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Einstein-Cartan Portal to Dark Matter
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It is well-known since the works of Utiyama and Kibble that the gravitational force can be obtained
by gauging the Lorentz group, which puts gravity on the same footing as the Standard Model fields.
The resulting theory — Einstein-Cartan gravity — inevitably contains a four-fermion interaction that
originates from torsion associated with spin degrees of freedom. We show that this interaction
leads to a novel universal mechanism for producing singlet fermions in the Early Universe. These
fermions can play the role of dark matter particles. The mechanism is operative in a large range of
dark matter particle masses: from a few keV up to ~ 108 GeV. We discuss potential observational
consequences of keV-scale dark matter produced this way, in particular for right-handed neutrinos.
We conclude that a determination of the primordial dark matter momentum distribution might be
able to shed light on the gravity-induced fermionic interactions.

Introduction.—Gravity is a universal force, and it in-
evitably reveals some properties of yet-to-be-discovered
constituents of Nature, most notably of dark matter
(DM). Indeed, all evidence for DM in galaxies, galaxy
clusters and at large scales is due to the gravitational
interaction. Thus, we know well about how DM gravi-
tates, but little about what it is. The list of DM candi-
dates spans many orders of magnitude both in mass and
strength of interaction of hypothetical DM particles with
the Standard Model (SM) fields. Regardless the nature
of DM, any model of it should explain how it was pro-
duced in the Early Universe and how its abundance is
maintained.

In this paper, we argue that gravity might be able to
tell us not only about the distribution of DM in the Uni-
verse, but also about the mechanism of its production.
The two key ingredients of the framework allowing for
such a statement are the Einstein-Cartan (EC) formu-
lation of gravity [1, 2] and the assumption about the
fermion nature of a DM candidate. Regarding the second
one, we take a DM particle to be a Dirac or Majorana
fermion which is a singlet under the gauge group of the
SM.

We begin with a brief discussion of EC gravity.! There
is no doubt that below the Planck scale, General Rela-
tivity (GR) provides an elegant and accurate description
of gravity. Nevertheless, this leaves still unanswered the
question about which formulation of GR one should em-
ploy. An important alternative to the most widely used
metric gravity is the EC formulation. In this theory, the
role of fundamental fields is played by the tetrad and
the spin connection, in terms of which the metric and
the Christoffel symbols are introduced. The latter are,
in general, not symmetric in the lower indices, hence EC
gravity contains torsion. Still, the number of propagat-
ing degrees of freedom — two of the graviton — is the same

I See, e.g., [3, 4] for reviews.

as in the metric formulation. A conceptual advantage of
EC gravity is that it can be viewed as a gauge theory of
the Lorentz group, thus allowing for a similar treatment
of all fundamental forces.?

In the absence of matter, the EC and metric formula-
tions of gravity are equivalent. This changes once scalar
fields coupled non-minimally to the Ricci scalar are in-
troduced. The resulting theory is then equivalent to the
Palatini formulation of gravity [7, 8] (see also [9]), in
which the metric and the Christoffel symbols are viewed
as independent variables. Another way to break the
equivalence of EC and metric gravity is to take into ac-
count fermions since the latter source torsion. The the-
ory admits an exact solution for the torsionful part of
the connection. Plugging this solution back in the ac-
tion, one arrives at an equivalent theory in the metric
formulation. The difference of the two theories of grav-
ity is then manifested in the appearance of dimension-six
terms representing an interaction of fermionic axial cur-
rents [2, 10].> Their strength is fixed and suppressed by
1/M2.

In the statements thus far, we have considered in EC
gravity the same action as in the metric theory. Due
to the presence of torsion, however, one can form more
terms of mass dimension not bigger than four than in
the metric case. Specifically, the fermion kinetic terms
can be generalized by introducing non-minimal fermion
couplings [11-13]. In an equivalent metric theory, they
lead to vector-vector, axial-vector and axial-axial fermion
current interactions. Furthermore, the gravitational ac-
tion of the EC theory can be extended by adding the

2 Moreover, we note that in EC gravity there is no need for the
Gibbons-Hawking-York boundary term [5, 6] for the variational
problem to be well-posed.

