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Abstract

This paper reviews the Einstein Cartan theory (ECT), the famous extension of general rel-

ativity (GR) in presence of spacetime torsion. The vacuum equations are derived step by step.

Vielbein formulation is discussed for determining the field equations in presence of matter. This

review would be easily comprehensible for any student familiar with general relativity. Further,

ECT is used to describe superstrings with intrinsic torsion, assuming a Dp-brane in presence of

a curved background of the NS-NS Kalb-Ramond field. D-brane worldvolume is a flat spacetime

governed by the Dirac-Born-Infeld (DBI) action. In presence of the dynamical NS-NS B-field, the

contortion tensor equals the totally antisymmetric torsion. Using this, the form of the Dp-brane

action in presence of torsion is determined.
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1 Motivation

Einstein Cartan Theory (ECT) is an extension of General Relativity (GR) theory, which is the

simplest theory of gravity with curvature as the only geometric property of the spacetime. General

relativity is a classical theory designed by Einstein on a pseudo-Riemannian2 manifold. On the

other hand, ECT has curvature and torsion both as the geometric properties of the spacetime.

Motivation to devise this extension arose by comparing general relativity with theories of the other

three fundamental interactions. Strong, weak and electromagnetic forces are described by quantum

relativistic fields in a flat Minkowski space. The spacetime itself is unaffected by these fields. On

the contrary, gravitational interactions modify the geometrical structure of spacetime and they are

not represented by another field but by the distortion of geometry itself [1]. While three-fourth of

modern physics acting at a microscopic level is described in the framework of flat spacetime, the

remaining one-fourth i.e. the macroscopic physics of gravity needs introduction of a dynamic or

geometrical background. This situation is inadequate because three fundamental interactions are

completely disjoint from the remaining one. So a theory needs to be formulated, which can in some

limit give common description for all the four. In other words, the problem is what if we consider

elementary particle interactions in a curved spacetime. A big drawback of general relativity is that

it assumes matter to be mass energy distribution but actually matter also includes spin density.

For macroscopic objects, spin averages out in general if we ignore objects like ferromagnets but at

microscopic level, spin plays an important role. Since gravity is the weakest interaction at low energy,

it appears that gravitation has no effect on the elementary particle interactions. However, when we

consider microphysics in curved spacetime, we have some important phenomena like neutron inter-

ferometry which can be used to observe the interaction of neutrons with Earth’s gravitational field

[2]. Macroscopically, spin density plays significant role in early universe (big bang) and superdense

objects like neutron stars and black holes.

A mass distribution in a spacetime is described by the energy-momentum tensor while a spin dis-

tribution in a field theory is described by the spin density tensor. So at the microscopic level,

energy-momentum tensor is not sufficient to characterize the matter sources but the spin density

tensor is also needed. However, if we consider a system of scalar fields depicting spinless particles,

the spin density tensor vanishes.

Similar to the mass-energy distribution (a property of matter) which produces curvature in spacetime

(a geometric property), spin density must also couple to some geometric property. That property

should be torsion. ECT is GR extended to include torsion. It is also called ECSK theory (after

Einstein, Cartan, Sciama, Kibble who laid the foundations of this theory), and briefly denoted as U4

theory, where U4 is a four dimensional Riemann-Cartan spacetime. Torsion leads to deviation from

2 a pseudo-Riemannian manifold is a generalization of a Riemannian manifold in which the metric tensor need not

be positive-definite
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general relativity only in exceptional situations like big bang, gravitational collapse and microscopic

physics.

2 Spacetime torsion

In GR, we interpret gravity not as a force but as the curvature or bending of spacetime produced by

a mass energy distribution. We have the constraint of torsion free spacetime, hence the connection

is symmetric. In ECT, it is assumed that in addition we have a spin density of matter which

produces torsion in spacetime around and connection is in general asymmetric. Then torsion is the

antisymmetric part of the connection

Qµν
α =

1

2
(Γα

µν − Γα
νµ) = Γα

[µν] (1)

Torsion Qµν
α is a third-rank tensor with antisymmetry in its first two indices. It has D2(D − 1)/2

independent components in a D dimensional spacetime.

Effect of torsion on the geometry of spacetime
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Figure 1: When an infinitesimal or tangent vector is parallel transported along a closed path, we have a
rotation (if there is only curvature) or a translation (if there is only torsion) or both (if there is curvature and
torsion) [1]
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To understand the geometrical meaning of torsion, we compare it with the intrinsic curvature of GR.

When a tangent vector is parallel transported along a closed path, it changes its direction. But,

in presence of torsion, if we try to parallel transport it along a closed path, it would come back

translated with respect to its original position i.e. path will not be closed. This is illustrated in the

figure 1.

3 Metric Compatibility

In general relativity, there are two constraints: (1.) metric compatibility of the affine connection and

(2.) torsion free spacetime, and hence the connection is symmetric, i.e., Christoffel connection. If we

relax both these constraints then what we have is a general affine manifold, A4. For A4, the affine

connection is

Γα(A4)
µν =

{

α
µν

}

−Kµν
α − Vµν

α (2)

where
{

α
µν

}

is called the Christoffel symbol, Kµν
α is known as contortion tensor and Vµν

α arises from

the non-metricity.

