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We derive a generalized deviation equation in Riemann-Cartan spacetime. The equation describes
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I. INTRODUCTION

Within the theory of General Relativity, the rela-
tive motion of test bodies is described by means of the
geodesic deviation (Jacobi) equation [1–4]. This equa-
tion only holds under certain assumptions and can be
used only for the description of structureless neutral test
bodies.
In a previous work [5], we have worked out generalized

versions of the deviation equation, see also [6–28] for al-
ternative derivations and generalizations. Our findings
in [5] extended the range of applicability of the deviation
equation to general world lines. However, the results
were limited to theories in a Riemannian background.
While such theories are justified in many physical situa-
tions, several modern gravitational theories [29–31] reach
significantly beyond the Riemannian geometrical frame-
work. In particular it is already well-known [32–34], that
in the description of test bodies with intrinsic degrees
of freedom – like spin – there is a natural coupling to
the post-Riemannian features of spacetime. Therefore, in
view of possible tests of gravitational theories by means
of structured test bodies, a further extension of the devi-
ation equation to post-Riemannian geometries seems to
be overdue.
In this work we derive a generalized deviation equation

in a Riemann-Cartan background, allowing for space-
times endowed with torsion. This equation describes the
dynamics of the connecting vector which links events on
two general (adjacent) world lines. Our results are valid
for any theory in a Riemann-Cartan background, in par-
ticular they apply to Einstein-Cartan theory [35] as well
as to Poincaré gauge theory [36].
The structure of the paper is as follows: In section II,

we briefly introduce the concepts needed in the derivation
of the exact generalized deviation equation. This is fol-
lowed by section III, in which we focus on the properties

∗ dirk.puetzfeld@zarm.uni-bremen.de; http://puetzfeld.org
† obukhov@ibrae.ac.ru

of a world function based on autoparallels in a Riemann-
Cartan background. These results are then applied in
section IV to arrive at an expanded approximate ver-
sion of the deviation equation. In section V we discuss
how different coordinate choices, depending on the un-
derlying gravity theory, affect the interpretation and the
operational value of the deviation equation. We conclude
our paper in section VI with a discussion of the results
obtained and with an outlook of their possible applica-
tions. Our notations and conventions are summarized in
appendix A and table I. Some details and intermediate
results of our derivation are given in appendix B.

II. WORLD FUNCTION AND DEVIATION

EQUATION

Let us briefly recapitulate the relevant steps which lead
to the generalized deviation equation as derived in [5].
We want to compare two general curves Y (t) and X(t̃)
in an arbitrary spacetime manifold. Here t and t̃ are
general parameters, i.e. not necessarily the proper time
on the given curves. In contrast to the Riemannian case,
we now connect two points x ∈ X and y ∈ Y on the
two curves by the autoparallel joining the two points (we
assume that this autoparallel is unique). An autoparallel
is a curve along which the velocity vector is transported
parallel to itself with respect to the connection on the
spacetime manifold. In a Riemannian space autoparallel
curves coincide with geodesic lines.

Along the autoparallel we have the world function σ,
and conceptually the closest object to the connecting vec-
tor between the two points is the covariant derivative of
the world function, denoted at the point y by σy, cf. fig.
1. Following our conventions the reference curve will be
Y (t) and we define the generalized connecting vector to
be:

ηy := −σy (1)

http://arxiv.org/abs/1804.11106v1
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FIG. 1. Sketch of the two arbitrarily parametrized world lines
Y (t) and X(t̃), and the (dashed) autoparallel connecting two
points on these world line. The generalized deviation vector
along the reference world line Y is denoted by ηy .

Taking its covariant total derivative, we have

D

dt
ηy1 = −σy1

y2
uy2 − σy1

x2
ũx2

dt̃

dt
, (2)

where the velocities along the two curves Y and X are
defined as uy := dY y/dt, and ũx := dXx/dt̃. Denoting
the accelerations by ay := Duy/dt, and ãx := Dũx/dt̃,
the second derivative becomes:

D2

dt2
ηy1 = −σy1

y2y3
uy2uy3 − 2σy1

y2x3
uy2 ũx3

dt̃

dt

−σy1
y2
ay2 − σy1

x2x3
ũx2 ũx3

(

dt̃

dt

)2

−σy1
x2
ãx2

(

dt̃

dt

)2

− σy1
x2
ũx2

d2 t̃

dt2
. (3)

