coupling, Phys. Rev. D60
(1999) 063511. arXiv:hep-ph/9704303, doi:10.1103/PhysRevD.60.063511.

[109] D. S. Salopek, J. R. Bond, J. M. Bardeen, Designing Density Fluctuation Spectra in Inflation,
Phys. Rev. D40 (1989) 1753. doi:10.1103/PhysRevD.40.1753.

[110] R. Fakir, W. G. Unruh, Improvement on cosmological chaotic inflation through nonminimal cou-
pling, Phys. Rev. D41 (1990) 1783–1791. doi:10.1103/PhysRevD.41.1783.

68



[111] R. Fakir, S. Habib, W. Unruh, Cosmological density perturbations with modified gravity, Astro-
phys. J. 394 (1992) 396. doi:10.1086/171591.

[112] J.-c. Hwang, H. Noh, COBE differential microwave radiometer constraints on an inflation model
with nonminimal scalar field, Phys. Rev. Lett. 81 (1998) 5274–5277. arXiv:astro-ph/9811069,
doi:10.1103/PhysRevLett.81.5274.

[113] V. Faraoni, Superquintessence, Int. J. Mod. Phys. D11 (2002) 471–482. arXiv:astro-ph/0110067,
doi:10.1142/S0218271802001809.

[114] S. Tsujikawa, K. Maeda, T. Torii, Preheating of the nonminimally coupled inflaton field, Phys.
Rev. D61 (2000) 103501. arXiv:hep-ph/9910214, doi:10.1103/PhysRevD.61.103501.

[115] S. Tsujikawa, B. A. Bassett, When can preheating affect the CMB?, Phys. Lett. B536 (2002)
9–17. arXiv:astro-ph/0204031, doi:10.1016/S0370-2693(02)01813-0.

[116] J. J. Halliwell, R. Laflamme, Conformal scalar field wormholes, Class. Quant. Grav. 6 (1989)
1839. doi:10.1088/0264-9381/6/12/011.

[117] D. H. Coule, K. Maeda, Wormholes With Scalar Fields, Class. Quant. Grav. 7 (1990) 955.
doi:10.1088/0264-9381/7/6/005.

[118] D. H. Coule, Wormholes with arbitrary coupling xi, Class. Quant. Grav. 9 (1992) 2353–2360.
doi:10.1088/0264-9381/9/11/004.

[119] W. A. Hiscock, Semiclassical gravitational effects around global monopoles, Class. Quant. Grav.
7 (1990) L235–L240. doi:10.1088/0264-9381/7/11/002.

[120] J. J. van der Bij, E. Radu, Regular and black hole solutions of the Einstein-Yang-Mills-Higgs
equations: The Case of nonminimal coupling, Nucl. Phys. B585 (2000) 637–665. arXiv:hep-
th/0003073, doi:10.1016/S0550-3213(00)00449-1.

[121] P. Jetzer, Boson stars, Phys. Rept. 220 (1992) 163–227. doi:10.1016/0370-1573(92)90123-H.

[122] J. J. van der Bij, M. Gleiser, Stars of Bosons with Nonminimal Energy Momentum Tensor, Phys.
Lett. B194 (1987) 482–486. doi:10.1016/0370-2693(87)90221-8.

[123] A. R. Liddle, M. S. Madsen, The Structure and formation of boson stars, Int. J. Mod. Phys. D1
(1992) 101–144. doi:10.1142/S0218271892000057.

[124] M. B. Voloshin, A. D. Dolgov, On gravitational interaction of the Goldstone boson, Sov. J. Nucl.
Phys. 35 (1982) 120–121, [Yad. Fiz.35,213(1982)].

[125] C. T. Hill, D. S. Salopek, Calculable nonminimal coupling of composite scalar bosons to gravity,
Annals Phys. 213 (1992) 21–30. doi:10.1016/0003-4916(92)90281-P.

[126] Y. Hosotani, Stability of Scalar Fields in Curved Space, Phys. Rev. D32 (1985) 1949.
doi:10.1103/PhysRevD.32.1949.

[127] R. Schimming, H.-J. Schmidt, On the history of fourth order metric theories of gravitation, NTM
Schriftenr. Gesch. Naturw. Tech. Med. 27 (1990) 41–48. arXiv:gr-qc/0412038.

[128] A. Strominger, Positive Energy Theorem for R + R2 Gravity, Phys. Rev. D30 (1984) 2257.
doi:10.1103/PhysRevD.30.2257.

