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Abstract. In this work we investigate the shape of the spectrum of cosmic
ray (CR) protons produced inside superbubbles (SB), by the means of a simple
semi-analytical model of CR production and transport embedded inside Monte-
Carlo simulations of OB associations timelines. We consider regular acceleration
(Fermi I process) at the shock front of supernova remnants (SNRs), as well as
stochastic re-acceleration (Fermi II process) and escape controlled by magnetic
turbulence inside the SB. In this first attempt we limit ourselves to linear accel-
eration by strong shocks and neglect protons energy losses. We observe that CR
spectra, although strongly intermittent, get a distinctive shape resulting from
a competition between acceleration and escape: they are harder at the lowest
energies (slope s < 4) and softer at the highest energies (s > 4). The momen-
tum at which this spectral break occurs depends critically on the various SB
parameters - but interestingly all their effects can be summarized by a single di-
mensionless parameter. For reasonable values of SB parameters, and especially
for highly magnetized and turbulent SBs, very hard spectra can be obtained
over an important range of CR energies, which has important implications on
the high-energy emission from these objects.

Introduction

Our aim is to investigate the average shape of the spectrum of CR protons pro-
duced inside SBs. To do so we embed semi-analytical models of CR acceleration
and transport inside Monte-Carlo simulations of OB clusters timelines.

1. OB Clusters: Random Samplings of Supernovae

We are interested here in massive stars which die by core-collapse, producing
type Ib, Ic or II supernovae, that is of mass greater than mmin = 8 m⊙, and
up to say mmax = 120 m⊙. These are stars of spectral type O (> 20 m⊙)
and part of stars of spectral type B (4 − 20 m⊙). Most massive stars spend
all their life within the cluster in which they were born, forming so-called OB
associations. In order to describe the evolution of such a cluster, one needs to
know the distribution of star masses and lifetimes.
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1.1. Distribution of Stars

Distribution of Masses The Initial Mass Function (IMF) ξ is defined so that
the number of stars in the mass interval m to m+dm is dn = ξ (m)×dm, so that
the number of stars of masses between mmin and mmax is N⋆ =

∫ mmax

mmin
ξ (m) dm.

Observations show that ξ can be expressed as a power-law (Salpeter 1955):
ξ (m) ∝ mα, with an index of α = 2.30 for massive stars (Kroupa 2002).

Distribution of Lifetimes The more massive they are, the faster stars burn their
material. Stars lifetimes can be computed from stellar evolution models, we use
here data from Limongi & Chieffi (2006). A star at the threshold mmin = 8 m⊙

has a lifetime of tSN,max ≃ 37 Myr, which is also the total lifetime of the cluster,
a star of mmax = 120 m⊙ lives only tSN,min ≃ 3 Myr. Regarding supernovae, the
active lifetime of the cluster is thus ∆t⋆OB = tSN (mmin)− tSN (mmax) ≃ 34 Myr.

1.2. Distribution of Supernovae

We are now able to re-construct the story of any given cluster. In order to work
out the average properties of a cluster of N⋆ stars, we perform random samplings
in the IMF. As an illustration of this Monte-Carlo procedure, if we sample the
lifetime of each cluster by small enough time-steps (of say dt = 105 yr) and
count the number nSN of supernovae in each time bin [t, t + dt], we get an
estimate of the mean SN rate as nSN (t) /dt. In agreement with Cerviño et al.
(2000), we observe that the distributions of masses and lifetimes combine in
such a way that, but for a peak at the beginning, the rate of SNs is fairly
constant during the cluster’s life, and can be expressed as a first approximation
as dnSN/dt ≃ N⋆/∆t⋆OB ≃ N⋆ × 3.10−8 yr−1.

2. Supernovae Shocks: Regular Acceleration

Galactic CRs are believed to be produced at SNRs through diffusive shock ac-
celeration (DSA), a first order Fermi process powered by the velocity divergence
of the shock and made possible by the scattering off magnetic turbulence.

2.1. Green Function

To keep things as simple as possible, we limit ourselves here to the test-particle
approach. In this linear regime, we know the Green function G1 which links the
CR distributions1 downstream and upstream of a single shock as

fdown (p) =

∫

∞

0
G1 (p, p0) fup (p0) dp0 . (1)

to be

G1 (p, p0) =
s1

p0

(

p

p0

)−s1

H (p− p0) (2)

where H is the Heaviside function and s1 = 3r/r − 1.