The generalized deviation equation is obtained from (3)
by expressing all quantities therein along the reference

word line Y . With the help of the inverse
−1
σ – obtained

from
−1
σ y1

xσ
x
y2

= δy1
y2

and
−1
σ x1

yσ
y
x2

= δx1
x2

– and by

defining the Jacobi propagators Hx1
y2

:= −
−1
σ x1

y2
and

Kx1
y2

:= −
−1
σ x1

y1
σy1

y2
, the velocity along X may be

expressed as:

ũx3 = Kx3
y2
uy2

dt

dt̃
−Hx3

y1

Dσy1

dt

dt

dt̃
, (4)

and inserted into (3):

D2

dt2
ηy1 = −σy1

y2y3
uy2uy3 − σy1

y2
ay2 − σy1

x2
ãx2

(

dt̃

dt

)2

−2σy1
y2x3

uy2

(

Kx3
y4
uy4 −Hx3

y4

Dσy4

dt

)

−σy1
x2x3

(

Kx2
y4
uy4 −Hx2

y4

Dσy4

dt

)

×

(

Kx3
y5
uy5 −Hx3

y5

Dσy5

dt

)

−σy1
x2

dt

dt̃

d2 t̃

dt2

(

Kx2
y3
uy3 −Hx2

y3

Dσy3

dt

)

. (5)

Note that we may determine the factor dt̃/dt by requiring
that the velocity along the curve X is normalized, i.e.
ũxũx = 1, in which case we have

dt̃

dt
= ũx1

Kx1
y2
uy2 − ũx1

Hx1
y2

Dσy2

dt
. (6)

Equation (5) is the exact generalized deviation equation,
it is completely general and can be viewed as the exten-
sion of the standard geodesic deviation (Jacobi) equation
to any order. In particular, it allows for a comparison of
two general, i.e. not necessarily geodetic or autoparallel,
world lines in spacetime.

III. WORLD FUNCTION IN A

RIEMANN-CARTAN

In this section we work out the basic properties of a
world function σ based on autoparallels in a Riemann-
Cartan spacetime, which, in contrast to a Riemannian
spacetime, is endowed with an asymmetric connection
Γab

c. Relevant references which contain some results in
a Riemann-Cartan context are [37–44].
For a world function σ based on autoparallels, we have

the following basic relations in the case of spacetimes
with asymmetric connections:

σxσx = σyσy = 2σ, (7)

σx2σx2

x1 = σx1 , (8)

σx1x2
− σx2x1

= Tx1x2

x3∂x3
σ. (9)

Note in particular the change in (9) due to the presence
of the spacetime torsion Tx1x2

x3 , which leads to σx1x2
6=

σx2x1
, in contrast to the symmetric Riemannian case, in

which σx1x2

s
= σx2x1

holds1.
In many calculations the limiting behavior of a biten-

sor B...(x, y) as x approaches the references point y is

1 We use “s” to indicate relations which only hold for symmetric
connections and denote Riemannian objects by the overbar.
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required. This so-called coincidence limit of a bitensor
B...(x, y) is a tensor

[B...] = lim
x→y

B...(x, y), (10)

at y and will be denoted by square brackets. In partic-
ular, for a bitensor B with arbitrary indices at different
points (here just denoted by dots), we have the rule [45]

[B...];y = [B...;y] + [B...;x] . (11)

We collect the following useful identities for the world
function σ:

[σ] = [σx] = [σy ] = 0, (12)

[σx1x2
] = [σy1y2

] = gy1y2
, (13)

[σx1y2
] = [σy1x2

] = −gy1y2
, (14)

[σx3x1x2
] + [σx2x1x3

] = 0. (15)

Note that up to the second covariant derivative the coin-
cidence limits of the world function match those in space-
times with symmetric connections. However, at the next

(third) order the presence of the torsion leads to

[σx1x2x3
] =

1

2
(Ty1y3y2

+ Ty2y3y1
+ Ty1y2y3

) = Ky2y1y3
,

(16)

where in the last line we made use of the contortion K,
cf. also appendix A for an overview of the geometrical
quantities2. With the help of (11) we obtain for the other
combinations with three indices:

[σx1x2y3
] = −[σx1x2x3

] = [σy1x2y3
] = [σx2x3x1

] = Ky2y3y1
,

[σx1y2y3
] = −[σx2x3x1

] = [σx1x3x2
] = [σy1x2x3

] = Ky3y1y2
,

[σy1y2y3
] = −[σx3x2x1

] = Ky2y1y3
,

[σx1y2x3
] = −[σx1x3x2

] = Ky3y2y1
,

[σy1y2x3
] = [σx3x2x1

] = Ky2y3y1
. (17)

The non-vanishing of these limits leads to added com-
plexity in subsequent calculations compared to the Rie-
mannian case.
At the fourth order we have

Ky1

y
y2
Ky3yy4

+Ky1

y
y3
Ky2yy4

+Ky1

y
y4
Ky2yy4

+[σx4x1x2x3
] + [σx3x1x2x4

] + [σx2x1x3x4
] = 0, (18)

and in particular

[σx1x2x3x4
] =

1

3
∇y1

(Ky3y2y4
+Ky4y2y3

) +
1

3
∇y3

(3Ky2y1y4
−Ky1y2y4

) +
1

3
∇y4

(3Ky2y1y3
−Ky1y2y3

) + πy1y2y3y4
,

(19)

[σx1x2x3y4
] = −

1

3
∇y1

(Ky3y2y4
+Ky4y2y3

)−
1

3
∇y3

(3Ky2y1y4
−Ky1y2y4

) +
1

3
∇y4

Ky1y2y3
− πy1y2y3y4

, (20)

[σx1x2y3y4
] =

1

3
∇y1

(Ky4y2y3
+Ky3y2y4

)−
1

3
∇y4

Ky1y2y3
−

1

3
∇y3

Ky1y2y4
+ πy1y2y4y3

, (21)

[σx1y2y3y4
] = −

1

3
∇y1

(Ky3y4y2
+Ky2y4y3

) +
1

3
∇y3

Ky1y4y2
+

1

3
∇y2

Ky1y4y3
+∇y4

Ky3y1y2
− πy1y4y3y2

, (22)

[σy1y2y3y4
] =

1

3
∇y4

(−2Ky2y3y1
+Ky1y3y2

)−
1

3
∇y2

Ky4y3y1
−

1

3
∇y1

Ky4y3y2
−∇y3

Ky2y4y1
+ πy4y3y2y1

, (23)

πy1y2y3y4
:=

1

3

[

Ky1y2

y (Ky3y4y +Ky4y3y)−Ky1y3

y (Ky4y2y +Kyy2y4
)−Ky1y4

y (Ky3y2y +Kyy2y3
)

−3Ky2y1

yKy3y4y +Ky3y1

yKyy2y4
+Ky4y1

yKyy2y3
+Ry1y3y2y4

+Ry1y4y2y3

]

. (24)

Again, we note the added complexity compared to

the Riemannian case, in which we have [σx1x2x3x4
]

s
=

1
3

(

Ry2y4y1y3
+Ry3y2y1y4

)

at the fourth order. In par-
ticular, we observe the occurrence of derivatives of the
contortion in (19)-(23).
Finally, let us collect the basic properties of the so-

called parallel propagator gyx := ey(a)e
(a)
x , defined in

2 The contortion Ky2y1y3 should not be confused with the Jacobi
propagator K

x
y .

terms of a parallely propagated tetrad ey(a), which in

turn allows for the transport of objects, i.e. V y =
gyxV

x, V y1y2 = gy1
x1
gy2

x2
V x1x2 , etc., along an au-

toparallel:

gy1
xg

x
y2

= δy1
y2
, gx1

yg
y
x2

= δx1
x2
, (25)

σx∇xg
x1

y1
= σy∇yg

x1
y1

= 0,

σx∇xg
y1

x1
= σy∇yg

y1
x1

= 0, (26)

σx = −gyxσy , σy = −gxyσx. (27)
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Note in particular the coincidence limits of its derivatives

[gx0
y1
] = δy0

y1
, (28)

[gx0
y1;x2

] = [gx0
y1;y2

] = 0, (29)

[gx0
y1;x2x3

] = − [gx0
y1;x2y3

] = [gx0
y1;x2x3

]

= − [gx0
y1;y2y3

] =
1

2
Ry0

y1y2y3
. (30)

In the next section we will derive an expanded approx-
imate version of the deviation equation. For this we first
work out the expanded version of quantities around the
reference world line Y . In particular, we make use of the
covariant expansion technique [45, 46] on the basis of the
autoparallel world function.