69



[129] M. Gell-Mann, The interpretation of the new particles as displaced charge multiplets, Nuovo Cim.
4 (S2) (1956) 848–866. doi:10.1007/BF02748000.

[130] C. W. Misner, K. S. Thorne, J. A. Wheeler, Gravitation, W. H. Freeman, San Francisco, 1973.

[131] R. M. Wald, General Relativity, Chicago Univ. Pr., Chicago, USA, 1984.
doi:10.7208/chicago/9780226870373.001.0001.

[132] S. M. Carroll, Spacetime and geometry: An introduction to general relativity, 2004.
URL http://www.slac.stanford.edu/spires/find/books/www?cl=QC6:C37:2004

[133] A. P. Lightman, D. L. Lee, Restricted Proof that the Weak Equivalence Principle Implies the
Einstein Equivalence Principle, Phys. Rev. D8 (1973) 364–376. doi:10.1103/PhysRevD.8.364.

[134] K. S. Thorne, D. L. Lee, A. P. Lightman, Foundations for a Theory of Gravitation Theories, Phys.
Rev. D7 (1973) 3563–3578. doi:10.1103/PhysRevD.7.3563.

[135] C. M. Will, The confrontation between general relativity and experiment: an update, Phys. Rept.
113 (1984) 345–422. doi:10.1016/0370-1573(84)90119-4.

[136] A. Coley, Schiff’s Conjecture on Gravitation, Phys. Rev. Lett. 49 (1982) 853–855.

[137] W.-T. Ni, Equivalence Principles and Electromagnetism, Phys. Rev. Lett. 38 (1977) 301–304.
doi:10.1103/PhysRevLett.38.301.

[138] H. C. Ohanian, Comment on the Schiff conjecture, Phys. Rev. D10 (1974) 2041–2042.
doi:10.1103/PhysRevD.10.2041.

[139] A. J. Accioly, U. F. Wichoski, Pseudogravitational nonminimally coupled theories, Class. Quant.
Grav. 7 (1990) L139–L141. doi:10.1088/0264-9381/7/7/004.

[140] U. F. W. WA. J. Accioly, N. Bertarello, Counterexamples to Schiff’s Conjecture, Brazilian Journal
of Physics 23 (1993) 392–394.

[141] M. P. Haugan, Energy conservation and the principle of equivalence, Annals Phys. 118 (1979)
156–186. doi:10.1016/0003-4916(79)90238-0.

[142] C. M. Will, The Confrontation between general relativity and experiment, Living Rev. Rel. 9
(2006) 3. arXiv:gr-qc/0510072, doi:10.12942/lrr-2006-3.

[143] F. Pirani, A Note On Bouncing Photons, Bull. L’Academie Polonaise des Science, Ser. Sci. Math.
Astr. Et. Phys 13.3 (1965) 239–242.

[144] F. Pirani, Building Spacetime from light rays and free particles, In Symposis Mathematica 12
(1973) 67–83.

[145] H. Pfister, M. King, Inertia and Gravitation, Vol. 897, Springer International Publishing, Cham,
2015. doi:10.1007/978-3-319-15036-9.

[146] R. H. Dicke, The many faces of mach, in: H. Y. Chiu, W. F. Hoffmann (Eds.), Gravitation and
Relativity, Benjamin, New York, 1964, pp. 121–141.

[147] P. Jordan, Schwerkraft und Weltall: Grundlagen der theoretischen Kosmologie, F. Vieweg, 1955.

[148] M. B. Green, J. H. Schwarz, E. Witten, Superstring theory. Vol.1: Introduction, 1988.

70



[149] A. A. Tseytlin, On the Renormalization Group Approach to String Equations of Motion, Int. J.
Mod. Phys. A4 (1989) 4249. doi:10.1142/S0217751X89001771.

[150] J. Scherk, J. H. Schwarz, Dual Models for Nonhadrons, Nucl. Phys. B81 (1974) 118–144.
doi:10.1016/0550-3213(74)90010-8.

[151] N. A. Chernikov, E. A. Tagirov, Quantum theory of scalar fields in de Sitter space-time, Ann.
Inst. H. Poincare Phys. Theor. A9 (1968) 109.

[152] C. G. Callan, Jr., S. R. Coleman, R. Jackiw, A New improved energy - momentum tensor, Annals
Phys. 59 (1970) 42–73. doi:10.1016/0003-4916(70)90394-5.

[153] R. Penrose, Zero rest mass fields including gravitation: Asymptotic behavior, Proc. Roy. Soc.
Lond. A284 (1965) 159. doi:10.1098/rspa.1965.0058.

