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Abstract 

How to include spacetime translations in fibre bundle gauge theories has 

been a subject of controversy, because spacetime symmetries are not internal 

symmetries of the bundle structure group.  The standard method for 

including affine symmetry in differential geometry is to define a Cartan 

connection on an affine bundle over spacetime. This is equivalent to (1) 

defining an affine connection on the affine bundle, (2) defining a zero 

section on the associated affine vector bundle, and (3) using the affine 

connection and the zero section to define an ‘associated solder form,’ whose 

lift to a tensorial form on the frame bundle becomes the solder form.  The 

zero section reduces the affine bundle to a linear bundle and splits the affine 

connection into translational and homogeneous parts; however it violates 

translational equivariance / gauge symmetry. This is the natural geometric 

framework for Einstein-Cartan theory as an affine theory of gravitation. The 

last section discusses some alternative approaches that claim to preserve 

translational gauge symmetry. 

PACS numbers: 02.40.Hw, 04.20.Fy  

 

1.  Introduction 

Since the beginning of the twentieth century, much of the foundations of physics has 

been interpreted in terms of the geometry of connections and curvature. Connections 

appear in three main areas.  

1) Affine geometry of spacetime. General relativity (GR) is based on a curved 

Riemannian manifold of mixed signature. Einstein-Cartan theory (EC) introduces 

affine torsion to extend GR to include spin.  

2) Gauge theories of internal symmetries. Electromagnetic theory (Weyl 1929), strong 

interactions (Yang and Mills 1954, Ne’eman 1961, Gell-Mann 1962, Gell-Mann and 

Ne’eman 1964) are described by connections on unitary bundles. Later strong, weak 

and electromagnetic forces were combined in a larger unitary gauge theory. 

3) Hamiltonian and Lagrangian mechanics. Hamiltonian and Lagrangian mechanics are 

based on “symplectic geometry,” which is based on a connection on a complex line 

bundle over phase space. (Abraham and Marsden 1994, Guillemin and Sternberg 

1984). 

Table 1 summarizes many of the applications of curvature in basic physics. 
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Table 1: Some applications of connections and curvature in physical theories 

Continuous  

Differential Geometry 

Fundamental Field 

Theories 

Discrete Lattices 

(order defects) 

Continuous Models of 

Materials 

Linear (rotational) 

curvature 

(Riemannian 

curvature in metric 

case) 

Gravitational force 

in general relativity & 

Einstein-Cartan theory 

Disclinations 

(line defects  of 

rotational order) 

Incompatible strain 

Translational 

curvature  

(affine torsion) 

Spin-spin contact 

force (very small) in  

Einstein-Cartan theory 

Dislocations 

(line defects of 

transla-tional order) 

Dislocation density 

Generalized curvature 

(curvature on fibre 

bundles) 

Yang-Mills forces 

(electromagnetic, 

weak, strong forces) 

Dispirations 

(line defects of 

internal order) 

Histeresis 

(e.g. elasto-plastic, 

magnetic) 

Symplectic structure  

(on phase space) 
Hamiltonian and Lagrangian mechanics 

Extrinsic curvature 

(of embedded 

surfaces) 

• Initial value 

problem in general 

relativity 

• Equations of 

classical string 

theory 

 • Surface tension 

• Curvature parameter 

‘R’ in hard-body 

models of 

thermodynamics of 

fluids 

 

Some common themes emerge in physical theories using connections on fibre 

bundles. (Petti 1976, 2001, Kleinert 1987). Fibre spaces represent idealized highly 

symmetric local models. Connections show how to connect local domains of high 

symmetry along a path. Curvature tensors describe defects in the way the highly 

symmetric local domains fit together.1 Bianchi identities express defect conservation 

constraints. 

In a more perfect part of the universe, this paper would be unnecessary. 

Unfortunately, in our neighborhood, the controversy over how to include spacetime 

translations in gauge theories has persisted for 50 years (Utiyama 1956, Kibble 1961, 

Sciama 1962, Trautman 1973, Petti 1976, 2001, Ne’eman 1979, Lord and Goswami 

1985, 1986, Lord 1986, Lord and Goswami 1988, Hehl et al. 1995, Blagojevic 2002, 

Tresguerres 2002). Authors disagree on whether to introduce translational symmetry 

through Cartan connections—which violate translational equivariance / gauge sym-

metry—or to reject Cartan connections in an effort to preserve full translational gauge 

symmetry.  

This paper aims to resolve this controversy by showing that the Cartan connection 

approach is correct, and that the proposed alternatives also violate translational 

equivariance. We also introduce a new approach to the relationship between affine and 

(homogeneous) linear connections based on choice of a zero section of the associated 

affine vector bundle. The key issues are (1) equivariance / gauge invariance of 

translational symmetries requires that all computations can be expressed using any affine 

basis in each fibre of the associated bundle; and (2) using in a variational principle the 1-

1 tensor field that identifies base space and fibre tangents requires fixing the translational 

gauge, that is, requires choosing a fixed origin point in each affine fibre space. 

