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We derive a generalized deviation equation—analogous to the well-known geodesic deviation equation—
for test bodies in general relativity.Our result encompasses andgeneralizes previous extensions of the standard
geodesic deviation equation. We show how the standard as well as a generalized deviation equation can be
used to measure the curvature of spacetime by means of a set of test bodies. In particular, we provide exact
solutions for the curvature by using the standard deviation equation as well as its next order generalization.
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I. INTRODUCTION

In general relativity, the comparison of test bodies
moving along adjacent world lines is of direct operational
significance. The observation of a suitably prepared set of
test bodies allows for the determination of the components
of the curvature tensor. In this work we derive a deviation
equation for test bodies moving along general curves in
arbitrary background spacetimes.
Our findings in this work generalize the well-known

geodesic deviation equation and some of its early mod-
ifications. In contrast to many previous treatments, we are
making use of a covariant expansion technique based on
Synge’s “world function” [1,2]. This expansion technique
has also been applied extensively in the context of the
equations of motion of extended test bodies [3–9] and in the
gravitational self-force problem [10,11].
We explicitly show, how the deviation equation can be

used to measure the curvature of spacetime and thereby the
gravitational field. For this we extend Szekeres’s “gravi-
tational compass” [12] and provide an exact solution for the
curvature components in terms of the mutual accelerations
between the constituents of a swarm of test bodies.
The structure of the paper is as follows: In Sec. II

we derive an exact generalized deviation along general
world lines. Furthermore, we provide a systematic expan-
sion of this equation in powers of the deviation vector.
Subsequently, we study several special cases of our general
deviation equation in Sec. III. In particular, we make contact
with several other suggestions for deviation equations in the
literature. We then use the derived deviation equation in
Sec. IV to determine the curvature of spacetime by means of
a generalized gravitational compass. We conclude our paper

in Sec. V with a discussion of the results obtained and with
an outlook of their possible applications. Our notations and
conventions are summarized in Appendix A and Table II.
An exposition on normal coordinates given in Appendix B
contains some new results not found in the earlier literature.

II. GENERALIZED DEVIATION EQUATION

Alternative derivations and generalizations [13–41] aswell
as applications [12,42–66] of the standard and generalized
deviation equations have been extensively studied in the
physical andmathematical literature. The interest in deviation
equations is of course directly linked to their operational
meaning, allowing for a measurement of the gravitational
field, i.e. the curvature of spacetime, in general relativity.
Here we focus on a covariant derivation of a deviation

equation for general curves, which are not necessarily
geodesic. We base our derivation on Synge’s world function
σðx; yÞ [1],which introduces a covariant generalization of the
finite distance between the spacetime points x and y. Basic
definitions and our notation are summarized in appendix A.

A. Comparison of two general curves

Let us start by comparing twogeneral curvesYðtÞ andXð~tÞ
in an arbitrary spacetime manifold. At this stage even the
parameters t and ~t can be general, i.e. are not necessarily the
proper time on the given curves. Nowwe connect two points
y ∈ Y and x ∈ X on the two curves by the geodesic joining
the two points (we assume that this geodesic is unique).
Along the geodesic we have the world function σ, and

conceptually the closest object to the connecting vector
between the two points is the covariant derivative of the
world function, denoted at the point y by σy. Note though
that σy is just tangent at that point (its length being the
geodesic length between y and x), only in flat spacetime it
coincides with the connecting vector. Keeping in mind such
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an interpretation, let us now work out a propagation
equation for this “generalized” connecting vector along
the reference curve, c.f. Fig. 1. Following our conventions,
the reference curve will be YðtÞ, and we define the
generalized connecting vector as

ηy ≔ −σy: ð1Þ
Taking its covariant total derivative, we have

D
dt

ηy1 ¼ −
D
dt

σy1ðYðtÞ; Xð~tÞÞ

¼ −σy1y2
∂Yy2

∂t − σy1x2
∂Xx2

∂~t
d~t
dt

¼ −σy1y2u
y2 − σy1x2 ~u

x2
d~t
dt

; ð2Þ

where in the last line we defined the velocities along the
two curves Y and X. As usual, σyx1…y2… ≔
∇x1…∇y2…ðσyÞ denote the higher order covariant deriv-
atives of the world function. We continue by taking the
second derivative of (2), which yields

D2

dt2
ηy1 ¼ −σy1y2y3u

y2uy3 − 2σy1y2x3u
y2 ~ux3

d~t
dt

− σy1y2a
y2 − σy1x2x3 ~u

x2 ~ux3
�
d~t
dt

�
2

− σy1x2 ~a
x2

�
d~t
dt

�
2

− σy1x2 ~u
x2
d2~t
dt2

; ð3Þ

where we introduced the accelerations ay ≔ Duy=dt and
~ax ≔ D ~ux=d~t. Equation (3) is already the generalized
deviation equation, but the goal is to have all the quantities
therein defined along the reference world line Y.
We now derive some auxiliary formulas, by introducing

the inverse of the second derivative of the world function
via the following equations:

σ
−1 y1

xσ
x
y2 ¼ δy1y2 ; ð4Þ

σ
−1 x1

yσ
y
x2 ¼ δx1x2 : ð5Þ

Multiplication of (2) by σ
−1 x3

y1 then yields

~ux3
d~t
dt

¼ −σ
−1 x3

y1σ
y1
y2u

y2 þ σ
−1 x3

y1

Dσy1

dt

¼ Kx3
y2u

y2 −Hx3
y1

Dσy1

dt
; ð6Þ

where in the last line we defined two auxiliary quantities
Kx

y and Hx
y—the notation follows the terminology of

Dixon. Equation (6) allows us to formally express the
velocity along the curve X in terms of the quantities which
are defined at Y and then “propagated” by Kx

y and Hx
y.

Using (6) in (3) we arrive at

D2

dt2
ηy1 ¼ −σy1y2y3u

y2uy3 − σy1y2a
y2

− 2σy1y2x3u
y2

�
Kx3

y4u
y4 −Hx3

y4

Dσy4

dt

�

− σy1x2x3

�
Kx2

y4u
y4 −Hx2

y4

Dσy4

dt

�

×

�
Kx3

y5u
y5 −Hx3

y5

Dσy5

dt

�

− σy1x2
D
dt

�
Kx2

y3u
y3 −Hx2

y3

Dσy3

dt

�
: ð7Þ

We may derive an alternative version of this equation—
using (6) multiplied by dt=d~t—which yields

~ux3 ¼ Kx3
y2u

y2
dt
d~t

−Hx3
y1

Dσy1

dt
dt
d~t

: ð8Þ

Inserted into (3),

D2

dt2
ηy1 ¼ −σy1y2y3u

y2uy3 − σy1y2a
y2 − σy1x2 ~a

x2

�
d~t
dt

�
2

− 2σy1y2x3u
y2

�
Kx3

y4u
y4 −Hx3

y4

Dσy4

dt

�

− σy1x2x3

�
Kx2

y4u
y4 −Hx2

y4

Dσy4

dt

�

×

�
Kx3

y5u
y5 −Hx3

y5

Dσy5

dt

�

− σy1x2
dt
d~t

d2~t
dt2

�
Kx2

y3u
y3 −Hx2

y3

Dσy3

dt

�
: ð9Þ

Note that we may determine the factor d~t=dt by requiring
that the velocity along the curve X is normalized, i.e.
~ux ~ux ¼ 1, in which case (6) yields

FIG. 1. Sketch of the two arbitrarily parametrized world lines
YðtÞ and Xð~tÞ, and the geodesic connecting two points on these
world line. The (generalized) deviation vector along the reference
world line Y is denoted by ηy.
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d~t
dt

¼ ~ux1K
x1
y2u

y2 − ~ux1H
x1
y2

Dσy2

dt
: ð10Þ

B. Expansion of quantities on Y

The generalized (exact) deviation equations (7) and (9)
contain quantities which are not defined along the reference
curve, in particular the covariant derivatives of the world
function. We now make use of the covariant expansions of
these quantities, which we already worked out in our
previous paper [7], i.e.