[154] J. O. Dickey, et al., Lunar Laser Ranging: A Continuing Legacy of the Apollo Program, Science
265 (1994) 482–490. doi:10.1126/science.265.5171.482.

[155] J. H. Taylor, J. M. Weisberg, A new test of general relativity: Gravitational radiation and the
binary pulsar PS R 1913+16, Astrophys. J. 253 (1982) 908–920. doi:10.1086/159690.

[156] A. Zee, A Broken Symmetric Theory of Gravity, Phys. Rev. Lett. 42 (1979) 417.
doi:10.1103/PhysRevLett.42.417.

[157] J. L. Cervantes-Cota, H. Dehnen, Induced gravity inflation in the SU(5) GUT, Phys. Rev. D51
(1995) 395–404. arXiv:astro-ph/9412032, doi:10.1103/PhysRevD.51.395.

[158] J. L. Cervantes-Cota, H. Dehnen, Induced gravity inflation in the standard model of par-
ticle physics, Nucl. Phys. B442 (1995) 391–412. arXiv:astro-ph/9505069, doi:10.1016/0550-
3213(95)00128-X.

[159] C. Wetterich, Cosmology and the Fate of Dilatation Symmetry, Nucl. Phys. B302 (1988) 668–696.
arXiv:1711.03844, doi:10.1016/0550-3213(88)90193-9.

[160] P. J. E. Peebles, B. Ratra, Cosmology with a Time Variable Cosmological Constant, Astrophys.
J. 325 (1988) L17. doi:10.1086/185100.

[161] E. J. Copeland, A. R. Liddle, D. Wands, Exponential potentials and cosmological scaling solutions,
Phys. Rev. D57 (1998) 4686–4690. arXiv:gr-qc/9711068, doi:10.1103/PhysRevD.57.4686.

[162] P. G. Ferreira, M. Joyce, Cosmology with a primordial scaling field, Phys. Rev. D58 (1998) 023503.
arXiv:astro-ph/9711102, doi:10.1103/PhysRevD.58.023503.

[163] R. R. Caldwell, R. Dave, P. J. Steinhardt, Cosmological imprint of an energy component
with general equation of state, Phys. Rev. Lett. 80 (1998) 1582–1585. arXiv:astro-ph/9708069,
doi:10.1103/PhysRevLett.80.1582.

[164] C. Wetterich, Cosmologies With Variable Newton’s ’Constant’, Nucl. Phys. B302 (1988) 645–667.
doi:10.1016/0550-3213(88)90192-7.

[165] C. Wetterich, The Cosmon model for an asymptotically vanishing time dependent cosmological
’constant’, Astron. Astrophys. 301 (1995) 321–328. arXiv:hep-th/9408025.

71



[166] G. R. Dvali, M. Zaldarriaga, Changing alpha with time: Implications for fifth force type
experiments and quintessence, Phys. Rev. Lett. 88 (2002) 091303. arXiv:hep-ph/0108217,
doi:10.1103/PhysRevLett.88.091303.

[167] T. Chiba, K. Kohri, Quintessence cosmology and varying alpha, Prog. Theor. Phys. 107 (2002)
631–636. arXiv:hep-ph/0111086, doi:10.1143/PTP.107.631.

[168] J. K. Webb, M. T. Murphy, V. V. Flambaum, V. A. Dzuba, J. D. Barrow, C. W. Churchill, J. X.
Prochaska, A. M. Wolfe, Further evidence for cosmological evolution of the fine structure constant,
Phys. Rev. Lett. 87 (2001) 091301. arXiv:astro-ph/0012539, doi:10.1103/PhysRevLett.87.091301.

[169] H. B. Sandvik, J. D. Barrow, J. Magueijo, A simple cosmology with a varying
fine structure constant, Phys. Rev. Lett. 88 (2002) 031302. arXiv:astro-ph/0107512,
doi:10.1103/PhysRevLett.88.031302.

[170] K. A. Olive, M. Pospelov, Evolution of the fine structure constant driven by dark mat-
ter and the cosmological constant, Phys. Rev. D65 (2002) 085044. arXiv:hep-ph/0110377,
doi:10.1103/PhysRevD.65.085044.

[171] T. Dent, M. Fairbairn, Time varying coupling strengths, nuclear forces and unification, Nucl.
Phys. B653 (2003) 256–278. arXiv:hep-ph/0112279, doi:10.1016/S0550-3213(03)00043-9.