IV. EXPANDED RIEMANN-CARTAN

DEVIATION EQUATION

For a general bitensor B... with a given index structure,
we have the following general expansion, up to the third
order (in powers of σy):

By1...yn
= Ay1...yn

+Ay1...yn+1
σyn+1

+
1

2
Ay1...yn+1yn+2

σyn+1σyn+2 +O
(

σ3
)

, (31)

Ay1...yn
:= [By1...yn

] , (32)

Ay1...yn+1
:=

[

By1...yn;yn+1

]

−Ay1...yn;yn+1
, (33)

Ay1...yn+2
:=

[

By1...yn;yn+1yn+2

]

−Ay1...yny0

[

σy0
yn+1yn+2

]

−Ay1...yn;yn+1yn+2
− 2Ay1...yn(yn+1;yn+2). (34)

With the help of (31) we are able to iteratively expand
any bitensor to any order, provided the coincidence lim-
its entering the expansion coefficients can be calculated.
The expansion for bitensors with mixed index structure
can be obtained from transporting the indices in (31) by
means of the parallel propagator.

In order to develop an approximate form of the gen-
eralized deviation equation (5) up to the second order,
we need the following expansions – note that we give
some explicit intermediate results in appendix B – of the
derivatives of the world function:

σy1y2
= gy1y2

+Ky2y1y3
σy3 +O

(

σ2
)

, (35)

σy1x2
= −gy1x2

+ gx2

yKy3yy1
σy3 +O

(

σ2
)

, (36)

σy1y2y3
= Ky2y1y3

+
1

3

[

∇y4
(Ky2y3y1

+Ky1y3y2
)

− ∇y2
Ky4y3y1

−∇y1
Ky4y3y2

− 3∇y3
Ky2y4y1

+ 3πy4y3y2y1

]

σy4 +O
(

σ2
)

, (37)

σy1y2x3
= gx3

y3

{

Ky2y3y1
−

1

3

[

∇y3
(Ky2y4y1

+Ky1y4y2
)

− ∇y2
Ky3y4y1

−∇y1
Ky3y4y2

+ 3πy3y4y2y1

]

σy4

}

+O
(

σ2
)

, (38)

σy1x2x3
= gx2

y2gx3

y3

{

Ky3y1y2

+
1

3

[

∇y2
(Ky4y3y1

+Ky1y3y4
)

− ∇y4
(Ky2y3y1

+ 3Ky3y1y2
)

− ∇y1
Ky2y3y4

+ 3πy2y3y4y1

]

σy4

}

+O
(

σ2
)

.(39)

The Jacobi propagators are approximated as follows

Hx1
y2

= gx1
y2

+Ky3y2

x1σy3 +O
(

σ2
)

, (40)

Kx1
y2

= gx1
y2

+ (Ky2

x1
y3

+Ky3y2

x1) σy3 +O
(

σ2
)

,

(41)

which in turn allows for an expansion of the recurring
term entering (5):

(

Kx1
y2
uy2 −Hx1

y2

Dσy2

dt

)

= gx1
y′

[

uy′

−
Dσy′

dt

+
(

Ky2

y′

y3
+Ky3y2

y′

)

uy2σy3

]

+O
(

σ2
)

. (42)

A. Synchronous parametrization

Before writing down the expanded version of the gen-
eralized deviation equation, we will simplify the latter
by choosing a proper parametrization of the neighboring
curves. The factors with the derivatives of the parame-
ters t and t̃ appear in (5) due to the non-synchronous
parametrization of the two curves. It is possible to
make things simpler by introducing the synchronization
of parametrization. Namely, we start by rewriting the
velocity as

uy =
dY y

dt
=

dt̃

dt

dY y

dt̃
. (43)

That is, we now parametrize the position on the first
curve by the same variable t̃ that is used on the second
curve. Accordingly, we denote

u
˜

y =
dY y

dt̃
. (44)

By differentiation, we then derive

ay =
d2 t̃

dt2
u
˜

y +

(

dt̃

dt

)2

a
˜

y, (45)
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where

a
˜

y =
D

dt̃
u
˜

y =
D2Y y

dt̃2
. (46)

Analogously, we derive for the derivative of the deviation
vector

D2ηy

dt2
=

d2 t̃

dt2
Dηy

dt̃
+

(

dt̃

dt

)2
D2ηy

dt̃2
. (47)

Now everything is synchronous in the sense that both
curves are parametrized by t̃.