                                                           
1  In continuum models of crystals, fibre spaces represent the idealized perfect crystals, affine 

torsion represents dislocations, linear (rotational) curvature represents disclinations, and gauge 

curvature represents dispirations. 
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Section 2 prescribes a procedure for including translational symmetry in theories 

based on connections (Petti 1976, 1986, 2001).2 Section 3 explores the equivalent 

formulation in terms of Cartan connections of differential geometry. Section 4 rebuts 

criticisms of this approach and diagnoses errors that have appeared in the literature. 

Appendix A reviews the basic definitions of equivariance / gauge invariance. Appendix B 

describes how affine connections and the zero section combine to define the ‘associated 

solder form’ and thereby the solder form. 

2.  Procedure for Including Spacetime Translations  

Notation: 

• Ξ = a (base) manifold of dimension n. Let ξμ be a local coordinate system on Ξ.  

• P(Ξ, G) = a principal fibre bundle over Ξ with structure Lie group G and bundle 

projection π : P → Ξ. Denote the Lie algebra of G by L(G). 

• ω : TP(Ξ, G) → L(G) is a connection form. 

• X = differentiable manifold on which G acts effectively3 as a left transformation 

group. X need not be a linear or affine space. L(G) is represented as vector fields on 

X, denoted L(G  ) ·X. Let xi be smooth coordinates on X.  

• B(Ξ, G, P, X) = the associated fibre bundle (associated with P) with fibre space X.  

2.1.  Define Affine Fibre Bundles  

Let P(Ξ, A(n)) be a principal bundle over Ξ with structure group A(n) = affine group that 

is bundle-isomorphic to the affine frame bundle of Ξ. We do not use the affine frame 

bundle of Ξ as P, because the affine frame bundle has a fixed solder form, which section 

2.6.2 shows is not appropriate for EC. See appendix C for a discussion of global 

equivalence of fibre bundles. Let X = flat affine vector space on which A(n) acts 

effectively. Let xi be affine coordinates on X.  

A vector field in L(A(n)) ·  X canonically (that is, without any arbitrary choices) 

defines a homogeneous linear component, derived as the limit of the action of the vector 

field on large spheres centered on any point in X. However, an element of L(A(n)) · X 

does not define a unique translational part unless we choose a zero section of X. This 

reflects the facts that  

• The subgroup A0(n) of translations with zero homogeneous part is canonically 

defined, whereas the subgroup GL(n) of homogeneous transformations without 

translation of the origin is not canonically defined.  

• The canonical exact sequence of groups 

  α β 

(1) 0 → A0(n) → A(n) → GL(n) → 0 

is not canonically split; that is, defining a map γ : GL(n) → A(n) such that β ·  γ = 

identity (γ followed by β) requires an arbitrary choice – the choice of a preferred 

origin point in an affine representation space for A(n) to serve as the fixed point of 

GL(n).  

2.2.  Choose an Affine Connection 

Choose an affine connection 1–form ω on P(Ξ, A(n)) and denote its connection 

                                                           
2  Reference (Petti 1976) clearly states that the zero section violates translational equivariance / 

gauge symmetry. The statement in section 2.7.3 that Einstein Cartan theory is a gauge theory of the 

Poincaré group should have been accompanied by the appropriate qualification to that effect.  
3  G acts effectively on X if and only if only the identity element of G maps onto the identity 

transformation of X. If G is connected, it acts effectively on X if and only if only the zero element 

of L(G) maps onto the zero vectorfield on X.  



4  R. J. Petti 

 

coefficients by Γμi(ξ, x).  

An affine connection uniquely defines a homogeneous linear connection, but not a 

translational part unless we choose a zero section of the associated affine vector bundle. 

Up to this point, the construction preserves full affine equivariance / gauge invariance. 

2.3.  Choose a ‘Zero Section’  

Choose a ‘zero section’ s : Ξ → B(Ξ, A(n), P, X), which defines a preferred point in each 

fibre that is the fixed point of the action of GL(n).  Choose the fibre coordinates so 

xi(s(ξ)) = 0 in the fibre over each ξ ∈ Ξ .  

The choice of s violates affine equivariance / gauge invariance. s splits ω into 

translational and homogeneous linear components. In coordinates (ξμ, xi) on B(Ξ, A(n), P, 

X), the connection coefficients have the form 

(2) Γμi(ξ, x) = Kμi(ξ) + Bμ ji(ξ) x j  

where the translational connection coefficients are Kμi(ξ) = Γμi(ξ, s(ξ)) and the linear 

connection coefficients are Bμ ji(ξ). The curvature tensor of ω has the form 

(3) Rμνi(ξ, x) = Tμνi(ξ) + Rμν ji(ξ) xj  

where Tμνi(ξ) is the translational curvature (affine torsion) and Rμν j
i(ξ) is the 

(homogeneous) linear curvature.  

An affine gauge transformation (r, a) (where r is a homogeneous linear 

transformation, and a is a translation vector) defines new coordinates on the affine 

tangent bundle by x’i = (r–1) i
j xj – ai. The affine connection coefficients in the new 

coordinates are  

(4) K’µ
i (ξ) = r -1(ξ)i

k (Bµh
k(ξ) ah(ξ) + Kµ

k(ξ) + ∂μ ak(ξ) ) 

(5) B‘µ j
i (ξ) = r -1(ξ)i

k (Bµh
k(ξ) rh

j(ξ) + ∂μ rk
j(ξ) ) 

In particular, if r = identity then  

(6) K’μi(ξ) = Kμi(ξ) + Bμ ji(ξ) aj  B’μ ji(ξ) = Bμ ji(ξ) . 
The Kμi(ξ) define a linear homomorphism from TξΞ to L(A0) · X, or equivalently to the 

fibre Ts(ξ)B(Ξ, A(n), P, X)ξ.  