σy0x1 ¼ gy
0
x1

�
−δy0y0 þ

X∞
k¼2

1

k!
αy0y0y2…ykþ1

σy2 � � � σykþ1

�
;

ð11Þ
σy0y1 ¼ δy0y1

−
X∞
k¼2

1

k!
βy0y1y2…ykþ1

σy2 � � � σykþ1 ; ð12Þ

gy0x1;x2 ¼ gy
0
x1g

y00
x2

�
1

2
Ry0

y0y00y3σ
y3

þ
X∞
k¼2

1

k!
γy0y0y00y3…ykþ2

σy3 � � � σykþ2

�
; ð13Þ

gy0x1;y2 ¼ gy
0
x1

�
1

2
Ry0

y0y2y3σ
y3

þ
X∞
k¼2

1

k!
γy0y0y2y3…ykþ2

σy3 � � � σykþ2

�
: ð14Þ

The coefficients α, β, γ in these expansions are polynomials
constructed from the Riemann curvature tensor and its
covariant derivatives. The first coefficients read (as one can
also check using computer algebra [10])

αy0y1y2y3 ¼ −
1

3
Ry0 ðy2y3Þy1 ; ð15Þ

βy0y1y2y3 ¼
2

3
Ry0 ðy2y3Þy1 ; ð16Þ

αy0y1y2y3y4 ¼
1

2
∇ðy2R

y0
y3y4Þy1 ; ð17Þ

βy0y1y2y3y4 ¼ −
1

2
∇ðy2R

y0
y3y4Þy1 ; ð18Þ

αy0y1y2y3y4y5 ¼ −
7

15
Ry0 ðy2y3jy0jR

y0
y4y5Þy1

−
3

5
∇ðy5∇y4R

y0
y2y3Þy1 ; ð19Þ

βy0y1y2y3y4y5 ¼
8

15
Ry0 ðy2y3jy0jR

y0
y4y5Þy1

þ 2

5
∇ðy5∇y4R

y0
y2y3Þy1 ; ð20Þ

γy0y1y2y3y4 ¼
1

3
∇ðy3R

y0 jy1jy4Þy2 ; ð21Þ

γy0y1y2y3y4y5 ¼
1

4
Ry0

y1y0ðy3R
y0
y4y5Þy2

þ 1

4
∇ðy5∇y4R

y0 jy1y2jy3Þ: ð22Þ

These results allow us to derive the third derivatives of the
world function appearing in (7) and (9), i.e. we have up to
the second order in the deviation vector:

σy0y1y2 ¼ −
2

3
Ry0 ðy2y3Þy1σ

y3 −
1

2

�
1

2
∇y2R

y0 ðy3y4Þy1

−
1

3
∇y3R

y0 ðy2y4Þy1

�
σy3σy4

−
1

6
λy0y1y2y3y4y5σ

y3σy4σy5 þOðσ4Þ; ð23Þ

σy0y1x2 ¼ gy
0
x2

�
2

3
Ry0 ðy0y3Þy1σ

y3

−
1

4
∇ðy0Ry0

y3y4Þy1σ
y3σy4

þ 1

6
μy0y1y0y3y4y5σ

y3σy4σy5
�
þOðσ4Þ; ð24Þ

σy0x1x2 ¼ −gy0x1g
y00

x2

��
1

2
Ry0

y0y00y3 −
1

3
Ry0 ðy00y3Þy0

�
σy3

þ
�
1

6
∇ðy3R

y0 jy0jy4Þy00 þ
1

4
∇ðy00Ry0

y3y4Þy0
�
σy3σy4

þ 1

6
νy0y0y00y3y4y5σ

y3σy4σy5
�
þOðσ4Þ: ð25Þ

Here we introduced a compact notation for the combina-
tions of the second covariant derivatives of the curvature
and the quadratic polynomial of the curvature tensor (in
symbolic form, “∇∇Rþ R · R”):

λy0y1y2y3y4y5 ¼ βy0y1y3y4y5;y2 þ βy0y1y2y3y4y5

− 3βy0y1y0ðy3β
y0 jy2jy4y5Þ; ð26Þ

μy0y1y2y3y4y5 ¼ βy0y1y2y3y4y5

− 3βy0y1y0ðy3α
y0 jy2jy4y5Þ; ð27Þ

νy0y1y2y3y4y5 ¼ γy0y1y2y3y4y5 þ αy0y1y2y3y4y5

− 3αy0y1y0ðy3α
y0 jy2jy4y5Þ

−
1

4
Ry0

y1y2ðy3α
y0 jy0jy4y5Þ: ð28Þ

Substituting the coefficients of the expansions (11)–(13),
we obtain the explicit (complicated) expressions which we
do not display here.
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For the symmetrized versions, we obtain

σy0 ðy1y2Þ ¼
1

3
Ry0 ðy1y2Þy3σ

y3 −
1

4

�
∇ðy1R

y0 jy3y4jy2Þ

þ 1

3
∇y3R

y0 ðy1y2Þy4

�
σy3σy4

−
1

6
λy0 ðy1y2Þy3y4y5σ

y3σy4σy5 þOðσ4Þ; ð29Þ

σy0 ðx1x2Þ ¼ gy
0
ðx1g

y00
x2Þ

�
−
2

3
Ry0 ðy0y00Þy3σ

y3

þ 1

4
ð∇y3R

y0 ðy0y00Þy4

−
1

3
∇ðy0Ry0 jy3y4jy00ÞÞσy3σy4

−
1

6
νy0 ðy0y00Þy3y4y5σ

y3σy4σy5
�
þOðσ4Þ: ð30Þ

Furthermore, we need the expansions of Kx
y and Hx

y. We

already have everything at hand except σ
−1 x

y which we can
obtain from (5):

σ
−1 x1

y2 ¼ −Hx1
y2

¼ −gx1y0
�
δy

0
y2 þ

X∞
k¼2

1

k!
hy

0
y2y3…ykþ2

σy2 � � � σykþ2

�

¼ −gx1y0
�
δy

0
y2 −

1

6
Ry0 ðy3y4Þy2σ

y3σy4

þ 1

12
∇ðy3R

y0
y4y5Þy2σ

y3σy4σy5
�
þOðσ4Þ; ð31Þ

Kx1
y2 ¼ gx1y0

�
δy

0
y2 þ

X∞
k¼2

1

k!
ky

0
y2y3…ykþ2

σy2 � � � σykþ2

�

¼ gx1y0
�
δy

0
y2 −

1

2
Ry0 ðy3y4Þy2σ

y3σy4

þ 1

6
∇ðy3R

y0
y4y5Þy2σ

y3σy4σy5
�
þOðσ4Þ: ð32Þ

From this one can derive the recurring term in (9) up to the
needed order, i.e.

