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Abstract

There are various generalizations of Einstein’s theory of gravity (GR); one of which is the

Einstein- Cartan (EC) theory. It modifies the geometrical structure of manifold and relaxes the

notion of affine connection being symmetric. The theory is also called U4 theory of gravitation;

where the underlying manifold is not Riemannian. The non-Riemannian part of the space-time

is sourced by the spin density of matter. Here mass and spin both play the dynamical role. We

consider the minimal coupling of Dirac field with EC theory; thereby calling the full theory as

Einstein-Cartan-Dirac (ECD) theory. In the recent works by T.P Singh titled “A new length

scale in quantum gravity [1]”, the idea of new unified mass dependent length scale Lcs has been

proposed. We discuss this idea and formulate ECD theory in both - standard as well as this new

length scale. We found the non-relativistic limit of ECD theory using WKB-like expansion in√
~/c of the ECD field equations with both the length scales. At leading order, ECD equations

with standard length scales give Schrödinger-Newton equation. With Lcs, in the low mass

limit, it gives source-free Poisson equation, suggesting that small masses don’t contribute to

gravity at leading order. For higher mass limit, it reduces to Poisson equation with delta

function source. Next, we formulate ECD theory with both the length scales (especially the

Dirac equation which is also called hehl-Datta equation and Contorsion spin coefficients) in

Newman-Penrose (NP) formalism. The idea of Lcs suggests a symmetry between small and

large masses. Formulating ECD theory with Lcs in NP formalism is desirable because NP

formalism happens to be the common vocabulary for the description of low masses (Dirac

theory) and high masses (gravity theories). We propose a conjecture to establish this duality

between small and large masses which is claimed to source the torsion and curvature of space-

time respectively. We therefore call it “Curvature-Torsion” duality conjecture. In the context

of this conjecture, Solutions to HD equations on Minkowski space with torsion have been found

and their implications for the conjecture are discussed. Three new works which we have done

in this thesis [Non-relativistic limit of ECD theory, formulating ECD theory in NP formalism

and attempts to find the solution to non-linear Dirac equation on U4] are valid for standard

theory and also the theory with Lcs. The conjecture to establish the Curvature-torsion duality

is formulated in the context of idea of Lcs.
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Chapter 1

Introduction

1.1 Introducing four broad ideas to establish the grounds

for this thesis

1.1.1 Einstein-Cartan theory

Einstein’s theory of gravity, more commonly called as “General theory of relativity” (GR),

published in 1915 is the most important works of 20th century. It has been described as the most

beautiful of all the existing physical theories [2]. In GR, Gravity is described as a geometric

property of space-time continuum; thereby generalizing special relativity and Newton’s law of

universal gravitation. In GR, background space-time is Riemann manifold (denoted as V4)

which is torsion less manifold. Affine connection coincides uniquely with levi-civita connection

and geodesics coincides with the path of shortest distance.

Torsion, as an antisymmetric part of the affine connection was introduced by Elie-Cartan

(1922) [3]. In May 1929, He wrote a letter to Einstein suggesting that his studies on torsion

might be of physical relevance in General Relativity. The local Minkowskian structure of space-

time (which is the essential constraint on manifold if it has to describe physically plausible

space-time) is not violated in the presence of torsion. So a manifold with torsion and curvature

[such that non-metricity = 0 [4]] which is called Riemann-Cartan (U4 manifold) can very

well describe physical space-time. Since Cartan, many people like D. Scima, Kibble, F.Hehl,

Trautman etc. have studied the theories of gravity on a Riemann-Cartan space time U4 over

last century. The basic framework of EC theory was laid down by D.Scima (1962, 1964) [5],

[6] and Kibble (1961) [7]. The most important and modern review on the subject of Einstein-

Cartan theory is by F.Hehl et.al (1976) [4]. It is titled “General relativity wth spin and torsion:

Foundations and prospects”.

When we minimally couple Dirac field on U4, we get Einstein-Cartan-Dirac (ECD) theory.

There are 2 independent geometric fields (metric, torsion) in this theory and one matter field

ψ. We get 3 equations of motion. Dirac equation on U4 becomes non-linear and is then called

Hehl-Datta equation [8]. Einstein-Cartan theory and its coupling with Dirac field has been
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discussed in details in chapter 2. U4 theory has also been discussed in details in book [9]. We

have used some results from this book.

1.1.2 The Schrödinger-Newton equation

The Schrödinger equation describes the evolution of the wave-function over time. Born’s prob-

ability rule gives a connection between the wave-function and the physical world. However

the process of wave-function collapse is one of instantaneous nature and its mechanism is not

explained via any acceptable theory.

The Schrödinger-Newton equation came first into the discussions within the scientific liter-

ature due to Ruffini and Bonazzola in their work [10]. Diosi et.al in their works [11] proposed

this equation as a model of wave function collapse; more specifically as a model of gravita-

tional localization of macro objects. Roger Penrose developed this idea further and proposed

that Schrödinger-Newton equation describes the basis states for the scheme of gravitationally

induced wavefunction collapse. This can be looked up in his works [12], [13]. In deriving

Schrödinger-Newton equation, we primarily observe the self-gravity of a quantum mechanical

object; that is we observe the modification of Schrödinger’s equation due to the gravity of the

particle for which the equation is being written. Here, matter is taken to be of quantum nature

while gravity is still treated classically. Here we assume the fact that, to leading order, the

particle produces a classical potential satisfying the Poisson equation, whose source is a density

proportional to the quantum probability density.

∇2φ = 4πGm|ψ|2 (1.1)

The Schrödinger equation is then modified to include this potential and we get the Schrödinger-

Newton equation,

i~
∂ψ(r, t)

∂t
= − ~2

2m
∇2ψ(r, t) +mφψ (1.2)

i~
∂ψ(r, t)

∂t
= − ~2

2m
∇2ψ(r, t)−Gm2

∫ |ψ(r′, t)|2
|r− r′| d

3r′ψ(r, t) (1.3)

Equations 1.1, 1.2 and 1.3 together is called “Schrödinger-Newton” system of equations. By

many people, this system of equations was taken as hypothesis to be put to test by experiments,

whether there are any observational consequences (Ex. in molecular interferometry etc.) Work

by Giulini et.al [14] analyzed the quantitative behavior of Gaussian wave packets moving ac-

cording to Schrödinger-Newton equation and proved that wave packets disperse due to their

own gravitational field significantly at mass scales around 1010u (for a width of 500nm.) This

is just 103 orders of magnitude more than masses which are envisaged in the future molecular

interferometry experiments. Some works [15], [16] propose that this equation sheds some light

on the question of necessity of quantum gravity.

Main paper of our interest in this thesis is [17]. Its a recent study aimed at knowing

whether this equation can be understood as a consequence of known principles and equations.
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they found that Schrödinger-Newton equation is the non-relativistic limit of self -gravitating

Klein-Gordon and Dirac fields. Here the gravity is the classical gravity described by GR (on

V4 manifold).

1.1.3 Tetrad formalism, Spinor formalism, Newman-Penrose (NP)

formalism

Tetrad formalism in GR

The usual method in approaching the solution to the problems in General Relativity was to

use a local coordinate basis êµ such that êµ = ∂µ. This coordinate basis field is covariant

under General coordinate transformation. However, it has been found useful to employ non-

coordinate basis techniques in problems involving Spinors. This is the tetrad formalism which

consists of setting up four linearly independent basis vectors called a ‘tetrad basis’ at each

point of a region of spacetime; which are covariant under local Lorentz transformations. [One

of the reason of using tetrad formalism for spinors is essentially this fact that transformation

properties of spinors can be easily defined in flat space-time]. Tetrads are basically basis vectors

on local Minkowski space.Detail account of tetrad formalism in GR can be found in B.1.

SL(2,C) Spinor formalism

4-vector on a Minkowski space can be represented by a hermitian matrix by some transfor-

mation law. Unimodular transformations on complex 2-Dim space induces a Lorentz trans-

formation in Minkowski space. Unimodular matrices form a group under multiplication and

is denoted bySL(2,C) - special linear group of 2 x 2 matrices over complex numbers. By a

simple counting argument, it has six free real parameters corresponding to those of the Lorentz

group. For a Lorentz transformation acting on Minkowski space, there are strictly speaking

two transformations ±L ∈ SL(2,C). But this sign ambiguity may be resolved by choosing

a path connected to the identity transformation. The levi-civita symbol ǫAB′ acts as metric

tensor in this space C2 which preserves the scalar product under Unimodular transformations.

Spinor PA of rank 1 is defined as vector in complex 2-Dim space subject to transformations

∈ SL(2,C). Similarly higher rank spinor are defined. Analogous to a tetrad in Minkowski

space, here we have a spin dyad (a pair of 2 spinors ζ(0)A and ζ(1)A) such that ζ(0)Aζ
A
(1) = 1.

Newman-Penrose (NP) formalism

NP formalism was formulated by Neuman and Penrose in their work [18]. It is a special case

of tetrad formalism; where we choose our tetrad as a set of four null vectors viz.

eµ(0) = lµ, eµ(1) = nµ, eµ(2) = mµ, eµ(3) = m̄µ (1.4)

lµ, nµ are real and mµ, m̄µ are complex. The tetrad indices are raised and lowered by flat
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space-time metric

η(i)(j) = η(i)(j) =




0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0




(1.5)

and the tetrad vectors satisfy the equation gµν = e
(i)
µ e

(j)
ν η(i)(j). In the formalism, we replace

tensors by their tetrad components and represent these components with distinctive symbols.

These symbols are quite standard and used everywhere in literature. A brief review of NP

formalism can be found in chapter 5.

Now, it can be shown that there is a natural connection between spin dyads and null

tetrads [19], [20]. A null tetrad can be associated with a spin dyad by certain identification.

This connection is explained in details in appendix section B.2. Equations of motion involving

spinorial fields (Ex. Dirac field) can be expressed in NP formalism. Dirac equation on V4 has

been studied extensively in [19]. Many systems in gravitational physics are also studied in NP

formalism [19]. NP formalism happens to be the common vocabulary between physics of spinor

fields and gravitational systems.

1.1.4 Unified length scale in quantum gravity Lcs and curvature-

torsion duality

In the recent works of Tejinder P. Singh [1], [21], it has been argued, why and how Compton

wavelength (λ/~c) and Schwarzschild radius (2GM/c2) for a point particle of mass ’m’ should

be combined into one single new length scale, which is called Compton-Schwarzschild length

(LCS). The idea of Lcs is more coherent in the framework of U4. Action principle has been

proposed with this new length scale and Dirac equation and Einstein GR equations are shown

to be mutually dual limiting cases of this underlying modified action. More details can be

looked up in chapter 3. It has been proposed that for m ≪ mpl, the spin density is more

important than mass density. Mass density can be neglected and spin density sources the

torsion (coupling is through ~). Whereas, m≫ mpl, mass density dominates spin density. spin

density can be neglected and as usual, mass density sources the gravity (coupling is through

G). In this manner there exists a symmetry between small mass and large mass in the sense

that small mass is the source for torsion and large mass is the source for gravity. [21]. Since

both small masses and large masses give same Lcs (which is the only free parameter in the

theory), there is a sort of duality between solutions to small masse and that of large mass. We

call such a duality “Curvature-torsion” duality.
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1.2 Goals and objectives of the Thesis

1.2.1 Finding Non-relativistic limit of ECD theory

As discussed in the section 1.1.2, recent work by Giulini and Großardt [17] derived the non-

relativistic limit of self-gravitating Klein-Gordan and Dirac fields. They used WKB-like ex-

pansion of Dirac Spinor and metric in (1/c) (as discussed in [22]) and found that, at leading

order, the non-relativistic limit gives Schrödinger-Newton equation. This work considers

• Spherically symmetric gravitational fields and

• background space-time is Riemannian (V4).

.

As a sequel to this study and to the study by TP Singh [21](where ECD equations are

modified with the unified length scale Lcs) we aim for the following:

• Consider the generic metric (with no assumptions of symmetry) and find the non-relativistic

limit of Einstein-Dirac system. This would generalize their work. We hypothesize that It

will also be possible to find the underlying role of symmetry in the metric (in the context

of non-relativisic limit).

• If we consider gravitational theories with torsion; especially Einstein-Cartan-Dirac (ECD)

theory discussed in section 1.1.1, it is worthwhile seeing whether the effects of torsion

(viz. non-linearity in Dirac equation and spin-density correction to the gravity equation)

modify the Schrödinger-Newton equation in its non-relativistic limit. If it doesn’t, next

question we can ask is - At what order in 1/c, does effects due to torsion start getting

manifested in the non-relativistic limit. This is important from the point of view of

experimental studies in the detection of torsion and also to study the implications of the

ECD theory at low energies.

• Find the non-relativistic limit of ECD equations with modified length scale Lcs. We wish

to analyze the underlying limit at leading order for limiting cases of large mass and small

mass.

1.2.2 Formulating ECD theory in NP formalism

Dirac equation has been studied extensively in NP formalism on V4. It’s detail account can be

seen in this celebrated book “The mathematical theory of black holes” By S. Chandrasekhar

[19]. We wish to formulate ECD theory in NP formalism. More specifically;

• We know that Contorsion tensor is completely expressible in terms of components of

Dirac spinor. We want to find an explicit expression for Contorsion spin coefficients (in

Newman-Penrose) in terms of Dirac spinor components. We will express this in both

length scales - standard and unified length scale Lcs

9



• Dirac equation on V4 is presented in equation (108) of [19]. We aim to modify these

equations on U4. We will express this in both length scales - standard and unified length

scale Lcs

There are 2 independent reasons for doing this:

1) Many gravitational systems in the literature (especially having some specific symmetries

explained in details in chapter 5) are formulated in NP formalism. But the space-time back-

ground in all those cases don’t have torsion (V4). It is worthwhile seeing the change in equations

when we have torsion in the picture. Most of the important and physically relevant geomet-

rical objects/ identities (Ex. Riemann curvature tensor, Weyl tensor, Bianchi identities, Ricci

identities etc.) on U4 have been formulated in NP formalism in the work [23]. In the context

of ECD theory, however, there are 2 important aspects which are not yet accounted viz. Dirac

equation on U4 (Hehl-Datta equation), canonical EM tensor etc. Some works [24], [25] attempt

to do that but have not provided calculated explicit corrections to standard NP variables due

to torsion. Also, there are notational and sign errors in them. We wish to modify the equa-

tions/ physical objects as a sequel to Chandra’s work in [19] which is on V4. In the case of

vanishing torsion, our equations/ formulations should boil down to standard equations on V4

as given in [19]. With this objective, we formulate the equations of ECD theory (which has

3 primary equations on U4 - Dirac equation, Gravitational equation relating Einstein’s tensor

and canonical EM tensor, Algebraic equation relating torsion and spin) with standard length

scale. Especially we would like to analyze the Contorsion spin coefficients and thereby use

Chandra’s approach to modify Dirac equation.

2) As explained in 1.1.4, the idea of Lcs in the context of U4 theory provides a symmetry

between small and large mass. There is a duality in the solution to large and small mass (we

attempt ton establish it through a conjecture explained in next section). Dirac theory dom-

inates for small masses and gravity dominates for large masses. In order to establish such a

duality, its desirable to have a common mathematical language (provided by NP formalism) for

dealing with both the domains [1]. To this aim, we formulate the ECD theory in NP formalism

with unified length scale Lcs.