[172] J.-P. Uzan, The Fundamental constants and their variation: Observational status
and theoretical motivations, Rev. Mod. Phys. 75 (2003) 403. arXiv:hep-ph/0205340,
doi:10.1103/RevModPhys.75.403.

[173] T. Damour, F. Piazza, G. Veneziano, Runaway dilaton and equivalence principle violations, Phys.
Rev. Lett. 89 (2002) 081601. arXiv:gr-qc/0204094, doi:10.1103/PhysRevLett.89.081601.

[174] C. Wetterich, Probing quintessence with time variation of couplings, JCAP 0310 (2003) 002.
arXiv:hep-ph/0203266, doi:10.1088/1475-7516/2003/10/002.

[175] R. D. Peccei, J. Sola, C. Wetterich, Adjusting the Cosmological Constant Dynamically: Cosmons
and a New Force Weaker Than Gravity, Phys. Lett. B195 (1987) 183–190. doi:10.1016/0370-
2693(87)91191-9.

[176] T. Damour, A. Polyakov, The string dilation and a least coupling principle, Nuclear Physics B
423 (2) (1994) 532 – 558. doi:https://doi.org/10.1016/0550-3213(94)90143-0.

[177] T. Damour, F. Piazza, G. Veneziano, Runaway Dilaton and Equivalence Principle Violations,
Phys. Rev. Lett. 89 (8) (2002) 351–4.

[178] W. Hu, R. Barkana, A. Gruzinov, Cold and fuzzy dark matter, Phys. Rev. Lett. 85 (2000) 1158–
1161. arXiv:astro-ph/0003365, doi:10.1103/PhysRevLett.85.1158.

[179] J. Beyer, C. Wetterich, Small scale structures in coupled scalar field dark matter, Phys. Lett.
B738 (2014) 418–423. arXiv:1407.0141, doi:10.1016/j.physletb.2014.10.012.

[180] D. J. E. Marsh, Axion Cosmology, Phys. Rept. 643 (2016) 1–79. arXiv:1510.07633,
doi:10.1016/j.physrep.2016.06.005.

[181] L. Hui, J. P. Ostriker, S. Tremaine, E. Witten, Ultralight scalars as cosmological dark matter,
Phys. Rev. D95 (4) (2017) 043541. arXiv:1610.08297, doi:10.1103/PhysRevD.95.043541.

72



[182] T. Damour, J. F. Donoghue, Equivalence Principle Violations and Couplings of a Light Dilaton,
Phys. Rev. D82 (2010) 084033. arXiv:1007.2792, doi:10.1103/PhysRevD.82.084033.

[183] T. Damour, J. F. Donoghue, Phenomenology of the Equivalence Principle with Light Scalars,
Class. Quant. Grav. 27 (2010) 202001. arXiv:1007.2790, doi:10.1088/0264-9381/27/20/202001.

[184] Y. V. Stadnik, V. V. Flambaum, Can dark matter induce cosmological evolution of the fun-
damental constants of Nature?, Phys. Rev. Lett. 115 (20) (2015) 201301. arXiv:1503.08540,
doi:10.1103/PhysRevLett.115.201301.

[185] Y. V. Stadnik, V. V. Flambaum, Searching for dark matter and variation of fundamental con-
stants with laser and maser interferometry, Phys. Rev. Lett. 114 (2015) 161301. arXiv:1412.7801,
doi:10.1103/PhysRevLett.114.161301.

[186] T. Kalaydzhyan, N. Yu, Extracting dark matter signatures from atomic clock stability measure-
ments, Phys. Rev. D96 (7) (2017) 075007. arXiv:1705.05833, doi:10.1103/PhysRevD.96.075007.

[187] A. Hees, O. Minazzoli, E. Savalle, Y. V. Stadnik, P. Wolf, Violation of the equivalence prin-
ciple from light scalar dark matter, Phys. Rev. D98 (6) (2018) 064051. arXiv:1807.04512,
doi:10.1103/PhysRevD.98.064051.

[188] J. Sakstein, Tests of Gravity with Future Space-Based Experiments, Phys. Rev. D97 (6) (2018)
064028. arXiv:1710.03156, doi:10.1103/PhysRevD.97.064028.

[189] P. Touboul, et al., MICROSCOPE Mission: First Results of a Space Test of the
Equivalence Principle, Phys. Rev. Lett. 119 (23) (2017) 231101. arXiv:1712.01176,
doi:10.1103/PhysRevLett.119.231101.