�
Kx1

y2u
y2 −Hx1

y2

Dσy2

dt

�

¼ gx1y0
�
uy

0 −
Dσy

0

dt
−
1

2
Ry0 ðy3y4Þy2σ

y3σy4
�
uy2 −

1

3

Dσy2

dt

�

þ 1

6
∇ðy3R

y0
y4y5Þy2u

y2σy3σy4σy5
�
þOðσ4Þ: ð33Þ

With these expansions at hand, we are finally able to
develop the deviation equation (9) up to the third order.
Denote ~ay1 ¼ gy1x2 ~a

x2 in accordance with the definition
of the parallel propagator and introduce

ϕy1
y2y3y4y5y6 ¼ λy1y2y3y4y5y6 − 2μy1y2y3y4y5y6

þ νy1y2y3y4y5y6 : ð34Þ

The deviation equation up to the third order reads

D2

dt2
ηy1 ¼ ~ay1

�
d~t
dt

�
2

− ay1 þ dt
d~t

d2~t
dt2

uy1 þDηy1

dt
dt
d~t

d2~t
dt2

− ηy4Ry1
y2y3y4

�
uy2uy3 þ 2uy3

Dηy2

dt

�

þ ηy4ηy5
�
uy2uy3

�
1

2
∇y2R

y1
y4y5y3 −

1

3
∇y4R

y1
y2y3y5

�
þ 1

3
Ry1

y4y5y2

�
ay2 þ 1

2
~ay2

�
d~t
dt

�
2

− uy2
dt
d~t

d2~t
dt2

��

−
1

6
ηy4ηy5ηy6

�
ϕy1

y2y3y4y5y6u
y2uy3 −

1

2
∇ðy4R

y1
y5y6Þy2

�
ay2 þ ~ay2

�
d~t
dt

�
2

− uy2
dt
d~t

d2~t
dt2

��

−
1

2
uy

0 Dηy
00

dt
ηy2ηy3

�
−∇ðy00Ry1

y2y3Þy1 þ∇y2R
y1 ðy0y00Þy3 −

1

3
∇ðy0Ry1 jy2y3jy00Þ

�
−
2

3

Dηy2

dt
Dηy3

dt
ηy4Ry1

y2y3y4 þOðσ4Þ:

ð35Þ

We would like to stress that the generalized deviation
equation derived in (35) is completely general. In particu-
lar, it allows for a comparison of two general, i.e. not
necessarily geodetic, world lines in spacetime.
In special cases, c.f. also Sec. III, our result is in

qualitative agreement with previous results in the literature;
see in particular [14,18,21,25,41,63]

III. SPECIAL CASES

Upto this point our considerationswere completelygeneral,
resulting in the exact form (9) as well as in the second order
version (35)—expanded with respect to the world function—
of the generalized deviation equation. In the following,wewill
study some special cases of the deviation equation.
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A. Affine parametrization

So-far our framework allows for a completely general
parametrization of the curves Y and X. While such a
general framework is of course desirable from a math-
ematical point of view, such freedom of the parametrization
may also lead to unnecessarily complicated equations. By
switching to an affine parametrization of the curves, i.e. we
assume that the time parameter ~t on X is a linear function of
the one on Y, we can simplify the deviation equation,
without restricting its physical meaning. If we demand that
~t ¼ c1tþ c2, where c1 and c2 are just some arbitrary
constants, we can get rid of the “parametrization-induced”
acceleration terms. In particular, the exact deviation
equation (9) now takes the form

D2

dt2
ηy1 ¼ −σy1y2y3u

y2uy3 − σy1y2a
y2 − σy1x2a

̬ x2

− 2σy1y2x3u
y2

�
Kx3

y4u
y4 −Hx3

y4

Dσy4

dt

�

− σy1x2x3

�
Kx2

y4u
y4 −Hx2

y4

Dσy4

dt

�

×
�
Kx3

y5u
y5 −Hx3

y5

Dσy5

dt

�
: ð36Þ

Note that here we introduced the new symbol a
̬ x for the

acceleration on X, to distinguish it from the acceleration eax
for an arbitrary parametrization in the original equation (9).
Furthermore, for an affine parametrization, the approxi-
mated version (35) of the generalized deviation takes the
following simplified form:

D2

dt2
ηy1 ¼ a

̬ y1 − ay1 − ηy4Ry1
y2y3y4

�
uy2uy3 þ 2uy3

Dηy2

dt

�

þ ηy4ηy5
�
uy2uy3

�
1

2
∇y2R

y1
y4y5y3 −

1

3
∇y4R

y1
y2y3y5

�

þ1

3
Ry1

y4y5y2

�
ay2 þ 1

2
a
̬ y2

��
þOðσ3Þ: ð37Þ

1. Geodesic curves

If the two curves Y and X are geodesics, then (37) takes
the even simpler form:

D2

dt2
ηy1 ¼−ηy4Ry1

y2y3y4

�
uy2uy3 þ2uy3

Dηy2

dt

�

þηy4ηy5
�
uy2uy3

�
1

2
∇y2R

y1
y4y5y3 −

1

3
∇y4R

y1
y2y3y5

��
þOðσ3Þ: ð38Þ

Furthermore, from (38) we can recover the well-known
equation of geodesic deviation by linearizing in η:

D2

dt2
ηy1 ¼ −Ry1

y2y3y4u
y2uy3ηy4 : ð39Þ

2. Flat spacetime

In a flat spacetime, and for affine parametrization,
Eq. (37) yields

D2

dt2
ηy ¼ a

̬ y − ay: ð40Þ

Hence, if the two curves are geodesics, we obtain the
expected result:

D2

dt2
ηy ¼ 0: ð41Þ

B. Synchronous parametrization

The factors with the derivatives of the parameters t and ~t
appear due to the nonsynchronous parametrization of the
two curves. It is possible to make things simpler by
introducing the synchronization of parametrization.
Namely, we start by rewriting the velocity as

uy ¼ dYy

dt
¼ d~t

dt
dYy

d~t
: ð42Þ

That is, we now parametrize the position on the first curve
by the same variable ~t that is used on the second curve.
Accordingly, we denote

uey ¼
dYy

d~t
: ð43Þ

By differentiation, we then derive

ay ¼ Duy

dt
¼ D

dt

�
d~t
dt

uey
�

¼ d2~t
dt2

uey þ
�
d~t
dt

�
2

aey; ð44Þ

where

aey ¼
D
d~t

uey ¼
D2Yy

d~t2
: ð45Þ

Analogously, we derive, for the derivative of the deviation
vector,

D2ηy

dt2
¼ d2~t

dt2
Dηy

d~t
þ
�
d~t
dt

�
2 D2ηy

d~t2
: ð46Þ

Substituting (44) and (46) into (35), we obtain
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D2

d~t2
ηy1 ¼ eay1 − aey1

− ηy4Ry1
y2y3y4

�
uey2uey3 þ 2uey3

Dηy2

d~t

�

þ ηy4ηy5
�
uey2uey3

�
1

2
∇y2R

y1
y4y5y3 −

1

3
∇y4R

y1
y2y3y5

�

þ 1

3
Ry1

y4y5y2

�
aey2 þ

1

2
eay2��þOðσ3Þ: ð47Þ

Now everything is synchronous in the sense that both
curves are parametrized by ~t.
Actually, the synchronization can be done already for the

exact deviation equation (9) which is then recast into a
simpler form:

D2

d~t2
ηy1 ¼ −σy1y2aey2 − σy1x2eax2 − σy1y2y3uey2uey3

− 2σy1y2x3uey2
�
Kx3

y4uey4 −Hx3
y4

Dσy4

d~t

�

− σy1x2x3

�
Kx2

y4uey4 −Hx2
y4

Dσy4

d~t

�

×

�
Kx3

y5uey5 −Hx3
y5

Dσy5

d~t

�
: ð48Þ

1. Geodesic curves

If the two curves Y and X are geodesics, then (35) takes
the form

D2

d~t2
ηy1 ¼ −ηy4Ry1

y2y3y4

�
uey2uey3 þ 2uey3

Dηy2

d~t

�

þ ηy4ηy5uey2uey3
�
1

2
∇y2R

y1
y4y5y3 −

1

3
∇y4R

y1
y2y3y5

�
:

ð49Þ

This equation allows for a direct comparison to several
previous results in the literature. In particular it is in
qualitative agreement, note the difference in some prefac-
tors, with [[14] (2.51)], [[18] (4.2)], [[21] (D1,D2)],
[[25] (39)].