1.2.3 Testing Curvature-torsion duality conjecture

As discussed in 1.1.4, the idea of Lcs proposed in [1] hints at a symmetry between small and

large masses. Solution to small mass is dual to the solution to large mass in the sense that

both have same Lcs which is the only free parameter in the theory. The motivation for such a

“curvature-torsion” duality has been discussed in [21]. However, we need to make this duality,

both qualitatively and mathematically, more evident. To this aim, we propose a conjecture

called “Curvature-torsion duality conjecture” in chapter 6. Further, this chapter discusses

the ways in which such a conjecture can be put to a test. After going through arguments

presented in this chapter, we find that if a solution to ECD equations on Minkowski space with
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torsion exists, which make a tensor “T-S” (defined in 6), existence of such a solution supports

the conjecture. So, the last few sections of this chapter are devoted at finding solutions to

Hehl-Datta equations on Minkowski space with torsion and test the duality conjecture.

1.3 Brief outline of the Thesis

Chapter 2 and 3 are theory chapters. In chapter 2, we have explained Einstein-Cartan-Dirac

theory in details starting from first principles. Chapter 3 discusses the idea of unified length

scale called Compton-Schwarzschild length scale (Lcs) in the theories which attempt to unify

quantum mechanics with gravity. This chapter is mainly based on [1] and [21]. Chapter 4

is dedicated at finding Non-relativistic limit of ECD theory with standard as well as unified

length scale. One can directly go to summary section of this chapter to know some new results.

In Chapter 5, we have formulated the ECD theory in NP formalism with standard as well as

unified length scale. In chapter 6, we attempt to establish a duality between curvature-torsion

via a conjecture and solve ECD equations on Minkowski space (metric flat) with torsion.
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Chapter 2

Einstein-Cartan-Dirac (ECD) theory

2.1 Brief Review of classical theories of gravity

2.2 Field theory for first quantized Dirac-field

Under the coordinate transformations, x → x′ = Λx, the field φ can transform actively or

passively as φ → φ′. Active transformation of a generic field is governed by the equation:

φ′(x) = LΛφ(Λ
−1x) where LΛ are the elements of representation of a group of rotations [e.g.

if φ real scalar field, then LΛ = I, if φ is real vector field on 3D space, then LΛ = R where R

represents a 3x3 orthogonal matrix. If φ is vector field on 4D space-time, then LΛ = Λ where

Λ represents a 4x4 matrix of Lorentz transformation. φ is spinor field on 4D space-time, then

LΛ = S[Λ] where S[Λ] is a spinor representation of Lorentz group]. We denote real tensor fields

by φ and spinor fields by ψ. We define 2 types of variations - functional variation and total

variation and adopt following notation henceforth [26]

*Functional variation in φ: δφ = φ′(xµ)− φ(xµ) and

*Total variation in φ : ∆φ = φ′(x′µ)− φ(xµ) = δφ+ (∂µφ)δx
µ.

2.2.1 Generalized Noether theorem and conserved currents

Let φ(xµ) traces out 4-D region R in a 5-D space (φ,x,y,z,t). Initial and final space-like hyper-

space; sliced at times t = t1 and t = t2 forms a boundary ∂R of region R. Under the condition

that the variation of φ and xµ vanish on the boundary ∂R we get, the Euler-Lagrange equation

of motion for this field φ as follows:

∂L

∂φ
= ∂µπ

µ; πµ =

(
∂L

∂(∂µφ)

)
(2.1)

Now we vary action S on a classical trajectory and state Noether’s theorem as follows: Suppose

action is invariant under a group of transformations on xµ and φ [whose infinitesimal version

is given by ∆xµ = Xµ
ν δω

ν and ∆φ = Φνδω
ν and which are characterized by infinitesimal

parameter δωµ], then there exist one or more conserved quantities which remain invariant under
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the transformations. For Lagrangian, the condition is that it should either remain invariant or

at the most change by total derivative. We will exploit this freedom om Lagrangian later, We

will now establish this theorem mathematically. Variation of action over classical trajectory

yields:

δS =

∫

δR

[
πµΦν −Θµ

kX
k
ν

]
δων dσµ; Θµ

ν = (πµ∂νφ− Lδµν ) (2.2)

Now, if the transformations make δS = 0 and since δων is arbitary, we can write equation 2.2

as follows:

∫

δR

Jµ
ν dσµ = 0; Jµ

ν =
[
πµΦν −Θµ

kX
k
ν

]
(2.3)

Using Gauss’s theorem;

∫

δR

Jµ
ν dσµ = 0 =⇒

∫

R

∂µJ
µ
ν d

4x = 0 =⇒ ∂µJ
µ
ν = 0 (2.4)

We therefore have a conserved and divergence-less current Jµ
ν whose existence follows from

the invariance of action under the given (generic) set of transformations. Integrating above

equation over t = const hyperspace and by using Gauss’s theorem we get

∂Qν

∂t
= 0

(
Qν =

∫

V

J0
νd

3x

)
(2.5)

where Qν is Noether’s Charge.

2.2.2 Noether’s theorem applied to Real Tensor and spinor fields

Ex.1: Translational invariance for real tensor fields

Under the requirement that the laws of physics are to be translationally invariant i.e., using

Φµ = 0 and Xµ
ν = δµν we get Jµ

ν = −Θµ
ν ; which, using 2.5 gives conserved four-momentum of

the field

Qν =

∫
Θ0

νd
3x; Q0 =

∫

V

(∂L
∂φ̇

φ̇− L
)
d3x =

∫

V

Hd3x = H = P0; Qi =

∫

V

(∂L
∂φ̇

∂iφ
)
d3x = Pi

(2.6)

Where, H is the Hamiltonian density and H is the Total Hamiltonian of the system. Also,

Qµ = Pµ and the fact that ∂t(Qµ) = 0 suggests that invariance of translations conserve the

4-Momentum Pµ. Here the conservation law is ∂µΘ
µ
ν = 0. We observe that the Noether

theorem’s claim (Action remaining invariant) doesn’t specify Θµ
ν uniquely. The conservation

law specifies Θµ
ν upto addition of divergence of an antisymmetric tensor field ’f’ as follows:

T µν = Θµν + ∂λf
λµν ;

(
fλµν = −fµλν

)
; ∂µT

µν = 0 (2.7)
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Owing to Gauss’s divergence theorem, such an addition of ’f’ doesn’t change the physical

observables viz. Energy and Momentum.

Ex.2: Rotational invariance for real tensor fields We characterize infinitesimal Lorentz

transformations by an antisymmetric tensor ǫµν such that ǫµν = −ǫνµ. Under a requirement that

the action should be invariant under Lorentz group i.e. under the infinitesimal transformations

∆φ = 0 and ∆xµ = δxµ; which is given by following equation:

δxµ = ǫµνx
ν = Xµ

ρσǫ
ρσ; Xµ

ρσ =
δµρxσ − δµσxρ

2
(2.8)

using 2.2 to find Noether’s current; we obtain a 3 component Noether’s current Jµνσ as follows:

Jµνσ =
−1

2

(
Θµνxσ −Θµσxν

)
; ∂µJ

µνσ =
−1

2

(
Θσν −Θνσ

)
(2.9)

Θµ
ν is the EM tensor representing 4-Momentum density. Hence RHS in the above expression

represents density of angular momentum. Indeed, as we expect from the analogy with classical

mechanics, invariance under Lorentz’s rotation conserve the angular momentum of the system.

The question now is: Does it remain conserved for any Θµ
ν? As we see in the second equation

of 2.9, only for symmetric Θµ
ν , conservation law seems to hold. We will investigate it in the

next section.

Ex.3: Rotational invariance for Spinor fields (this is of our interest)We know that a

Spinor field transforms as

ψα(x) −→ ψ′α(x) = S[Λ]αβψ
β(Λ−1x); S[Λ] = 1 +

ωµνS
µν

2
(2.10)

Corresponding functional and total variation in ψ is then given by

δ[ψα(x)] =
(1
2
ωµνS

µν
)α

β
ψβ(x)−∂µψα(x)ωµ

νx
ν ; ∆ψ =

1

2
ωµνSµνψ = Ψµνω

µν ; Ψµν =
1

2
Sµνψ

(2.11)

And the total variation in xµ is as given in eqn (2.8). Then, by Noether’s theorem, the conserved

current is:

Jµ
νσ = πµΨνσ −Θµ

αX
α
νσ (2.12)

=
1

2

∂L

∂µψ
Sνσψ − 1

2

(
Θµ

νxσ −Θµ
σxν

)
(2.13)

Θµ
ν is the EM tensor representing 4-Momentum density. Hence the second term in above

expression represents density of orbital angular momentum. Therefore Jµ
νσ can be recognized

as the total angular momentum density of the matter provided the first term represents the

intrinsic spin density of matter field. We take ν, σ up, define spin density of the matter by a 3

component tensor Sµνσ and rewrite the above equation as follows:

Jµνσ = Sµνσ − 1

2

(
Θµνxσ −Θµσxν

)
; Sµνσ =

1

2

∂L

∂µψ
Sνσψ (2.14)
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2.2.3 Symmetrization of EM tensor by Belinfante-Rosenfeld trans-

formation

We find that, unless Θσν is symmetric (which need not be the case always), we don’t have

a truly conserved angular momentum density current. But we know that Noether conserved

currents are arbitary upto addition of divergence-less fields (refer equation 2.7). We can exploit

this possibility to modify Θµν to T µν such that it is a symmetric tensor. The antisymmetric

tensor field fλµν ’ which makes T µν symmetric is called Belnfinte tensor Bλµν . It respects the

fact that ∂µT
µν = 0 and the fact that new symmetric tensor Tµν defines the same physical

observable (namely, energy-momentum) of the field.

T µν = Θµν + ∂λB
λµν

(
Bλµν = −Bµλν

)
(2.15)

Is the existence of such a Balinfante tensor (which makes T µν symmetric) guaranteed? Fol-

lowing theorem proved by Belinfante in [27] gives necessary and sufficient conditions on the

existence of Bλµν . [We state the converse of the original theorem statement here]

Theorem A [28]: ∃ a symmetric stress-energy tensor [equivalently ∃ Belinfante tensor Bλµν ]

iff the anti-symmetric part of the conserved canonical EM tensor is a total divergence.

Theorem B[28]: Given a tensor Hλµν such that Θ[µν] = −1
2
∂λH

λµν , one can explicitly

construct a Belinfante tensor Bλµν such that T µν = Θµν + ∂λB
λµν is symmetric. The explicit

construction is as follows:

Bλµν =
1

2

(
Hλµν +Hµνλ −Hνλµ

)
(2.16)

Such a transformation of Θµν to T µν is called ”Belinfante-Rosenfeld transformation”.

Einstein’s general theory of relativity requires EM tensor in its field equations to be sym-

metric. Gµν = kT µν Here T µν is called ’Dynamic EM tensor’ and is constructed as

T µν = −2√−g
∂(

√−gL)
∂gµν

. It is symmetric by construction. We now state an important theorem.

Theorem C[28]: The symmetric EM tensor obtained by Belinfante-Rosenfeld transforma-

tion using Belinfante’s tensor on matter field is the same as dynamic EM tensor which appears

on the RHS of field equations of general theory of relativity.

2.2.4 Applying above machinery to Dirac Lagrangian

Lagrangian density pf Dirac field in given by

Lm =
i~c

2
(ψγa∂aψ − ∂aψγ

aψ)−mc2ψψ (2.17)

The EM tensor and its antisymmetric part is given by

Θij =
i~c

2
[ψγi∂jψ − ∂jψγiψ] Θ[ij] = ∂kS

ijk (2.18)

Belinfante tensor is Bλµν = −Sλµν +−Sµνλ + Sνλµ. Hence, according to B-R transformations,

Θµν −→ T µν = Θµν − ∂λ[S
λµν + Sµνλ − Sνλµ] (2.19)
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And with the Lagrangian density defined in 2.17, the explicit expression for Sλµν is given by:

Sµνα =
−i~c
4

ψ̄γ[µγνγα]ψ (2.20)

[Note = Up till now, we have used Latin symbols and Greek symbols interchangeably. We will

define an unambiguous convention for their usage later]

2.3 Einstein-Cartan (EC) theory: Modifying Einstein’s

GR to include torsion

First we ask the question - Why consider a modified theory of gravity when General theory

of relativity works out beautifully well and has stood all the experimental tests within the

limits of the domain of validity of the theory. To understand this, we must realize that GR was

formulated to describe gravitational interactions between macroscopic bodies. It is a classical

theory of gravity. It is strongly suspected that at very high energies where the gravitational

interaction becomes comparable to other quantum interactions and at very small length scales,

the current formulation of gravity would not hold. There were (and still under investigation)

many attempts to reconcile gravity with other fundamental interactions. One of the approach

to do this is to expand the domains of validity of ordinary GR (validity in terms of micro/macro

extent of matter) and to modify it so as to accomodate the new physical principles/ new ex-

periments offered by the expanded domain of validity.

The Einstein-Cartan theory (EC) or also known as Einstein-Cartan-Sciama-Kibble (ECSK)

theory [First published in [5], [6] and extensively reviewed in [4]] is one such attempt which

”extends” the geometrical principles and concepts of GR to the certain aspects of

micro-physical world. In ordinary GR, matter is represented by Energy-Momentum tensor,

which essentially provides the description of mass density distribution on space-time. However,

when we delve into the microscopical scale we see that particles obey the laws of quantum me-

chanics and special relativity. At such length scales, the ’spin’ (along with mass) of the particle

has to be taken into account. Just like mass (which is characterized by EM tensor), it is a

fundamental and independent property of matter . In macro physical limits, mass adds up

because of its monopole character, whereas spin, being of dipole character, usually averages

out in absence of external forces; hence matter in its macro physical regime can be dynamically

characterized only by the energy-momentum tensor. If we wish to extend GR to include micro

physics, we must take into account, therefore, that matter is dynamically described by mass

and spin density, and since mass is related to curvature via EM tensor in framework of GR, spin

should be related, through spin density tensor, to some other geometrical property of space time

in the spirit of geometric theory of gravity. This requirement is satisfied by EC or ECSK theory.

EC theory removes the restriction for the affine connection to be symmetric which was consid-

ered in GR. The antisymmetric part of the affine connection commonly known as ’torsion’(Q µ
αβ ),
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transforms like a third rank tensor and is known as Cartan’s torsion tensor. It is seen that

torsion couples to the intrinsic spin angular momentum of particles [4] just as the symmetric

part of the connection (which gets expressed completely in terms of metric and its derivatives)

couples to the mass. Since torsion is a geometrical quantity, spin modifies space-time and the

resultant space-time is known as ’Riemann-Cartan’ space-time (U4) The field equations that

follow are known as Einstein-Cartan field equation. The (U4) manifold is also metric compat-

ible (See section explained below) and hence can describe physical space-time in agreement

with equivalence principle.