[190] J. Berg, P. Brax, G. Mtris, M. Pernot-Borrs, P. Touboul, J.-P. Uzan, MICROSCOPE Mission:
First Constraints on the Violation of the Weak Equivalence Principle by a Light Scalar Dilaton,
Phys. Rev. Lett. 120 (14) (2018) 141101. arXiv:1712.00483, doi:10.1103/PhysRevLett.120.141101.

[191] B. Bertotti, L. Iess, P. Tortora, A test of general relativity using radio links with the Cassini
spacecraft, Nature 425 (2003) 374–376. doi:10.1038/nature01997.

[192] E. G. Adelberger, et al., An absolute calibration system for millimeter-accuracy APOLLO mea-
surements, Class. Quant. Grav. 34 (24) (2017) 245008. arXiv:1706.09550, doi:10.1088/1361-
6382/aa953b.

[193] D. J. Kapner, T. S. Cook, E. G. Adelberger, J. H. Gundlach, B. R. Heckel, C. D. Hoyle, H. E.
Swanson, Tests of the gravitational inverse-square law below the dark-energy length scale, Phys.
Rev. Lett. 98 (2007) 021101. arXiv:hep-ph/0611184, doi:10.1103/PhysRevLett.98.021101.

[194] E. G. Adelberger, B. R. Heckel, A. E. Nelson, Tests of the gravitational inverse
square law, Ann. Rev. Nucl. Part. Sci. 53 (2003) 77–121. arXiv:hep-ph/0307284,
doi:10.1146/annurev.nucl.53.041002.110503.

[195] J. Khoury, A. Weltman, Chameleon fields: Awaiting surprises for tests of gravity in space, Phys.
Rev. Lett. 93 (2004) 171104. arXiv:astro-ph/0309300, doi:10.1103/PhysRevLett.93.171104.

[196] J. Khoury, A. Weltman, Chameleon cosmology, Phys. Rev. D69 (2004) 044026. arXiv:astro-
ph/0309411, doi:10.1103/PhysRevD.69.044026.

73



[197] A. Barreira, B. Li, C. M. Baugh, S. Pascoli, Linear perturbations in Galileon gravity models,
Phys. Rev. D86 (2012) 124016. arXiv:1208.0600, doi:10.1103/PhysRevD.86.124016.

[198] L. Hui, A. Nicolis, C. Stubbs, Equivalence Principle Implications of Modified Gravity Models,
Phys. Rev. D80 (2009) 104002. arXiv:0905.2966, doi:10.1103/PhysRevD.80.104002.

[199] L. Kraiselburd, S. J. Landau, M. Salgado, D. Sudarsky, H. Vucetich, Equivalence Prin-
ciple in Chameleon Models, Phys. Rev. D97 (10) (2018) 104044. arXiv:1511.06307,
doi:10.1103/PhysRevD.97.104044.

[200] D. F. Mota, D. J. Shaw, Evading Equivalence Principle Violations, Cosmological and other Ex-
perimental Constraints in Scalar Field Theories with a Strong Coupling to Matter, Phys. Rev.
D75 (2007) 063501. arXiv:hep-ph/0608078, doi:10.1103/PhysRevD.75.063501.

[201] C. Burrage, J. Sakstein, Tests of Chameleon Gravity, Living Rev. Rel. 21 (1) (2018) 1.
arXiv:1709.09071, doi:10.1007/s41114-018-0011-x.

[202] X. Zhang, W. Zhao, H. Huang, Y. Cai, Post-Newtonian parameters and cosmological con-
stant of screened modified gravity, Phys. Rev. D93 (12) (2016) 124003. arXiv:1603.09450,
doi:10.1103/PhysRevD.93.124003.

[203] A. Hees, A. Fuzfa, Combined cosmological and solar system constraints on chameleon mechanism,
Phys. Rev. D85 (2012) 103005. arXiv:1111.4784, doi:10.1103/PhysRevD.85.103005.

[204] J. Leitner, S. Okubo, Parity, charge conjugation, and time reversal in the gravitational interaction,
Phys. Rev. 136 (1964) B1542–B1546. doi:10.1103/PhysRev.136.B1542.

[205] N. D. Hari Dass, Test for C, P, and T Nonconservation in Gravitation, Phys. Rev. Lett. 36 (1976)
393–395. doi:10.1103/PhysRevLett.36.393.

[206] K. Hayashi, T. Shirafuji, New General Relativity, Phys. Rev. D19 (1979) 3524–3553, [,409(1979)].
doi:10.1103/PhysRevD.19.3524.

[207] S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40 (1978) 223–226.
doi:10.1103/PhysRevLett.40.223.