3 Of course, one could have started from the beginning in a met-
ric theory with additional higher-dimensional operators. In this
case, however, a consistent effective field theory approach would
dictate that all possible higher-dimensional interactions (consis-
tent with relevant symmetries) are taken into account.



Holst term [14-17], which modifies the four-fermion in-
teraction. Note that the additional terms come with a
priori unknown coupling constants and the strength of
current-current interactions depends on these couplings.

The present paper uses the results of [18], where a the-
ory of scalar and fermion fields coupled to gravity was
studied. There, we included all additional terms of mass
dimension not bigger than four that are specific to the
EC formulation and derived the equivalent metric theory.
When applied to cosmology and experiment, the scalar
field can be associated with the SM Higgs field, and the
fermions with the SM quarks and leptons as well as, pos-
sibly, additional species such as right-handed neutrinos.
The phenomenology of the scalar-gravity part of the EC
theory has already been investigated in [19]. There, we
considered the Higgs field as an inflaton. Our study was
motivated by the well-known fact that the Higgs field can
be responsible for inflation provided that it couples non-
minimally to the Ricci scalar [20]. The models of Higgs
inflation in the metric [20] and Palatini [21] formulations
of gravity find their natural generalization within the EC
theory [19] (see also [22]).

The goal of this paper is to study phenomenology
of the fermionic sector of the EC theory. Namely, we
show that the four-fermion interaction originating from
EC gravity can be responsible for DM production. We
compute the abundance and the spectrum of produced
(Dirac or Majorana) particles and show that the right
amount of DM can be generated for a wide range of
fermion masses. We also discuss an interesting case of
warm DM where the primordial momentum distribution
characteristic for EC gravity can potentially be observ-
able.

FEinstein-Cartan gravity and fermions.—In this work,
we focus on the fermion-gravity part of the general the-
ory studied in [18]. To simplify the presentation, we only
keep the Einstein-Hilbert term and the non-minimal cou-
plings of fermions in the action. We comment on the in-
clusion of other terms later; see also appendix A. Then,
for each (Dirac or Majorana) fermion species ¥ the rele-
vant part of the action reads as follows:*
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where Mp = 2.435 x 10'® GeV is the Planck mass and
D,, is the covariant derivative containing the connection
field. The real couplings «, 8 are chosen to be the same
for all generations of fermions which implies the univer-
sality of gravity in the fermionic sector. Allowing for the

4 We work in natural units & = ¢ = 1 and use the metric signature
(—1,+1,41,41). The matrix v° is defined as v° = —iy0y1y243.

couplings to depend on a generation index yields qual-
itatively the same results. In metric gravity, the non-
minimal terms sum up to a total derivative, but in the
torsionful case they contribute to the dynamics of the
theory.

The theory (1) can be resolved for torsion explicitly;
see [18] for details. Upon substituting the solution for
torsion back to the action, one obtains an equivalent met-
ric theory with extra higher-dimensional fermion interac-
tion terms. They read:
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the vector and axial fermion currents, correspondingly.
The sum is performed over all fermion species, and for
convenience we wrote separately the terms containing
N which plays the role of DM and can be Dirac or
right-handed Majorana fermion. The interaction (2)
vanishes only if a = 0, 8 = £1, and in what follows we
do not consider this particular choice of the couplings.
In appendix A, we discuss other terms that can be added
to Eq. (2). Namely, the presence of the scalar field ¢
coupled non-minimally to gravity results in operators
of the form 0,(¢T¢)V*, 0,(¢T¢)A*. However, their
contribution to the DM production turns out to be
suppressed compared to the four-fermion interaction
channel. Furthermore, the coefficients in Eq. (2) are
modified when the Holst term is taken into account.

Thermal production of singlet fermions.—The four-
fermion interaction (2) opens up the production chan-
nel of N-particles through the annihilation of the SM
fermions X, via the reaction X + X — N + N.° The
kinetic equation corresponding to this reaction takes the
form

((j‘t . Hqijqi) Ivt)=R@T). @)

where fy is the phase-space density of N, H is the Hub-
ble rate and R is the collision integral, also referred to as
a production rate. In an isotropic background, both fxn
and R depend only on the absolute value of the spatial
momentum |q| = |4].

5 The production of singlet fermions due to some higher-
dimensional operators was considered in [23]. However, the four-
fermion interaction which appears in EC gravity was not ac-
counted for.