Physically, torsion is related to the translation of vector like curvature is related to rota-

tion, when a vector is displaced along infnitesimal path on U4 manifold. Hence torsion allows

for translations to be included and converts the local lorentz symmetry group of GR to the

Poincare’ group [4]; which is essential because, in microscopic regime, elementary particles are

the irreducible representations of Poincare’ group, labeled by mass and spin. A detailed ac-

count of this motivation to include torsion can be looked in [4]. Another motivation is that in

the absence of external forces, the correct conservation law of total angular momentum arises

only if torsion, whose origin is spin density, is included into gravitation [29],

First we define a connection Γ µ
αβ on a general affine manifold (A4) to allow for the parallel

transport of tensorial objects. We define a torsion tensor out of this connection and it is given

by,

Q µ
αβ = Γ µ

[αβ] =
1

2
(Γ µ

αβ − Γ µ
βα ) (2.21)

It is a third rank tensor that is antisymmetric in its first two indices and has 24 independent

components.

It can be shown that the general connection Γ µ
αβ on (A4) can be expressed in terms of metric,

torsion tensor, and tensor of non metricity (Nαβµ = ∇µgαβ)

Γ µ
αβ =

{
µ

αβ

}
−K µ

αβ − V µ
αβ (2.22)

where
{

µ
αβ

}
is the Christoffel symbol, K µ

αβ = −Q µ
αβ −Qµ

αβ +Q µ
β α is the contorsion tensor

and V µ
αβ =

1

2
[N µ

αβ −Nµ
αβ −N µ

β α] is the definition of V .

Einstein-Cartan manifold (U4) is a particular case of a general affine manifold in which the

metric tensor is covariantly constant.

Nαβµ = ∇µgαβ = 0 (2.23)
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This condition, which preserves scalar products (and then the invariance of lengths and an-

gles) under parallel displacement is called metricity postulate. It secures the local Minkowski

structure of space-time in agreement with principle of equivalence. The connection satisfying

the condition of eqn (2.23) is called metric compatible connection. The connection of Riemann

Cartan manifold (U4) is then written as:

Γ µ
αβ =

{
µ

αβ

}
−K µ

αβ (2.24)

Other quantities such as covariant derivative, Riemann tensor, Ricci tensor and Einstein tensor

are defined in a similar fashion as in GR, the only difference being that the Christoffel symbols

are replaced by the total connection as defined in equation (2.24),

Aµ
;β = ∂βA

µ + Γ µ
βα Aα (2.25)

R ν
αβµ = ∂αΓ

ν
βµ − ∂βΓ

ν
αµ + Γ ν

αλ Γ λ
βµ − Γ ν

βλ Γ λ
αµ (2.26)

Rµν = R α
αµν (2.27)

Gµν = Rµν −
1

2
gµνR (2.28)

However it must be noted that Rµν and Gµν are no longer symmetric. Riemann Tensor has 36

independent components. The Bianchi identities can be defined in a similar way; following the

usual definitions. It is worth investigating the anti-symmetric part of Gµν . We can show that

G[µν] = R[µν] = ∇αT
α

µν + 2QαT
α

µν = ∇̃αT
α

µν where ∇̃α = ∇α + 2Qα (2.29)

where T α
µν = Q α

µν + δαµQν − δανQµ is called as the modified torsion tensor (This is a very

important quantity which, as we will see appears in filed equations of EC theory) and the

quantity Qν is the trace of torsion, given by Qν = Q α
να . Gµν can also be expressed as:

Gµν(Γ) =Gµν({}) + ∇̃α[T
µνα + T αµν − T ναµ] (2.30)

+
[
4T µα

[βT
νβ

α] + 2T µαβT ν
αβ − T αβµT ν

αβ − 1

2
gµν(4T β

α [γT
αγ

β] + T αβγTαβγ)
]

We adopt an important convention henceforth:

• The symbol ∇ is used to indicate total covariant derivative. The symbol {} is used to

indicate christofell connection. So, ∇{} would mean covariant derivative w.r.t christofell

connection.

• Whenever there is a bracket like ({}) this in front of any object, it indicates the value of

object calculated using Christoffel connection. We would also call it “Riemann part of

the object” often.

HenceGµν({}) is the Riemann part of Einstein’s tensor (the one occurring in GR). By definition,

it is symmetric. However it doesn’t capture the full symmetric part of total Gµν . Hence all the

additional part to Gµν({}) is asymmetric.
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2.4 Lagrangian and the corresponding Field equations

of EC theory

The field equations for the Einstein-Cartan theory may be obtained by the usual procedure

where the action is constructed and then varied w.r.t. the geometric and matter fields in

the Action. Lagrangian of EC theory will have matter lagrangian and a kinetic term for the

gravitational field. We apply minimal coupling procedure, where Minkowski metric ηµν is

replaced by world metric gµν and partial with covariant derivatives of EC theory (defined later

in next section). We keep Lg = R as in normal GR. We justify this by knowing the fact that

in the limit of vanishing torsion, the original field equations of GR are obtained. The action is

given by:

S =

∫
d4x

√−g
[
Lm(ψ,∇ψ, g)−

1

2χ
R(g, ∂g,Q)

]
(2.31)

Here χ = 8πG
c4

and Lm denotes the matter Lagrangian density and describes the distribution

of matter field. The second term on the RHS represents the Lagrangian density due to the

gravitational field. There are 3 fields in this Lagrangian viz. ψ (matter field), gµν (metric field)

and Kαβµ (Contorsion field)

varying w.r.t the matter field ψ

δ(
√−gLm)

δψ
= 0−−−−−−E.O.M for matter field. (2.32)

Varying w.r.t. the metric field,

1√−gχ
δ(
√−gR)
δgµν

=
2√−g

δ(
√−gLm)

δgµν
= T µν (2.33)

Varying w.r.t. Contorsion field,

1√−gχ
δ(
√−gR)
δKαβµ

=
2√−g

δ(
√−gLm)

δKαβµ

= Sµβα (2.34)

These are the generic field equations of Einstein-Cartan theory. Tµν on the RHS of eqn (2.33)

dynamical Energy-Momentum Tensor. Similarly, Sµβα on the RHS of eqn (2.34) is the dynam-

ical spin density tensor defined in equation (2.20).

Therefore we notice that, just as mass/energy density of the matter is coupled to the Riemann

curvature of space-time via Tµν , the spin of matter is coupled to torsion of the space time via

Sµβα. Using the definition of the curvature tensor and torsion tensor defined in the earlier

section, we obtain:
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1√−g
δ(
√−gR)
δgµν

= Gµν − ∇̃α[T
µνα + T αµν − T ναµ] = χT µν (2.35)

1√−g
δ(
√−gR)
δKαβµ

= T µβα = χSµβα (2.36)

Equation 2.35 and 2.36 can be together written as,

Gµν = χT µν + ∇̃α[T
µνα + T αµν − T ναµ] (2.37)

= χT µν + χ∇̃α[S
µνα + Sαµν − Sναµ] (2.38)

Gµν = χΣµν (2.39)

Where, Σµν is the canonical energy momentum tensor. Field equations of EC theory can be

summarized below[4], [8], [9].

Gµν = χΣµν (2.40)

T µνα = χSµνα (2.41)

δ(
√−gLm)

δψ̄
= 0 (2.42)

We now find th explicit expression for Gµν({}) using equations 2.30, 2.40, 2.41.

Gµν({}) = χT µν + χ2τµν = χσ̃µν ; σ̃µν = T µν + χτµν (2.43)

where

τµν = c2
(
4Sµα

[βS
νβ

α] − 2sµαβSν
αβ + SαβµS ν

αβ +
1

2
gµν(4Sβ

α [γS
αγ

β] + SαβγSαβγ)
)

(2.44)

We again note an important point here though σ̃µν defined above is symmetric by definition,

it doesn’t capture the full symmetry of Σµν .

This term on RHS of 2.43 is completely dependent on the spin of the particle. Some

important observations can be made from above field equations. eqn (2.41) is an algebric

equation; suggesting that torsion can’t propogate outside matter field in the EC theory. It is

confined to the region of matter fields. However, Spin of the matter fields modifies the Energy

momentum tensor as given by eqn (2.43), which in turn modifies the metric, which propogates

upto infinity. The spin content of the matter can influence the geometry outside the

matter, though indirectly (through metric) and very weakly.

2.5 Coupling of EC theory with Dirac field: Einstein-

Cartan-Dirac (ECD) theory

We will consider particles with spin-1/2, described by the Dirac field. The matter Lagrangian

density for Dirac field is given by ,
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Lm =
i~c

2
(ψγµ∇µψ −∇µψγ

µψ)−mc2ψψ (2.45)

Here ψ is a spinor. Transformation properties of Spinors are defined in a flat Minkowski

space; locally tangent to the U4 manifold. We know that, at each point, we have a coordinate

basis vector field êµ = ∂µ. This coordinate basis field is covariant under General coordinate

transformation. However, a spinor (as defined on flat Minkowski space-time) is associated with

the basis vectors which are covariant under local Lorentz transformations. To this aim, we

define at each point of our manifold, a set of 4 orthonormal basis field (called tetrad field),

Given by êi(x). These are 4 vectors (one for each µ) et every point. This tetrad field is governed

by a relation êi(x) = eiµ(x)ê
µ where trasformation matrix eiµ is such that,

e(i)µ e
(k)
ν η(i)(k) = gµν (2.46)

The detail account of Tetrad formalism is given in appendix section B.1. Here we will use

some results and definitions from this section. Trasformation matrix e
(i)
µ allows us to convert

the components of any world tensor (tensor which transforms according to general coordinate

transformation) to the corresponding components in local Minkowskian space (These latter

components being covariant under local Lorentz transformation). Greek indices are raised or

lowered using the metric gµν , while the Latin indices are raised or lowered using η(i)(k). paren-

thesis around indices is just a matter of convention.

We adopt an important conventions for the remainder of paper

• Greek indices e.g. α, ζ, δ refer to world components (which transform according to gen-

eral coordinate transformation).

• Latin indices with parenthesis e.g. (a) or (i) refer to tetrad index. (which transform

according to local Lorentz transformation in flat tangent space).

• Latin index without parenthesis e.g. i,j,b,c would just mean objects in Minkowski space

(which transform according to global Lorentz transformation).

• 0,1,2,3 indicate world index and (0),(1),(2),(3) indicate tetrad index.

• The symbol ∇ is used to indicate total covariant derivative. The symbol {} is used to

indicate christofell connection. So, ∇{} would mean covariant derivative w.r.t christofell

connection.

• The symbol comma (,) is used to indicate partial derivatives and the symbol semicolon (;)

is used to indicate Riemannian covariant derivative. So for tensors, (;) and ∇{} are same,
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but for spinors (;) would have partial derivatives and riemannian part of spin connection

(γ) as described below.

Just as we define affine connection Γ to facilitate parallel transport of geometrical objects

with world (greek) indices, we define Spin connection ω for anholonomic objects (those having

latin index). As affine connection Γ has 2 parts- riemannian ({}) part coming from christofell

connection and torsional part (made up of contorsion tensor K), similarly, spin connection ω

also has 2 parts - Riemannian (denoted by γ) and torsional part (again made up of contorsion

tensor K). γ, γo and K are related by following equation. These symbols and notations ae

taken from [23]. All the mathematics is explained in B.1.

γ (i)(k)
µ = γo (i)(k)

µ −K (k)(i)
µ (2.47)

Here, γ
o (i)(k)
µ is riemannian part and K

(k)(i)
µ is the contorsion (torsional part)

The relation between spin conection and affine connection is as follows

γ (i)(k)
µ = e(i)α e

ν(k)Γ α
µν − eν(k)∂µe

(i)
ν

= e(i)α e
ν(k)

{
α

µν

}
−K (k)(i)

µ − eν(k)∂µe
(i)
ν

(2.48)

From above two equations, one can obtain the following crucial equation for Riemannian part

of spin connection, entirely in terms of Christoffel symbols and tetrads.[9]

{
α

µν

}
= eα(i)eν(k)γ

o (k)(i)
µ + eα(i)∂µe

(i)
ν (2.49)

Using all the results mentioned above, we define covariant derivative (CD) for Spinors on V4

and U4

ψ;µ = ∂µψ +
1

4
γoµ(b)(c)γ

[(b)γ(c)]ψ −−−−−−−−−−−−−−−−CD on [V4] (2.50)

∇µψ = ∂µψ +
1

4
γoµ(c)(b)γ

[(b)γ(c)]ψ − 1

4
Kµ(c)(b)γ

[(b)γ(c)]ψ −−−−−−− CD on [U4] (2.51)

Substituting this into eqn (2.45), we obtain the explicit form of Lagrangian density; which we

vary w.r.t. ψ as in eqn (2.42) to obtain Dirac equation on V4 and U4.

iγµψ;µ −
mc

~
ψ = 0−−−−−−Dirac Eqn on [V4] (2.52)

iγµψ;µ +
i

4
K(a)(b)(c)γ

[(a)γ(b)γ(c)]ψ − mc

~
ψ = 0−−−−−−Dirac Eqn on [U4] (2.53)
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We next obtain gravitational field equations on both V4 and U4 using eqn (2.40) and Lagangian

density defined in eqn (2.45).

Gµν({}) = 8πG

c4
T µν −−−−−−−−−−−−−−−Gravitation Eqn on [V4] (2.54)

Gµν({}) = 8πG

c4
T µν − 1

2

(
8πG

c4

)2

gµνS
αβλSαβλ −−−−Gravitation Eqn on [U4] (2.55)

Here, T µν is the dynamical EM tensor which is symmetric and defined below:

Tµν = Σ(µν)({}) =
i~c

4

[
ψ̄γµψ;ν + ψ̄γνψ;µ − ψ̄;µγνψ − ψ̄;νγµψ

]
(2.56)

Equations [2.52 and 2.54] together form a system of equations of Einstein-Dirac theory.

We now aim to establish the field equations of Einstein-Cartan-Dirac theory. First let’s

define Spin density tensor using Lagrangian density defined in eqn (2.45)

Sµνα =
−i~c
4

ψ̄γ[µγνγα]ψ (2.57)

Using equations 2.57 and 2.41, eqn (2.53) can be simplified to give us the Hehl-Datta equation

[4], [8] (’LP l’ being the Planck length). This, Along with equation 2.55 and the equation which

couples modified torsion tensor and spin density tensor together define the field equations of:

Einstein-Cartan-Dirac (ECD) theory; as summarized below

iγµψ;µ = +
3

8
L2
P lψγ

5γ(a)ψγ
5γ(a)ψ +

mc

~
ψ (2.58)

Gµν({}) = 8πG

c4
T µν − 1

2

(
8πG

c4

)2

gµνS
αβλSαβλ (2.59)

T µνα = −Kµνα =
8πG

c4
Sµνα (2.60)
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Chapter 3

Introducing unified length scale Lcs in

quantum gravity

3.1 The idea of Lcs

Einstein’s theory of gravity (GR) and relativistic Quantum mechanics (Ex: Dirac theory for

spin-1/2 particles) are the 2 most successful theories of the description of Universe at micro

and macro level (in terms of mass ‘m’ which is being described). Given a relativistic particle

of mass ‘m’, we can associate 2 length scales to it- characterizing its quantum and relativistic

behavior. Quantum nature of the particle is associated with its Compton wavelength; given

by λC = (~/mc) and the relativistic nature is associated to the Schwarzschild radius given by

RS = (2GM/c2). It is through these length scales, that the mass ‘m’ enters the equation of

description of their motion. Example, mass enters Dirac equation through λC and it enters

GR equations through RS. Also, It is important to note that neither λC (having ~ and c

as fundamental constants) nor RS (having G and c as fundamental constants) could be used

individually to define mass (or units of mass).