[208] F. Wilczek, Problem of Strong P and T Invariance in the Presence of Instantons, Phys. Rev. Lett.
40 (1978) 279–282. doi:10.1103/PhysRevLett.40.279.

[209] M. Dine, W. Fischler, M. Srednicki, A Simple Solution to the Strong CP Problem with a Harmless
Axion, Phys. Lett. 104B (1981) 199–202. doi:10.1016/0370-2693(81)90590-6.

[210] M. A. Shifman, A. I. Vainshtein, V. I. Zakharov, Can Confinement Ensure Natural CP Invariance
of Strong Interactions?, Nucl. Phys. B166 (1980) 493–506. doi:10.1016/0550-3213(80)90209-6.

[211] J. E. Kim, Weak Interaction Singlet and Strong CP Invariance, Phys. Rev. Lett. 43 (1979) 103.
doi:10.1103/PhysRevLett.43.103.

[212] J. E. Moody, F. Wilczek, New macroscopic forces?, Phys. Rev. D30 (1984) 130.
doi:10.1103/PhysRevD.30.130.

[213] B. A. Dobrescu, I. Mocioiu, Spin-dependent macroscopic forces from new particle exchange, JHEP
11 (2006) 005. arXiv:hep-ph/0605342, doi:10.1088/1126-6708/2006/11/005.

74



[214] B. A. Dobrescu, Massless gauge bosons other than the photon, Phys. Rev. Lett. 94 (2005) 151802.
arXiv:hep-ph/0411004, doi:10.1103/PhysRevLett.94.151802.

[215] T. Appelquist, B. A. Dobrescu, A. R. Hopper, Nonexotic Neutral Gauge Bosons, Phys. Rev. D68
(2003) 035012. arXiv:hep-ph/0212073, doi:10.1103/PhysRevD.68.035012.

[216] A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper, J. March-Russell, String Axiverse, Phys.
Rev. D81 (2010) 123530. arXiv:0905.4720, doi:10.1103/PhysRevD.81.123530.

[217] A. Friedland, H. Murayama, M. Perelstein, Domain walls as dark energy, Phys. Rev. D67 (2003)
043519. arXiv:astro-ph/0205520, doi:10.1103/PhysRevD.67.043519.

[218] V. Flambaum, S. Lambert, M. Pospelov, Scalar-tensor theories with pseudoscalar couplings, Phys.
Rev. D80 (2009) 105021. arXiv:0902.3217, doi:10.1103/PhysRevD.80.105021.

[219] G. Bertone, D. Hooper, J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys.
Rept. 405 (2005) 279–390. arXiv:hep-ph/0404175, doi:10.1016/j.physrep.2004.08.031.

[220] I. Bars, M. Visser, Feeble Intermediate Range Forces From Higher Dimensions, Phys. Rev. Lett.
57 (1986) 25. doi:10.1103/PhysRevLett.57.25.

[221] S. M. Barr, R. N. Mohapatra, Range of Feeble Forces From Higher Dimensions, Phys. Rev. Lett.
57 (1986) 3129–3132. doi:10.1103/PhysRevLett.57.3129.

[222] G. Lazarides, C. Panagiotakopoulos, Q. Shafi, Phenomenology and Cosmology With Superstrings,
Phys. Rev. Lett. 56 (1986) 432. doi:10.1103/PhysRevLett.56.432.

[223] G. Lambiase, G. Papini, Discrete symmetries in the spin-rotation interaction, Phys. Rev. D70
(2004) 097901. doi:10.1103/PhysRevD.70.097901.

[224] G. Papini, G. Lambiase, Spin rotation coupling in muon g-2 experiments, Phys. Lett. A294 (2002)
175–178. arXiv:gr-qc/0106066, doi:10.1016/S0375-9601(02)00040-3.

[225] M. Blagojevic, Gravitation and gauge symmetries, Bristol, UK: IOP (2002) 522 p, 2002.

[226] P. von der Heyde, The equivalence principle in the U4 theory of gravitation, Lett. Nuovo Cimento
14 (1975) 250–253.

[227] D. Hartley, Normal frames for nonRiemannian connections, Class. Quant. Grav. 12 (1995) L103–
L106. arXiv:gr-qc/9510013, doi:10.1088/0264-9381/12/11/001.

[228] F. W. Hehl, J. D. McCrea, E. W. Mielke, Y. Ne’eman, Metric affine gauge theory of gravity: Field
equations, Noether identities, world spinors, and breaking of dilation invariance, Phys. Rept. 258
(1995) 1–171. arXiv:gr-qc/9402012, doi:10.1016/0370-1573(94)00111-F.