Contortion tensor: Torsion appears in linear combination as the contortion tensor Kµν
α

Kµν
α = −Qµν

α +Qν
α
µ −Qα

µν ⇒ Kµν
α = −Kµ

α
ν (3)

It is antisymmetric in 2nd and 3rd indices. Another important combination is the modified torsion

tensor

Tµν
ρ = Qµν

ρ + 2δρ[µQν] (4)

Non-metricity: In eq. (2),

Vµνα =
1

2
(Dαgµν −Dνgµα −Dµgνα) (5)

with D
(A4)
α gµν 6= 0 known as the non-metricity tensor and the covariant derivative of the affine

manifold is defined by

D(A4)
α = ∂α + Γ(A4)

α . (6)

However in a Riemann-Cartan or U4 manifold, one constraint is relaxed, that of the torsion free

spacetime. Metric compatibility condition is still there in U4, i.e.,

Dαgµν = 0 ⇒ Vµνα = 0 hence D(U4)
α = ∂α + Γ(U4)

α

with Γα(U4)
µν =

{

α
µν

}

−Kµν
α . (7)

As a result of metric compatibility, the unit angles and lengths are preserved. Metric is covariantly

constant so the lengths of the measuring rods and the angles between two of them do not change
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under parallel transfer. It saves a locally Minkowskian structure of the spacetime. Since the Riemann-

Cartan manifold is unit preserving, so it is also called U4 manifold.

Metric compatibility condition in U4 also implies metric compatibility in V4, i.e. the Riemann

manifold as follows

D(U4)
α gµν = 0

⇒ ∂αg
µν + Γµ

αρg
ρν + Γν

αρg
µρ = 0

⇒ ∂αg
µν +

{

µ
αρ

}

gρν− րKαρ
µgρν +

{

ν
αρ

}

gρµ− րKαρ
νgρµ = 0

⇒ ∇(V4)
α gµν = 0 . (8)

Trace-free contortion tensor

Trace of contortion tensor Kµν
α = −Qµν

α +Qν
α
µ −Qα

µν over its various indices gives

Kα
ν
ν = 0, Kα

α
ρ = 2Qρ and Kαρ

α = −2Qρ (9)

Qρ is the torsion vector. Traceless part of the contortion tensor is

K̃µνα = Kµνα +
2

3
(gµαQν − gµνQα),

since its trace is gµνK̃µνα = K̃µ
µα = 2Qα +

2

3
(Qα − 4Qα) = 0. (10)

4 Autoparallels and extremals

When we study the curves of choice in a Riemann-Cartan spacetime, we must distinguish between

the two classes of curves both of which reduce to the geodesics of the Riemannian space when we set

torsion equal to zero [3].

Autoparallel curves (straightest lines) are curves over which a vector is transported parallel to

itself, according to the affine connection of the manifold. Parallel displacement of a vector Aµ from

xρ to xρ + dxρ leads to

dAµ = −Γµ
νρA

νdxρ (11)

Using this equation with a chosen suitable affine parameter s, we get the differential equation of the

autoparallels
d2xα

ds2
+ Γα

(µν)

dxµ

ds

dxν

ds
= 0 (12)

where Γα
(µν) =

{

α
µν

}

−K(µν)
α =

{

α
µν

}

+ 2Qα
(µν).

Notice that only the symmetric (but torsion dependent) part of the connection enters in this equation,

because of symmetry of the product dxµdxν = dxνdxµ.
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Extremal curves (shortest or longest lines) are curves which are of extremal length with respect

to the metric of the manifold. According to ds2 = −gµνdxµdxν , length between two points depends

only on the metric field (and not on the torsion). Differential equation for the extremals can be

derived from

δ

∫

ds = δ

∫

√

−gµνdxµdxν = 0 (13)

exactly as in the corresponding Riemannian space and we get

d2xα

ds2
+
{

α
µν

} dxµ

ds

dxν

ds
= 0. (14)

In U4, the autoparallels and extremals coincide iff the torsion is totally antisymmetric i.e. Qµνρ =

Q[µνρ].

5 Parallel or compatible volume element in U4 manifold

In order to define a general covariant volume element in a manifold, it is necessary to introduce

a density quantity f(x) so that d4x → f(x)d4x = dvol. This is done in order to compensate the

Jacobian that arises from the transformation law of the usual volume element d4x under a coordinate

transformation. In GR, the density f(x) =
√−g is taken for this purpose. In V4, the volume

element
√−g d4x is said to be compatible with the connection since the scalar density

√−g obeys

∇(V4)
µ

√−g = 0 where ∇(V4)
µ = ∂µ −

{

α
µα

}

.

But the same volume element,
√−g d4x is not compatible in U4 since

D(U4)
µ

√−g = ∇(V4)
µ

√−g − 2Qµ

√−g = −2Qµ

√−g 6= 0 .

In order to define such parallel volume element in U4 manifolds, one needs to find out a covariantly

constant density f(x). Such density exists only if the torsion vector, Qµ, can be obtained from a

scalar potential Qµ(x) = ∂µΘ(x). In this case we have

f(x) = e2Θ
√−g

⇒ D(U4)
µ f(x) = ∂µf(x)− Γρ

ρµf(x)

= ∂µ(e
2Θ√−g)−

{

α
µα

}

e2Θ
√−g +Kρµ

ρe2Θ
√−g

= 0 (15)

So, dvol = e2Θ
√−g d4x is the volume element compatible with the connection in Riemann Cartan

manifolds.
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Generalised Gauss’s law in U4

∫

dvol DµA
µ =

∫

d4x e2Θ
√−g DµA

µ

=

∫

d4x ∂µ(e
2Θ√−gAµ) = surface term (16)

where Γρ
ρµ = ∂µ ln (e2Θ

√−g ).