Equation (6) captures the main complication that arises from including translational 

symmetries in gauge theories: a zero section s of the associated affine bundle enables us 

to define the translational part of an affine connection ω as Kμi(ξ) := ωμi(ξ, s(ξ)); but s 

breaks full translational equivariance / translational gauge invariance. Conversely, 

specifying Kμi(ξ) does not uniquely determine s(ξ) if, for some vector δsj(ξ), Bμ ji(ξ) δsj(ξ) 
= 0. Specifying Kμi(ξ) avoids compromising translational equivariance only if all linear 

connection coefficients Bμ ji(ξ) are zero. 

2.4.  Require Translational Connection Coefficients K to define an Invertible Mapping 

For a general affine bundle, appendix B outlines how to define an associated solder form 

Θ in terms of the zero section s and the translational part Kμi of the connection ω, even if 

the affine bundle is not globally equivalent to the tangent bundle of Ξ. We require the 

associated solder form to be invertible, which is equivalent to Kμi being invertible. 

Invertibility of Kμi(ξ) enables us to  

• Identify the tangent space TξΞ with L(A0) · Xξ (where Xξ is the fibre of B(Ξ, G, P, X) 

over ξ ∈ Ξ) 

• Define a local solder form θ in terms of K.  

• Treat the inverse of the translational connection coefficients Ki
μ(ξ) as a linear frame 

field.  
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In order for the connection and zero section to define a solder form globally, hence 

to make P(Ξ, A(n)) the affine frame bundle of Ξ, the connection must satisfy some global 

conditions. See appendix C for a brief discussion of global equivalence of bundles.  

For a general affine bundle, both the affine connection ω and the zero section s 

determine whether Kμi is invertible. Here is an example in two dimensions where the 

choice of s can make Kμi non-invertible. Let Kμi = δμi ,  

B1 j
i = │0  –b1│, B2 j

i = │0  –b2 │. If s i = │a1 │ then K ’μi(s) = │1 – b1 a2   – b2 a2   │ .  

 │b1   0 │ │b2   0  │ │a2 │ │   b1 a1     1+ b2 a1 │  

If a1 b2 – a2 b1 = – 1, then K’μi is not invertible.  

2.5.  Define a Fibre Metric 

Let gij(ξ) be a non-degenerate symmetric bilinear form on the tangents of each fibre of 

B(Ξ, A(n), P, X). Kμi pulls back gij to a (pseudo–)metric gμν(ξ) = Kμi(ξ) gij(ξ) Kμi(ξ) on Ξ.  

Require that ω preserves gij(ξ), which occurs if and only if Bμ jk gki is antisymmetric in i 

and j.  

2.6.  Construct Einstein-Cartan Theory 

2.6.1.  Construction. As the master theory of classical physics, GR has one known flaw:  

it cannot describe spin-orbit coupling properly because of the symmetry of the stress 

tensor.  In 1922 E. Cartan conjectured that general relativity should be extended to 

include affine torsion to solve this problem.  The resulting EC theory appeared to require 

an independent assumption beyond GR, and effects are too small to measure at this time 

(Kerlick 1975); so the theory was long considered a speculative extension of GR.  

Petti proved that GR plus matter with spin imply EC theory with no further 

assumptions (Petti 1986, a factor of ½ corrected in Petti 2001). The construction yields 

nonlinear (in angular momentum) expressions for the translational holonomy of an 

isolated rotating black hole, which is an integral surrogate for affine torsion. The final 

stage of passing to the fluid continuum limit yields the spin-torsion equations of EC. 4 

Using Lagrangian L = ½ R – 8 π Kgrav Lmatter, vary the action A = ∫√g d4ξ L with 

respect to the linear and translational connection coefficients to obtain the field equations 

of EC.  

(7) δA / δBμij = Gi
α - 8 π G Pi

α = 0 

(8) δA / δKμi = Sij
α = 8 π G Jij

α = 0, 

where Gi
α is the Einstein curvature tensor, Sij

α = Tij
α + gi

α Tjγ
γ – gj

α Tiγ
γ is the modified 

torsion tensor, Tij
α is the affine torsion tensor (equivalently, the translational curvature), 

Pi
α is the momentum tensor, and Jij

α is the spin tensor of matter and radiation.  

EC provides strong motivation for including translational symmetries in spacetime 

theories. The equations of EC are simpler and make more sense as a gauge theory if we 

distinguish base space tensors and fibre tensors that are related via a frame field (Petti 

1976).  

                                                           
4  Adamowicz showed that GR plus a linearized classical model of matter with spin yields the 

same linearized equations for the time-time and space-space components of the metric as linearized 

EC (Adamowicz 1975). Adamowicz does not mention the time-space components of the metric, the 

spin-torsion field equation, spin-orbit coupling and the non-symmetric momentum tensor, the 

geometry of torsion, or quantum mechanical spin. He says, “It is possible a priori to solve this 

problem [of dust with intrinsic angular momentum] exactly in the formalism of GR but in the 

general situation we have no practical approach because of mathematical difficulties.” 