2. Flat spacetime

In a flat spacetime, in Cartesian coordinates, the
deviation equation (35) takes the form

D2

d~t2
ηy1 ¼ ~ay1 : ð50Þ

This can be recast into

D2

d~t2
ðηy1 − Yy1 þ Xy1Þ ¼ 0: ð51Þ

Taking into account the definitions and the initial con-
ditions, we conclude that

ηy1 ¼ Yy1 − Xy1 ; ð52Þ

which is what we expect—we are thus recovering the
definition (1).

C. Orthogonal parametrization

Its is worthwhile to stress that no assumption about the
orthogonality of the deviation vector ηy with respect to the
velocity uy along the reference world line has been made in
our derivation. Such an additional assumption could be
imposed, basically leading to a form of the deviation
equation as given in [18]. Technically, this is achieved
by performing an orthogonal decomposition of the gener-
alized deviation equation. This is straightforward and we
do not present here the explicit result.

D. Flat spacetime, geodesic curves

In flat spacetime, and for the curves Y and X being
geodesics, we obtain

D2

dt2
ηy1 ¼ dt

d~t
d2~t
dt2

uy1 þDηy1

dt
dt
d~t

d2~t
dt2

: ð53Þ

In order to arrive at the intuitive result of a non-
accelerated deviation vector, we have to make sure there
is no “parametrization-induced” acceleration, once again
by choosing the parametrization in such a way that d2~t=dt2

vanishes. In the synchronized form, we have

D2

d~t2
ηy1 ¼ 0: ð54Þ

IV. GRAVITATIONAL COMPASS

The determination of the curvature of spacetime in the
context of deviation equations has been discussed in
previous works; see for example [1,12,53]. In [12],
Szekeres coined the notion of a “gravitational compass.”
From now on we will adopt this notion for a set of suitably
prepared test bodies which allow for the measurement of
the curvature and, thereby, the gravitational field.
The operational procedure is to monitor the accelerations

of a set of test bodies with respect to an observer moving on
the reference world line Y. A mechanical analogue would
be to measure the forces between the test bodies and the
reference body via a spring connecting them.
In the following we search for configurations of

test bodies which allow for a complete determination of
all curvature components in a Riemannian background
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spacetime. We perform our analysis on the basis of the
standard geodesic deviation equation, as well as one of its
generalizations.

A. Rewriting the deviation equation

Our starting point is the standard geodesic deviation
equation, i.e.

D2

ds2
ηa ¼ Ra

bcdubηcud: ð55Þ

Since we want to express the curvature in terms of
measured quantities, i.e. the velocities and the accelera-
tions, we rewrite this equation in terms of the standard
(non-covariant) derivative with respect to the proper time.
In order to simplify the resulting equation we employ

normal coordinates, i.e. we have on the world line of the
reference test body

Γab
cjY ¼ 0; ∂aΓbc

djY ¼ 2

3
RaðbcÞd: ð56Þ

In terms of the standard total derivative with respect to
the proper time s, the deviation equation (55) takes the form

d2

ds2
ηa¼jY 2

3
Ra

bcdubηcud: ð57Þ

However, what actually seems to be measured by a
compass at the reference point Y is the lower components
of the relative acceleration. For the lower index position, in
terms of the ordinary derivative in normal coordinates, the
deviation equation (55) takes the form

d2

ds2
ηa¼jY

4

3
Rabcdubηcud: ð58Þ

B. Explicit compass setup

Let us consider a general 6-point compass. In addition to
the reference test body on the world line we will use the
following geometrical setup of the 5 remaining test bodies:

ð1Þηa ¼

0
BBB@

0

1

0

0

1
CCCA; ð2Þηa ¼

0
BBB@

0

0

1

0

1
CCCA; ð3Þηa ¼

0
BBB@

0

0

0

1

1
CCCA;

ð4Þηa ¼

0
BBB@

0

1

1

0

1
CCCA; ð5Þηa ¼

0
BBB@

0

0

1

1

1
CCCA: ð59Þ

In addition to the positions of the compass constituents, we
have to make a choice for the velocity of the reference test

body/observer. In the following we will use ðmÞ different
compasses, each of these compasses will have a different
velocity (associated) with the reference test body. In other
words, we consider ðmÞ different compasses or reference
test bodies, all of which are located at the world line
reference point Y (at the same time), and all these ðmÞ
observers measure the relative accelerations to all five test
bodies placed at the positions given in (59). The lhs of (58)
are the measured accelerations and in the following we
refer to them by ðm;nÞAa. Furthermore, we also introduced
the compass index ðmÞua for the velocities. In other words,
for ðmÞ compasses and ðnÞ bodies in one compass, we have
the following set of equations:

ðm;nÞAa¼jY
4

3
Rabcd

ðmÞub ðnÞηc ðmÞud: ð60Þ

What remains to be chosen, apart from the ðn ¼ 1…5Þ
positions of bodies in one compass, is the number ðmÞ and
the actual directions in which each compass/observer shall
move. Of course in the end we want to minimize both
numbers, i.e. ðmÞ and ðnÞ, which are needed to determine
all curvature components.

ð1Þua ¼

0
BBB@

c10
0

0

0

1
CCCA; ð2Þua ¼

0
BBB@

c20
c21
0

0

1
CCCA; ð3Þua ¼

0
BBB@

c30
0

c32
0

1
CCCA;

ð4Þua ¼

0
BBB@

c40
0

0

c43

1
CCCA; ð5Þua ¼

0
BBB@

c50
c51
c52
0

1
CCCA; ð6Þua ¼

0
BBB@

c60
0

c62
c63

1
CCCA:

ð61Þ

The cðmÞa here are just constants, chosen appropriately to
ensure the normalization of the 4-velocity of each compass.
In summary, we are going to consider ðmÞ ¼ 1…6

compasses, each of them with 6-points, where the five
reference points are always the ðnÞ ¼ 1…5 from (59).