In what follows, we assume that all SM particles, in-
cluding fermions, are in thermal equilibrium at the mo-
ment of DM production. To check the validity of this
assumption, one would need a careful examination of dy-
namics of bosonic and fermionic SM species at and after
preheating, which goes beyond the scope of the present
paper. We expect, however, that deviations from ther-
mality do not change qualitatively our results.

As long as the concentration of N remains small and
we can neglect the inverse processes, the collision integral
in Eq. (4) reads

Z/ d*py d*ps d®ps
2|q\ 2m)3 2F) (2m)3 2E, (27)3 2E5 (5)
x (21)46@ (p1 + p2 — ¢ — p3) [Mx|? fx (1) fx (p2)

where the sum runs over the SM species (24 left- and
21 right-handed fermions), Mx is the amplitude of the
process summed over all spinor indices, and fx is the dis-
tribution of X which we assume to be the Fermi-Dirac
one. The typical values of the momenta in Eq. (5) are
large compared to the mass of NV, so we neglect all masses
when computing Mx. Introducing the dimensionless
variable y = E/T, where T is the temperature of the
cosmic plasma and E = |q|, we arrive at
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Here C¢(o, ) is a combination of the non-minimal
fermion couplings whose precise form depends on
whether N is Majorana (f = M) or Dirac (f = D):

Cy = i{24(1+a2—52)2—|—21 (1—(a+ﬁ)2)2} ,
9

Cp = 4{45 (14 a2 - %) (7)

121 (1 - (a+6)2)2 +24 (1 - (a—ﬂ)2)2} :

Next, r(y) is a function computed numerically, which is
accurately approximated by®

1
2473

r(y) ~ yfx - (8)
Eq. (4) can now be easily integrated, leading to

Cf prod My (TPFOd)
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where 1,04 is the temperature at which the DM
production begins, My(T) = Mp #S(T)’ and

6 This expression is exact if instead of the Fermi-Dirac distribution,
one uses the Boltzmann distribution for fx.

geft (Tprod) = 106.75 is the number of effectively massless
degrees of freedom at high temperature. Plugging in the
numbers, we obtain for the abundance of N-particles:”

QN MN Tprod °
—N ~36-1072C 10
Qo ! (10 kev> < Mp ) > (10)

where Qpas is the observed DM abundance and the co-
efficient Cy is defined in Eq. (7). Eq. (10) shows that,
depending on the value of Cy, the right amount of DM
can be generated in a broad range of fermion masses My .
In appendix B, we provide more details on the derivation
of Egs. (6) to (10).

To proceed further, we need an estimate for the pro-
duction temperature. We obtain it within the framework
of Higgs inflation in the Palatini formulation of grav-
ity [21, 24]. In this model, preheating is almost instanta-
neous [25], and one can take Tproq ~ Tren Where

1
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is the preheating temperature, \ is the Higgs field self-
coupling and ¢ is the non-minimal coupling of the Higgs
field to the Ricci scalar. Both A and £ are taken at a
high energy scale. Using £ = 107 and A = 1073 [26], we
obtain Tpyoq ~ 4 x 103 GeV.

Now we can investigate two particularly interesting
cases. The first one is the limit of vanishing non-minimal
couplings, « = 8 = 0. Then, from Eq. (10) we obtain
that Qn ~ Qpas if My ~ 6 x 108 GeV for the Majorana
fermion and My ~ 3 x 108 GeV for the Dirac fermion.
We conclude that heavy fermion DM can be produced in
EC gravity even if the action of the EC theory is identical
to that of the metric theory.®

The second case corresponds to setting a ~ 3 ~ /€.
With this choice, the scale of suppression of the interac-
tion (2) coincides with the inflationary cutoff scale which
in Palatini Higgs inflation is of the order of Mp//€ [29].
For both the Majorana and Dirac cases, Eq. (10) becomes

QN ~14 \/>/\3/4 (a+ﬁ)4 Tprod s (12)
Qpy 3144 &2 10 keV Trew )
Thus, the right amount of DM is generated for a

keV-scale M.

7 In deriving this result, we assume that all other possible inter-
actions of N-particles with particles of the SM are not essential
for the DM production.