Both Dirac theory and general relativity claim to hold for all values of m and it is only through

experiments that we find that Dirac equation holds if m≪ mp or λC ≫ lp while Einstein equa-

tions hold if m≫ mp or RS ≫ lp. “From the theoretical viewpoint, it is unsatisfactory

that the two theories should have to depend on the experiment to establish their

domain of validity” [1]. If we assert the fact that plank length is the smallest physically

meaningful length, then it makes no sense to talk of RS < Lpl when m < mpl and to talk of

λC < Lpl when m > mpl. Instead it is more reasonable to think of universal length scale which

remains above Lpl for all masses and whose limiting cases give λC for small mass and RS for

large mass. One such way to define a universal length scale is given in [1] as follows

LCS

2lp
:=

1

2

(
2m

mp
+
mp

2m

)
:= cosh z (3.1)

.

24



where z = ln 2m
mp

. These ideas are discussed in details in the recent works of Tejinder

P. Singh [1], [21]. The dynamical process for mass ‘m’ now involves Lcs (mass enters the

dynamics through Lcs). An action principle has been proposed with this new length scale and

Dirac equation and Einstein GR equations are shown to be mutually dual limiting cases of this

underlying modified action. The proposed action for this underlying gravitation theory, which

gives the required limits is as follows

L2
pl

~
S =

∫
d4x

√
−g[R − (1/2)LCSψ̄ψ + L2

CSψ̄iγ
µ∂µψ] (3.2)

Generalizing this on a curved space-time, the action is:

L2
pl

~
S =

∫
d4x

√
−g
[
R − 1

2
LCSψ̄ψ + π~iL2

CS

(
ψ̄γµ∇µψ −∇µψ̄γ

µψ
)]

(3.3)

If ∇ and ‘R’ are taken on V4, the system is called ’Einstein-Dirac’ system. In such a system , for

small mass limit, couping to EM tensor in Einstein’s equation is through ~ and not G. Hence

we expect gravity to vanish. This creates an unpleasant situation for Einstein’s equations.

Because vanishing of gravity makes LHS 0; but RHS is non-zero (it is EM tensor coupled

through ~). This compels us to introduce torsion in the theory. Because it would now add

torsion field in the LHS and then it couples to EM tensor via ~. Further arguments can be

looked up in [21]. So the idea of Lcs is more coherent with the framework of Einstein-Cartan

manifold (U4 manifold). For m ≪ mpl, the spin density is more important than mass density.

Mass density can be neglected and spin density sources the torsion (coupling is through ~).

Whereas, m≫ mpl, mass density dominates spin density. spin density can be neglected and as

usual, mass density sources the gravity (coupling is through G). Spin density and torsion

are significant in micro-regime; whereas gravity and mass density are important in

macro-regime. In this manner there exists a symmetry between small mass and large mass

in the sense that small mass is the source for torsion and large mass is the source for gravity.

The solution for small mass is dual to the ’wave-function collapsed’ solution for large mass in

the sense that both the solutions have same value for Lcs which is the only free parameter in

the theory.[21]

3.2 ECD equations with Lcs

The set of ECD field equations with the LCS incorporated in them are obtained by varying

the Action 3.3 w.r.t all the 3 fields (Here we have also given gravity equation with riemannian

part of Einstein tensor.)[21]
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Gµν =
8πL2

CS

~c
Σµν (3.4)

Gµν({}) =
8πL2

CS

~c
Tµν −

1

2

(
8πL2

CS

~c

)2

gµνS
αβλSαβλ (3.5)

T µνα =
8πL2

CS

~c
Sµνα (3.6)

iγµψ;µ =
3

8
L2
CSψ̄γ

5γνψγ
5γνψ +

1

2LCS
ψ = 0 (3.7)

Important notation to be used henceforth: We use the symbol ’l’ to denote a ’length

scale’ in the theory. For standard ECD theory, it is either plank length l = Lpl =
√

G~

c3
or

half Compton wavelength l = λC

2
= ~

2mc
or Schwarzschild radius l = Rs =

2GM
c2

. For modified

theory with new unified length scalesLcs, the length scale we use is l = Lcs. Every equation

written in terms of generic ‘l’ henceforth is valid for both length scales. We will mention in

each case what this ‘l’ refers to in the standard theory.
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Chapter 4

Non-relativistic limit of ECD field

equations

4.1 Theoretical background and notations/ representa-

tions used in this section

4.1.1 Notations, conventions, representations and Ansatz’s used

• Greek indices e.g. α, ζ, δ refer to world components (which transform according to gen-

eral coordinate transformation).

• Latin indices with parenthesis e.g. (a) or (i) refer to tetrad index. (which transform

according to local Lorentz transformation in flat tangent space).

• Latin index without parenthesis e.g. i,j,b,c would just mean objects in Minkowski space

(which transform according to global Lorentz transformation).

• 0,1,2,3 indicate world index and (0),(1),(2),(3) indicate tetrad index.

• The Lorentz Signature used in this report is Diag(+, -, -, -).

• We use Dirac basis to represent the gamma matrices. These are basically matrix repre-

sentation of clifford algebra Cl1,3[R]

γ0 = β =

(
I2 0

0 −I2

)
, γi =

(
0 σi

−σi 0

)
, γ5 =

i

4!
ǫijklγ

iγjγkγl =

(
0 I2

I2 0

)
, αi = βγi =

(
0 σi

σi 0

)

(4.1)

• Ansatz for Dirac spinor: We want to choose an appropriate ansatz for spinor so as to

fetch non-relativistic limit. We expand ψ(x, t) as ψ(x, t) = e[iS(x,t)~]: (which can be done

for any complex function of x and t). Here S is Hamilton’s principle function. We can
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either expand S as a perturbative power series in the parameters
√
~ or (1/c) and obtain

the semi-classical and non-relativistic limit respectively at various orders. The scheme

for non-relativistic limit has been employed by C.Kiefer and TP Singh [22]. Guillini and

Grobsardt in their works [17], combines both these schemes and constructs a new ansatz

in the parameter
√
~

c
as follows:

ψ(r, t) = e
ic2

~
S(r,t)

∞∑

n=0

(√
~

c

)n

an(r, t) (4.2)

where S(r, t) is a scalar function and an(r, t) is a spinor field. We use this ansatz in our

calculations.

• Ansatz for metric: We first express the generic form of the metric in a power series with

parameter same as that used to expand spinor viz.
√
~

c
.

gµν( ~X, t) = ηµν +
∞∑

n=1

(√
~

c

)n

g[n]µν (
~X, t) (4.3)

where, g
(n)
µν (x) are infinite metric functions indexed by ’n’. In non-relativistic scheme,

gravitational potentials can’t produce velocities comparable to c. they are weak poten-

tials. ∴ we have assumed that the leading function g
[0]
µν(x) = ηµν . With this, we get the

following generic power series for tetrads and spin coefficients and Einstein tensor.

eµ(i) = δµ(i) +
∞∑

n=1

(√
~

c

)n

e
µ[n]
(i) γ(a)(b)(c) =

∞∑

n=1

(√
~

c

)n

γ
[n]
(a)(b)(c) (4.4)

e(i)µ = δ(i)µ +
∞∑

n=1

(√
~

c

)n

e(i)[n]µ Gµν =
∞∑

n=1

(√
~

c

)n

G[n]
µν (4.5)

where e
µ(n)
(i) [g

[n]
µν ], e

(i)[n]
µ [g

[n]
µν ], γ

[n]
(a)(b)(c)[g

[n]
µν ] and G

[n]
µν are infinite tetrad, spin coefficient and

Einstein tensor functions indexed by ’n’. They are functions of metric functions g
[n]
µν and

their various derivatives.

4.2 Analysis of Einstein-Dirac system with our Ansatz

4.2.1 Analyzing Dirac equation with our Ansatz

We will now evaluate Dirac equation on V4 as given in eqn (2.52) with these Ansatz. We also

note that γ(a)ψ;(a) = e
(a)
µ eν(a)γ

µψ;ν = δµν γ
µψ;ν = γµψ;µ.

iγµψ;µ −
mc

~
ψ = 0 (4.6)

⇒ iγ0∂0ψ +
i

4
γ(0)γ(0)(b)(c)γ

[(b)γ(c)]ψ + iγα∂αψ +
i

4
γ(j)γ(j)(b)(c)γ

[(b)γ(c)]ψ − mc

~
ψ = 0 (4.7)
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We separate spatial and temporal parts. Substituting appropriate expansions from 4.4, 4.5

into above equations and multiplying by γ(0)c on both sides yields:

⇒
[
1 +

∞∑

n=1

(√
~

c

)n

e
0[n]
(0)

]
i∂tψ +

ic

4

[ ∞∑

n=1

(√
~

c

)n

γ
[n]
(0)(b)(c)

]
γ[(b)γ(c)]ψ+

[
1 +

∞∑

n=1

(√
~

c

)n

e
α[n]
(a)

]
ic~α.∇ψ +

ic

4
α(j)

[ ∞∑

n=1

(√
~

c

)n

γ
[n]
(j)(b)(c)

]
γ[(b)γ(c)]ψ − βmc2

~
ψ = 0

(4.8)

Dividing both sides by

[
1 +

∑∞
n=1

(√
~

c

)n

e
0[n]
(0)

]
, we obtain

i∂tψ = −ic
4

[∑∞
n=1

(√
~

c

)n

γ
[n]
(0)(b)(c)

]

[
1 +

∑∞
n=1

(√
~

c

)n

e
0[n]
(0)

]γ[(b)γ(c)]ψ −

[
1 +

∑∞
n=1

(√
~

c

)n

e
α[n]
(a)

]

[
1 +

∑∞
n=1

(√
~

c

)n

e
0[n]
(0)

] ic~α.∇ψ−

ic

4
α(j)

[∑∞
n=1

(√
~

c

)n

γ
[n]
(j)(b)(c)

]

[
1 +

∑∞
n=1

(√
~

c

)n

e
0[n]
(0)

]γ[(b)γ(c)]ψ +
1[

1 +
∑∞

n=1

(√
~

c

)n

e
0[n]
(0)

] βmc
2

~
ψ

(4.9)

We consider the terms of order c2,c,1 and neglect the terms having order of O
(

1
cn

)
; n≥1. This

is sufficient to get the behavior of some functions in spinor Ansatz. It will turn out later that

this is also sufficient to get the equation which is followed by leading order spinor term a0. We

obtain following equation:

i∂tψ +
i
√
~

4
γ
[1]
(0)(b)(c)γ

[(b)γ(c)]ψ + ic~α.∇ψ +
i
√
~

4
α(j)γ

[1]
(j)(b)(c)γ

[(b)γ(c)]ψ

−βmc
2

~
ψ + β

mc√
~
e
0[1]
(0) ψ − βm

[(
e
0[1]
(0)

)2

− e
0[2]
(0)

]
ψ = 0

(4.10)

Substituting the Spinor Ansatz i.e. eqn (4.2)in equation (4.10), the various terms are eval-

uated as follows:

Term 1

i∂tψ = i∂t

[
e

ic2S
~

∞∑

n=0

(√
~

c

)n

an

]

= ie
ic2S
~

c2

~

∞∑

n=0

(√
~

c

)n[
ȧn−2 + iṠan

]

= e
ic2S
~

c3

~3/2

∞∑

n=0

(√
~

c

)n[
− Ṡan−1 + iȧn−3

]
(4.11)
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Term 2

+
i
√
~

4
γ
[1]
(0)(b)(c)γ

[(b)γ(c)]ψ = +
i
√
~

4
γ
[1]
(0)(b)(c)γ

[(b)γ(c)]
[
e

ic2S
~

∞∑

n=0

(√
~

c

)n

an

]
(4.12)

= e
ic2S
~

c3

~3/2

∞∑

n=0

(√
~

c

)n[
i
√
~γ

[1]
(0)(b)(c)γ

[(b)γ(c)]an−3

]
(4.13)

Term 3

icαj∂jψ = ic−→α · −→∇
[
e

ic2S
~

∞∑

n=0

(√
~

c

)n

an

]

= ic−→α ·
[
e

ic2S
~

c2

~

∞∑

n=0

(√
~

c

)n(
i
−→∇San +

−→∇an−2

)]

= e
ic2S
~

c3

~3/2

∞∑

n=0

(√
~

c

)n[
−
√
~
−→α · −→∇San + i

√
~
−→α · −→∇an−2

]
(4.14)

Term 4

+
i
√
~

4
α(j)γ

[1]
(j)(b)(c)γ

[(b)γ(c)]ψ = +
i
√
~

4
α(j)γ

[1]
(j)(b)(c)γ

[(b)γ(c)]
[
e

ic2S
~

∞∑

n=0

(√
~

c

)n

an

]
(4.15)

= e
ic2S
~

c3

~3/2

∞∑

n=0

(√
~

c

)n[
i
√
~α(j)γ

[1]
(j)(b)(c)γ

[(b)γ(c)]an−3

]
(4.16)

Term 5

−βmc
2

~
ψ = −βmc

2

~
e

ic2S
~

∞∑

n=0

(√
~

c

)n

an

= e
ic2S
~

c3

~3/2

∞∑

n=0

(√
~

c

)n

(−βman−1) (4.17)

Term 6

+β
mc√
~
e
0[1]
(0) ψ = +β

mc√
~
e
0[1]
(0)

[
e

ic2S
~

∞∑

n=0

(√
~

c

)n

an

]
(4.18)

= e
ic2S
~

c3

~3/2

∞∑

n=0

(√
~

c

)n[
βm e

0[1]
(0) an−2

]
(4.19)

Term 7

−βm
[(
e
0[1]
(0)

)2

− e
0[2]
(0)

]
ψ = −βm

[(
e
0[1]
(0)

)2

− e
0[2]
(0)

][
e

ic2S
~

∞∑

n=0

(√
~

c

)n

an

]
(4.20)

= −e ic2S
~

c3

~3/2

∞∑

n=0

(√
~

c

)n
[
βm

(
(
e
0[1]
(0)

)2 − e
0[2]
(0)

)]
an−3 (4.21)

After substituting equations 4.11, 4.12, 4.14,4.15,4.17,4.18 and 4.20 into 4.10 and sorting

by powers of n we get,
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e
ic2S
~

c3

~3/2

∞∑

n=0

(√
~

c

)n
[(

−
√
~
−→α · −→∇S

)
an −

(
Ṡ + βm

)
an−1 +

(
i
√
~
−→α · −→∇ + βm e

0[1]
(0)

)
an−2

+iȧn−3 +

(
i
√
~γ

[1]
(0)(b)(c)γ

[(b)γ(c)] + i
√
~α(j)γ

[1]
(j)(b)(c)γ

[(b)γ(c)] − βm
((
e
0[1]
(0)

)2 − e
0[2]
(0)

))
an−3

]
= 0

(4.22)

At order n = 0 the equation reduces to,

−→∇S = 0 (4.23)

which implies the scalar ’S’is a function of time only i.e., S = S(t). Dirac spinor is a 4

component spinor an = (an,1, an,2, an,3, an,4). We split it into two two-component spinors a>n =

(an,1, an,2) and a
<
n = (an,3, an,4). For order n = 1, the equation is

(
Ṡ + βm

)
= 0; which can be

written as following 2 equations:

(m+ Ṡ)a>0 = 0 (4.24a)

(m− Ṡ)a<0 = 0 (4.24b)

This implies that either S = −mt and a<0 = 0 or S = +mt and a>0 = 0.