1. Explicit curvature components

The 20 independent components of the curvature tensor
can be explicitly determined in terms of the accelerations
ðm;nÞAa and velocities ðmÞua by making use of the deviation
equation (60) with the help of the compass configuration
given in (59) and (61). The result reads as follows:

01∶ R1010 ¼
3

4
ð1;1ÞA1c−210 ; ð62Þ

02∶ R2010 ¼
3

4
ð1;1ÞA2c−210 ; ð63Þ
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03∶ R3010 ¼
3

4
ð1;1ÞA3c−210 ; ð64Þ

04∶ R2020 ¼
3

4
ð1;2ÞA2c−210 ; ð65Þ

05∶ R3020 ¼
3

4
ð1;2ÞA3c−210 ; ð66Þ

06∶ R3030 ¼
3

4
ð1;3ÞA3c−210 ; ð67Þ

07∶ R2110 ¼
3

4
ð2;1ÞA2c−121 c

−1
20 − R2010c−121 c20; ð68Þ

08∶R3110 ¼
3

4
ð2;1ÞA3c−121 c

−1
20 − R3010c−121 c20; ð69Þ

09∶ R0212 ¼
3

4
ð3;1ÞA0c−232 þ R2010c−132 c30; ð70Þ

10∶ R1212 ¼
3

4
ð2;2ÞA2c−221 − R2020c220c

−2
21 − 2R0212c−121 c20;

ð71Þ

11∶ R3220 ¼
3

4
ð3;2ÞA3c−132 c

−1
30 − R3020c−132 c30; ð72Þ

12∶ R0313 ¼
3

4
ð4;1ÞA0c−243 þ R3010c−143 c40; ð73Þ

13∶ R1313 ¼
3

4
ð2;3ÞA3c−221 − R3030c220c

−2
21 − 2R0313c−121 c20;

ð74Þ

14∶ R0323 ¼
3

4
ð4;2ÞA0c−243 þ R3020c−143 c40; ð75Þ

15∶ R2323 ¼
3

4
ð4;2ÞA2c−243 − R2020c−243 c

2
40 þ 2R3220c−143 c40;

ð76Þ

16∶ R3132 ¼
3

8
ð5;3ÞA3c−152 c

−1
51 −

1

2
R3030c−152 c

−1
51 c

2
50

− R0313c−152 c50 − R0323c−151 c50 −
1

2
R1313c−152 c51

−
1

2
R2323c52c−151 ; ð77Þ

17∶ R1213 ¼
3

8
ð6;1ÞA1c−163 c

−1
62 −

1

2
R1010c−163 c

−1
62 c

2
60

þ R2110c−163 c60 þ R3110c−162 c60 −
1

2
R1212c−163 c62

−
1

2
R1313c63c−162 ; ð78Þ

There are still 3 components of the curvature tensor
missing. To determine them, we notice that the following
relation between the remaining equations is at our disposal:

R0312 − R0231 ¼
3

4
ð2;2ÞA3c−120 c

−1
21 − R3020c20c−121

− R3121c21c−120 ; ð79Þ

R0231 − R0123 ¼
3

4
ð4;1ÞA2c−140 c

−1
43 − R2010c40c−143

− R2313c43c−140 : ð80Þ

Subtracting (79) from (80) and using the Ricci identity
we find:

18∶ R0231 ¼
1

4
ð4;1ÞA2c−140 c

−1
43 −

1

4
ð2;2ÞA3c−120 c

−1
21

þ 1

3
ðR3020c20c−121 þ R3121c21c−120

− R2010c40c−143 − R2313c43c−140 Þ; ð81Þ

19∶ R0312 ¼
1

4
ð4;1ÞA2c−140 c

−1
42 þ 1

2
ð2;2ÞA3c−120 c

−1
21

−
1

3
ð2R3020c20c−121 þ 2R3121c21c−120

þ R2010c40c−143 þ R2313c43c−140 Þ: ð82Þ
Finally, by reinsertion of (79) in one of the remaining
compass equations, one obtains:

20∶ R3212 ¼
3

4
ð4;1ÞA3c−120 c

−1
21 c50c

−1
52 −

3

4
ð5;2ÞA3c−151 c

−1
52

þ R3121c−152 ðc51 − c50c21c−120 Þ þ R3220c50c−151
þ R3020c50c−152 ðc50c−151 − c20c−121 Þ: ð83Þ

By examination of the components given in (62)–(83), we
conclude that for a full determination of the curvature one
needs 13 test bodies, see Fig. 2 for a sketch of the solution.

2. Vacuum spacetime

In vacuum the number of independent components
of the curvature is reduced to the 10 components of the
Weyl tensor Cabcd. Replacing Rabcd in the compass solution
(62)–(83), and taking into account the symmetries of Weyl
we may use a reduced compass setup to completely
determine the gravitational field, i.e.

01∶ C1010 ¼
3

4
ð1;1ÞA1c−210 ; ð84Þ

02∶ C2010 ¼
3

4
ð1;1ÞA2c−210 ; ð85Þ

03∶ C3010 ¼
3

4
ð1;1ÞA3c−210 ; ð86Þ
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04∶ C2020 ¼
3

4
ð1;2ÞA2c−210 ; ð87Þ

05∶ C3020 ¼
3

4
ð1;2ÞA3c−210 ; ð88Þ

06∶ C2110 ¼
3

4
ð2;1ÞA2c−121 c

−1
20 − C2010c−121 c20; ð89Þ

07∶C3110 ¼
3

4
ð2;1ÞA3c−121 c

−1
20 − C3010c−121 c20; ð90Þ

08∶ C0212 ¼
3

4
ð3;1ÞA0c−232 þ C2010c−132 c30; ð91Þ

09∶ C0231 ¼
1

4
ð4;1ÞA2c−140 c

−1
43 −

1

4
ð2;2ÞA3c−120 c

−1
21

þ 1

3
C3020ðc20c−121 þ c21c−120 Þ

−
1

3
C2010ðc40c−143 þ c43c−140 Þ; ð92Þ

10∶ C0312 ¼
1

4
ð4;1ÞA2c−140 c

−1
42 þ 1

2
ð2;2ÞA3c−120 c

−1
21

−
2

3
C3020ðc20c−121 þ c21c−120 Þ

þ 1

3
C2010ðc40c−143 þ c43c−140 Þ: ð93Þ

All the other components of the Weyl tensor are obtained
from the above by making use of the double-self-duality

property Cabcd ¼ − 1
4
ϵabefϵcdghCefgh, where ϵabcd is the

totally antisymmetric Levi-Civita tensor with ϵ0123 ¼ 1,
and the Ricci identity. See Fig. 3 for a sketch of the
solution.

C. Generalized deviation equation

Let us come back to the generalized deviation equation
derived in the first part of the work. In particular the
generalized equation with synchronous parametrization for
geodesic curves, i.e. (49). Considering this equation at first
order, one interesting question is whether it allows for a
determination of the curvature with a smaller number of test
bodies than the standard deviation equation considered in
Sec. IVA.
Rewriting (49) at first order in normal coordinates yields:

d2

ds2
ηa¼jY

4

3
Rabcdubηcud þ 2Rabcd

dηb

ds
ηcud: ð94Þ

The apparent difference with respect to (58) is that now the
velocities of the individual test bodies come into play.

D. Generalized compass setup

The lhs of (94) are the measured accelerations, and in the
following we refer to them by ðm;n;pÞAa. In other words, for
ðmÞ compasses, with ðmÞua velocities, and ðnÞ test bodies,
which can move individually with ðpÞ velocities in one
compass, we have the following set of equations:

FIG. 2. Symbolical sketch of the explicit compass solution in
(62)–(83). In total 13 suitably prepared test bodies (hollow
circles) are needed to determine all curvature components. The
reference body is denoted by the black circle. Note that with the
standard deviation equation all ð1…6Þua, but only ð1…3Þηa are
needed in the solution.