6 Covariant derivative commutator in U4 manifold

In a torsion free space, the covariant derivatives commute in their action on a scalar field. But in

the presence of torsion, the commutator acts on a scalar field φ as proportional to its first derivative

[Dµ,Dν ]φ = Dµ∂νφ−Dν∂µφ

= ∂µ∂νφ− Γρ
µν∂ρφ− ∂ν∂µφ+ Γρ

νµ∂ρφ

= 2K[µν]
ρ∂ρφ . (17)

Action of the commutator on a vector field V ρ is evaluated as follows,

DµDνV
ρ = ∂µ(DνV

ρ)− Γα
µνDαV

ρ + Γρ
µαDνV

α

= ∂µ(∂νV
ρ + Γρ

ναV
α)− Γα

µν(∂αV
ρ + Γρ

ασV
σ)

+ Γρ
µα(∂νV

α + Γα
νσV

σ)

Similarly, −DνDµV
ρ = −∂ν∂µV ρ − (∂νΓ

ρ
µα)V

α + Γα
νµ∂αV

ρ − Γρ
µα∂νV

α

−Γρ
να∂µV

α + Γα
νµΓ

ρ
ασV

σ − Γρ
ναΓ

α
µσV

σ

⇒ [Dµ,Dν ]V
ρ = Rµνα

ρV α − 2Qµν
αDαV

ρ (18)

where Rµνα
ρ ≡ ∂µΓ

ρ
να − ∂νΓ

ρ
µα + Γσ

ναΓ
ρ
µσ − Γσ

µαΓ
ρ
νσ. (19)

The left hand side of (18) is manifestly a tensor so Rµνα
ρ must be a tensor too, even though it

is constructed from non-tensorial segments. Rµνα
ρ is the modified curvature tensor in presence of

torsion. An important point is that the commutator [Dµ,Dν ] has an action on vector fields which is

a simple multiplicative transformation in the absence of torsion. The Riemann tensor measures that

part of the commutator of covariant derivatives which is proportional to the vector field, while the

torsion tensor measures the part which is proportional to the covariant first derivative of the vector

field. Second derivative doesn’t occur on the R.H.S.

Symmetry properties of the Riemann curvature tensor in U4

Curvature tensor in U4 has the following antisymmetry properties

Rαµνσ = −Rµανσ = −Rαµσν (20)
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Antisymmetry between first two indices is easy to see from eqn.(19), simply with µ↔ ν. To see that

between the last two, consider Rαβωσ = gρσRαβω
ρ. After some algebraic manipulations and with

{µ, ωβ} = gµν

{

ν
ωβ

}

, we get

Rαβωσ = R
(V4)
αβωσ − ∂αKβωσ + ∂βKαωσ +Kβω

µ{µ, σα} −Kαω
µ{µ, σβ}

+Kασ
µ{µ, ωβ} −Kβσ

µ{µ, ωα}+KαµσKβω
µ −Kβσ

µKαµω

= R
(V4)
αβωσ −∇αKβωσ +∇βKαωσ +KαµσKβω

µ −Kβσ
µKαµω (21)

Thus the curvature can be expressed through the Riemann tensor (of V4) depending only on the

metric, covariant derivative ∇ (i.e. torsionless covariant derivative) and contortion tensor. From

this, we easily see Rαβωσ = −Rαβσω.

Ricci tensor in U4 is asymmetric: From (21),

Rβω = Rαβω
α = R

(V4)
βω −∇αKβω

α +∇βKαω
α +Kαρ

αKβω
ρ −Kβ

αµKαµω

= R
(V4)
βω −∇αKβω

α − 2∇βQω − 2QρKβω
ρ −Kβ

αµKαµω (22)

Einstein (Cartan) tensor is as usual defined by

Gµν = Rµν −
1

2
gµνR. (23)

It is also asymmetric in Riemann Cartan space.

Ricci scalar in U4

It is useful to work out that

a. ∂µQ
µ 6= ∂µQµ in curved space. Infact

∂µQµ = gµν∂νQµ = ∂µQ
µ −Qµ∂νg

µν (24)

b. With K̃ανρ as the tracefree contortion tensor defined in eqn.(10),

K̃νραK̃
ανρ = KνραK

ανρ +
4

3
∂ρΘ∂

ρΘ (25)

So the curvature scalar, from (22), is

R = gµνRµν = R(V4) + 2∇αKµ
αµ +Kαν

αKρ
ρν −Kρ

αµKαµ
ρ

= R(V4) − 4∇νQ
ν − 4QρQ

ρ −KραµK
αµρ (26)

and in terms of tracefree contortion tensor, using eqns. (25) and (26)

⇒ R = R(V4) − 4Dν∂
νΘ+

16

3
∂ρΘ ∂ρΘ− K̃νραK̃

ανρ (27)
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Einstein Hilbert action in U4

S = −
∫

d4x
√−g e2ΘR

= −
∫

d4x
√−g e2Θ

(

R(V4) +
16

3
∂ρΘ ∂ρΘ− K̃νραK̃

ανρ

)

+ surface term (28)

Here
∫

d4xe2Θ
√−gDµQ

µ =
∫

d4x∂µ(e
2Θ√−gQµ) is a surface term and doesn’t contribute to the

equation of motion since variation of fields is taken zero at the boundary.

7 Vacuum equations

A. Variation of action S w.r.t. tracefree contortion tensor K̃νρα

δK̃S =

∫

d4x
√−g e2ΘδK̃(K̃νραK̃

ανρ)

⇒ δS

δK̃βµσ(y)
= 2

∫

d4x
√−g e2Θ

(

δK̃νρα(x)

δK̃βµσ(y)

)

K̃ανρ

= 2

∫

d4x
√−g e2Θ

(

δβν δ
µ
[ρδ

σ
α]δ

4(x− y)
)

K̃ανρ

=
√−g e2Θ(K̃σβµ − K̃µβσ) = 0 (29)

⇒ K̃σβµ = K̃µβσ (30)

This shows that the tracefree contortion tensor is symmetric in 1st and 3rd indices. Also from

eqn.(10), its antisymmetric in 2nd and 3rd indices. Any tensor which has such symmetry properties,

has all its components vanishing as shown below

K̃αβσ = −K̃ασβ = −K̃βσα = K̃βασ = K̃σαβ = −K̃σβα = −K̃αβσ

⇒ K̃αβσ = 0 (31)