We will consider the former i.e. S = −mt and a<0 = 0, which represents positive energy

solutions. We stop at this point and analyze dynamical EM tensor now with the results

obtained in equation 4.23 and the fact that a<0 = 0.

4.2.2 Analyzing the Energy momentum tensor Tij with our Ansatz

The dynamical Energy momentum tensor given in equation 2.56. Lets consider the ”kT00”

component.

Analyzing kT00:

kT00 =
4iπG~

c4

[
ψ̄γ0

(
∂tψ +

c

4
[γ0(i)(j)γ

[(i)γ(j)]]ψ
)
−
(
∂tψ̄ +

c

4
[γ0(i)(j)γ

[(i)γ(j)]]ψ̄
)
γ0ψ

]
(4.25)

⇒ kT00 =
4iπG~

c4

(
1 +

∞∑

n=1

(√~

c

)n
e
0[n]
(0)

)[
ψ̄γ(0)

(
∂tψ +

c

4
[γ0(i)(j)γ

[(i)γ(j)]]ψ
)

−
(
∂tψ̄ +

c

4
[γ0(i)(j)γ

[(i)γ(j)]]ψ̄
)
γ(0)ψ

] (4.26)

After putting spinor anstaz eqn (4.2) in eqn (4.25), we obtain following power series for kT00.

We have given expression for the leading order only.

kT00 =
4iπG

c2

{( ∞∑

n=0

(√
~

c

)n

a†n

)( ∞∑

m=0

(√
~

c

)m[
iṠam + ȧm−2

])

+

( ∞∑

n=0

(√
~

c

)n[
iṠa†n − ȧ†n−2

])( ∞∑

n=0

(√
~

c

)m

am

)}
+

∞∑

n=3

O
( 1

cn

) (4.27)
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Explicit expression for leading order is obtained by considering (n +m = 0) as follows:

kT00 =
4πGi

c2

{
i(−m)a>†

0 a>0 + i(−m)a>†
0 a>0

}
+

∞∑

n=3

O
( 1

cn

)
(4.28)

kT00 =
8πGm |a>0 |2

c2
+

∞∑

n=3

O
( 1

cn

)
(4.29)

Analyzing kT0µ:

kT0µ =
2iπG~

c4

[
cψ̄γ0

(
∂µψ +

1

4
[γµ(i)(j)γ

[(i)γ(j)]ψ
)
− cψ̄γµ

(
∂0ψ +

1

4
[γ0(i)(j)γ

[(i)γ(j)]ψ
)

− c
(
∂µψ̄ +

1

4
[γµ(i)(j)γ

[(i)γ(j)]ψ̄
)
γ0ψ + c

(
∂0ψ̄ +

1

4
[γ0(i)(j)γ

[(i)γ(j)]ψ̄
)
γµψ

] (4.30)

We will first find the coefficient of the term of order 1
c2

which is the leading order of T00. Now,

all the terms containing spin coefficients γµ(i)(j) have leading order of 1
c3
. So it won’t contribute

at the order 1
c2
. So what we get is:

kT0µ =
2iπG~

c4

[
cψ̄γ0∂µψ − cψ̄γµ∂0ψ − c∂µψ̄γ

0ψ + c∂0ψ̄γ
µψ

]
(4.31)

=
−2iπG~

c3

(
1 +

∞∑

n=1

(√
~

c

)n

e
0[n]
(0)

)[
ψ̄γ(0)∂µψ − ∂µψ̄γ

(0)ψ

]
(4.32)

+
2iπG~

c4

(
1 +

∞∑

n=1

(√
~

c

)n

e
µ[n]
(a)

)[
∂tψ̄γ

(a)ψ − ψ̄γ(a)∂tψ

]

There are 2 types of terms in equation above. One having coefficient 2iπG~

c3
and other with coef-

ficient 2iπG~

c4
. We call them term 1 and 2 respectively. We analyze both of them independently.

Term 1 gives
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(term 1) =
2iπG~

c3

∞∑

n=0

(√
~

c

)n(
a†n1

∂µan2
− ∂µa

†
n1
an2

)
; n = n1 + n2

=
∞∑

n=3

O
( 1

cn

)
(4.33)

(term 2) =
2iπG

c2

{( ∞∑

n=0

(√
~

c

)n

a†n

)
α(a)

( ∞∑

m=0

(√
~

c

)m[
iṠam + ȧm−2

])

+

( ∞∑

n=0

(√
~

c

)n[
iṠa†n − ȧ†n−2

])
α(a)

( ∞∑

n=0

(√
~

c

)m

am

)}
+

∞∑

n=3

O
( 1

cn

)

=
4πGm

c2
(a†0α

(a)a0) +

∞∑

n=3

O
( 1

cn

)

=
4πGm

c2

[(
a>0 0

)†
(

0 σ(a)

σ(a) 0

)(
a>0

0

)]
+

∞∑

n=3

O
( 1

cn

)

=

∞∑

n=3

O
( 1

cn

)
(4.34)

So we find, in both term 1 and 2, terms of the O
(

1
c2

)
are ZERO. Hence

kT0µ =
∞∑

n=3

O
( 1

cn

)
(4.35)

Analyzing kTµν

kTµν =
2iπG~

c3

[
− ψ̄γµ

(
∂νψ +

1

4
[γν(i)(j)γ

[(i)γ(j)]ψ
)
− ψ̄γν

(
∂µψ +

1

4
[γµ(i)(j)γ

[(i)γ(j)]ψ
)

+
(
∂νψ̄ +

1

4
[γν(i)(j)γ

[(i)γ(j)]ψ̄
)
γµψ +

(
∂µψ̄ +

1

4
[γµ(i)(j)γ

[(i)γ(j)]ψ̄
)
γνψ

] (4.36)

Here also, we will first find the coefficient of the term of order 1
c2

which is the leading order

of kT00. All the terms containing spin coefficients γµ(i)(j) have leading order of 1
c3
. So it won’t

contribute at the order 1
c2
. So what we get is:
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kTµν =
2iπG~

c3

[
− ψ̄γµ∂νψ − ψ̄γν∂µψ + ∂νψ̄γ

µψ + ∂µψ̄γ
νψ

]

=
2iπG~

c3

(
1 +

∞∑

n=1

(√
~

c

)n

e
µ[n]
(a)

)[
ψ†α(a)∂νψ − ∂νψ

†α(a)ψ

]

+
2iπG~

c3

(
1 +

∞∑

n=1

(√
~

c

)n

e
ν[n]
(b)

)[
∂µψ

†α(b)ψ − ψ†α(b)∂µψ

]

=
2iπG~

c3

∞∑

n=0

(√
~

c

)n(
a†n1

α(a)∂νan2
− ∂νa

†
n1
α(a) + a†n1

α(b)∂µan2
− ∂µa

†
n1
α(b)an2

)
(4.37)

kTµν =
∞∑

n=3

O
( 1

cn

)
(4.38)

From order analysis of components of EM tensor, summarized in equations 4.29, 4.35 and

4.38, we proved a very crucial result here viz.

|T00|
|T0i|

≪ 1,
|T00|
|Tij |

≪ 1, k|T00| ∼ O
( 1

c2

)
; i, j ∈ (1, 2, 3) (4.39)

Owing to Einstein’s equations, the same relation exists amongst the components of Einstein

Tensor as well viz.

|G00|
|G0i|

≪ 1,
|G00|
|Gij|

≪ 1, |G00| ∼ O
( 1

c2

)
; i, j ∈ (1, 2, 3) (4.40)

4.2.3 Constraints imposed on metric as an implication of this sec-

tion

We proved a very important fact from previous 2 sections viz. |G00| ∼ O
(

1
c2

)
and all other

components of G are higher orders. For a generic metric ansatz, Gµν has been explicitly

calculated in appendix section A.1. At this point, we make an important assumption –

Metric field is asymptotically flat. Which means we cannot allow for non-trivial solution

to the equations like �g
[1]
µν = 0 and �g

[2]
µν = 0. Because allowing for non-trivial solution to such

equations (which are basically gravitational wave solutions) would contradict the assumption

of asymptotic flatness of metric. This fact suggests the following important constraints

on metric components.

1) G
[1]
µν = 0 (∀µ, ν) and non-allowance of solutions which don’t respect asymptotic flatness of

metric gives:

g[1]µν = 0, e
µ[1]
(i) = 0, e(i)[1]µ = 0, γ

[1]
(i)(j)(k) = 0 ∀ ij, k, µ, ν ∈ (0, 1, 2, 3) (4.41)

2) We also have G
[2]
µν = 0 (except for µ = 0 and ν = 0). This imposes different kind of

restrictions on g
[2]
µν . From appendix section A.1, we see that the form which g

[2]
µν can take is

g
[2]
µν = F (~x, t)δµν for some field F (~x, t). Here also, we respect asymptotic flatness of metric.

The full metric is then given by:
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gµν(~x, t) =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1



+

(
~

c2

)



F 0 0 0

0 F 0 0

0 0 F 0

0 0 0 F



(~x, t)+

∞∑

n=3

(√
~

c

)n




g
[n]
00 g

[n]
01 g

[n]
02 g

[n]
03

g
[n]
10 g

[n]
11 g

[n]
12 g

[n]
13

g
[n]
20 g

[n]
21 g

[n]
22 g

[n]
23

g
[n]
30 g

[n]
31 g

[n]
32 g

[n]
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(~x, t)

(4.42)

where g
[2]
00 = g

[2]
11 = g

[2]
22 = g

[2]
33 = F (~x, t)

With this form of metric, all the other objects (tetrads, spin coefficients etc.) have been

calculated in appendix section A.2, A.4, A.3 and A.5. We have used these results in the next

section.

4.3 Non-Relativistic (NR) limit of ECD field equations

with standard length scale

4.3.1 NR limit of Einstein-Dirac system

Dirac equation

Equation 4.22 becomes following

e
ic2S
~

c3

~3/2

∞∑

n=0

(√
~

c

)n[
m an−1 + iȧn−3 + i

√
~
−→α · −→∇an−2 − βman−1 − β

mF (~x, t)

2
an−3

]
= 0

(4.43)

We have already used the results from analysis of this equation for n=0 and n=1. We now

analyze it for n=2 and n=3. At order n = 2 the equation (4.22) results in,
(

Ṡ + m 0

0 Ṡ - m

)(
a>1

a<1

)
− i

√
~

(
0 −→σ · −→∇

−→σ · −→∇ 0

)(
a>0

a<0

)
= 0 (4.44)

The first of these is trivially satisfied. The second one yields an expression for a<1 in terms of

a>0 ,

a<1 =
−i

√
~
−→σ · −→∇

2m
a>0 (4.45)

At order n = 3,
(

Ṡ + m 0

0 Ṡ - m

)(
a>2

a<2

)
− i

√
~

(
0 −→σ · −→∇

−→σ · −→∇ 0

)(
a>1

a<1

)

−
(

i∂t − mF (~x,t)
2

0

0 i∂t +
mF (~x,t)

2

)(
a>0

a<0

)
= 0 (4.46)

Upon using equation (4.45), the first branch of (4.46) yields,
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i~
∂a>0
∂t

= − ~2

2m
∇2a>0 +

m~F (~x, t)

2
a>0 (4.47)

Einstein’s equation

Next, we go to Einstein’s equation. G00 is evaluated in appendix section A.5. We equate it

with kT00 and obtain:

~∇2F (~x, t)

c2
+

∞∑

n=3

O
( 1

cn

)
=

8πGm |a>0 |2
c2

+
∞∑

n=3

O
( 1

cn

)
(4.48)

Equating the functions at order 1
c2
, we obtain:

∇2F (~x, t) =
8πGm |a>0 |2

~
(4.49)

If we recognize the quantity ~F (~x,t)
2

as the potential φ, then we get Schrödinger-Newton system

of equations with mφ as the gravitational potential energy and m |a>0 |2 as mass density ρ(~x, t).

The physical picture, which this system of equations suggest is given in the introduction.

i~
∂a>0
∂t

= − ~2

2m
∇2a>0 +mφ(~x, t)a>0 (4.50)

∇2φ(~x, t) = 4πGm |a>0 |2 = 4πGρ(~x, t) (4.51)

i~
∂a>0
∂t

= − ~2

2m
∇2a>0 −Gm2

∫ |a>0 (~r
′

, t)|2
|~r − ~r′| d3~r

′

a>0 (4.52)

4.3.2 NR limit of Einstein-Cartan-Dirac system

Dirac equation on U4 (which is famously called Hehl-Datta equation) is given by equation 2.58

iγµψ;µ −
3

8
L2
P lψγ

5γ(a)ψγ
5γ(a)ψ − mc

~
ψ = 0 (4.53)

We have already evaluated first and the last term after putting Ansatz for spinor 4.2 and

metric 4.42. the second term (arising because of torsion) induces non-linearity into the Dirac

equation. We now evaluate this term by following similar procedure as we did for the other 2

terms. First we multiply the mid-term by γ0c as done while getting equation 4.8 from 4.7 and

get the following:

γ(0)
3c

8
L2
P lψγ

5γ(a)ψγ
5γ(a)ψ = −3c

8
l2P le

ic2S
~

( ∞∑

n=0

(√
~

c

)n

a†n

)
γ(a)

( ∞∑

l=0

(√
~

c

)l

al

)
γ5γ

(a)

( ∞∑

m=0

(√
~

c

)l

am

)

(4.54)

Next, we divide it by

[
1 +

∑∞
n=1

(√
~

c

)n

e
0[n]
(0)

]
as done while getting equation 4.9 from 4.8.

This is equivalent to dividing by
[
1 − ~F (~x,t)

2c2
+
∑∞

n=3O
(

1
cn

)]
or equivalently multiplying by

[
1 + ~F (~x,t)

2c2
+
∑∞

n=3O
(

1
cn

)]
as given in A.3. We get following:

The non-linear term
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e
ic2S
~

c3

~3/2

[
1 +

~F (~x, t)

2c2
+

∞∑

n=3

O
( 1

cn

)]3G
8

( ∞∑

n1,n2,n3=0

(√
~

c

)n

a†n1−iγaan2−jγ
5γaan3−k

)
(4.55)

where n = n1 + n2 + n3. This term modifies Equation 4.43 as follows

e
ic2S
~

c3

~3/2

∞∑

n=0

(√
~

c

)n
[
m an−1 + iȧn−3 + i

√
~
−→α · −→∇an−2 − βman−1 − β

mF (~x, t)

2
an−3

+
3G

8

( ∞∑

n1,n2,n3=0

(√
~

c

)n

a†n1−iγaan2−jγ
5γaan3−k

)]
= 0

(4.56)

where n = n1 + n2 + n3, i + j + k = 5 and, whatever value of i, j, k, n1, n2, n3 is chosen from

(0,1,2,3,4,5) the fact that i ≤ n1, j ≤ n2 and k ≤ n3 is to be respected. We find from the above

expression that the non-linear term with starts contributing finitely from n = 5 onwards. So,

the analysis for n = 0,1,2,3 as given in section 4.3.1 remains as it is and we obtain Schrödinger

equation for a>0 viz.i~
∂a>

0

∂t
= − ~2

2m
∇2a>0 + m~F (~x,t)

2
a>0 .