FIG. 3. Symbolical sketch of the explicit compass solution in
(84)–(93) for the vacuum case. In total 6 suitably prepared test
bodies (hollow circles) are needed to determine all components of
the Weyl tensor. The reference body is denoted by the black
circle. Note that in vacuum, with the standard deviation equation,
all ð1…4Þua, but only ð1…2Þηa are needed in the solution.
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ðm;n;pÞAa¼jY
4

3
Rabcd

ðmÞub ðnÞηc ðmÞud

þ 2Rabcd
ðpÞη∘b ðnÞηc ðmÞud ð95Þ

Here we used the shortcut notation “η
∘ a” ¼ dηa=ds for the

standard total derivative. What remains to be chosen, apart
from the ðn ¼ 1…5Þ positions of bodies in one compass,
the ðm ¼ 1…6Þ actual directions in which each compass/
observer shall move, are the ðp ¼ 0…6Þ individual veloc-
ities of the bodies. Of course, in the end, we want to
minimize all three numbers, i.e. ðmÞ, ðnÞ, and ðpÞwhich are
needed to determine all curvature components.

ð1Þη∘ a ¼

0
BBB@

d10
0

0

0

1
CCCA; ð2Þη∘ a ¼

0
BBB@

d20
d21
0

0

1
CCCA; ð3Þη∘ a ¼

0
BBB@

d30
0

d32
0

1
CCCA;

ð4Þη∘ a ¼

0
BBB@

d40
0

0

d43

1
CCCA; ð5Þη∘ a ¼

0
BBB@

d50
d51
d52
0

1
CCCA; ð6Þη∘ a ¼

0
BBB@

d60
0

d62
d63

1
CCCA:

ð96Þ

The dðpÞa here are just constants, chosen appropriately to
ensure the normalization of the 4-velocity of each test body.
Note that in order to recover the results from the previous
compass setup in the context of the standard deviation
equation, we just have to choose

ð0Þη∘ a ¼

0
BBB@

0

0

0

0

1
CCCA: ð97Þ

1. Explicit curvature components

Similarly to Sec. IV B, the 20 independent components
of the curvature tensor can be explicitly determined in
terms of the accelerations ðm;n;pÞAa and velocities ðmÞua via
the deviation equation (95) by using the compass configu-
ration given in (59), (61), and (96). The result reads as
follows:

01∶ R1010 ¼
3

4
ð1;1;0ÞA1c−210 ; ð98Þ

02∶ R2010 ¼
3

4
ð1;1;0ÞA2c−210 ; ð99Þ

03∶ R3010 ¼
3

4
ð1;1;0ÞA3c−210 ; ð100Þ

04∶ R2110 ¼
1

2
ð1;1;2ÞA2d−121 c

−1
10 −

�
2

3
d−121 c10þd20d−121

�
R2010;

ð101Þ

05∶ R3110 ¼
1

2
ð1;1;2ÞA3d−121 c

−1
10 −

�
2

3
d−121 c10þd20d−121

�
R3010;

ð102Þ

06∶ R3210 ¼
1

2
ð1;1;3ÞA3d−132 c

−1
10 −

�
2

3
d−132 c10þd30d−132

�
R3010;

ð103Þ

07∶ R2020 ¼
3

4
ð1;2;0ÞA2c−210 ; ð104Þ

08∶ R3020 ¼
3

4
ð1;2;0ÞA3c−210 ; ð105Þ

09∶ R2120 ¼
1

2
ð1;2;2ÞA2d−121 c

−1
10 −

�
2

3
d−121 c10þd20d−121

�
R2020;

ð106Þ

10∶ R3120 ¼
1

2
ð1;2;2ÞA3d−121 c

−1
10 −

�
2

3
d−121 c10þd20d−121

�
R3020;

ð107Þ

11∶ R3220 ¼
1

2
ð1;2;3ÞA3d−132 c

−1
10 −

�
2

3
d−132 c10þd30d−132

�
R3020;

ð108Þ

12∶ R3030 ¼
3

4
ð1;3;0ÞA3c−210 ; ð109Þ

13∶ R2130 ¼
1

2
ð1;3;2ÞA2d−121 c

−1
10 −

�
2

3
d−121 c10þd20d−121

�
R2030;

ð110Þ

14∶ R3130 ¼
1

2
ð1;3;2ÞA3d−121 c

−1
10 −

�
2

3
d−121 c10þd20d−121

�
R3030;

ð111Þ

15∶ R3230 ¼
1

2
ð1;3;3ÞA3d−132 c

−1
10 −

�
2

3
d−132 c10þd30d−132

�
R3030;

ð112Þ
16∶ R2121 ¼

3

4
ð2;2;0ÞA2c−221 − R2020c220c

−2
21 − 2R2120c20c−121 ;

ð113Þ
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17∶ R3121 ¼
3

4
ð2;2;0ÞA3c−221 − R3020c220c

−2
21

− ðR3021 þ R3120Þc20c−121 ; ð114Þ

18∶ R3221 ¼
1

2
ð2;2;3ÞA3d−132 c

−1
21 −

�
2

3
d−132 c20 þ d30d−132

�
R3021

−
�
2

3
d−132 c

−1
21 c

2
20 þ d−132 d30c

−1
21 c20

�
R3020

−
2

3
R3120d−132 c20 −

2

3
R3121d−132 c21

−R3220c−121 c20; ð115Þ

19∶ R3131 ¼
3

4
ð2;3;0ÞA3c−221 − R3030c20c−221 − 2R3130c20c−121 ;

ð116Þ

20∶ R3231 ¼
1

2
ð2;3;3ÞA3d−132 c

−1
21 −

�
4

3
d−132 c20 þ d−132 d30

�
R3031

−
�
2

3
d−132 c

−1
21 c

2
20 þ d−132 d30c

−1
21 c20

�
R3030

−
2

3
d−132 c21R3131 − R3230c−121 c20: ð117Þ

By examination of the components given in (98)–(117), we
infer that for a full determination of the curvature by means
of the generalized deviation equation one again needs 13
test bodies. See Fig. 4 for a sketch of the solution.

2. Vacuum spacetime

By replacing Rabcd in the compass solution (98)–(117),
and taking into account the symmetries of Weyl, we may
use a reduced compass setup to completely determine the
gravitational field, this time by means of the generalized
deviation equation. Explicitly, one ends up with

01∶ C1010 ¼
3

4
ð1;1;0ÞA1c−210 ; ð118Þ

02∶ C2010 ¼
3

4
ð1;1;0ÞA2c−210 ; ð119Þ

03∶ C3010 ¼
3

4
ð1;1;0ÞA3c−210 ; ð120Þ

04∶ C2110 ¼
1

2
ð1;1;2ÞA2d−121 c

−1
10

−
�
2

3
d−121 c10 þ d20d−121

�
C2010; ð121Þ

05∶ C3110 ¼
1

2
ð1;1;2ÞA3d−121 c

−1
10

−
�
2

3
d−121 c10 þ d20d−121

�
C3010; ð122Þ

06∶ C3210 ¼
1

2
ð1;1;3ÞA3d−132 c

−1
10

−
�
2

3
d−132 c10 þ d30d−132

�
C3010; ð123Þ

07∶ C2020 ¼
3

4
ð1;2;0ÞA2c−210 ; ð124Þ

08∶ C3020 ¼
3

4
ð1;2;0ÞA3c−210 ; ð125Þ

09∶ C2120 ¼
1

2
ð1;2;2ÞA2d−121 c

−1
10

−
�
2

3
d−121 c10 þ d20d−121

�
C2020; ð126Þ

10∶ C3120 ¼
1

2
ð1;2;2ÞA3d−121 c

−1
10

−
�
2

3
d−121 c10 þ d20d−121

�
C3020: ð127Þ

TABLE I. Number of required bodies in a compass setup for a
full determination of the gravitational field, i.e. 20 components of
Rabcd in a general spacetime and 10 components of Cabcd in
vacuum.