As a result, the exact deviation equation (5) is recast

into a simpler form

D2

dt̃2
ηy1 = −σy1

y2
a
˜

y2 − σy1
x2
ãx2 − σy1

y2y3
u
˜

y2u
˜

y3

−2σy1
y2x3

u
˜

y2

(

Kx3
y4
u
˜

y4 −Hx3
y4

Dσy4

dt̃

)

−σy1
x2x3

(

Kx2
y4
u
˜

y4 −Hx2
y4

Dσy4

dt̃

)

×

(

Kx3
y5
u
˜

y5 −Hx3
y5

Dσy5

dt̃

)

. (48)

B. Explicit expansion of the deviation equation

Substituting the expansions (35)-(42) into (48), we ob-
tain the final result

D2

dt̃2
ηy1 = ãy1 − a

˜

y1 + Ty2y3

y1u
˜

y2
Dηy3

dt̃
−
(

Ky2y4

y1a
˜

y2 −Ky4y2

y1 ãy2 +∆y1
y2y3y4

u
˜

y2u
˜

y3

)

ηy4 +O
(

σ2
)

, (49)

where we introduced the abbreviation

∆y1y2y3y4
:= 2πy3y4y2y1

− πy4y3y2y1
− πy2y3y4y1

+ Ty′y2y1
Ty4y3

y′

− 2∇y2
K(y1y3)y4

+∇y1
Ky2y3y4

−∇y4
Ky2y3y1

. (50)

It should be understood that the last expression is con-
tracted with u

˜

y2u
˜

y3 and hence the symmetrization is nat-

urally imposed on the indices (y2y3).
Equation (49) allows for the comparison of two general

world lines in Riemann-Cartan spacetime, which are not
necessarily geodetic or autoparallel. It therefore repre-
sents the generalization of the deviation equation derived
in [5, (35)].

C. Riemannian case

A great simplification is achieved in a Riemannian
background, when

∆y1y2y3y4
= 2πy3y4y2y1

− πy4y3y2y1
− πy2y3y4y1

= Ry1y3y2y4
, (51)

and (49) is reduced to

D2

dt̃2
ηy1

s
= ãy1 − a

˜

y1 −R
y1

y2y3y4
u
˜

y2u
˜

y3ηy4 +O
(

σ2
)

.

(52)

Along geodesic curves, this equation is further reduced
to the well-known geodesic deviation (Jacobi) equation.

V. CHOICE OF COORDINATES

In order to utilize the deviation equation for measure-
ments or in a gravitational compass setup [5, 45, 47, 48],

the occurring covariant total derivatives need to be
rewritten and an appropriate coordinate choice needs to
be made. The lhs of the deviation equation takes the
form:

D2ηa
dt2

= u̇b∇bηa+
◦◦
η a −2ubΓba

d
◦
ηd −ubucΓcb

d∂dηa

−ubucηe
(

∂cΓba
e − Γcb

dΓda
e − Γca

dΓbd
e
)

.

(53)

Here we used
◦
η a := dηa/dt for the standard total deriva-

tive.
Observe that the first term on the rhs vanishes in the

case of autoparallel curves (u̇a := Dua/dt = 0). Also
note the symmetrization of the connection imposed by
the velocities in some terms.
Rewriting the connection in terms of the contortion

and switching to normal coordinates [49–55] along the
world line, which we assume to be an autoparallel, yields

D2ηa
dt2

|Y
=

◦◦
η a +2ubKba

d
◦
ηd +ubucKcb

d∂dηa

+ubucηe

(

∂cKba
e −

2

3
Rc(ba)

e +Kcb
dKda

e −Kca
dKbd

e

)

.

(54)

Note the appearance of a term containing the partial (not
ordinary total) derivative of the deviation vector, in con-
trast to the Riemannian case.
The first term in the second line may be rewritten as an

ordinary total derivative, i.e. ubucηe∂cKba
e = ubηe

◦

Kba
e,
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but this is still inconvenient when recalling the compass
equation, which will contain terms with covariant deriva-
tives of the contortion.