With K̃µνα = 0 in eqn. (10),

Kµνα =
2

3
(gµνQα − gµαQν) (32)

B. Variation of action S w.r.t. scalar potential Θ

δΘS = −
∫

d4x 2
√−g e2ΘδΘ

(

R(V4) +
16

3
∂ρΘ ∂ρΘ− K̃νραK̃

ανρ

)

−
∫

d4x
√−g e2Θ

(

32

3

)

∂µ(δΘ)∂νΘg
µν (33)

Here 2nd integral

=
32

3

∫

d4x
√−g e2ΘδΘ

(

2∂µΘ∂
µΘ+

{

α
αµ

}

∂µΘ+ ∂µ∂
µΘ
)

(34)
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⇒ −1

2

e−2Θ

√−g
δS

δΘ

∣

∣

∣

∣

K̃=0

= R(V4) − 16

3
∂µΘ ∂µΘ− 16

3
∂µ∂

µΘ− 16

3

{

α
αµ

}

∂µΘ

With − 1

2

e−2Θ

√−g
δS

δΘ

∣

∣

∣

∣

K̃=0

= 0 ,

⇒ R(V4) +
16

3
∂µΘ ∂µΘ− 16

3
DµD

µΘ = 0 (35)

So, the equation of motion for Θ is

R(V4) +
16

3
(∂µΘ∂

µΘ−�Θ) = 0 .

Here, � = DµD
µ is the d’Alambertian operator U4.

C. Variation of action S w.r.t. metric tensor gµν

δS

δgηκ(y)
=

−
∫

d4x e2Θ
(

−
√−g
2

gωσ
δgωσ(x)

δgηκ(y)

)(

R(V4) +
16

3
∂ρΘ ∂ρΘ− K̃νραK̃

ανρ

)

−
∫

d4x e2Θ
√
−g δg

µν(x)

δgηκ(y)

(

R(V4)
µν +

16

3
∂µΘ ∂νΘ

)

−
∫

d4x e2Θ
√−g

(

gµν
δR

(V4)
µν (x)

δgηκ(y)
+
δ(K̃νραg

αβgµνgρσK̃βµσ)

δgηκ(y)

)

(36)

Using
δgωσ(x)

δgηκ(y)
= δω(ηδ

σ
κ)δ

4(x− y),

δS

δgηκ(y)
= e2Θ

√−g
2

gηκ

(

R(V4) +
16

3
∂ρΘ ∂ρΘ− K̃νραK̃

ανρ

)

−e2Θ√−g
(

R(V4)
ηκ +

16

3
∂ηΘ ∂κΘ

)

−
∫

d4x e2Θ
√−g gµν

term(1)

δR
(V4)
µν (x)

δgηκ(y)

+

∫

d4x e2Θ
√−g

term(2)

δ(K̃νραg
αβgµνgρσK̃βµσ)

δgηκ(y)
(37)

term(2) =
∫

d4x e2Θ
√−g K̃νραK̃βµσ

δ(gαβgµνgρσ)

δgηκ(y)
vanishes with K̃αβσ = 0.

⇒ − e−2Θ(y)
√

−g(y)
δS

δgηκ(y)

∣

∣

∣

∣

K̃αβγ=0

= −1

2
gηκ

(

R(V4) +
16

3
∂ρΘ ∂ρΘ

)

+R(V4)
ηκ

+
16

3
∂ηΘ ∂κΘ+

e−2Θ

√−g

∫

d4x e2Θ
√−g

(

gµν
δR

(V4)
µν (x)

δgηκ(y)

)
∣

∣

∣

∣

∣

K̃=0

(38)

To solve the last term, recall δR
(V4)
µν = ∇(V4)

α δ
{

α
µν

}

− ∇(V4)
µ δ {ααν}. But in U4, with the covariantly

constant density as e2Θ
√−g, we need to consider

Dα δ
{

α
µν

}

−Dµ δ {ααν} (39)
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for evaluating the integral. However, note that δR
(U4)
µν or δRµν = DαδΓ

α
µν −DµδΓ

α
αν .

Dα δ
{

α
µν

}

−Dµ δ {ααν} = δR(V4)
µν −Kαρ

α δ
{

ρ
µν

}

+Kαµ
ρ δ
{

α
ρν

}

+Kαν
ρδ
{

α
µρ

}

+Kµρ
αδ {ραν} −Kµα

ρδ
{

α
ρν

}

−Kµν
ρδ
{

α
ρα

}

(40)

⇒ δR(V4)
µν = Dα δ

{

α
µν

}

−Dµ δ {ααν}+Kαρ
α δ
{

ρ
µν

}

−Kαµ
ρ δ
{

α
ρν

}

−Kαν
ρδ
{

α
µρ

}

+Kµν
ρδ
{

α
ρα

}

(41)

⇒ gµνδR(V4)
µν = Dα

(

gµνδ
{

α
µν

})

−Dµ (g
µνδ {ααν})− gµν2∂ρΘδ

{

ρ
µν

}

−2Kα
νρδ
{

α
ρν

}

+ 2∂ρΘδ
{

α
ρα

}

(42)

⇒
∫

d4x e2Θ
√−g gµν

δR
(V4)
µν

δgηκ(y)

∣

∣

∣

∣

∣

K̃=0

=

∫

d4x e2Θ
√−g

[

Dα

(

gµν
δ
{

α
µν

}

δgηκ

)

−Dµ

(

gµν
δ {ααν}
δgηκ

)

−

term(i)

2gρν∂αΘ
δ
{

α
ρν

}

δgηκ

−

term(ii)

2Kα
νρ
δ
{

α
ρν

}

δgηκ
+

term(iii)