Spacetime

General Vacuum

Standard deviation equation 13 6
Generalized deviation equation 13 5

FIG. 4. Symbolical sketch of the explicit compass solution in
(98)–(117). Again, in total, 13 suitably prepared test bodies
(hollow circles) are needed to determine all curvature compo-
nents. The reference body is denoted by the black circle. Note that
with the generalized deviation equation only ð1…2Þua, ð1…3Þηa, and
ð2…3Þη∘ a are needed in the solution.
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See Fig. 5 for a sketch of the solution. Table I contains an
overview of the number of required test bodies in different
compass setups and in general, as well as in vacuum,
spacetimes.

V. CONCLUSION

In this work we derived a generalized covariant deviation
equation in the framework of Synge’s world function
approach. It should be stressed that our exact deviation
equation in (9) is valid for arbitrary world lines and in
general background spacetimes. In the subsequent analysis,
we provided a systematic expansion of the exact deviation
equation up to the third order in theworld function (35). This
equation can beviewed as a generalization of thewell-known
geodesic deviation equation, towhich it was shown to reduce
under the right assumptions. As we have shown in detail, our
results encompass several suggestions for a generalized
deviation equation from the literature as special cases, and
therefore may serve a unified framework for further studies.
In a subsequent analysis, we have shown how deviation

equations can be used to determine the curvature of
spacetime. For this, we extended the notion of a gravita-
tional compass [12] and worked out compass setups for
general as well as for vacuum spacetimes. One setup is
based on the standard geodesic deviation equation (39), and
another is based on the next order generalization given in
(49) which goes beyond the linearized case. For both cases
we provided the explicit compass solution which allows for
a full determination of the curvature.
In contrast to the general considerations in [1,12], we

give an explicit exact solution for the compass setup. With
the standard deviation equation, as well as with the
generalized deviation equation, we need at least 13 test
bodies to determine all curvature components in a general
spacetime. For the standard deviation, we therefore obtain
the same number of bodies as in [53], however it is
worthwhile to note that no explicit solution was given in
[53] for a nonvacuum spacetime. In the case of a

generalized deviation equation, our findings are at odds
with the results in [53]. However, this discrepancy in the
generalized case comes as no surprise since the generalized
equation used in [53]—which was previously derived in
[27]—differs from our equation. In vacuum spacetimes, we
have explicitly shown that the number of required test
bodies is reduced to 6, for the standard deviation equation,
and to 5, for the generalized deviation equation.
Furthermore, it is interesting to note that in the case of

the standard deviation equation, the opinion of the authors
[1,12] differs when it comes to the number of required test
bodies. This seems to be related to the counting scheme and
the interpretation of the notion of a compass. Since no
explicit compass solutions were given in [1,12], one cannot
make a comparison to our results. In the case of [53], we
were not able to verify that the given solution does fulfill
the compass equations derived in that work. However, the
agreement on the number of required bodies in combina-
tion with the standard deviation is reassuring.
In summary, we have explicitly shown how deviation

equations can be used to measure the gravitational field.
Our results are of direct operational relevance and form the
basis for many experiments. Important applications range
from the description of gravitational wave detectors to the
study of satellite configurations for gravitational field
mapping in relativistic geodesy. An interesting question
is whether a further reduction of the number of required test
bodies for certain experiments is possible. A systematic
analysis of the practical applications of generalized
deviation equations, including the gravitation wave detec-
tion, will be presented elsewhere.
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APPENDIX A: NOTATIONS AND CONVENTIONS

Our conventions for the Riemann curvature are as
follows:

2Tc1…ck
d1…dl;½ba�

≡ 2∇½a∇b�Tc1…ck
d1…dl

¼
Xk
i¼1

Rabe
ciTc1…e…ck

d1…dl −
Xl

j¼1

Rabdj
eTc1…ck

d1…e…dl :

ðA1Þ
The Ricci tensor is introduced by Rij ¼ Rkij

k, and the
curvature scalar is R ¼ gijRij. The signature of the space-
time metric is assumed to be ðþ1;−1;−1;−1Þ.

FIG. 5. Symbolical sketch of the explicit compass solution in
(118)–(127) for the vacuum case. In total 5 suitably prepared test
bodies (hollow circles) are needed to determine all components of
the Weyl tensor. The reference body is denoted by the black
circle. Note that in vacuum, with the generalized deviation
equation, only ð1Þua, ð1…2Þηa, and ð2…3Þη∘ a are needed in the
solution.
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In the following, we summarize some of the frequently
used formulas in the context of the bitensor formalism [in
particular, for the world function σðx; yÞ]; see, e.g., [1,2,11]
for the corresponding derivations. Note that our curvature
conventions differ from those in [1,11]. Indices attached to
the world function always denote covariant derivatives, at
the given point, i.e. σy ≔ ∇yσ; hence, we do not make
explicit use of the semicolon in case of the world function.
We start by stating, without proof, the following useful rule
for a bitensor B with arbitrary indices at different points
(here just denoted by dots):

½B…�;y ¼ ½B…;y� þ ½B…;x�: ðA2Þ

Here a coincidence limit of a bitensor B…ðx; yÞ is a tensor

½B…� ¼ lim
x→y

B…ðx; yÞ; ðA3Þ

determined at y. Furthermore, we collect the following
useful identities:

σy0y1x0y2x1 ¼ σy0y1y2x0x1 ¼ σx0x1y0y1y2 ; ðA4Þ
gx1x2σx1σx2 ¼ 2σ ¼ gy1y2σy1σy2 ; ðA5Þ

½σ� ¼ 0; ½σx� ¼ ½σy� ¼ 0; ðA6Þ

½σx1x2 � ¼ ½σy1y2 � ¼ gy1y2 ; ðA7Þ

½σx1y2 � ¼ ½σy1x2 � ¼ −gy1y2 ; ðA8Þ
½σx1x2x3 � ¼ ½σx1x2y3 � ¼ ½σx1y2y3 � ¼ ½σy1y2y3 � ¼ 0; ðA9Þ

½gx0y1 � ¼ δy0y1 ; ½gx0y1;x2 � ¼ ½gx0y1;y2 � ¼ 0; ðA10Þ

½gx0y1;x2x3 � ¼
1

2
Ry0

y1y2y3 : ðA11Þ

APPENDIX B: NORMAL COORDINATES

Here we provide the explicit expressions of the deriv-
atives of the Riemannian connection Γi1…iNij

k ≔
∂i1…∂iNΓij

k in normal coordinates.
The list of the lowest derivatives for N ¼ 0, 1, 2, 3 reads

as follows:

�Γij
k ¼ 0; ðB1Þ

�Γi1ij
k ¼ 2

3
Ri1ðijÞ

k; ðB2Þ

�Γi1i2ij
k ¼ 1

6
½5∇ði1Ri2ÞðijÞ

k −∇ðiRjÞði1i2Þ
k�; ðB3Þ

�Γi1i2i3ij
k ¼ 3

20
½6∇ði1∇i2Ri3ÞðijÞ

k −∇i∇ði1Rjjji2i3Þ
k

−∇j∇ði1Rjiji2i3Þ
k� þ 4

15
Rpði1i2

kRi3ÞðijÞ
p

þ 1

2
½Rpði1i2

kRi3ÞðijÞ
p − Riði1i2

pRi3ÞðjpÞ
k

−Rjði1i2
pRi3ÞðipÞ

k� þ 1

10
½Riði1i2

pRi3Þjp
k

þRjði1i2
pRi3Þip

k�: ðB4Þ
The parentheses denote the symmetrization over the
enclosed indices; indices between the vertical lines are
excluded from the symmetrization. As a check, from these
formulas we can derive the symmetrized derivatives of the
connection which are better known in the literature (see,
e.g., Petrov [67]):

�Γði1iÞj
k ¼ −

1

3
Rjði1iÞ

k; ðB5Þ

TABLE II. Directory of symbols.