8 Interestingly, the given bounds on My are close to the bound
Mpy < 102 GeV above which N-particles are overproduced due
to the varying geometry at the radiation-dominated stage of the
Universe [27, 28].
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FIG. 1. The DM distribution function at 7" = 1 MeV. The
normalisation is such that Qn = Qpa for the benchmark
mass My = 7.1 keV used in [32]. The blue curve shows the
red-shifted spectrum (9) whereas the orange one shows the
spectrum of resonantly produced sterile neutrino [32]. For
comparison, we also show the thermal spectrum (the green
dotted line).

Finstein-Cartan portal to warm dark matter.—Let us
discuss in more detail the second choice of the non-
minimal couplings. Then, N is an example of warm DM,
and its free-streaming length affects structure formation.
Since DM is produced at very high temperatures, its
spectrum is redshifted. Consequently, the average mo-
mentum is only ~ 0.61 of the equilibrium momentum at
T = 1 MeV. Depending on the history of reionization,
such colder DM candidate can provide a better fit to the
Lyman-« data than pure cold DM [30, 31].

In fig. 1 we show the spectrum fy of DM produced in
EC gravity. For comparison, we also show the spectrum
of resonantly produced sterile neutrino taken from [32]°
and the thermal spectrum at 1 MeV. We see that the
DM momentum distribution (9) has a unique form and
differs from both non-resonantly [33, 34] and resonantly
produced sterile neutrinos [32, 35-38]. This potentially
allows one to distinguish DM produced via the EC
portal from other DM candidates. We conclude that,
at least for certain values of My, the distribution of
DM in the Universe can bear the information about the
gravity-induced fermionic interactions.

vMSM.—The lack of a DM candidate is a famous
shortcoming of the SM, but it is not the only one. It
also cannot explain neutrino oscillations and the baryon
asymmetry of the Universe. A possible way to address
these three issues at once is the Neutrino Minimal Stan-
dard Model (vMSM), which extends the particle content
of the SM by three right-handed neutrinos Ny o 3 [39, 40].

9 This result depends on the assumptions about the lepton asym-
metry and the values of Yukawa coupling. The curve in fig. 1
corresponds to the “case a”, sin?(26) = 20 x 10~ !! in terms of
[32].

One of them, Ni, can be the DM candidate. A lower
bound on its mass, M7 2 1 keV, comes from small-scale
structures in the matter power spectrum, as inferred,
e.g., from Lyman-a measurements. The mixing of Ny
with active neutrinos is bounded from above by X-ray
constraints. The other two right-handed neutrinos N 3
have nearly-degenerate GeV-scale masses and are respon-
sible for generating the baryon asymmetry. Moreover,
the parameters of the model can be chosen such that the
observed pattern of neutrino oscillations is obtained (for
reviews see [41, 42]).

So far, the production of DM sterile neutrino was as-
sociated with the mixing of N; with ordinary neutrinos
and typical temperatures 100 — 300 MeV [33, 35]. The
so-called non-resonant production of Ny [33] has already
been excluded by X-ray searches of radiatively decaying
DM [42]. The resonant production of DM sterile neutrino
[35] requires large lepton asymmetries which can be pro-
duced in interactions of Ny 3 [43]. It can be successful al-
beit a fine-tuning of parameters is required [44—46]. For
resonantly produced DM, the non-observation of X-ray
decays of DM in galactic halos leads to an upper bound
on the mass, My < 50 keV [42], thereby constraining M,
in a quite narrow range.

The present work supplies the vYMSM with a different
mechanism to produce the Nj-particles. Sterile neutrino
DM produced this way may be absolutely stable and,
therefore, is not subject to any X-ray constraints. This
opens up a new interesting mass window up to M; ~
108 GeV. The prediction of the YMSM that the lightest
active neutrino is effectively massless remains in force
also for large values of Mj; see appendix C.1°

It is very intriguing that if the perturbative cutoff is
universal for both the fermion and scalar-gravity sectors
of the EC theory (~ Mp/+/€), then the mass of the DM
sterile neutrino is required to be in the keV range. This
is the domain where the warm nature of the DM particle
is most visible and in which the most intensive searches
of the radiatively decaying DM are being carried out.