Next, we go to Einstein’s equation (gravitation equation of ECD theory). The equations of

interest here are as given by eqn (2.59) as Gµν({}) = χT µν − 1
2
χ2gµνS

αβλSαβλ

Gµν and T µν are already analyzed in above section (4.3.1). We will analyze the second term on

the RHS, which is (−1
2
χ2gµνS

αβλSαβλ). It contains the products of spin density tensor which

is given by eqn (2.57). We consider only first term in the expansion of metric because other

terms combined with the coupling constant are already higher orders.

−1

2
χ2g00S

αβλSαβλ = −g00
2π2G2~2

c6

∞∑

N=0

( ∞∑

k=0

∞∑

l=0

a†kγ
0γ[cγaγb]

)( ∞∑

m=0

∞∑

n=0

a†mγ
0γ[cγaγb]nm

)
=

∞∑

n=6

O
( 1

cn

)

(4.57)

We find that this addition doesn’t contribute at the order 1/c2 on the RHS of equation (2.59).

Hence we get back Poisson equation. Recognizing the quantity ~F (~x,t)
2

as the potential φ, at

leading order, we find that ECD theory also yields Schrödinger-Newton equation. Torsion

doesn’t contribute at leading order.

4.4 Non-relativistic limit of ECD field equations with

new length scale Lcs

4.4.1 Analysis for Higher mass limit of Lcs

Higher mass limit of Lcs is
2Gm
c2

. The Einstein equation in the Riemann-Cartan spacetime with

new length scale LCS is given by 3.5
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Gµν({}) = 8πL2
CS

~c
T µν − 1

2

(8πL2
CS

~c

)2
gµνS

αβλSαβλ (4.58)

We neglect terms higher order in LCS because it is easy to deduce from the fact that L2
CS in

higher mass limit is already 4th order in (1/c). So only first term of RHS is significant. We

consider the ”00” component of the above equation.

G00 =
8πL2

CS

~c
T00 (4.59)

The stress tensor is given by (2.56). Its ”00” component is given by [We neglect orders greater

than 1/c2].

T00 =
i~c

4

[
2ψ̄γ0ψ;0 − 2ψ̄;0γ

0ψ

]
(4.60)

The Dirac equation with Lcs in its higher mass limit is given as: 3.7

iγµψ;µ = +
3

8
L2
csψγ

5γ(a)ψγ
5γ(a)ψ +

1

2LCS

ψ (4.61)

Now, for large masses (m >> mP l), amplitude of state ψ is negligible (except in a very narrow

region where mass m gets localized). This is possible if we assume localization process, like

collapse of wave function [30]. In such case, The kinetic energy term can be neglected and we

obtain following equations

ψ;0 = −3

8
iγ0L2

CSψ̄γ
5γaψγ

5γaψ − iγ0

2LCS

ψ

ψ†
;0 =

3

8
iL2

CS(γ
0ψ̄γ5γaψγ

5γaψ)† +
i

2LCS

ψ†γ0
(4.62)

Substituting above equation (4.62) in eqn (4.60) and neglecting higher order terms in LCS we

get,

8πL2
CS

~c
T00 = 4πLCS(ψ

†γ0ψ) (4.63)

Substituting for LCS in the large mass limit in eqn (4.63) ,

8πL2
CST00
~c

= 4πLCS(ψ
†γ0ψ) =

8πGmψ̄ψ

c2
(4.64)

In the localization process we replace ψ̄ψ with a spatial Dirac delta function [21]. Substituting

equation (4.64) and G00 from appendix eqn (A.16) in equation (4.59) and equating at order
1
c2
, we get the Poisson equation as the non relativistic weak field limit of the modified Einstein

equation in the large mass limit,
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∇2F (~x, t) =
8πGmδ(~x)

~
(4.65)

As earlier, we recognize ~F
2

as Newtonian potential φ and hence, we get

∇2φ = 4πGmδ(~x) (4.66)

4.4.2 Analysis for lower mass limit of Lcs

Lower mass limit of Lcs is λC

2
= ~

2mc
. The Dirac equation in the Riemann-Cartan spacetime

with new length scale LCS in its lower mass limit is given by ??:

iγµψ;µ =
3~2

32m2c2
ψγ5γ(a)ψγ

5γ(a)ψ +
1

2LCS
ψ (4.67)

We have already evaluated first and the last term after putting Ansatz for spinor 4.2 and

metric 4.42. the second term (arising because of torsion) induces non-linearity into the Dirac

equation. We now evaluate this term by following similar procedure as we did for the other 2

terms. First we multiply the mid-term by γ0c as done while getting equation 4.8 from 4.7 and

get the following:

γ(0)
3c

32
λ2Cψγ

5γ(a)ψγ
5γ(a)ψ =

3c

32
λ2Ce

ic2S
~

( ∞∑

n=0

(√
~

c

)n

a†n

)
γ(a)

( ∞∑

l=0

(√
~

c

)l

al

)
γ5γ

(a)

( ∞∑

m=0

(√
~

c

)l

am

)

(4.68)

Next, we divide it by

[
1 +

∑∞
n=1

(√
~

c

)n

e
0[n]
(0)

]
as done while getting equation 4.9 from 4.8.

This is equivalent to dividing by 1 − ~F (~x,t)
2c2

+
∑∞

n=3O
(

1
cn

)
as given in A.3 or multiplying by

1 + ~F (~x,t)
2c2

+
∑∞

n=3O
(

1
cn

)
. We get:

The non-linear term

e
ic2S
~

c3

~3/2

[
1+

~F (~x, t)

2c2
+

∞∑

n=3

O
( 1

cn

)] 3~3/2

32m2

( ∞∑

n1,n2,n3=0

(√
~

c

)n

a†n1−iγaan2−jγ
5γaan3−k

)
(4.69)

where n = n1 + n2 + n3, i + j + k = 4 and, whatever value of i, j, k, n1, n2, n3 is chosen from

(0,1,2,3,4) the fact that i ≤ n1, j ≤ n2 and k ≤ n3 is to be respected. We find from the

above expression that the non-linear term with LCS starts contributing finitely from n = 4

onwards. So, the analysis for n = 0,1,2,3 as given in section 4.3.1 remains as it is and we obtain

Schrödinger equation for a>0 viz.i~
∂a>

0

∂t
= − ~2

2m
∇2a>0 + m~F (~x,t)

2
a>0 .

Now, the gravitational equation of ECD with Lcs in its lower mas limit is given by 3.5. We will

consider terms only up till second order in (1/c). So we stick to equation for 00 component.

We neglect the 2nd term om the RHS of 3.5 because it is already much higher in order. The

39



equation for 00 component is:

G00 =
( 2π~

m2c3

)(i~c
4

)[
2ψ̄γ0ψ;0 − 2ψ̄;0γ0ψ

]
(4.70)

G00 = e0(0)

( iπ~2

m2c3

)[
ψ†(∂tψ)− (∂tψ

†)ψ

]
(4.71)

After substituting spinor ansatz 4.2, we obtain following equation for RHS

G00 =
( iπ~
m2c

)[( ∞∑

m=0

(√
~

c

)m

a†m

)( ∞∑

n=0

(√
~

c

)n

[ȧn−2 + iṠan]

)
(4.72)

−
( ∞∑

m=0

(√
~

c

)m

[ȧ†m−2 − iṠa†m]

)( ∞∑

n=0

(√
~

c

)n

an

)]

The equation which we get after

~∇2F

c2
+

∞∑

n=3

O
( 1

cn

)
=

1

c

(
2π~

m
|a>0 |2

)
+

1

c2

(
2π~3/2

m

[
a>†
1 a>0 + a>†

0 a>1

])
+

∞∑

n=3

O
( 1

cn

)
(4.73)

This leads us to conclude that a>0 = 0 and Hence

∇2F = 0 =⇒ ∇2φ = 0 (4.74)

4.5 Summary of important results

• At leading order, non-relativistic limit of self-gravitating Dirac field on V4 (commonly

called as Einstein-Dirac system) is Schrödinger-Newton equation with no assumption of

symmetry on metric.

• Non-relativistic limit of self-gravitating Dirac field on U4 (commonly called as Einstein-

Cartan-Dirac system) is also Schrödinger-Newton equation at leading order.

• Non-relativistic limit of ECD theory with Lcs in its low mass limit produces a source-free

Poisson equation. This will be interpreted in 7.

• Non-relativistic limit of ECD theory with Lcs in its higher mass limit produces Poisson

equation with delta function source. This will be interpreted in 7.

This work is based on the paper titled “The non-relativistic limit of the Einstein-

Cartan-Dirac equations” which is under preparation [31]
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Chapter 5

Brief review of Newmann-Penrose

(NP) formalism and formulation of

ECD equations in NP formalism

There has been a variety of different (physically and mathematically equivalent) ways of writ-

ing the field equations of General theory of relativity. Initially, it was formulated in standard

coordinate-basis version using the metric tensor components as the basic variable and the

Christoffel symbols as connection. Later various methods like that of differential forms de-

veloped by Cartan (Lovelock and Rund, 1975), the space-time (orthonormal) tetrad version

of Ricci (Levy, 1925) and the spin coefficient version of Newman and Penrose (Newman and

Penrose, 1962; Geroch et al, 1973; Penrose, 1968; Penrose and Rindler, 1984; Penrose and

Rindler, 1986; Newman and Tod, 1980; Newman and Unti, 1962) are developed. All references

in parenthesis are taken from Scholarpedia article titled “Spin-Coefficient formalism”

Dirac equation on V4 has been studied extensively in NP formalism. It’s detail account can

be seen in [19]. From this chapter onwards, we follows the notations/ representations/ con-

ventions and symbols of this celebrated book “The mathematical theory of black holes” By S.

Chandrasekhar [19]. Our aim in this chapter is as follows

• We know that Contorsion tensor is completely expressible in terms of components of

Dirac spinor. We want to find an explicit expression for Contorsion spin coefficients (in

Newman-Penrose) in terms of Dirac spinor components.

• Dirac equation on V4 is presented in equation (108) of [19]. We aim to modify these

equations on U4.

We will first present a brief review of NP formalism and then formulate ECD equations in NP

formalism.
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5.1 Newman-Penrose formalism

NP formalism was formulated by Neuman and Penrose in their work [18]. It is a special case

of tetrad formalism (introduced in section B.1); where we choose our tetrad as a set of four

null vectors viz.

eµ(0) = lµ, eµ(1) = nµ, eµ(2) = mµ, eµ(3) = m̄µ (5.1)

lµ, nµ are real and mµ, m̄µ are complex. The tetrad indices are raised and lowered by flat

space-time metric

η(i)(j) = η(i)(j) =




0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0




(5.2)

and the tetrad vectors satisfy the equation gµν = e
(i)
µ e

(j)
ν η(i)(j). In the formalism, we replace

tensors by their tetrad components and represent these components with distinctive symbols.

These symbols are quite standard and used everywhere in literature. It was Hermann Bondi

who first suggested the use of null-tetrads for the analysis of electromagnetic and gravitational

radiation since they propogate along these null directions. Some important features of NP

formalism are can be jot down as follows: (these are partially also the reasons why we adopted

this formalism to represent our equations)

• With NP formalism, equations can be partially grouped together into sets of linear equa-

tions (Newman and Unti, 1962)

• All are complex equations; thereby reducing the total number of equations by half

• In NP formalism, equations are written out explicitly without the use of the index and

summation conventions.

• It allows one to concentrate on individual ’scalar’ equations with particular physical or

geometric significance.

• It allows one to search for solutions with specific special features, such as the presence

of one or two null directions that might be singled out by physical or geometric consid-

erations. Ex. it turns out to be a very useful tool in solving problems involving massless

fields etc.

• Newman and Penrose also showed that their formalism is completely equivalent to the

SL(2,C) spinor approach. [We are gonna follow SL(2,C) spinor approach]

• While dealing with Spinors on curved space-times, it becomes very easy to establish

the knowledge of physical/ geometric properties of complicated space-times (e.g. space-

time around Kerr black hole etc.) and the knowledge of various properties of Spinors

simultaneously in a common vocabulary of NP formalism. Various commonly occurring
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space-times have been formulated in NP formalism in [19]. This point is the main reason

why we adopt this formalism.

The orthonormality condition on null tetrads imply l.m = l.m̄ = n.m = n.m̄ = 0, l.l =

n.n = m.m = m̄.m̄ = 0 and l.n = 1 and m.m̄ = −1. The Ricci rotation coefficients (defined in

B.1) for null tetrads are called spin coefficients and are defined as follows

γ(l)(m)(n) = eν(n)e
µ
(m)∇νe(l)µ (5.3)

The covariant derivative defined in the above equation can be taken w.r.t both V4 and U4

manifold. We are here interested in U4. Spin coefficients are denoted by following symbols

κ = γ(2)(0)(0) ρ = γ(2)(0)(3) ǫ =
1

2
(γ(1)(0)(0) + γ(2)(3)(0))

σ = γ(2)(0)(2) µ = γ(1)(3)(2) γ =
1

2
(γ(1)(0)(1) + γ(2)(3)(1))

λ = γ(1)(3)(3) τ = γ(2)(0)(1) α =
1

2
(γ(1)(0)(3) + γ(2)(3)(3))

ν = γ(1)(3)(1) π = γ(1)(3)(0) β =
1

2
(γ(1)(0)(2) + γ(2)(3)(2))

(5.4)

These are 12 complex spin coefficients, corresponding to 24 real components of γ. We separate

the Riemann part and the torsional part from the covariant derivative of equation 5.3. The

result is

γ(l)(m)(n) = eν(n)e
µ
(m)∇νe(l)µ (5.5)

= eν(n)e
µ
(m)

[
δαµ∂ν −

{
α

µν

}
+K α

νµ

]
e(l)α

= γo(l)(m)(n) +K(n)(m)(l)

In terms of the symbols (defined in equation 5.4), we adopt notation of [23] where κ = κo + κ1

and so on for all the 12 spin coefficients. κo denotes Riemann part and and κ1 denote torsional

part. The torsional part of spin coefficients (which distinguishes it from V4) is called Contorsion

spin coefficients. The spin coefficients and contorsion spin coefficients are given in the figure

??.

The directional derivatives w.r.t these null tetrads are given by

D = lµ
∂

∂xµ
= e0 ∆ = nµ ∂

∂xµ
= e1 δ = mµ ∂

∂xµ
= e2 δ∗ = m̄µ ∂

∂xµ
= e3 (5.6)

5.2 ECD equations in NP formalism

5.2.1 Notations/ representations and spinor analysis

• The Lorentz Signature used in this chapter is Diag (+ - - -)
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• The 4 component Dirac-spinor is

ψ =

[
PA

Q̄B′

]
(5.7)

where PA and Q̄B′ are 2-dim complex vectors in C2 (also called spinors) Please see section

for details. We use following notations for Dirac spinor components (consistent with the

notations of Chandra’s book [19]) P 0 = F1, P
1 = F2, Q̄

1′ = G1 and Q̄0′ = −G2.