1f(p) is defined so that the density is n =
∫

p
f (p) 4πp2 dp, where p is the particle momentum.
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Mono-energetic injection of CRs at the shock front leads to a power law
spectrum2.

2.2. Multiple Acceleration

As massive stars live in groups, SNs are correlated in space and time. Hence we
consider the possibility of multiple acceleration, that is CRs produced by a SN
shock being re-accelerated by subsequent SN shocks before they escape the SB.

The effect of repeated acceleration is basically to harden the spectra (Achter-
berg 1990, Melrose & Pope 1993). The spectrum is no longer a power-law, but
one can show that in the limit of an infinity of shocks it reduces again to a simple
power-law of slope s = 3 (without considering losses and escape).

Note that, when dealing with multiple shocks, it is mandatory to account for
adiabatic decompression between shocks: CRs bound to the fluid will be see their
momenta decreased by a factor R = r1/3 when the fluid density is decreased by
a factor r. In order to resolve decompression properly the numerical momentum
resolution d log p has to be significantly smaller than the induced momentum
shift (Ferrand, Downes, & Marcowith 2008).

3. Magnetic Turbulence: Stochastic Acceleration and Escape

CRs accelerated by SNR shocks, although very energetic, might remain for a
while inside the SB because of magnetic turbulence which scatters them (they
perform a random walk until they escape at the boundaries). Because of this
turbulence, CRs will also experience stochastic re-acceleration (second order
Fermi process) during their stay in the SB.

3.1. Diffusion Scales

The turbulent magnetic field δB is represented through its power spectrum

W (k), defined so that δB2 ∝
∫ kmax

kmin
W (k) dk with k = 2π/λ where λ is the

turbulence scale. This spectrum is usually taken to be a power-law of index q:

W (k) ∝ k−q , (3)

normalised through the turbulence level ηT =
〈

δB2
〉

/
(

B2 +
〈

δB2
〉)

.

Space Diffusion If turbulence follows (3) then the diffusion coefficient reads

Dx (p) = D⋆
x ×

(

p

mpc

)2−q

(4)

2Accelerated particles may back-react on their accelerator, modifying the shock structure and
thus the way they are accelerated, which produces concave spectra (e.g. Malkov & Drury
2001). We will explore this non-linear regime in a subsequent work, using our numerical
code for the time-dependent simulation of diffusive shock acceleration (Ferrand, Downes, &
Marcowith 2008). and/or the stationary semi-analytical model of Blasi (2002), the index of
which is controlled by the shock compression ratio only, and is always s = 4 in the limit of
strong shocks r = 4.
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with (using results from Casse, Lemoine, & Pelletier (2002) for isotropic turbu-
lence)

D⋆
x ∝ η−1

T Bq−2 λq−1
max . (5)

Escape Particles diffuse over a typical length xdiff =
√

6 Dx t. They are con-
fined in the acceleration region of size xacc as long as xdiff (t) < xacc, hence a
typical escape time tesc = x2

acc/6 Dx, that is using (4)

tesc (p) = t⋆esc ×
(

p

mpc

)q−2

(6)

with
t⋆esc ∝ ηT B2−q λ1−q

max x2
acc . (7)

Acceleration Interaction with waves also leads to a diffusion in momentum.
Using results from quasi-linear theory we can express the diffusion coefficient as

Dp (p) = D⋆
p × (mpc)

2 ×
(

p

mpc

)q

(8)

with
D⋆

p ∝ ηT B4−q λ1−q
max n−1 . (9)

where n is the number density.

3.2. Green Function

Becker, Le, & Dermer (2006) have recently given the first analytical expression
of the Green function G2 for both Fermi 2 acceleration and escape, valid for
any turbulence index q ∈]0, 2[. It is defined so that, for impulsive injection of
distribution finit, the distribution after time t is

fend (p, t) =

∫

∞

0
G2 (p, p0, t) finit (p0) dp0 . (10)

Neglecting losses3 it can be expressed as

G2 (p, p0, t) =
2− q

p0

√

p

p0

√
zz0ξ

1− ξ
(11)

× exp

(

−
(z + z0) (1 + ξ)

2 (1− ξ)

)

I

(

1 + q

2− q
,
2
√

zz0ξ

1− ξ

)

3According to Aharonian & Atoyan (1996) proton losses above 1 GeV are dominated by nuclear

interactions, with a typical lifetime τpp ≃ 6.107 yr /
(

n/1 cm−3
)

, so that in a SB where the
density is very low τpp is far longer than the SB lifetime. At the very low end of the spectrum
(around the MeV), ionization losses might also come to play. The formalism of Becker, Le,
& Dermer (2006) allows for systematic losses, but for mathematical convenience these are
supposed to occur at a rate ∝ pq−1, which can describe Coulomb losses only in the special case
q = 2.
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z (p) =
2 p2−q

(2− q)
√

D⋆
pt

⋆
esc

ξ (t) = exp



2 (q − 2)
D⋆

pt
√

D⋆
pt

⋆
esc





where I (o, x) is the modified Bessel function of the first kind.