We note that Majorana fermions Ny 3 will be also pro-
duced by the same mechanism. Therefore, their initial
abundance is different from zero and, depending on the
mass of Ni, it can reach ng s ~ 1072 ne, (10 keV/My).
However, this abundance is too small to affect the analy-
sis of the ¥YMSM baryogenesis carried out previously [48].

Discussion and outlook.—Once gravity is coupled to
matter, such as fermions or a non-minimally coupled
scalar field, its different formulations are no longer equiv-
alent. As long as they are consistent, only observations
can help us to distinguish between them. In the present

10 Note that this prediction can potentially be tested by the Euclid
space mission [47].



work, we have shown that properties of fermionic dark
matter may be able to discern the Einstein-Cartan (EC)
theory of gravity from the most commonly used metric
formulation. In particular, the universal dimension-six
interactions of fermionic currents in EC theory can cause
the production of the observed amount of dark matter
for a wide range of fermion masses. Moreover, they lead
to a characteristic momentum distribution of dark mat-
ter, which can serve to confirm or exclude our proposed
production mechanism.

On the one hand, these findings are relevant for any
extension of the Standard Model (SM) by sufficiently
heavy fermions. On the other hand, an exciting unified
picture of gravity and the SM emerges. It relies on the
EC formulation of gravity and the extension of SM by
three right-handed neutrinos, i.e. the Neutrino Minimal
Standard Model (vMSM) [39, 40]. When non-minimally
coupled to the Ricci scalar, the Higgs field can assume
the role of the inflaton [20]. As discussed in [19], the
resulting inflationary scenario generalizes the model of
Palatini Higgs inflation [21] and is fully compatible with
observations. On its own, the YMSM is able to explain
neutrino oscillations, baryogenesis and provides a dark
matter candidate in the form of a right-handed neutrino.
The result of the present work is that the EC formulation
of gravity can lead to the production of this sterile neu-
trino in an amount that matches the observed abundance
of dark matter. Finally, we remark that the Palatini for-
mulation of gravity and, by generalization, EC gravity is
convenient for addressing the question of the big differ-
ence between the Electroweak and the Planck scales [49]
(see also [50-53]).
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was supported by ERC-AdG-2015 grant 694896 and by
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Appendix A—Eq. (1) is not the most general
dimension-four Lagrangian allowed in EC theory. Due
to the presence of torsion, its gravitational part can be
extended by adding the Holst term [14-17]:

M2 vpo
4—;6“ 7 Ryuvpo - (13)
The coupling ¥ is called the Barbero-Immirzi parameter
[54, 55]. The presence of the Holst term modifies the
coefficients in the four-fermion interaction terms: Eq. (2)
becomes [18]
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In the limit ¥ — oo, Eq. (2) is restored. In the limit 5 —
0, all coefficients vanish. This agrees with the fact that
this limit corresponds to the case of vanishing torsion
(see, e.g., [11]).

The action of EC theory can also be extended by in-
cluding non-minimal coupling of a scalar field ¢ (such
as the Higgs field) to gravity. This coupling does not
contribute to the four-fermion interaction in the metric
description. Instead, it gives rise to scalar-fermion inter-
action terms which are of the form [18]

uf(ple)vr Aug(oTp) A" . (15)

Here the functions f(¢¢) and g(¢'¢) depend on various
coupling constants, in particular «, S and 4. Upon
integrating by parts, we see that the contributions of the
scalar-fermion operators are suppressed by the Yukawa
couplings of the right-handed neutrinos and, therefore,
subleading.

Appendiz B—Here we provide some details about the
calculation of the DM abundance. We start from com-
puting the amplitude entering Eq. (5). It is convenient
to split the production channels as

Xr(p1) + XL(pQ
Xr(p1) + Xgr(pe

) = N(q) + N(ps) , (16)
) = N(q) + N(ps) - (17)

As mentioned in the main text, we consider both Majo-
rana and Dirac masses for V. In the Majorana case, we
assume that N is a right-handed fermion, and then the
amplitudes corresponding to Eq. (16) and Eq. (17) read

64
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(19)

M4[

where by Cyy, Cy 4 and C 44 we denote the coeflicients
of the vector-vector, vector-axial and axial-axial currents,
respectively. In the Dirac case, the amplitudes are

64
M
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(21)
If there is no asymmetry between particles (X) and anti-
particles (X), the integral in Eq. (5) is symmetric un-
der the replacement p; <> ps. As a consequence, both

structures yield the same function r(y) (cf. Eq. (6)).