Adamowicz’s conclusion is at best incomplete: it is not possible to solve the full problem exactly in 

GR, including spin-orbit coupling, without adopting the larger framework of EC theory. 
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2.6.2.  Does Einstein–Cartan Theory Use an Affine Frame Bundle? A key question is 

whether EC uses 

• an affine frame bundle that is endowed with a fixed solder form θ; or  

• an affine bundle, and an associated solder form Θ defined in terms of an affine 

connection ω and zero section s.  

Let us examine both alternatives, being careful about how we identify tangents to the 

base manifold Ξ and tangents to the associated affine vector space X. To construct the 

Lagrangian, both approaches begin with the homogeneous curvature tensor Rμνji, as 

defined in equation (B.6) in appendix B. When defining the scalar curvature, the two 

approaches differ on how to identify base space and fibre tangents. 

• If EC uses an affine frame bundle, it has a solder form θ, which defines a metric on Ξ 

by gμν = θµ
i gij θνj. Then the scalar curvature is R = Rμνji θi

μ θm
µ gmn θn

ν. Variation of R 

by Bµj
i yields the spin-torsion field equations. However, gij and θ are fixed and 

neither can be varied. 

• If EC uses an affine bundle not endowed with a fixed solder form, then we choose a 

zero section s and a connection ω, use them to define Kµ
i, require that K be 

invertible, and define a metric on Ξ by gμν = Kμi gij Kνj. Then the scalar curvature is R 

= Rμνji Ki
μ Km

µ gmn Kn
ν. Variations of R by Kμi and Bμj

i yield the curvature-momentum 

and spin-torsion EC field equations respectively, as in equations (7) and (8) in 

section 2.6.  

Sometimes the 1-1 tensor field that pulls the fibre metric gij back to Ξ is referred to as a 

frame field, as if it is independent of the solder form. However, the solder form defines 

an isomorphism between TξΞ and the translational vector fields L(A0) · X, so is used to 

pull back gij to gμν. Using an independent frame field for this purpose is unnatural.  

This formulation makes clear that EC must use an affine bundle without a fixed 

solder form. Lifting the associated solder form to a tensorial form on the principal bundle 

defines the solder form. The intuitive rationale for a dynamical solder form in the basic 

structure of EC is that EC is about piecing together local high-symmetry versions of 

spacetime (the fibres) to form a spacetime. The affine connection ω and zero section s, 

through the variational process, determine how the flat local fibres fit together to 

construct the base manifold.  

2.7.  Symplectic Structure 

We construct a symplectic structure from the fields K and s at two levels of generality. 

Throughout this paper,  

• The “General Case” means that G is a Lie group with closed subgroup G1, and G acts 

effectively on the left coset manifold X = G/G1. X need not have a linear or affine 

structure.  

• The “Affine Case” means that G is the affine group A(n), G1 is GL(n), and X is an n-

dimensional affine vector space on which G is represented.  

2.7.1.  General Case. Over the bundle B(Ξ, A(n), P, T*sX), define a complex unitary line 

bundle B(B(Ξ, A(n), P, T*sX), U(1), C). Here, T*sX denotes the cotangent space to X at 

the point s(ξ) ∈ X. Define a connection form on this bundle  

(9) φ1 := i pi Kμi dξμ,  where pi ∈ T*s(ξ)Xξ  

so that i pi Kμi are its connection coefficients. The curvature of the connection is  

(10) φ2 := d φ1 = i dpi Kμi dξμ  + i pi ½ (K ν
i
,μ – K μ

i
,ν) dξμ dξν.   

Missing in  

publication 
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φ1 is the symplectic 1-form and φ2 is the symplectic 2-form. The Bianchi identify is 

dφ2 ≡  0, which is the condition that the symplectic 2-form is closed. Because φ1 depends 

on K, the symplectic structure depends on the connection form and the zero section s. 

2.7.2.  Affine Case Everything is the same as the general case, except that we start with a 

complex unitary line bundle B(T*Ξ, U(1), C) over the bundle cotangent bundle T*Ξ, so 

that pi ∈ T*ξΞ.  

In the path integral formulation of quantum mechanics, momentum is the rate of 

change of complex phase with position. This change of phase defines a parallel 

translation in a complex line bundle over phase space.5 Because of gauge invariance with 

respect to complex phase, physical results depend only on the symplectic 2–form and 

never on the symplectic 1–form. 

2.8.  Roles of the Zero Section s and the Connection Coefficients K 

The zero section s breaks the translational equivariance of any construction in which it is 

used. It is used in the following operations in the general case and in the affine case. 

• s reduces the principal G-bundle P to a bundle with group G1.  

• Given an affine connection ω with connection coefficients Γµ
i, s defines Kµ

i by 

Kµ
i(ξ) := Γµ

i(ξ, s(ξ)).  

– Kµ
i defines the associated solder form Θ. 