2∂ρΘ
δ
{

α
ρα

}

δgηκ






(43)

First two are the surface terms, using Gauss’s divergence law in U4. Assuming variation of field to

be zero at the boundary, the variation of surface terms vanishes. term(ii) also vanishes since Kα
νρ

is antisymmetric in ν ↔ ρ while
{

α
ρν

}

is symmetric in the two indices. Using

δ
{

α
ρν

}

δgηκ
=

1

2

δgαβ

δgηκ
(∂ρgβν + ∂νgβρ − ∂βgρν)

+
1

2
gαβ

(

∂ρ
δgβν
δgηκ

+ ∂ν
δgβρ
δgηκ

− ∂β
δgρν
δgηκ

)

(44)

and, as can be easily seen,
δgαβ
δgηκ

= −gαωgβλ
δgωλ

δgηκ
, we get after somewhat lengthy calculation term(i)

in (43)

−2

∫

d4x e2Θ
√−g gρν∂αΘ

δ
{

α
ρν

}

δgηκ
= e2Θ

√−g (−4 ∂ηΘ ∂κΘ+ gηκ {σσα} ∂αΘ

−2∂η∂κΘ+ 2gηκ∂αΘ ∂αΘ+ gηκ∂α∂
αΘ+ 2∂αΘ

{

α
ηκ

})

(45)

And term(iii) in (43),

2

∫

d4xe2Θ
√−g ∂ρΘ

δ
{

α
ρα

}

δgηκ
=

e2Θ
√−g (2gηκ∂αΘ ∂αΘ+ gηκ {σσα} ∂αΘ+ gηκ∂α∂

αΘ) (46)

10



So,

e−2Θ

√−g

∫

d4xe2Θ
√−g gµν δR

(V4)
µν

δgηκ(y)

∣

∣

∣

∣

∣

K̃=0

= −4 ∂ηΘ ∂κΘ+ 2gηκ∇α∂
αΘ

−2∇η∂κΘ+ 4gηκ∂αΘ ∂αΘ (47)

Also, using eqn. (32),

Dη∂κΘ|K̃=0 = −2∇η∂κΘ+
4

3
∂ηΘ ∂κΘ− 4

3
gηκ∂αΘ ∂αΘ (48)

Finally, from eqns. (38) and (47), equation of motion for the gµν field is

−e
−2Θ

√−g
δS

δgηκ

∣

∣

∣

∣

K̃αβγ=0

=

R(V4)
ηκ − 2Dη∂κΘ− 1

2
gηκ

(

R(V4) +
8

3
∂ρΘ ∂ρΘ− 4�Θ

)

= 0 (49)

Eqns. (31), (35) and (49) are the U4 vacuum equations. Taking trace of (49), we get

R(V4) +
16

3
∂ρΘ ∂ρΘ = 6�Θ (50)

Comparing it with (35),

R(V4) +
16

3
∂ρΘ ∂ρΘ = �Θ = 0 (51)

Other form of U4 gravity equations for the vacuum

K̃αβσ = 0

�Θ = Dµ∂
µΘ = DµQ

µ = 0

R(V4)
µν − 2DµQν +

4

3
gµνQρQ

ρ = 0 (52)

Since the equations of motion are of algebraic type, and not differential equations, torsion is clearly

non-propagating. The traceless tensor K̃αβσ = 0 and only the trace Qµ can be non-vanishing in

vacuum, outside matter distributions.

Curvature and torsion are the surface densities of Lorentz transformations and translations, respec-

tively [4]. Variation of Einstein Hilbert action of U4 w.r.t. the metric gives

Rµν −
1

2
gµνR = Tµν . (53)

Tµν is the canonical stress energy tensor. Variation w.r.t. the torsion tensor Qµν
ρ gives

Qµν
ρ + δρµQνσ

σ − δρνQµσ
σ = kSµν

ρ (54)

11



where Sµν
ρ is the spin density tensor. In vacuum or outside matter, Sµν

ρ = 0 and hence Qµν
ρ = 0

as is seen by contracting (54).

gνρ (Qµν
ρ + δρµQνσ

σ − δρνQµσ
σ) = 0

⇒ Qµσ
σ = 0

⇒ Qµν
ρ = 0 (55)

Thus in ECT, torsion does not propagate in vacuum as seen from (52). Infact since the intrinsic spin

is absent in vacuum, torsion is vanishing (55) and hence (52) reduce to the usual vacuum equations

of general relativity, Qµνα = 0 and R
(V4)
µν = 0. In vacuum, both general relativity and Einstein Cartan

Theory are identical. In particular, Einstein Cartan Theory satisfies the equivalence principle in the

vacuum. Advantage of Einstein Cartan Theory is that it allows a singularity free Universe model,

while General relativity predicts that every model of the Universe must have a singularity in the past

or in the future.

8 Field equations in matter: Spinors in curved space

Consider a classical field ψ(x), representing matter sources in the flat Minkowski space R4. Its La-

grangian density Lm = Lm(ψ, ∂ψ, η) is assumed to depend upon the constant Minkowski metric ηµν ,

matter field and the gradient of the matter field. When the gravitational interaction is introduced,

the matter Lagrangian has to be generalized to become a scalar under general coordinate transfor-

mations xµ → x′µ. This can be achieved by minimal coupling procedure, i.e replacing the Minkowski

metric with the world metric tensor ηµν → gµν and the partial derivative with the covariant one,

∂ → ∇. Also we must add to the matter Lagrangian, a kinetic term for the gravitational field,

Lg = R where R is the curvature scalar for U4.

The symmetry group of general relativity is the Lorentz group of local rotations and boosts. In special

relativity, however, the group of symmetries is the global Poincaré group. Einstein Cartan theory,

describing spinors in curved space, extends this symmetry group to local Poincaré transformations.