The dimensionless function is defined simply as r(y) =
r(yT,T)/T?, where y = E/T and

r(E,T) QEZ/

x (2m)46™ (p1 4+ p2 — g —p3) (p1-q) (P2 - p3)
X fx(p1)fx(p2) -
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(22)
The integration in Eq. (22) can be performed numer-
ically following the recipe in [56]. We assume that
all SM fermions thermalize rapidly after inflation and,
hence, we take the Fermi-Dirac distribution fx = fg =
(exp(y) + 1)~!. Note that the computation of the exact
fermion spectrum right after inflation is a highly non-
trivial task, and we do not attempt to address it here.
The result of the numerical integration is shown in fig. 2.
In the same figure we also show the analytic approxima-
tion given in Eq. (8).

=== numerical integration
1Y
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FIG. 2. The dimensionless production rate r(y), y = E/T.
The DM spectrum fn(y) is proportional to r(y). The
blue solid line shows the result of the numerical integration,
whereas the orange dotted line shows the analytic approxi-
mation.

We can rewrite Eq. (4) in the form

5‘fN - Cf 5
TH 8T 77M2431T r(y)v

(23)

where the coefficient Cy (f = M, D) is given by Eq. (7).
In the more general case of non-vanishing 1/% the coef-
ficient can be read from Eq. (14) and Egs. (18) to (21).
Now Egq. (23) can be easily integrated leading to Eq. (9).
In order to compute the DM abundance, it is conve-
nient to introduce the variable Yy = ny /s which remains
constant in the expanding Universe. Here s corresponds
to the entropy density and ny = 2-1/(27)3 [ d3q fn is
the number density. In the latter, the factor 2 accounts
for N. Then we get
) 2
YN:72 - 2~T3/ dyy2
5 e T3 0o 27

In() . (24)

The abundance of N is given by

MNnN MNYN
QNE =

Per pcr/s

(25)

where p., is the critical energy density of the Universe.
Plugging in the numbers, we arrive at Eq. (10).

Appendiz C.—As was mentioned in the main text,
the lightest active neutrino is practically massless in the
vMSM regardless the mass of the DM sterile neutrino
N;.'! Indeed, in the seesaw mechanism the contribution
of N7 to the mass matrix m, of the active neutrinos can

be estimated as
0> = |0al?,
@

where 6, is the mixing between N7 and the neutrino of
flavor @ = e, i, 7. The mixing 6% implies that N is not
absolutely stable and processes like Ny — vvv, Ny — vy
are allowed. The stability of DM and the non-observation
of a monochromatic signal from the decay N; — v+ con-
strain 6% and, by virtue of Eq. (26), the contribution of
N7 to the active neutrino mass matrix. The other two
right-handed neutrinos Na 3 of the YMSM can provide
two contributions to m, matching the two observed mass
differences (the solar and the atmospheric ones). There-
fore, the contribution of Ny can be identified with the
mass of the lightest active neutrino.

In the mass range 1 — 50 keV where the resonant pro-
duction is effective, the combination §2 has been bounded
from above by the X-ray observations [57] (for a recent
review, see [42]). One can expect that for larger masses
of Ny, the X-ray (and gamma) constraints also lead to
the strongest bounds. However, for our purposes the re-
quirement of the DM stability is already enough. Indeed,
the width of the three-body decay of Ny reads [58, 59]

(Smy ~ MN192, (26)

2 075
GEMR, ,

Iny 3w =
where Gp is the Fermi constant. Requiring that
1/T' N, -3, exceeds the age of the Universe, we arrive at
an upper bound on #2. Using Eq. (26) we get

(28)

4
om, <3.3eV X (10 keV>

Ny

We see that already for My, = 100 keV, the requirement
of the stability of Nj yields dm, being ~ 25 times less
than the solar mass difference v/Amgo =~ 8.6 x 1073 eV.
It is also clear that this bound rapidly gets stronger when

M, increases.

1 See [39], where the statement about keV-scale DM has been
made.
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