[229] S. J. Landau, P. D. Sisterna, H. Vucetich, Charge conservation and equivalence principle,arXiv:gr-
qc/0105025.

[230] F. Rohrlich, The Equivalence Principle Revisited, Foundations of Physics 30 (2000) 621.

[231] H. Dittus, C. Lämmerzahl, H. Selig, Testing the universality of free fall for charged particles in
space, General Relativity and Gravitation 36 (3) (2004) 571–591.

75



[232] J. F. Donoghue, B. R. Holstein, R. W. Robinett, Renormalization of the Energy Momentum
Tensor and the Validity of the Equivalence Principle at Finite Temperature, Phys. Rev. D30
(1984) 2561. doi:10.1103/PhysRevD.30.2561.

[233] J. F. Donoghue, B. R. Holstein, R. W. Robinett, The Principle of Equivalence at Finite Temper-
ature, Gen. Rel. Grav. 17 (1985) 207. doi:10.1007/BF00760243.

[234] L. Hui, A. Nicolis, C. Stubbs, Equivalence Principle Implications of Modified Gravity Models,
Phys. Rev. D80 (2009) 104002. arXiv:0905.2966, doi:10.1103/PhysRevD.80.104002.

[235] C. Armendariz-Picon, R. Penco, Quantum Equivalence Principle Violations in Scalar-Tensor The-
ories, Phys. Rev. D85 (2012) 044052. arXiv:1108.6028, doi:10.1103/PhysRevD.85.044052.

[236] F. Scardigli, G. Lambiase, E. Vagenas, GUP parameter from quantum corrections
to the Newtonian potential, Phys. Lett. B767 (2017) 242–246. arXiv:1611.01469,
doi:10.1016/j.physletb.2017.01.054.

[237] L. L. Foldy, S. A. Wouthuysen, On the Dirac theory of spin 1/2 particle and its nonrelativistic
limit, Phys. Rev. 78 (1950) 29–36. doi:10.1103/PhysRev.78.29.

[238] I. Mitra, J. F. Nieves, P. B. Pal, Gravitational couplings of charged leptons in a medium, Phys.
Rev. D64 (2001) 085004. arXiv:hep-ph/0104248, doi:10.1103/PhysRevD.64.085004.

[239] J. F. Nieves, P. B. Pal, Gravitational coupling of neutrinos in a medium, Phys. Rev. D58 (1998)
096005. arXiv:hep-ph/9805291, doi:10.1103/PhysRevD.58.096005.

[240] M. Gasperini, Gravitational acceleration of relativistic particles at finite temperature, Phys. Rev.
D36 (1987) 617–619. doi:10.1103/PhysRevD.36.617.

[241] A. Papapetrou, Spinning test particles in general relativity. 1., Proc. Roy. Soc. Lond. A209 (1951)
248–258. doi:10.1098/rspa.1951.0200.

[242] S. Baessler, B. R. Heckel, E. G. Adelberger, J. H. Gundlach, U. Schmidt, H. E. Swanson, Improved
Test of the Equivalence Principle for Gravitational Self-Energy, Phys. Rev. Lett. 83 (1999) 3585.
doi:10.1103/PhysRevLett.83.003585.

[243] A. Barros, C. Romero, On the weak field approximation of Brans-Dicke theory of gravity, Phys.
Lett. A245 (1998) 31–34. arXiv:gr-qc/9712080, doi:10.1016/S0375-9601(98)00382-X.

[244] M. Blasone, S. Capozziello, G. Lambiase, L. Petruzziello, Equivalence principle violation at finite
temperature in scalar-tensor gravity, Eur. Phys. J. Plus 134 (4) (2019) 169. arXiv:1812.08029,
doi:10.1140/epjp/i2019-12682-2.

[245] K. G. Arun, A. Pai, Tests of General Relativity and Alternative theories of gravity using
Gravitational Wave observations, Int. J. Mod. Phys. D22 (2013) 1341012. arXiv:1302.2198,
doi:10.1142/S0218271813410125.

[246] J. F. Bell, T. Damour, A New test of conservation laws and Lorentz invariance in relativis-
tic gravity, Class. Quant. Grav. 13 (1996) 3121–3128. arXiv:gr-qc/9606062, doi:10.1088/0264-
9381/13/12/003.

[247] V. A. Kostelecky, S. Samuel, Spontaneous Breaking of Lorentz Symmetry in String Theory, Phys.
Rev. D39 (1989) 683. doi:10.1103/PhysRevD.39.683.