A. Operational interpretation

At this point, some thoughts about the operational
interpretation of the coordinate choice are in order. In
particular, it should be stressed that so-far we did not
specify any physical theory in which the deviation equa-
tion (48) should be applied. Or, stated the other way
round, the derived deviation equation is of completely
geometrical nature, i.e. it describes the change of the de-
viation vector between points on two general curves in
Riemann-Cartan spacetime.
From the mathematical perspective, the choice of co-

ordinates should be solely guided by the simplicity of the
resulting equation. In this sense, our previous choice of
normal coordinates appears to be appropriate. But what
about the physical interpretation, or better, the opera-
tional realization of such coordinates?
Let us recall the coordinate choice in General Rela-

tivity in a Riemannian background. In this case normal
coordinates also have a clear operational meaning, which
is related to the motion of structureless test bodies in
General Relativity. As is well known, such test bodies
move along the geodesic equation. In other words, we
could – at least in principle – identify a normal coordi-
nate system by the local observation of test bodies. If
other external forces are absent, normal coordinates will
locally3 lead to straight line motion of test bodies. In
this sense, there is a clear operational procedure for the
realization of normal coordinates.
However, now we are in a more general situation, since

we have not yet specified which gravitational theory we
are considering in the geometrical Riemann-Cartan back-
ground. The physical choice of a gravity theory will be
crucial for the operational realization of the coordinates.
Recall the form of the equations of motion for a very
large class [33, 34] of gravitational theories, which also
allow for additional internal degrees of freedom, in par-
ticular for spin. In this case the equations of motion
are no longer given by the geodesic equation or, as it
is sometimes erroneously postulated in the literature, by
the autoparallel equation. In such theories, test bod-
ies exhibit an additional spin-curvature coupling, which
leads to non-geodesic motion, even locally.
How does this impact the operational realization of

normal coordinates in such theories? Mainly, one just
has to be aware of the fact, that for the experimental
realization of the normal coordinates, one now has to
make sure to use the correct equation of motion and,

3 Here “locally” refers to the observers laboratory on the reference
world line.

consequently, the correct type of test body. Taking the
example of a theory with spin-curvature coupling, like
Einstein-Cartan theory, this would eventually lead to the
usage of test bodies with vanishing spin – since those
still move on standard geodesics, and therefore lead to
an identical procedure as in the general relativistic case,
i.e. one adopts coordinates in which the motion of those
test bodies becomes rectilinear.

VI. CONCLUSIONS & OUTLOOK

In this work we investigated the generalization of the
deviation equation in a Riemann-Cartan geometry. As a
novel technical result, we have developed Synge’s world
function approach in the non-Riemannian spacetime with
curvature and torsion. Our expanded version of the de-
viation equation (48) can be directly compared to result
in the Riemannian context [5]. The generalization should
serve as a foundation for the test of gravitational theories
which make use of post-Riemannian geometrical struc-
tures.

As we have discussed in detail, the operational us-
ability of the Riemann-Cartan deviation equation differs
from the one in a general relativistic context, which was
also noticed quite early in [29]. In particular, it remains
to be shown which additional concepts and assumptions
are needed in order to fully realize a gravitational com-
pass [5, 45, 47, 48] in a Riemann-Cartan background. In
contrast to the Riemannian case, an algebraic realization
of a gravitational compass on the basis of the deviation
equation is out of the question due to the appearance of
derivatives of the torsion even at the lowest orders.

An interesting question for future works is the possi-
ble application of (48) to the analysis of motion of (mi-
cro)structured test bodies. In particular, it seems worth-
while to search for new ways to map the gravitational
field with the help of such a deviation equation, and work
out its implications for various applications, aiming for
novel tests of relativistic gravity theories.
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TABLE I. Directory of symbols.

Symbol Explanation

Geometrical quantities

gab Metric

δab Kronecker symbol

xa, ya Coordinates

Γab
c Connection

Γab
c Levi-Civita connection

Rabc
d Curvature

Tab
c Torsion

Kab
c Contortion

σ World function

ηy Deviation vector

gy0x0
Parallel propagator

Misc

Y (t), X(t̃) (Reference) world line

ua Velocity

ab Acceleration

Kx
y,H

x
y Jacobi propagators

Ay1...yn Expansion coefficient

πy1y2y3y4 Auxiliary quantities

Operators

∂i, “ ,” Partial derivative

∇i, “ ;” Covariant derivative
D
dt

=“˙” Total cov. derivative
d

dt
=“

◦
” Total derivative

“[. . . ]” Coincidence limit

“ ” Riemannian object

Appendix A: Notation & Conventions

The curvature and the torsion are defined w.r.t. to the
general connection Γab

c as follows:

Rabc
d := ∂aΓbc

d − ∂bΓac
d + Γan

dΓbc
n − Γbn

dΓac
n,

(A1)

Tab
c := Γab

c − Γba
c. (A2)

The symmetric Levi-Civita connection Γkj
i, as well as

all other Riemannian quantities, are denoted by an addi-
tional overline. For a general tensor A of rank (n, l) the
commutator of the covariant derivative thus takes the
form:

(∇a∇b −∇b∇a)A
c1...cn

d1...dl
= −Tab

e∇eA
c1...ck

d1...dl

+

k
∑

i=1

Rabe
ciAc1...e...ck

d1...dl
−

l
∑

j=1

Rabdj

eAc1...ck
d1...e...dl

.

(A3)
In addition to the torsion, we define the contortion Kkj

i

with the following properties

Kkj
i := Γkj

i − Γkj
i, (A4)

Kkji = −
1

2
(Tkji + Tikj + Tijk) , (A5)

Tkj
i = −2K[kj]

i. (A6)

The signature of the spacetime metric is assumed to be
(+1,−1,−1,−1).
As usual, σy

x1...y2... := ∇x1
. . .∇y2

. . . (σy) denote the
higher order covariant derivatives of the world function.

Appendix B: Intermediate results

Here we give some intermediate results of the deriva-
tion of the expansions the world function derivatives
around the reference world line Y .

σy1y2
= gy1y2

+ [σy1y2y3
]σy3 +

(

1

2
[σy1y2y3y4

]− [σy1y2y3
];y4

−
1

2
[σy1y2y5

][σy5
y3y4

]

)

σy3σy4 +O
(

σ3
)

, (B1)

σy1y2y3
= [σy1y2y3

] +

(

[σy1y2y3y4
]− [σy1y2y3

];y4

)

σy4 +
1

2

(

[σy1y2y3y4y5
]− [σy1y2y3

];y4y5
− 2[σy1y2y3y4

];y5

−[σy1y2y3y0
][σy0

y4y5
] + [σy1y2y3

];y0
[σy0

y4y5
]

)

σy4σy5 +O
(

σ3
)

, (B2)

σy1x2
= −gy1x2

+ gx2

y[σy1xy3
]σy3 +

1

2

(

gx2

y[σy1xy3y4
]− gx2

y2gy1y [gy2

x
;y3y4

]

−2gx2

y[σy1x(y3
];y4) − gx2

y[σy1xy5
][σy5

y3y4
]

)

σy3σy4 +O
(

σ3
)

. (B3)
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291, 1926.

[2] J. L. Synge. The first and second variations of the length
integral in Riemannian space. Proc. Lond. Math. Soc.,
25:247, 1926.

[3] J. L. Synge. On the geometry of dynamics. Phil. Trans.
R. Soc. Lond. A, 226:31, 1927.

[4] F. A. E. Pirani. On the physical significance of the Rie-
mann tensor. Acta Phys. Pol., 15:389, 1956.

[5] D. Puetzfeld and Y. N. Obukhov. Generalized deviation
equation and determination of the curvature in General
Relativity. Phys. Rev. D, 93:044073, 2016.

[6] J. Plebański. Conformal geodesic deviations. Acta Phys.
Pol., 28:141, 1965.

[7] D. E. Hodgkinson. A modified theory of geodesic devia-
tion. Gen. Rel. Grav., 3:351, 1972.
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Poincaré gauge theory of gravity, its equations of motion,
and Gravity Probe B. Phys. Lett. A, 377:1775, 2013.

[33] D. Puetzfeld and Yu. N. Obukhov. Equations of motion
in metric-affine gravity: a covariant unified framework.
Phys. Rev. D, 90:084034, 2014.

[34] Yu. N. Obukhov and D. Puetzfeld. Multipolar test
body equations of motion in generalized gravity theo-
ries. ”Equations of Motion in Relativistic Gravity”, D.
Puetzfeld et. al. (eds.), Fundamental theories of Physics,
Springer, 179:67, 2015.

[35] A. Trautman. Einstein-Cartan theory. Encyclopedia of
Mathematical Physics, edited by J.-P. Francoise, G.L.
Naber and S.T. Tsou, Oxford: Elsevier, 2:189, 2006.
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