• We define 4 null vectors (and their corresponding co-vectors) on Minkowski space

la =
1√
2
(1, 0, 0, 1), ma =

1√
2
(0, 1,−i, 0), m̄a =

1√
2
(0, 1, i, 0), na =

1√
2
(1, 0, 0,−1)

(5.8)

la =
1√
2
(1, 0, 0,−1), ma =

1√
2
(0,−1, i, 0), m̄a =

1√
2
(0,−1,−i, 0), na =

1√
2
(1, 0, 0, 1)

(5.9)

We also define, what is called as Van der Waarden symbols as follows:

σa =
√
2

[
la ma

m̄a na

]
σ̃a =

√
2

[
na −ma

−m̄a la

]
(5.10)

• We use following representation of gamma matrices [its the complex version of Weyl

or chiral representation]

γa =

[
0 (σ̃a)∗

(σa)∗ 0

]
(a = 0, 1, 2, 3) where γ0 =

[
0 I

I 0

]
, γi =

[
0 (−σi)∗

(σi)∗ 0

]
(5.11)

The reason for choosing complex Weyl representation is the fact that the spinor and gamma

matrix defined in equation 5.7 and 5.11 gives us equation (97) and (98) of section (103) given

in Chandra’s book [19]. We want to keep everything in accordance with [19] as a stan-

dard reference. (Equation (99) is the complex version of what we will get). For representing

equations or physical objects having spinors and gamma matrices on a curved space time, we

adopt Tetrad formalism. Using tetrads, we follow the prescription described briefly in [20]. We

summarize and comment on it as follows:-

Given a curved manifold M with all conditions necessary for the existence of spin structure.

Let U be a chart on M with coordinate functions (xα), then the prescription for representing

spinorial objects (objects with spinors and gamma matrices) is as follows:-

1) choose an Orthonormal tetrad field eµ(a)(x
α) on U

2) Define the Van der Waarden symbols (the σ(a) and σ̃(a)) in this tetrad basis exactly as

defined on Minkowski space in equation 5.10. Choose a representation of gamma matrix (we

will stick to the one chosen above in equation 5.11)

3) The σ’s in local coordinate frame are obtained through following equation:-
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σµ(xα) = eµ(a)(x
α)σ(a) =

√
2

[
lµ mµ

m̄µ nµ

]
σ̃µ = eµ(a)σ̃

(a)
√
2

[
nµ −mµ

−m̄µ lµ

]
(5.12)

and similar transformation for and gamma matrix. So components of any world object

which is indexed by the components of gamma matrices or Spinors is now a func-

tion of chosen orthonormal tetrad. It is defined a-priori in a local tetrad basis [whose

components are exactly the same as defined on a flat Minkowski space] and then carried to

curved space via tetrad. (This is unlike a normal world objects which are first defined naturally

at a point on a manifold and then carried to local tangent space via tetrad).

Dirac equation on V4 has been studied extensively in NP formalism. It’s detail account can

be seen in [19](Dirac equation on V4 is presented in equation (108)). We aim to modify these

equations on U4. To this aim, we want to modify section 102(d) of Chandra’s book [19] to

include torsion in the theory and modify Dirac equation accordingly on U4. For calculating

covariant derivative of spinor, we require the spinor affine connection coefficients. They are

defined through the requirement that ǫAB and σ’s are covariantly constant. The whole analysis

remains as it is up till eqn (91) of Chandra’s book except, everywhere, the covariant derivative

would now be evaluated on U4. The covariant derivatives are defined as:

∇µP
A = ∂µP

A + ΓA
µBP

B (5.13)

∇µQ̄
A′

= ∂µQ̄
A′

+ Γ̄A′

µB′Q̄B′

(5.14)

Here Γ terms are the terms that add to the partial derivative while calculating the full

derivative of spinorial objects on U4. Their values can be determined completely in terms of Spin

coefficients and we now evaluate its tetrad components. Using Friedman’s lemma (proved

on page 542 of Chandra’s book [19]), we can express various spin coefficients Γ(a)(b)(c)(d′) in terms

of covariant derivative of basis null vectors (which we had defined earlier viz. l,n,m,m̄). The

covariant derivative here is exactly the same as defined in equation equation 3.3 (and explicitly

written in eqn 3.5) of [23]. We have also defined in 5.5. Using this covariant derivative, it can

be easily seen how equations (95) and (96) will get modified. For instance, Chandra’s equations

(95) and (96) gets modified as Γ0000′ = κo + κ1 and Γ1101′ = µo + µ1. Here the subscript 0

in κo and µo is just used to indicate the original κ and µ defined on V4 as in, those original

equations of Chandra’s book. Likewise, 12 independent spin coefficients are calculated in terms

of covariant derivatives of null vectors and defined in tabular equation 5.15.
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Γ(a)(b)(c)(d′) =

P
P
P
P
P
P
P
P
P
P
PP

(c)(d’)

(a)(b)
00 01 or 10 11

00’ κo + κ1 ǫo + ǫ1 πo + π1

10’ ρo + ρ1 αo + α1 λo + λ1

01’ σo + σ1 βo + β1 µo + µ1

11’ τ o + τ1 γo + γ1 νo + ν1

(5.15)

We note that, for generic case, all the 12 terms will have Contorsion spin coefficients.

5.2.2 Contorsion Spin Coefficients in terms of Dirac spinor compo-

nents

Spin Density tensor of matter (Sijk) which is made up of Dirac spinor and gamma matrices,

when expressed as a world tensor on U4 manifold, is given by

Sµνα =
−i~c
4

ψ̄γ[µγνγα]ψ (5.16)

The ECD field equations suggest that T µνα = kSµνα where T µνα is modified torsion tensor

defined in eqn (2.3) of [4]. It can be shown that, for Dirac field, T µνα = −Kµνα = kSµνα as in

eqn (5.6) of [8]. Here k is a gravitational coupling constant with the length scale l viz. 8πl2

~c
.

For the standard theory, l = Lpl and for modified theory, its l = Lcs. Substituting eqn

5.16 in field equations, we obtain following

Kµνα = −kSµνα = 2iπl2ψ̄γ[µγνγα]ψ (5.17)

where gamma matrix γµ is just the gamma matrix as given in eqn 5.11 being generalized to

world index using orthonormal tetrads. Only 4 independent components of Kµνα are excited

by Dirac field. Next, we replace this tensor by its null tetrad components (The Newman-Penrose

formalism) as follows

K(i)(j)(k) = e(i)µe(j)νe(k)αK
µνα (5.18)

where e(i)µ = (lµ, nµ, mµ, m̄µ); i = 1,2,3,4. After evaluating everything, the eight non-zero spin

coefficients excited by Dirac Spinor given in eqn 5.7 are as follows (Out of total 12 Contorsion

spin coefficient, 8 are non-zero and 4 of them are independent). We have shown the explicit

calculation of ρ1 in appendix section B.3. The calculations of other Contorsion spin coefficients

are similar.
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τ1 = k123 = 2
√
2iπl2(P 1P̄ 0 −Q1Q̄0) = 2

√
2iπl2(F2F̄1 +G2Ḡ1) (5.19)

π1 = k124 = 2
√
2iπl2(Q0Q̄1 − P 0P̄ 1) = 2

√
2iπl2(−F1F̄2 −G1Ḡ2) (5.20)

µ1 = −k234 = 2
√
2iπl2(P 0P̄ 0 −Q0Q̄0) = 2

√
2iπl2(F1F̄1 −G2Ḡ2) (5.21)

ρ1 = −k134 = 2
√
2iπl2(Q1Q̄1 − P 1P̄ 1) = 2

√
2iπl2(G1Ḡ1 − F2F̄2) (5.22)

ǫ1 =
−1

2
ρ1 = −

√
2iπl2(G1Ḡ1 − F2F̄2) (5.23)

α1 =
−1

2
π1 =

√
2iπl2(F1F̄2 +G1Ḡ2) (5.24)

β1 =
−1

2
τ1 = −

√
2iπl2(F2F̄1 +G2Ḡ1) (5.25)

γ1 =
−1

2
µ1 = −

√
2iπl2(F1F̄1 −G2Ḡ2) (5.26)

From above relations we can deduce that

µ1 = −µ∗
1 (5.27)

ρ1 = −ρ∗1 (5.28)

π1 = +τ ∗1 (5.29)

As we saw, Eight Contorsion spin coefficients (viz. µ, τ, ρ, π, α, γ, ǫ, β) are excited by Dirac

particle, we use this to modify table 5.15 as follows. Out of these 8, four are independent. and

other four can be expressed in terms of others.

Γ(a)(b)(c)(d′) =

P
P
P
P
P
P
P
P
P
P
PP

(c)(d’)

(a)(b)
00 01 or 10 11

00’ κ0 ǫ0 − ρ1
2

π0 + π1

10’ ρ0 + ρ1 α0 − π1

2
λ0

01’ σ0 β0 − τ1
2

µ0 + µ1

11’ τ0 + τ1 γ0 − µ1

2
ν0

(5.30)

5.2.3 Dirac equation on U4 (Hehl-Datta equation) in NP formalism

The Dirac equation on U4 is

iγµ∇µψ =
mc

~
ψ =

ψ

l
(5.31)

Where ∇ here denotes covariant derivative on U4. l = λc for standard theory and l = 2Lcs for

modified theory. It can be written in the following matrix form:

i

(
0 (σ̃µ)∗

(σµ)∗ 0

)
∇µ

(
PA

Q̄B′

)
= m

(
PA

Q̄B′

)
(5.32)
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This leads to the following 2 matrix equations:

(
σµ
00′ σµ

10′

σµ
01′ σµ

11′

)
∇µ

(
P 0

P 1

)
+ im

(
−Q̄1′

Q̄0′

)
= 0 (5.33)

(
σµ
11′ −σµ

10′

−σµ
01′ σµ

00′

)
∇µ

(
−Q̄1′

Q̄0′

)
+ im

(
P 0

P 1

)
= 0 (5.34)

These are the four Dirac equations as follows:

Equation 1:

σµ
00′∇µP

0 + σµ
10′∇µP

1 =
i

2
√
2l
Q̄1′ (5.35)

(∂00′P
0 + Γ0

i00′P
i) + (∂10′P

1 + Γ1
i10′P

i) =
i

2
√
2l
Q̄1′ (5.36)

[D + Γ0
000′P

0 + Γ0
100′P

1] + [δ∗ + Γ1
010′P

0 + Γ1
110′P

1] =
i

2
√
2l
Q̄1′ (5.37)

[D + Γ1000′ − Γ0010′ ]P
0 + [δ∗ + Γ1100′ − Γ0110′ ]P

1 =
i

2
√
2l
Q̄1′ (5.38)

[D + ǫo + ǫ1 − ρo − ρ1]P
0 + [δ∗ + πo + π1 − αo − α1]P

1 =
i

2
√
2l
Q̄1′ (5.39)

[D + ǫo + ǫ1 − ρo − ρ1]F1 + [δ∗ + πo + π1 − αo − α1]F2 =
i

2
√
2l
G1 (5.40)

(D + ǫ0 − ρ0)F1 + (δ∗ + π0 − α0)F2 +
3

2
(π1F2 − ρ1F1) =

i

2
√
2λc

G1 (5.41)

Equation 3:

−σµ
11′∇µQ̄

1′ − σµ
10′∇µQ̄

0′ +
i

2
√
2l
P 0 = 0 (5.42)

−σ̄µ
11′∇µQ̄

1′ − σ̄µ
0′1∇µQ̄

0′ +
i

2
√
2l
P 0 = 0 (5.43)

(∂11′Q̄
1′ + Γ̄1′

i′1′1Q̄
i′) + (∂10′Q̄

0′ + Γ̄0′

i′0′1Q̄
i′) =

i

2
√
2l
P 0 (5.44)

[∆Q̄1′ + Γ̄1′

0′1′1Q̄
0′ + Γ̄1′

1′1′1Q̄
1′ ] + [δ∗Q̄0′ + Γ̄0′

0′0′1Q̄
0′ + Γ̄0′

1′0′1Q̄
1′ ] =

i

2
√
2l
P 0 (5.45)

[∆ + Γ̄1′1′0′1 − Γ̄0′1′1′1]Q̄
1′ + [δ∗ + Γ̄1′0′0′1 − Γ̄0′0′1′1]Q̄

0′ =
i

2
√
2l
P 0 (5.46)

[∆ + µo + µ1 − γo − γ1]Q̄
1′ + [δ∗ + βo + β1 − τ o − τ1]Q̄

0′ =
i

2
√
2l
P 0 (5.47)

[∆ + µo + µ1 − γo − γ1]G1 − [δ∗ + βo + β1 − τ o − τ1]G2 = im∗F1 (5.48)

(∆ + µ∗
0 − γ∗0)G1 − (δ∗ + β∗

0 − τ ∗0 )G2 −
3

2
(µ1G1 − π1G2) =

i

2
√
2λc

F1 (5.49)
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Here, We used gamma matrices as defined in 5.11, compute covariant derivatives using 5.13,

5.14 and Spin connection in terms of Contorsion spin coefficients as given in 5.30. Second Dirac

equation can be derived as analogous to equation 1 and fourth equation as analogous to third.

The 4 Dirac equations can be summarized below:

(D + ǫ0 − ρ0)F1 + (δ∗ + π0 − α0)F2 +
3

2
(π1F2 − ρ1F1) = ib(l)G1 (5.50)

(∆ + µ0 − γ0)F2 + (δ + β0 − τ0)F1 +
3

2
(µ1F2 − τ1F1) = ib(l)G2 (5.51)

(D + ǫ∗0 − ρ∗0)G2 − (δ + π∗
0 − α∗

0)G1 −
3

2
(τ1G1 − ρ1G2) = ib(l)F2 (5.52)

(∆ + µ∗
0 − γ∗0)G1 − (δ∗ + β∗

0 − τ ∗0 )G2 −
3

2
(µ1G1 − π1G2) = ib(l)F1 (5.53)

Substituting the values of Contorsion spin coefficients from equations 5.19 - 5.26 into equations

5.50 - 5.53, we obtain

(D + ǫ0 − ρ0)F1 + (δ∗ + π0 − α0)F2 + 3
√
2iπl2((−F1F̄2 −G1Ḡ2)F2 + (F2F̄2 −G1Ḡ1)F1) = ib(l)G1

(5.54)

(∆ + µ0 − γ0)F2 + (δ + β0 − τ0)F1 + 3
√
2iπl2((F1F̄1 −G2Ḡ2)F2 − (F2F̄1 +G2Ḡ1)F1) = ib(l)G2

(5.55)

(D + ǫ∗0 − ρ∗0)G2 − (δ + π∗
0 − α∗

0)G1 − 3
√
2iπl2((F2F̄2 −G1Ḡ1)G2 + (F2F̄1 +G2Ḡ1)G1) = ib(l)F2

(5.56)

(∆ + µ∗
0 − γ∗0)G1 − (δ∗ + β∗

0 − τ ∗0 )G2 − 3
√
2iπl2((F1F̄1 −G2Ḡ2)G1 − (−F1F̄2 −G1Ḡ2)G2) = ib(l)F1

(5.57)

These equations can be condensed into following form:

(D + ǫ0 − ρ0)F1 + (δ∗ + π0 − α0)F2 = i[b(l) + a(l)ξ]G1 (5.58)

(∆ + µ0 − γ0)F2 + (δ + β0 − τ0)F1 = i[b(l) + a(l)ξ]G2 (5.59)

(D + ǫ∗0 − ρ∗0)G2 − (δ + π∗
0 − α∗

0)G1 = i[b(l) + a(l)ξ∗]F2 (5.60)

(∆ + µ∗
0 − γ∗0)G1 − (δ∗ + β∗

0 − τ ∗0 )G2 = i[b(l) + a(l)ξ∗]F1 (5.61)

Where a(l) = 3
√
2πl2, b(l) = 1

2
√
2l
, ξ = F1Ḡ1 + F2Ḡ2 and ξ∗ = F̄1G1 + F̄2G2.