– If Kμi is invertible then the lift of Θ can serve as a solder form θ, and Kμi 

functions as an (inverse) frame field. This still does not guarantee that the affine 

bundle is the affine tangent bundle. That requires that Kμi can be the identity 

transformation in every coordinate patch.  

– Kµ
i defines the symplectic 1-form and 2-form. 

3.  Cartan Connections  

The usual mathematical structure for including translational symmetries in connections 

on fibre bundles is a “Cartan Connection.” The Cartan connection serves as the basis for 

EC.  

3.1.  Definition of Cartan Connections  

The construction in sections 2.1–2.5 is equivalent to defining a Cartan connection in 

differential geometry, which is defined as follows (Kobayashi 1972, pages 127-128). 

Let Ξ be an n-manifold, G a Lie group (e.g. the affine group A(n)), and G1 a closed 

subgroup of G (e.g. the homogenous linear group GL(n)) so that G/G1 has dimension n. 

Let P be a principal bundle over Ξ with group G1.  

 

                                                           
5 To see this, perform this experiment: Starting at (q,p), parallel translate z=1 to the point (q+δq, p) 

where z=1–ipδq; to (q+δq, p+δp) where z is unchanged; to (q, p+δp), where z=1–ipδq+ 

i(p+δp)δq=1+iδpδq; and back to (q,p) where still z=1+iδpδq. So δz=+iδpδq, which illustrates that 

the curvature form is +idp^dq.  
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Figure 1: Four ways to construct a Cartan Connection 

 

Define a Cartan connection as follows. Let ω be a 1–form on P that takes values on 

the Lie algebra L(G), such that  

• ω is a vertical form; that is, for every v ∈ L(G1), ω(v*) = v, where v* is the vertical 

vector field  induced on P by v and the action of G1 on P.  

• ω is equivariant with respect to the action of G1; that is, (Ra)* ω = ad(a-1) ω, where 

a ∈ G1, Ra denotes the right action of a on P, and ad is the adjoint representation of 

G on L(G). 

• At each point p of P, ω is an isomorphism of the tangent space TpP and L(G); that is, 

for all y ≠ 0 tangent to P, ω(y) ≠ 0. 

The horizontal and equivariance properties are the same as in the definition of ordinary 

connections, except that the Cartan connection form ω takes values in the larger Lie 

algebra L(G).  

The isomorphism condition causes the translational connection coefficients to define 

an invertible mapping between tangents to P and L(G), so L(G) serves as a high-

symmetry local model for the affine frames of Ξ.  

3.2.  Multiple Ways to Define Cartan Connections  

We can define a Cartan connection either starting with an affine bundle or a linear 

bundle. The bundle can be the affine or linear frame bundle or a general affine or linear 

bundle. In each case, we end up with a zero section, a solder form, and a linear 

connection. The diagram below captures four ways of defining a Cartan connection when 

the translational part of the connection determines the solder form.  

Section 2 in the main body of this paper traces through the second path from the left. 

This path is the most general case and it preserves full affine symmetry as long as 

possible, until we choose a zero section. This path also defines the solder form in terms of 

the connection form and the zero section, through the associated solder form. If the 

connection form varies, then the solder form varies.  

Linear frame 

bundle 

General linear 

bundle 

• Has zero section, which violates 

translational symmetry. 

Has solder form that defines 

translational connection. 

Choose linear 

connection 

Choose linear 

connection 

Affine frame 

bundle 
General affine 

bundle 

Has solder form that defines 

translational connection. 

• Reduces affine bundle 

• Splits affine connection 

• Defines associated solder form 

Violates translational symmetry 

• Reduces affine bundle 

• Splits affine connection 

• Violates translational 

symmetry 

Choose zero 

section 

Choose zero 

section 

Require translational 

connection invertible 

Choose affine 

connection 

Choose affine 

connection 

Require translational 

connection invertible 

• Associated solder form 

lifts to solder form 

• Associated solder form 

lifts to solder form 

Choose translational 

connection 

Start with affine bundle with 

reduction to a linear bundle 

Start with affine 

bundle 
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4.  Critique of Other Approaches  

Most of the confusion about translational symmetries in the literature is due to two 

factors. 

• Many papers discuss gauge symmetry in terms of “how fields transform,” not in 

terms of bundle structure.  While a description with equations and variables is 

usually superior for computation, a description with sets and mappings (and bundles 

for differential geometry) is superior for treating convergence and coordinate-

invariant group symmetries, and for compressing enormous computational 

complexity. Choosing a vector space basis or manifold coordinate system recovers 

equations and variables from abstract descriptions.  

• Some authors assume that the affine bundle P can be reduced to a linear sub-bundle 

without choosing a zero section of the affine tangent bundle B. Therefore these 

authors construct something like a Cartan connection, but they seem to believe that 

they have preserved the translational gauge symmetry.  

We select two works for discussion: the lengthy survey of metric affine gravity by Hehl 

et al and a recent paper by Tresguerres that develops the approach of Lord and Goswami.  

4.1.  The Approach of Hehl and Ne’eman 

Ne’eman had several objections to using the zero section s and the translational 

connection coefficients to define a frame field (Ne’eman 1979). (1) The Einstein 

Lagrangian is not invariant under translational gauge transformations unless the equations 

of motion are employed. (2) The symmetry group contains only Poincaré translations of 

the Minkowski fibre X, and not finite translations of the spacetime manifold Ξ. (3) The 

linear connection coefficients have zero variation with respect to translations. (4) The 

approach fails when spinning matter is present.   