76



[248] D. Colladay, V. A. Kostelecky, Lorentz violating extension of the standard model, Phys. Rev. D58
(1998) 116002. arXiv:hep-ph/9809521, doi:10.1103/PhysRevD.58.116002.

[249] V. A. Kostelecky, N. Russell, Data Tables for Lorentz and CPT Violation, Rev. Mod. Phys. 83
(2011) 11–31. arXiv:0801.0287, doi:10.1103/RevModPhys.83.11.

[250] A. V. Kostelecky, J. D. Tasson, Matter-gravity couplings and Lorentz violation, Phys. Rev. D83
(2011) 016013. arXiv:1006.4106, doi:10.1103/PhysRevD.83.016013.

[251] M. A. Hohensee, H. Mueller, R. B. Wiringa, Equivalence Principle and Bound Kinetic Energy,
Phys. Rev. Lett. 111 (2013) 151102. arXiv:1308.2936, doi:10.1103/PhysRevLett.111.151102.

[252] M. A. Hohensee, S. Chu, A. Peters, H. Muller, Equivalence Principle and Gravitational Redshift,
Phys. Rev. Lett. 106 (2011) 151102. arXiv:1102.4362, doi:10.1103/PhysRevLett.106.151102.

[253] H. C. Ohanian, Inertial and gravitational mass in the Brans-Dicke theory, Annals Phys. 67 (1971)
648–661. doi:10.1016/0003-4916(71)90155-2.

[254] H. C. Ohanian, Gravitation and the new improved energy-momentum tensor, J. Math. Phys. 14
(1973) 1892–1897. doi:10.1063/1.1666265.

[255] J. P. Schwarz, D. S. Robertson, T. M. Niebauer, J. E. Faller, A Free-Fall Determination of the
Newtonian Constant of Gravity, Science 282 (5397) (1998) 2230–.

[256] G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, G. M. Tino, Precision measurement of the
Newtonian gravitational constant using cold atoms, Nature 510 (2014) 518521.

[257] O. Francis, H. Baumann, C. Ullrich, S. Castelein, M. V. Camp, M. A. de Sousa, R. L. Melhorato,
C. Li, J. Xu, D. Su, S. Wu, H. Hu, K. Wu, G. Li, Z. Li, W.-C. Hsieh, P. V. Plinks, J. Kostelecký,
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I. Panet, B. Pouilloux, P. Prieur, A. Rebray, S. Reynaud, B. Rievers, A. Robert, H. Selig, L. Ser-
ron, T. Sumner, N. Tanguy, P. Visser, Microscope mission: First results of a space test of the
equivalence principle, Phys. Rev. Lett. 119 (2017) 231101. doi:10.1103/PhysRevLett.119.231101.
URL https://link.aps.org/doi/10.1103/PhysRevLett.119.231101

[309] M. Armano, H. Audley, G. Auger, J. T. Baird, M. Bassan, P. Binetruy, M. Born, D. Bortoluzzi,
N. Brandt, M. Caleno, L. Carbone, A. Cavalleri, A. Cesarini, G. Ciani, G. Congedo, A. M. Cruise,
K. Danzmann, M. de Deus Silva, R. De Rosa, M. Diaz-Aguiló, L. Di Fiore, I. Diepholz, G. Dixon,
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Killow, J. A. Lobo, I. Lloro, L. Liu, J. P. López-Zaragoza, R. Maarschalkerweerd, D. Mance,
N. Meshksar, V. Mart́ın, L. Martin-Polo, J. Martino, F. Martin-Porqueras, I. Mateos, P. W.
McNamara, J. Mendes, L. Mendes, M. Nofrarias, S. Paczkowski, M. Perreur-Lloyd, A. Petiteau,
P. Pivato, E. Plagnol, J. Ramos-Castro, J. Reiche, D. I. Robertson, F. Rivas, G. Russano, J. Slut-
sky, C. F. Sopuerta, T. Sumner, D. Texier, J. I. Thorpe, D. Vetrugno, S. Vitale, G. Wanner,
H. Ward, P. J. Wass, W. J. Weber, L. Wissel, A. Wittchen, P. Zweifel, Beyond the required lisa
free-fall performance: New lisa pathfinder results down to 20 µHz, Phys. Rev. Lett. 120 (2018)
061101. doi:10.1103/PhysRevLett.120.061101.
URL https://link.aps.org/doi/10.1103/PhysRevLett.120.061101
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