Vielbein or Cartan formulation of general relativity

Spinors transform under the spinor representation of the Lorentz group as

ψa → (Λ 1

2

)ba ψb in flat space, Λ 1

2

= exp

(

− i

2
ωabS

ab

)

(56)

Λ 1

2

is the finite spinor transformation matrix with ωab as the parameter and Sab the generator

(Here Latin indices a, b, .. denote flat space and Greek indices α, β, .. denote curved). But their

transformation rules are difficult to generalise to curved backgrounds. To couple gravity to spinors,

12



its necessary to use vielbein formulation of general relativity. In this, one considers a set of locally

inertial coordinates where the Lorentz behaviour of spinors can be applied and then translated back

to the world (curved) coordinates. The frame field vielbein

eaµ(x0) =
∂ya(x0;x)

∂xµ(x0;x)
(57)

transforms the Lorentz coordinates ya to curved xµ. Thus, vielbein connects tensor components Tabc..

in local Lorentz frames (labeled using Latin indices) with tensor components Tµνα.. in the spacetime

frame (labeled using Greek indices). Viel stands for many, vielbein covers all dimensions. For four

dimensions, these frame fields are called tetrads or vierbeins. Inverse vielbein eµa transforms from

curved coordinates to the flat. Here, graviton is represented by the vielbein field instead of the

metric. Following orthonormality relations are satisfied by the vielbein field eaµ

gµν(x) = eaµ(x)e
b
ν(x)ηab

ηab = eaµ(x)e
b
ν(x)g

µν(x) (58)

and by its inverse eµa = gµν ηab e
b
ν

gµν = eµa e
ν
b η

ab

ηab = eµa e
ν
b gµν (59)

Also eµa e
b
µ = δba

eµa e
a
ν = δµν

e =
√−g = det(eaµ) (60)

Thus vielbein is like square root of the metric. In D dim, vielbien has D2 independent components.

But from eqn.(58), the theory is invariant under a local Lorentz transformation acting on the vielbein

e′aµ = ecµ Λa
c . To see that, we use Λa

c Λ
b
d ηab = ηcd. Number of such independent transformations

are
D(D − 1)

2
. Using up these gauge symmetries leaves us with the same number of independent

components as the metric, i.e.
D(D + 1)

2
for the vielbein.

In general, given a world tensor Bµν , its corresponding components Bab in the flat tangent manifold

can be obtained by directly contracting the indices with the vierbein fields Bab = eµaeνbBµν and vice

versa. It is important to stress that if BµBν is a world tensor, i.e. a tensor under general coordinate

transformations, then BaBc is a world scalar, but it transforms like a tensor with respect to the local

Lorentz transformations. BµB
µ is both a world scalar and a Lorentz scalar

BµB
µ = gµνBµBν = gµνeaµe

c
νBaBc = ηacBaBc = BaB

a (61)

13



In the absence of gravity, the world metric tensor reduces to the Minkowski metric, gµν = ηµν , and

the vierbein field is given by eaµ = δaµ and its inverse eµa = δµa

Using the vierbein field, the Dirac matrices γµ(x) for the U4 manifold can be defined as γµ = eµaγa

where γa are the (constant) flat-space Dirac matrices.

The derivative of a geometrical object carrying the Lorentz indices, which are anholonomic indices,

can be made covariant under local Lorentz rotations provided that a tangent space connection ωµ
ab

is introduced. ωµ
ab is called the spin connection or the anholonomic connection. E.g. for a local

Lorentz contravariant vector Ab , which transforms as

A′b = Λb
c(x)A

c.

Its partial derivative doesn’t transform like a vector. Infact

(∂µA
b)′ = ∂µ(Λ

b
c A

c)

= (∂µΛ
b
c) A

c + Λb
c ∂µA

c (62)

We can define however a Lorentz covariant derivative

DµA
b = ∂µA

b + ωµ
b
cA

c (63)

which transforms correctly as

(DµA
b)′ = Λb

c DµA
c (64)

provided that the spin connection transforms inhomogenously as

ω′

µ
ab

= Λa
c ωµ

c
k (Λ−1)kb − (∂µΛ)

a
c
(Λ−1)cb (65)

So we have, (DµA
b)′ = ∂µA

′b + ω′

µ
bd
A′

d

= ∂µ(Λ
b
cA

c) + {Λb
c ωµ

c
k (Λ−1)kd − (∂µΛ)

b
c(Λ

−1)cd}(Λm
dAm)

= (∂µΛ
b
c)A

c + Λb
c∂µA

c + Λb
c ωµ

c
k η

kmAm − (∂µΛ)
b
c
ηcmAm

= Λb
c DµA

c (66)

Now, since BkA
k is a Lorentz scalar, imposing Dµ(BkA

k) = ∂µ(BkA
k) gives

(DµBk)A
k +Bk(DµA

k) = (∂µBk)A
k +Bk(∂µA

k)

(DµBk)A
k +Bk(∂µA

k + ωµ
k
cA

c) = (∂µBk)A
k +Bk(∂µA

k)

(DµBk)A
k = (∂µBk)A

k −Bc ωµ
c
kA

k (67)
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requires the covariant derivative of a Lorentz covariant vector to be

DµBk = ∂µBk − ωµ
l
k Bl (68)

However, the total covariant derivative of a geometrical quantity carrying both flat and curvilinear

indices is to be performed using both the anholonomic connection ωµ
ab and holonomic connection

Γα
µν . The resulting derivative is then covariant under both local Lorentz and general coordinate

transformations. Thus the covariant derivative of the vierbein field is

Dµe
a
ν = ∂µe

a
ν + ωµ

a
ce

c
ν − Γα

µνe
a
α (69)