The author believes that these objections reflect no more than an aesthetic preference 

that full translational gauge symmetry be preserved. (1) The fact that the frame field 

identifies spacetime tangents and fibre Poincare translations is adequate to include 

spacetime translations in the theory. (2) There is no reason why the Einstein Lagrangian 

R must be invariant under anholonomic Poincaré gauge translations. (3) There is no 

reason why the linear connection coefficients cannot have zero variation with respect to 

Poincaré translations / frame fields. (4) We can represent the spin covering group of the 

Poincaré group on spinor fields defined on the fibre space X. 

The extensive survey of metric affine gravity by Hehl et al. (Hehl et al. 1995), of 

which Ne’eman is an author, develops this point of view.  We believe this approach has 

the following defects. 

• The splitting of the connection into translational and linear parts (in their equation 

(3.2.2)) requires a zero section s that breaks the translational equivariance / gauge 

invariance. Hehl et al. seem to believe they have defined a theory that preserves 

translational symmetry. 

• The zero section s appears in their theory as a “zero form ξ” (in their equation 

(3.2.10)). However, they do not identify its role in splitting the affine group, in 

defining the solder form, or in defining the origin of linear coordinates on affine 

fibres. This field seems to be an arbitrary gauge degree of freedom with no other role 

in the theory.  

• The translational curvature consists of the torsion and an additional term (in their 

equation (3.2.13)). It appears that this extra term arises from permitting the 

translational part of the connection K to differ from the solder form θ, which we 
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explain in appendix B seems unnatural.6  

4.2.  Tresguerres’ Composite Bundles 

Tresguerres objected to the approach based on Cartan connections that is outlined in 

section 2 (Tresguerres 2002).7  

“Indeed, neither the geometric meaning of [Ki
μ] as a vierbein nor the universal 

coupling of gravitation to the remaining forces receives an explanation in the 

standard bundle approach. We know such problems to be absent from the frame 

bundle treatment of gravity, where tetrads are sections rather than connections. 

The price one has to pay when adhering to this view is that one must accept 

gravitational potential of two kinds, the tetrad potentials (sections) being 

different in mathematical nature from those of other interactions (connections), 

such tetrads having nothing to do with the translations in the Poincaré group.” 

(page 5) 

In an apparent attempt to preserve translational equivariance / gauge symmetry, 

Tresguerres introduces a “composite bundle” consisting of a tower of bundles 

P(Σ, G1) → Σ(Ξ, G/G1) → Ξ, where Ξ8 is spacetime, G is the Poincaré group, G1 is the 

Lorentz group.  

“Roughly speaking, our leading idea is that of attaching to each point of the base 

space Ξ [M in Tresguerres’ notation] a fibre with the bundle structure G(G/G1, G1).” 

(page 5) 

The material in appendix B shows how the zero section s relates the translational 

connection coefficients K and the solder form θ, so that K can be used as linear frame 

fields so long as the zero section s is fixed. It also shows that Tresguerres’ tower of 

bundles violates the translational symmetry because it implicitly chooses a zero section s 

: Ξ → B(Ξ, G, P, X).  

5.  Conclusion 

The author recommends that gravitational physicists adopt the standard differential 

geometric construction of Cartan connections to include translational symmetries in 

spacetime physics. The identification of infinitesimal spacetime translations with 

anholonomic Poincaré translations is adequate to establish the theory as a theory of 

translational symmetry. This method yields variational equations and field equations that 

express EC as an affine theory, not a metric theory, of gravitation with spin. There is no 

need to employ actual translations of spacetime to represent translational symmetry. 

Translational gauge symmetry of the Lagrangian is violated. This viewpoint is similar to 

that used by physicists for crystals with defects, where fibres represent idealized high-

symmetry neighborhoods (perfect crystal grains), discrete holonomy and continuous 

curvature represent line defects (dislocations, disclinations, and dispirations).  

The approach outlined here uses the key concept of the zero section s to clarify the 

relationship between affine and linear connections. It derives several basic concepts from 

the zero section s and the affine connection ω, namely the reduction of the affine bundle 

to a linear bundle, the splitting of the affine connection into translational and linear parts, 

the definition of the solder form, and definitions of the symplectic 1-form and the 

                                                           
6  Both the solder form and the translational connection coefficients have the main purpose of 

identifying base space vectors and fibre vectors.  
7  Tresguerres first points out the deficiencies of Lord’s point of view (Lord 1985, 1986, 1986a, 

1988) in which (1) the base manifold is G / H ≈ R4 , and (2) gauge transformations can map a fibre 

onto a different fibre. 
8  Tresguerres denotes spacetime by M with coordinates xi. The present author denotes spacetime 

by Ξ with coordinates ξμ, and employs Roman symbols for the fibre space X with coordinates xi. 
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symplectic 2-form. This approach generalizes these concepts to a more general setting 

than affine and linear bundles. It also rules out defining a solder form or symplectic forms 

independently of the zero section and the affine the connection, unless there is a 

compelling reason to do so. 
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Appendix A.  Connections and Equivariance  

A.1  Definition of Equivariance and Gauge Invariance 

We begin with some definitions of connections and equivariance from chapter 2 of 

Kobayashi and Nomizu (1963) and chapter 5 of Bishop and Crittenden (1964).   