4. Superbubbles: Average Cosmic-Ray Spectra

SBs are formed around OB associations by the powerful winds and explosions
of massive stars. They are the major hosts of SNRs, and thus major candidates
for CR production, as already noted by Montmerle (1979), and investigated
by Bykov (2001). SNs in SBs are correlated in space and time, hence the need
to investigate acceleration by multiple shocks. The SB interior is magnetized
and turbulent, hence the need to evaluate gains and losses due to Fermi 2 and
escape between the shocks.

4.1. Method

Our aim is to follow the distribution of CRs produced by SNs inside a SB
over the OB association life. For a given cluster, time is sampled by intervals
dt = 10 000 yr, which is small enough to make sure that at most one SN
occurs during that period (but by chance, for big clusters), and which is big
enough to consider that the Fermi 1 process has built the CR power-law (2)
(acceleration is thought to take place mostly at early SNR stages, and in a
SB the Sedov phase starts after a few thousands of years). Here we do not
try to investigate the exact extent of the spectrum produced in SNRs: we set
the lowest momentum (injection momentum) to pmin = 10−2 mpc (which is the
typical thermal momentum downstream of a SN shock) and we set the highest
momentum (escape momentum) to pmax = 106mpc ≃ 1015eV (which corresponds
to the “knee” break in the CR spectrum as observed on the Earth). Note that
the theoretical acceleration time from pmin to pmax (in the linear regime, without
escape) is roughly 8 000 yr (assuming Bohm diffusion with B = 10 µG), which
is again consistent with our choice of dt. This makes 8 decades in p, with a
resolution of a few tens of bins per decade (according to section 2.2.). If no SN
occurs in the time bin then the distribution is evolved in time according to (10).

This process is repeated for many random clusters of the same size, until
some average trend emerges regarding the shape of spectra. CR spectra are
monitored at some reference times, from 5 Myr to 35 Myr by steps of 1 Myr.
For a given sample, CR spectra are strongly intermittent during the SB lifetime,
especially at early times. Still, we clearly see convergence to an average spectrum
as we increase the number of samples. The limit spectrum exhibits a distinctive
two-parts shape, with a transition from a hard regime (flat spectrum, slope
s < 4) to a soft regime (steep spectrum, slope s ≥ 4). This trend is very robust,
but the transition energy depends critically on the SB parameters.
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4.2. Parametric Study

For each cluster we have to define 8 parameters: N⋆, r, q, B, ηT , λmax, n, xacc,
which are more or less constrained. We sample the size of the cluster roughly
logarithmically between 10 stars and 500 stars (the extremal case of Cygnus
OB2), ie N⋆ =10, 30, 70, 200, 500. We consider only SN shocks4 of r = 4.
We compare classical turbulence indexes q = 5/3 (Kolmogorov cascade) and
q = 3/2 (Kraichnan cascade). We consider two different scenarii for the magnetic
field: if a turbulent dynamo is at work then B ≃ 10 µG and δB ≫ B so that
ηT ≃ 1 (e.g. Parizot et al. 2004), if not then because of the SB expansion
B ≃ 1 µG and δB < B (if δB = B/2 then ηT = 0.2). The external scale of the
turbulence λmax is at least of the order of the distance d⋆ between two stars in
the cluster, which, for a typical OB association radius of 35 pc (e.g. Garmany
1994), and assuming uniform distribution (a quite crude approximation), reads

d⋆ ≃ 56 pc/N
1/3
⋆ . But λmax can be higher if turbulence is driven by SNRs, the

radius of which goes roughly as rSNR ≃ 38 pc
(

t/104 yr
)2/5

in the Sedov-Taylor
phase inside a SB. Hence we vary λmax = 10, 20, 40, 80pc. We take the size of the
acceleration region to be of the order of the radius of a SNR after our time-step
dt = 10 000 yr, that is xacc = 40 pc. However in evolved SB it might be higher,
up to more than 100 pc, so we also try 80 pc and 120 pc. The typical density
of a SB is n = 5.10−3 cm−3, to assess its influence we also run simulations with
n = 10−3 cm−3 and n = 10−2 cm−3.