Note that ω acts only on the flat indices while Γ only on the curved ones. The expression (69)

transforms like a 2nd order covariant tensor under a general coordinate transformation

Dµe
a
ν → ∂xα

∂x′µ
∂xβ

∂x′ν
Dαe

a
β (70)

and like a contravariant vector under a local Lorentz transformation

Dµe
a
ν → Λa

c Dµe
c
ν (71)

In Einstein Cartan Theory, the vierbein field is assumed to be covariantly constant

Dµe
a
ν = 0 . (72)

This is the constraint of zero torsion with torsion T a = Dea defined as the Yang-Mills curvature

or field strength of the vierbein [5]. It provides a relation between the two connections ω and

Γ. Moreover, from the metricity condition Dαgµν = 0, the spin connection is constrained to be

antisymmetric in the last two indices

Dαgµν = Dα(e
a
µ e

b
ν ηab)

= eaµ e
b
ν Dαηab

= eaµe
b
ν(∂αηab − ωα

c
aηcb − ωα

c
bηac) = 0

⇒ ωαba + ωαab = 0. (73)

Using this, since DµA
b = ∂µA

b + ωµ
bcAc , hence DµAk = ∂µAk + ωµk

l Al .

In a Riemannian spacetime, the spin connection is not an independent field but rather is a function

of the vierbein and its derivatives. However in the Riemann Cartan spacetime, the spin connection

represents independent degrees of freedom associated with the non-zero torsion.

Thus in presence of matter (fermions), the complete action for the Einstein Cartan theory is

S =

∫

d4x e e2Θ
(

Lm(ψ,Dψ, e) − R(e, ω)

2κ

)

(74)
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where κ = 8πG, G being the gravitational constant,

R(e, ω) = R(U4) = eµa e
ν
b Rµν

ab(ω) . (75)

Riemann tensor Rµν
ab(ω) is the Yang-Mills curvature or field strength of the spin connection, R =

dω + ω ∧ ω.

For the Dirac field coupled to gravity with torsion, the Lagrangian density is

Lm = eµa ψγ
a

(

∂µ − i

2
ωµ

cdσcd

)

ψ + eµaKαβρ ǫ
µαβρ ψγaγ5ψ

with σcd =
i

2
γ[cγd] . (76)

In general, the energy momentum tensor is given by

Tµν ≡ 2√−g
δ(
√−gLm)

δgµν
(77)

and spin density tensor is

Sµβα ≡ 1√−g
δ(
√−gLm)

δKαβµ

. (78)

Gravitational field equations in presence of matter

1√−g
δ(
√−gR)
δgµν

= κTµν (79)

1

2
√−g

δ(
√−gR)
δKαβµ

= κSµβα (80)

Eqn. (79) says that a matter-energy distribution curves the spacetime and eqn. (80) says that a spin

density distribution sources the torsion in spacetime. However since the field equations relate torsion

algebraically to the spin sources, as seen from eqn.(54), torsion is non propagating in Einstein Cartan

Theory. Thus torsion is the source of a contact interaction, i.e., a spinning particle cannot influence

another spinning particle by means of torsion of the manifold. Torsion disappears immediately

outside the spinning bodies. This is one of the main characteristics of the Einstein-Cartan theory

and in this way torsion becomes physically interesting only at the microscopic level or macroscopically,

when considering extremely collapsed matter.

Nonetheless, if the gravitational Lagrangian is chosen in analogy to the standard gauge theory

formalism then we are led to a Lagrangian quadratic in the curvature

L ∝ Rµν
ab Rµν

ab . (81)

It contains a kinetic term for the torsion and hence torsion becomes a propagating field. But a theory

with such Lagrangian is different from Einstein Cartan theory and is no longer equivalent to general

relativity even if the torsion is vanishing, i.e., in vacuum [1].
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9 Superstrings with intrinsic torsion

Superstring theory is a well studied candidate for quantum gravity theory. Dp-branes are intrinsic

to the type II superstring theory, whose lowest energy state is the type II supergravity. The bosonic

sector of II A and II B consists of NS-NS and R-R states. The NS-NS sector in both theories is the

same, with the massless or lowest energy states consisting of spin 2 graviton gMN which is symmetric

and traceless field, spin 1 Kalb-Ramond BMN that is an antisymmetric 2-form gauge field and spin

0 scalar field dilaton φ that is the trace part. Here M,N indices run over 0, 1, 2, .., 9 since the critical

dimension D = 10. R-R sector for II A and II B is different as II A consists of Dp-branes with p

even while II B consists of those with p odd. A stable Dp-brane carries R-R charge and couples

electrically with the Cp+1 R-R gauge potential. Note that a Cp+1 R-R form field can always be

traded off with its magnetic dual C
(M)
7−p which couples magnetically with Dp-brane. Thus in II A,

we have D0 coupling electrically with C1, D2 with C3, while D4 coupling magnetically with C3, D6

coupling magnetically with C1 and a domain wall 3 D8 . In II B, we have D−1 coupling electrically

with C0, D1 with C2, D3 with C4, while D5 coupling magnetically with C2, D7 coupling magnetically

with C0 and a spacetime filling D9 brane. These couplings to the R-R potentials are the well known

Wess Zumino-type couplings. A natural electric coupling is given by

IWZ = ρp

∫

dp+1xP[C(p+1)] , (82)

where ρp is the charge density of the brane and P[C(p+1)] is the pullback of the (p+1)-form gauge

potential on its worldvolume [6]. A natural magnetic coupling is given by

ρMp

∫

P[CM
(7−p)] . (83)

Both the NS-NS and R-R closed strings propagate in the bulk of spacetime. The total action is a

sum of the bulk or supergravity action, Dirac-Born-Infeld action and the Chern-Simon terms

S = SSUGRA + SDBI + SCS . (84)

A constant Kalb-Ramond NS-NS B-field with components parallel to a D-brane can not be gauged

away because whenever we vary BMN with a gauge parameter ΛM = (Λµ,Λm), then we must

simultaneously vary Aµ on the D-brane as follows

δBMN = ∂MΛN − ∂NΛM

δAµ = −Λµ . (85)

Here Greek indices are used for coordinates along the brane and index m for coordinates normal to

it. Thus the fully gauge invariant combination is Fµν +Bµν = Fµν . On the D-brane, Fµν is not fully

physical because it is not gauge invariant, but Fµν is the physical field strength [7].