Symbol Explanation

Geometrical quantities

gab Metricffiffiffiffiffiffi−gp
Determinant of the metric

δab Kronecker symbol

ϵabcd Levi-Civita symbol

xa, s Coordinates, proper time

Γab
c Connection

�Γab…
c Deriv. conn. (normal coords.)

Rabc
d, Cabc

d Riemann, Weyl curvature

σ World function

ηy Deviation vector

gy0 x0 Parallel propagator

Misc.

YðtÞ, XðtÞ (Reference) world line

ua Velocity

ab Acceleration

Kx
y;Hx

y Jacobi propagators
ðm;nÞAa, ðm;n;pÞAa Accelerations of compass

constituents

Auxiliary quantities

αy0 y1…yn , β
y0
y1…yn , γ

y0
y1…yn Expansion coefficients

cðmÞa, dðmÞa Constants

ϕy1
y2…, λy1y2…, μy1 y2…, Abbreviations

Δi1…, Ξi1…

Operators

∂i, ∇i (Partial, covariant) derivative
D
ds ¼ “ · ” Total covariant derivative
d
ds ¼ “∘” Total derivative

“½…�” Coincidence limit
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�Γði1i2iÞj
k ¼ −

1

2
∇ði1Rjjji2iÞ

k; ðB6Þ

�Γði1i2i3iÞj
k ¼ −

3

5
∇ði1∇i2Rjjji3iÞ

k

−
2

15
Rpði1i2

kRjjji3iÞ
p: ðB7Þ

It is worthwhile to note that the symmetrization of the two
last lines in (B4) over ði1i2i3iÞ yields zero.
The above formulas can be derived as follows. The

derivatives of the connection �Γi1���iNij
k satisfy the algebraic

equations,

�Γi1i2���iNij
k − �Γii2���iNi1j

k ¼ Δi1iji2���iN
k; ðB8Þ

where Δi1iji2���iN
k are the tensors with the symmetry

properties

Δi1iji2���iN
k ¼ −Δii1ji2���iN

k; ðB9Þ

Δi1iji2���iN
k ¼ Δii1jði2���iNÞ

k; ðB10Þ

Δ½i1ij�i2���iN
k ¼ 0; ðB11Þ

Δ½i1ijjji2����iN
k ¼ 0: ðB12Þ

That is, these tensors are skew-symmetric in the first two
indices and totally symmetric in the last N − 1 indices
[these properties are thus consistent with the symmetry
properties of the left-hand side of the equation (B8)], and in
addition, the antisymmetrization over the first three indices
and over the first pair and the fourth index vanishes. Using
these symmetry properties, one can solve the equation (B8)
with respect to the derivatives of the connection. In
symbolic form, the general solution (for any N) reads

�Γi1i2���iN ij
k ¼ 1

K
½ðK − 1ÞΔperm

k þ ðK − 2ÞΔperm
k

þ � � � þ Δperm
k�; ðB13Þ

where K ¼ ðN þ 2ÞðN þ 1Þ=2 and the right-hand side
contains (K − 1) terms in which the (N þ 2) lower indices
of Δ’s are permuted in accordance with a certain rule.
Actually, the determination of this permutation rule is a
highly nontrivial problem which is related to the famous
theorem of Desargues, as was shown by Veblen [68].
We will only give the solutions for the case of N ¼ 1, 2,

3, 4:

�Γi1ij
k ¼ 1

3
½2Δi1ji

k þ Δjii1
k�; ðB14Þ

�Γi1i2ij
k ¼ 1

6
½5Δi1jii2

k þ 4Δjii1i2
k þ 3Δi2ji1i

k

þ2Δii1i2j
k þ Δjii2i1

k�; ðB15Þ

�Γi1i2i3ij
k ¼ 1

10
½9Δi1jii2i3

k þ 8Δjii1i2i3
k

þ 7Δi2ji1ii3
k þ 6Δii1i2ji3

k

þ 5Δjii2i1i3
k þ 4Δi3ji2ii1

k

þ 3Δi1i2i3ji
k þ 2Δii1i3i2j

k

þ Δjii3i1i2
k�; ðB16Þ

�Γi1i2i3i4ij
k¼ 1

15
½14Δi1jii2i3i4

kþ13Δjii1i2i3i4
kþ12Δi2ji1ii3i4

k

þ11Δii1i2ji3i4
kþ10Δjii2i1i3i4

kþ9Δi3ji2ii1i4
k

þ8Δi1i2i3jii4
kþ7Δii1i3i2ji4

kþ6Δjii3i1i2i4
k

þ5Δi4ji3ii1i2
kþ4Δi2i3i4jii1

kþ3Δi1i2i4i3ji
k

þ2Δii1i4i2i3j
kþΔjii4i1i2i3

k�: ðB17Þ

By differentiating covariantly the curvature tensor Rijl
k,

one can straightforwardly identify the Δ’s with the poly-
nomials built from the curvature and its derivatives.
Explicitly, we have

Δi1ij
k ¼ Ri1ij

k; ðB18Þ

Δi1iji2
k ¼ ∇i2Ri1ij

k; ðB19Þ

Δi1iji2i3
k ¼ ∇ði2∇i3ÞRi1ij

k þ Ξi1iji2i3
k; ðB20Þ

where the quadratic in curvature contraction reads

Ξi1iji2i3
k ¼ 1

3
½Rjði2i3Þ

pRii1p
k − Rpði2i3Þ

kRii1j
p

þ Riði2i3Þ
pRpi1j

k − Ri1ði2i3Þ
pRpij

k�

þ 4

9
½Ri2ðipÞ

kRi3ði1jÞ
p þ Ri3ðipÞ

kRi2ði1jÞ
p

− Ri2ði1pÞ
kRi3ðijÞ

p − Ri3ði1pÞ
kRi2ðijÞ

p�: ðB21Þ

Inserting (B18)–(B21) into (B14)–(B16), we finally obtain
the expressions (B2)–(B4).
It is worthwhile to mention that all the formulas derived

here (in accordance with the general theory of normal
coordinates [68–70]) are valid not only for the Riemannian
Christoffel symbols but for an arbitrary symmetric con-
nection Γij

k too. The explicit higher order results (B4),
(B16), (B17) and (B21) are new.
A direct prescription of how to calculate the derivatives

of the connection is described in [71,72], although it seems
impossible to give an explicit general formula. However,
using the recursive prescriptions of [71,72], one can find
the �Γ’s for any N.
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