Definition: A connection on principal bundle P(Ξ, G) is defined as a subspace Hp of 

Tp(P) for each p ∈ P such that 

(a) Hp depends differentiably on p.  

(b) Tp(P) = Vp ⊕ Hp (direct sum), where Vp is the space of tangent vectors in Tp(P) 

induced by the action of G on P. (Vp is called the space of vertical vectors tangent to 

P at p, and Hp is called the space of horizontal vectors tangent to P at p.) 

(c) The mapping p → Hp is invariant under the action of G on P. That is,  

for every p ∈ P and g ∈ G, Hpg = (dRg)* Hp , where dRg is the transformation of P 

induced by g ∈ G, where Rg p = p · g.  

Definition: The 1-form of a connection is a Lie algebra-valued 1-form ω on P 

defined by (1) projecting Tp(P) onto Vp, and (2) mapping each element of Vp to the 

element of L(G) that induces that vector in Tp(P). 

Definition: A L(G)-valued 1-form ω on a principal bundle P is equivariant if ω dRg 

= ad(g–1) ω. 

The 1-form of a connection is equivariant. Condition (b) above and the equivariance 

property of the connection 1-form express that the connection and its 1-form are invariant 

under the action of G on P. This generalizes the facts that computations using sections of 

an associated linear (affine) vector bundle can be expressed using any differentiable 

linear (affine) bases in the fibres. (An affine basis is a choice of origin point and a linear 

vector space basis in each fibre.) 

A.2  Local Coordinate Expressions for the 1-form of a Connection  

Let gA
B be a matrix representation of G. Choose a section z : Ξ → P and define 

coordinates gA
B on Vp so that gA

B(z(ξ)) ≡ δA
B; then the action of G on P induces 

coordinates gA
B on the vertical fibres Vp of P. The section z has no coordinate-invariant 

significance. The 1-form of the connection at point (ξμ, gA
B) ∈ P can be written in local 

coordinates as  

(A.1) ωA
B = (g–1)A

C (dgC
B  + dξμ ΓμCD gD

B) , 

where ΓμAB are the connection coefficients. In bundle coordinates, invariance under the 

symmetries of G means we can change the bundle coordinates by choosing a different 

section z’ ≡ z·ζ, where ζ : Ξ → G. In the new coordinates, 

(A.2) Γ’μAB = (ζ–1)A
C (ΓμCD ζD

B + ∂μζC
B) . 
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A.3  Homogeneous Linear Case 

Assume the associated fibre X is a linear vector space with linear coordinates xi, and that 

G above acts on X with matrix representation gi
j.  

Definition: If P is the linear frame bundle of Ξ, the solder form (or canonical 1-form) 

θ : TP → Rn is  

(A.3) θ = p–1 · dπ , 

where p ∈ P defines the mapping p : Rn → Tπ(p)Ξ.  

The solder form is equivalent to an isomorphism between each tangent space TξΞ 

and X. (See Example 5.2 in Chapter 2 of Kobayashi and Nomizu (1963).)  

A.4  (Inhomogeneous) Affine Case 

Assume the associated fibre X is an affine vector space with affine coordinates xi, and that 

G acts as affine transformations on X. Let (hi
j, ti) be homogeneous and translational 

components of the matrix representation; that is, the element of G with coordinates (hi
j, ti) 

acts on x ∈ X by x’i = hi
j xj + ti. The distinction of homogenous and translational 

coordinates on G is coordinate-dependent. If we choose a section z : Ξ → P, then (hi
j, ti) 

defines coordinates on the vertical fibres Vp of P, and the connection form can be written 

in terms of Kμi and Bμij as in equation (2). At point (ξμ, hi
j, ti) ∈ P, the 1-form of the 

connection can be written in local coordinates in terms of the connection coefficients Γμij 
as  

(A.4) ωi
j = (h–1)i

k (drk
j + dξμ Γμkm hm

j)  

(A.5) ωi = (h–1)i
k (dtk + dξμ (Γμk

m tm + Γμk) ) 

We can change the bundle coordinates by choosing a different section z’ ≡ z·(η, τ), where 

(η, τ) : Ξ → G are the homogeneous and translational parts of the mapping. In the new 

coordinates,  

(A.6) Γ’μi
j = (η–1)i

k (Γμk
m ηm

j + ∂μηk
j) . 

(A.7) Γ’μi = (η–1)i
k (Γμk

m τm + Γμk + ∂μτk) . 

The origin in each fibre depends on the choice of coordinate system. If we want a zero 

vector and scalar multiplication in each fibre, we must violate translational equivariance / 

gauge invariance by choosing an origin in each fibre. 

Definition: If P is the affine frame bundle of Ξ, the affine solder form θ : TP → Rn is  

(A.8) θ = p–1 ·  dπ , 

where p ∈ P defines the mapping p : Rn → Tπ(p)Ξ.  