3 Domain walls are branes with just one transverse direction
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D-brane is defined as an object on which the fundamental open strings can end. A fundamental

string carries electric charge or string charge for the Kalb-Ramond (KR) field, analogous to the

electric charge carried by a particle for the Maxwell field. Mass dimension of KR field is [B] = 2,

while the dimensionless KR field is given by Bµν = 2πα′Bµν . Interaction or coupling of the NS-NS

closed string fields with Dp-brane is the same Dirac-Born-Infeld action as in bosonic string theory

SDp = −Tp
∫

dp+1x e−φ
√

−det(gµν + Bµν + F̄µν) , (86)

where gµν and Bµν are the components parallel to the brane, F̄µν = 2πα′Fµν and Fµν is the gauge

field living on the brane. The coefficient Dp-brane tension is determined for B = 0,

Tp(B = 0) =
1

gs(2π)p(α′)
p+1

2

. (87)

Eq.86 is for slowly varying fields f i.e., neglecting derivative terms
√
κ ∂f

f
<< 1. Here, κ = 2πα′ is

a parameter defining the size of a string [8]. The corresponding two-dimensional non-linear sigma

model action describes the propagation of strings in curved spacetime. The background field is

understood to be arising from condensation of infinite number of strings. Torsion is interpreted as

the field strength associated with the vacuum expectation value of the antisymmetric tensor field

which appears in the supergravity multiplet [9].

Kalb-Ramond field is viewed as an electromagnetic field on the D-brane with the spatio-temporal

component B0i as the electric part and the Bij as the magnetic part. Let us consider a Dp-brane in

presence of NS-NS torsion, while setting the dilaton field, all R-R fields and fermions to zero. There

is a constant or global Kalb-Ramond component Bz
NS as well as a dynamical or local Kalb-Ramond

component Bnz
NS pulled back to the brane Dp. The dynamical Kalb-Ramond component corresponds

to superstring with intrinsic torsion. The constant NS 2-form leads to an effective open string metric

[8], which serves as the background metric G
(NS)
µν for the brane.

In presence of the totally antisymmetric torsion on Dp-brane, the contortion tensor in eq. 3 becomes

Kµν
α = −Hµν

α = −Gαλ
(NS)Hµνλ

Kµνα = −Hµνα (88)

Since the trace of the totally antisymmetric torsion vanishes, so the Ricci scalar in eq. 26 becomes

R(Dp) = R(NS) −KραµK
αµρ

= R(NS) −HραµH
αµρ (89)

So the F -string − Dp-brane action in terms of closed string variables gµν , Bµν , gs and commutative

gauge field Aµ is a sum of the DBI action and the bulk or supergravity action of dynamical KR field,

S = − 1

gs(2π)p(α′)
p+1

2

∫

dp+1x
√

−det(gµν + Bµν + F̄µν) − 1

6C2

∫

d10xHMNLH
MNL . (90)
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Here, [C2] = 6− p− 1 = 5− p. In terms of the open string variables G
(NS)
µν , θµν = (B−1)µν , Gs and

non-commutative gauge field Âµ, the Dp-brane action in presence of torsion comes out to be

S
D̂p

= − 1

Gs(2π)p(α′)
p+1

2

∫

dp+1x

√

−det(G(NS)
µν + κF̂µν)

+
1

6C2

∫

dp+1x
√

−G(NS) (R(NS) −HραµH
ραµ) , (91)

where we have used eq. 89 in the second term. First term in eq. 91 is the open string analog of the

DBI action [8]. Seiberg-Witten [8] showed that the ordinary (or commutative) Abelian gauge field

A with constant curvature F and constant NS 2-form is equivalent to a noncommutative gauge field

Â with θ = 1
B
. Thus the Born-Infeld part in eqns. 90 and 91 are equivalent. Further investigation

of the deformation of Dp-brane in a weakly curved NS-NS background is studied by the author in

[10] and a simple heuristic derivation of the open string metric in presence of torsion is suggested.

10 Conclusion

We have seen that Einstein Cartan theory is a theory of gravitation that differs minimally from

the general relativity theory. In the ECT field equations, spin is algebraically related to torsion, so

the torsion is non-propagating. It is seen from contracting the torsion equation that torsion tensor

also vanishes if the spin tensor vanishes. So in vacuum or outside matter, torsion vanishes and the

two theories are identical. However, in presence of matter or fermion field, the spin sources non-

propagating torsion. Effect of spin and torsion are significant only at very high densities of matter,

but these densities are much smaller than the Planck density at which the quantum gravitational

effects are believed to dominate. Possibly, Einstein Cartan theory will prove to be a better classical

limit of a future quantum theory of gravitation than general relativity.

We next realized a F -string − Dp-brane set up by assuming a Dp-brane in presence of a dynamical

background of Kalb-Ramond NS-NS field, while setting the dilaton field, R-R fields and fermions to

zero. We use the formula that we obtained for Ricci scalar in U4 manifold to determine the Ricci

scalar on the D-brane in presence of the totally antisymmetric torsion. Thus we arrived at the

Dp-brane action which describes a superstring with intrinsic torsion.
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