Finally we have to set the number N of samplings per cluster: convergence
of average spectra typically requires N⋆ ×N ≃ 10 000, but the general trend is
already clear as soon as N⋆ ×N ≃ 1 000, so we simply take N = 1000/N⋆.

4.3. Results

After the discussion of last section we had to run 720 different cases. But
interestingly enough, it turned out that the effects of the 6 parameters relevant
to Fermi 2 and escape q, B, ηT , λmax, n, xacc can be summarized through a single
parameter, the adimensional number θ⋆ introduced by Becker, Le, & Dermer
(2006):

θ⋆ =
(

D⋆
p t⋆esc

)−1
(12)

which, according to equations (9) and (7) goes as

θ⋆ ∝ η−2
T B2q−6 λ2q−2

max x−2
acc n . (13)

With all the possible SB parameters considered in section 4.2., θ⋆ ranges from
10−4 to 10+4. As we consider only strong SN shocks of r = 4, the single remain-
ing parameter is the number of stars N⋆ (represented through dots of different
colors and sizes on the plots), which has a weaker impact on results.

To characterize the CR spectra, we use two indicators, plotted on figure 1.
On the left panel we show the momentum of transition from hard to soft regimes,
defined as the maximum momentum up to which the slope may be smaller

4As SBs are clumpy and turbulent media, many weak secondary shocks (r < 4) are also expected,
their effect will be studied in a work in preparation.
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Figure 1. Two indicators of the hard-soft transition as a function of θ⋆.
Left: maximum momentum p up to which the slope s may be smaller than 3.
Right: lowest slope s obtained at p = 1 GeV

than 3 (note that it can happen to be ≥ 3 at a particular time in a particular
cluster). On the right panel we show the lowest slope (corresponding to the
hardest spectrum) obtained at a fixed momentum of 1 GeV. We see that as θ⋆

rises, (i) the transition momentum falls exponentially from almost the maximum
momentum considered (a fraction of PeV) down to the injection momentum
(10 MeV); and (ii) the lowest slope rises from 0 (which is possible with Fermi 2)
to 4 (the canonical value of Fermi 1 in the test particle case).

This behaviour can be explained noting that θ⋆ is roughly the ratio of
the re-acceleration time and of the escape time. Low θ⋆ are obtained when
re-acceleration is faster than escape, allowing Fermi processes to build hard
spectra up to high energies, as CRs get re-accelerated by shocks and/or turbu-
lence; high θ⋆ are obtained when escape is faster than re-acceleration, resulting
in always quite soft in-situ spectra, as CRs escape immediately after being ac-
celerated by a SN shock. θ⋆ = 1 corresponds to a balance between gains and
losses, in that particular case the spectral break occurs around 1 GeV.

Conclusion

Our main conclusions are as follows:
(i) CR spectra inside SBs are strongly intermittent (at a given time they depend
on the particular history of a given cluster);
(ii) still, CR spectra follow a distinctive overall trend, resulting from a compe-
tition between (re-)acceleration by Fermi 1 and Fermi 2 processes and escape:
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they are harder at lower energies (s < 4) and softer at higher energies (s > 4),
a shape in agreement with the results of Bykov (2001);
(iii) the momentum at which this spectral break occurs critically depends on the
SB parameters: it decreases when the density and the turbulence external scale
increase, and increases when the magnetic field value and acceleration region
size increase – all these effects being summarized by the single dimensionless
parameter θ⋆ defined by (12);
(iv) for reasonable values of SB interior parameters, and especially for highly
magnetized and turbulent SBs, very hard spectra (s < 3) can be obtained over
an important range of CR energies, and at least up to the GeV domain.

These results have important implications on the chemistry inside SBs and
the on high-energy emission from SBs. For instance, in the SB Perseus OB2 we
have observational evidence for intense spallation activity, attributed to a high
density of low-energy CRs, but EGRET has not detected π0-decay radiation,
which puts limits on the density of high-energy CRs. We are looking forward
to see how new instruments such as AGILE, GLAST and HESS 2 will perform
with such extended sources.
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