The affine solder form is equivalent to an isomorphism between each tangent space 

TξΞ and the space of vector fields L(A0) · X generated on X by L(A0(n)), where A0(n) is 

the group of translations with vanishing homogeneous linear transformations. When X is 

a homogeneous linear space, TξΞ is isomorphic to both X and L(A0) ·  X. When X is an 

affine vector space, we see that the correct generalization for linear and affine cases is 

that TξΞ is isomorphic as a linear space to L(A0) · X, and not to X.  

 

Appendix B.  Connections, Zero Sections and Associated Solder Forms  

A description of connections in terms of associated bundles helps develop intuition.  

B.1  General Case  

Let G be a Lie group with closed subgroup G1, so that G acts effectively on the left coset 

manifold X = G/G1.  

Choose a connection form ω on P and a smooth section s : Ξ → B(Ξ, G, X), called the 



Translational Symmetries  13 

 

“zero section.” The sections s are in one-to-one correspondence with reductions of the 

principal bundle P to a principal bundle with structure group G1. (See proposition 5.6 and 

the following remark in Chapter 1 of Kobayashi and Nomizu (1963).)  We generalize the 

definition of a solder form.9  

Definition: The associated solder form Θ : TξX → Ts(ξ) B(Ξ, G, X)ξ is given by 

(B.1) Θμi(ξ) := –∇μ si(ξ) = – ∂µ si(ξ) + Γµ
i(ξ, s(ξ)) . 

In fibre coordinates for which xi(s(ξ))= 0 for all ξ, this becomes 

(B.2) Θμi(ξ) = Kµ
i(ξ) , 

where Kµ
i(ξ) := Γµ

i(ξ, s(ξ)) . Θ need not be an isomorphism because the dimensions of Ξ 

and X are not constrained to be equal.  

B.2  Affine Case 

Let G be the affine group A(m), G1 be GL(m), and X be an affine vector space of 

dimension m. (m need not equal n = dim(Ξ)). Perform all the constructions in the 

previous section. If the coordinates xi on Xξ have value zero at the point s(ξ), then the 

connection can be written as  

(B.3) Γµ
i(ξ, x) = Kµ

i(ξ) + Bµ j
i(ξ) xj   

The curvature tensor of the connection can be written as  

(B.4) Rµ ν
i (ξ, x) = Tµ ν

i(ξ) + Rµ ν j
i(ξ) xj  . 

where the affine torsion Tµ ν
i and the homogenous linear curvature Rµ ν j

i are given by 

(B.5) Tµν
i (ξ) = ∂µ Kν

i(ξ) – ∂ν Kµ
i(ξ) + Bµk

i(ξ) Kν
k(ξ) – Bνk

i(ξ) Kµ
k(ξ)  

(B.6) Rµν j
i (ξ) = ∂µ Bν j

i(ξ) – ∂ν Bµ j
i(ξ) + Bµ k

i(ξ) Bν j
k(ξ) – Bν k

i(ξ) Γµ j
k(ξ)  . 

The associated solder form Θ is defined for any affine bundle (not just the affine tangent 

bundle) that has a zero section s and an affine connection ω.  

On an affine bundle which comes equipped with a solder form θ, we can define an 

affine connection whose translational part is independent of the solder form. However, 

we then have two 2-index tensors that require variational principles or at least field 

equations to specify them. The construction of the associated solder form shows how the 

associated solder form (and its lift to the principal bundle) arises from the connection and 

the zero section as the natural way to identify tangents to the base space and tangents to 

the fibre.  

A similar relation in section 2.7 defines the symplectic 1-form and 2-form in terms of 

s and ω. 

                                                           
9  The conventional definition of the solder form is a tensorial 1-form θ : P(Ξ,GL(n)) →  Rn, 

where n = dim(Ξ). (See “solder form” in Bishop and Crittenden (1964) or “canonical form” in 

Kobayashi and Nomizu (1963).) 
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Appendix C.  Global Equivalence of Fibre Bundles 

Our main purpose is to explore the local field theory over a simply connected spacetime. 

However, we make some basic observations about global bundle structure. The key 

global issues are (1) whether bundles are equivalent, and (2) what distinguishes the 

tangent bundle of a spacetime manifold Ξ. See Steenrod (1951) for an introduction to 

fibre bundles and bundle equivalence.  

We can summarize the relationship between linear bundles and affine bundles as 

follows. 

• A linear vector bundle is an affine vector bundle endowed with a zero section. 

• A linear principal bundle is an affine principal bundle endowed with a Rn-valued 

tensorial 1-form that projects to a zero section of an associated affine vector bundle. 

• The tangent bundle (linear frame bundle) of a manifold Ξ is a linear vector bundle 

(linear principal bundle) with  

– a solder form that identifies tangents to Ξ and elements of the linear vector 

bundle, and  

– bundle transition maps defined by the coordinate transition maps of Ξ and the 

solder form.  

The last condition holds if and only if we can choose bundle a coordinate system so 

that the solder form is always represented by the Kronecker identity transformation. 

(Trautman 1973b). 

If we start with an affine principal bundle that is not the affine frame bundle of Ξ, the 

local field theory over simply-connected regions is unaffected. However global invariants 

of the bundle, such as its characteristic classes, may enter into the theory.  
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