5.3 Summary of important results

• Dirac equation has been modified on U4 [5.58 - 5.61]

• Contorsion spin coefficients are expressed completely in terms of Dirac Spinor in section

5.2.2.
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• Prescription for formulating dynamic EM tensor and Spin density tensor in NP formalism

has been presented.

This work is based on the paper titled “The non-relativistic limit of the Einstein-

Cartan-Dirac equations” which is under preparation [32]
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Chapter 6

Conjecture: Curvature-Torsion Duality

6.1 Curvature-Torsion duality

In chapter 3, the idea of Lcs is introduced. It asserts a symmetry between small mass (m)

and large mass (M), which give the same value of Lcs. Both the masses enter the ECD

equations through the same Lcs. The solution to the large mass M (for which mass density

and correspondingly the ‘curvature’ is dominant) is dual to the solution of small mass m (for

which spin density and correspondingly the ‘torsion’ is dominant). Qualitatively, we call this

the ‘Curvature-Torsion’ duality. We want to establish this duality in the context of ECD

system of equations with Lcs and make this duality mathematically more evident.

Gµν({}) =
8πL2

CS

~c
Tµν −

1

2
gµν

(
8πL2

CS

~c

)2

SαβǫS
αβǫ (6.1)

iγµψ;µ = +
3

8
L2
CSψ̄γ

5γνψγ
5γνψ +

1

2LCS
ψ = 0 (6.2)

This is the system of equations which we have to understand in details, find possible solutions,

put bounds etc. By ’a solution’, we mean 3 quantities - (ψ, g, K) where g and K are metric

tensor and Contorsion tensor respectively. These quantities are the 3 independent fields in our

theory.

We know that affine connection is made up of Christoffel symbols and Contorsion tensor.

With this affine connection, we construct The total curvature tensor ’R’. It is composed of two

terms R0 and Q. This notation, we adopt from [33]. It can be written as R = R0 + Q. R0

is the usual Riemann curvature tensor expressible completely in terms of Christoffel symbols

and their derivatives and Q is expressible completely in terms of Contorsion tensor K. The full

equation is:

Rα
βµν(Γ) = Rα

βµν({}) +∇{}
µ K

α
νβ −∇{}

ν K
α
µβ +Kα

µρK
ρ
νβ −Kα

νρK
ρ
µβ (6.3)

R = R0 +Q−−−−−−−−−−−−− Symbolic equation (6.4)
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Note that, in the symbolic equation, we have dropped the Indices here. The symbols shouldn’t

be confused with curvature scalar. Also, Curvature and torsion should be thought of as in-

dependent here. Q has information about ‘torsion’ and R has information about ‘curvature’.

In a completely torsion dominated theory (e.g. teleparallel gravity), R = 0; R0 = −Q and

in curvature dominated theory (e.g. Einstein’s GR), Q=0; R = R0. We know from 3, large

masses contribute to gravity which is described by the curvature; determined by levi-civita

connection (that is R0). Torsion is negligible for large masses. Whereas, for small masses, the

total curvature is zero.

6.2 Establishing this duality through a conjecture

We know that, for a given Lcs, a solution (if it exists) is valid for both LM (large mass M) and

its dual SM (small mass, mq). This leads to an apparent contradiction because ’one solution’

which fixes (ψ,g,K) can’t physically describe both, SM and LM. It will be physically valid either

for LM or SM. To account this, we propose the following conjecture: Assuming that a solution

exists for a given Lcs, we call it solution (1). It is governed by equation R(1) = R0
(1) + Q(1).

Without loss of generality, we assume it to be curvature dominated. Conjecture is that, given

a solution(1), there exists a solution(2) (governed by R(2) = R0
(2) +Q(2).) such that

R(2) −Q(2) = −[R(1) −Q(1)] ⇒ R0
(2) = −R0

(1) (6.5)

This conjecture forces solution(2) to be torsion dominated. The properties of solution(1)

and solution(2) are summarized in the table below.

Solution Governing eqn Valid for Dominated

by

Physical for

Solution(1)

→
R(1) = R0

(1) +Q(1) Both Large

mass (M) and

small mass

(m)

*Curvature

dominated.

*Q(1) = 0.

*Hence

R(1) = R0
(1)

Large mass (M)

Solution(2)

→
R(2) = R0

(2) +Q(2) Both Large

mass (M) and

small mass

(m)

*Torsion

dominated.

*R(2) = 0.

*Hence

R0
(2) = −Q(2)

Small mass (m)

This conjecture automatically provides a natural duality between curvature and

torsion for Large mass and small mass respectively.

In terms of above vocabulary, we summarize the curvature-torsion duality in following

words:
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For large masses, R0 (or equivalently ‘R-Q’; as shown in the diagram below) is positive and

dominates as mass goes high. For very small masses, R0 (or equivalently ‘R-Q’) is negative

and goes on becoming more negative as as mass goes further low. Now, meanwhile, there is

one

6.3 Attempting Solution(s) for this conjecture to sup-

port the curvature-torsion duality

6.3.1 Dirac equation (Hehl-Datta Equation) on Minkowski Space

with Torsion

Dirac equation on U4; called as Hehl datta (HD) equations are written explicitly in equations

5.58 - 5.61. On Minkowski space with torsion, they are as follows (In NP formalism):

DF1 + δ∗F2 = i(b+ aξ)G1 (6.6)

∆F2 + δF1 = i(b+ aξ)G2 (6.7)

DG2 − δG1 = i(b+ aξ∗)F2 (6.8)

∆G1 − δ∗G2 = i(b+ aξ∗)F1 (6.9)

The HD equations on Minkowski space with torsion in Cartesian system(ct,x,y,z) are as

follows:

(∂0 + ∂3)F1 + (∂1 + i∂2)F2 = i
√
2(b+ aξ)G1 (6.10)

(∂0 − ∂3)F2 + (∂1 − i∂2)F1 = i
√
2(b+ aξ)G2 (6.11)

(∂0 + ∂3)G2 − (∂1 − i∂2)G1 = i
√
2(b+ aξ∗)F2 (6.12)

(∂0 − ∂3)G1 − (∂1 + i∂2)G2 = i
√
2(b+ aξ∗)F1 (6.13)

The HD equations on Minkowski space with torsion inCylindrical coordinate system(ct,r,φ,z)

are as follows (we put c= 1):

r∂tF1 + eiφr∂rF2 + ieiφ∂φF2 + r∂zF1 = ir
√
2(b+ aξ)G1 (6.14)

r∂tF2 + e−iφr∂rF1 − ie−iφ∂φF1 − r∂zF2 = ir
√
2(b+ aξ)G2 (6.15)

r∂tG2 − e−iφr∂rG1 + ie−iφ∂φG1 + cr∂zG2 = ir
√
2(b+ aξ∗)F2 (6.16)

r∂tG1 − eiφr∂rG2 − ieiφ∂φG2 − r∂zG1 = ir
√
2(b+ aξ∗)F1 (6.17)

The HD equations on Minkowski space with torsion in Spherical polar coordinate sys-

tem(ct,r,θ,φ) are as follows (we put c= 1):
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∂tF1 + cos θ∂rF1 −
sin θ

r
∂θF1 +

ieiφ

r sin θ
∂φF2 + eiφ sin θ∂rF2 +

eiφ cos θ

r
∂θF2 = i

√
2(b+ aξ)G1

(6.18)

∂tF2 − cos θ∂rF2 +
sin θ

r
∂θF2 −

ie−iφ

r sin θ
∂φF1 + e−iφ sin θ∂rF1 +

e−iφ cos θ

r
∂θF1 = i

√
2(b+ aξ)G2

(6.19)

∂tG2 + cos θ∂rG2 −
sin θ

r
∂θG2 +

ie−iφ

r sin θ
∂φG1 − e−iφ sin θ∂rG1 −

e−iφ cos θ

r
∂θG1 = i

√
2(b+ aξ∗)F2

(6.20)

∂tG1 − cos θ∂rG1 +
sin θ

r
∂θG1 −

ieiφ

r sin θ
∂φG2 − eiφ sin θ∂rG2 −

eiφ cos θ

r
∂θG2 = i

√
2(b+ aξ∗)F1

(6.21)

6.3.2 The Dynamical EM tensor (Tµν) on Minkowski space with

torsion

The dynamical EM tensor given in equation 2.56. On Minkowski space, it assumes the following

form:

Tµν = Σ(µν)({}) =
i~c

4

[
ψ̄γµ∂νψ + ψ̄γν∂µψ − ∂µψ̄γνψ − ∂νψ̄γµψ

]
(6.22)

Its 10 components are given by following 10 equations:

T21 =
i~c

4

(
F̄1∂1F1 + F̄2∂1F2 + Ḡ1∂1G1 + Ḡ2∂1G2 − F̄2∂0F1 − F̄1∂0F2 + Ḡ2∂0G1 + Ḡ1∂0G2

− ∂1F̄1F1 − ∂1F̄2F2 − ∂1Ḡ1G1 − ∂1Ḡ2G2 + ∂0F̄2F1 + ∂0F̄1F2 − ∂0Ḡ2G1 − ∂0Ḡ1G2

)

(6.23)

T31 =
i~c

4

(
F̄1∂2F1 + F̄2∂2F2 + Ḡ1∂2G1 + Ḡ2∂2G2 + iF̄2∂0F1 − iF̄1∂0F2 − iḠ2∂0G1 + iḠ1∂0G2

− ∂2F̄1F1 − ∂2F̄2F2 −G1∂2Ḡ1 − ∂2Ḡ2G2 − i∂0F̄2F1 + i∂0F̄1F2 + i∂0Ḡ2G1 − i∂0Ḡ1G2

)

(6.24)

T41 =
i~c

4

(
F̄1∂3F1 + F̄2∂3F2 + Ḡ1∂3G1 + Ḡ2∂3G2 − F̄1∂0F1 + F̄2∂0F2 + Ḡ1∂0G1 − Ḡ2∂0G2

− ∂3F̄1F1 − ∂3F̄2F2 − ∂3Ḡ1G1 − ∂3Ḡ2G2 + ∂0F̄1F1 − ∂0F̄2F2 − ∂0Ḡ1G1 + ∂0Ḡ2G2

)

(6.25)
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T32 =
i~c

4

(
iF̄2∂1F1 − iF̄1∂1F2 − iḠ2∂1G1 + iḠ1∂1G2 − F̄2∂2F1 − F̄1∂2F2 + Ḡ2∂2G1 + Ḡ1∂2G2

− i∂1F̄2F1 + i∂1F̄1F2 + i∂1Ḡ2G1 − i∂1Ḡ1G2 + ∂2F̄2F1 + ∂2F̄1F2 − ∂2Ḡ2G1 − ∂2Ḡ1G2

)

(6.26)

T42 =
i~c

4

(
− F̄1∂1F1 + F̄2∂1F2 + Ḡ1∂1G1 − Ḡ2∂1G2 − F̄2∂3F1 − F̄1∂3F2 + Ḡ2∂3G1 + Ḡ1∂3G2

+ ∂1F̄1F1 − ∂1F̄2F2 − ∂1Ḡ1G1 + ∂1Ḡ2G2 + ∂3F̄2F1 + ∂3F̄1F2 − ∂3Ḡ2G1 − ∂3Ḡ1G2

)

(6.27)

T43 =
i~c

4

(
− F̄1∂2F1 + F̄2∂2F2 + Ḡ1∂2G1 − Ḡ2∂2G2 + iF̄2∂3F1 − iF̄1∂3F2 − iḠ2∂3G1 + iḠ1∂3G2

+ ∂2F̄1F1 − ∂2F̄2F2 − ∂2Ḡ1G1 + ∂2Ḡ2G2 − i∂3F̄2F1 + i∂3F̄1F2 + i∂3Ḡ2G1 − i∂3Ḡ1G2

)

(6.28)

T11 =
i~c

2

(
Ḡ1∂0G1 + Ḡ2∂0G2 − ∂0Ḡ1G1 − ∂0Ḡ2G2 + F̄1∂0F1 + F̄2∂0F2 − ∂0F̄1F1 − ∂0F̄2F2

)

(6.29)

T22 =
i~c

2

(
− F̄2∂1F1 − F̄1∂1F2 + Ḡ2∂1G1 + Ḡ1∂1G2 + ∂1F̄2F1 + ∂1F̄1F2 − ∂1Ḡ2G1 − ∂1Ḡ1G2

)

(6.30)

T33 =
i~c

2

(
iF̄2∂2F1 − iF̄1∂2F2 − iḠ2∂2G1 + iḠ1∂2G2 − i∂2F̄2F1 + i∂2F̄1F2 + i∂2Ḡ2G1 − i∂2Ḡ1G2

)

(6.31)

T44 =
i~c

2

(
− F̄1∂3F1 + F̄2∂3F2 + Ḡ1∂3G1 − Ḡ2∂3G2 + ∂3F̄1F1 − ∂3F̄2F2 − ∂3Ḡ1G1 + ∂3Ḡ2G2

)

(6.32)

6.3.3 Calculation of the Spin density part which acts as a correction

to Tij

The second term on RHS of equation (17) on Minkowski space is given as 4π(Lcs)2

~c
ηijS

abcSabc

which can be written as

4πl2

~c
ηµνS

αβγSαβγ = 6π~cl2ηµν(F1Ḡ1 + F2Ḡ2)(F̄1G1 + F̄2G2) = 6π~cl2gµνξξ
∗ (6.33)
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6.4 Solutions to HD equation on M4 with torsion and

testing duality conjecture

6.4.1 Non static solution to HD equations by reducing it to 1+1

dimension (t,z)

Assuming Dirac state to be a function of only t and z, and further assuming the ansatz of

the form F1 = G2 and F2 = G1, the four equations in Cartesian coordinates 6.10 - 6.13 as

well as four equations in cylindrical coordinates 6.14 - 6.17 reduce to following 2 independent

equations. We note that ξ = 2Re(F1F̄2). hence ξ = ξ∗. Also, we set c=1. From henceforth a

and b would mean a(l) and b(l).

∂tψ1 + ∂zψ2 − i
√
2b+

ia√
2
(|ψ2|2 − |ψ1|1)ψ1 = 0 (6.34)

∂tψ2 + ∂zψ2 + i
√
2b+

ia√
2
(|ψ1|2 − |ψ1|2)ψ2 = 0 (6.35)

where, ψ1 = F1 + F2 and ψ2 = F1 − F2. We put,
√
2b = −m and a = 2

√
2λ and obtain

following:

∂tψ1 + ∂zψ2 + imψ1 + 2iλ(|ψ2|2 − |ψ1|2)ψ1 = 0 (6.36)

∂tψ2 + ∂zψ2 − imψ2 + 2iλ(|ψ1|2 − |ψ1|2)ψ2 = 0 (6.37)

This is exactly same as equation (1) of [34] This work by Alvarez finds the solutions to the

above set of equations for the following solitary wave as ansatz.

ψ =

(
ψ1

ψ2

)
=

(
A(z)

iB(z)

)
e−iΛt (6.38)

Here A and B are real functions of z. Substituting this into above equations we obtain,

B′ + (m− Λ)A− 2λ(A2 − B2)A = 0 (6.39)

A′ + (m+ Λ)B − 2λ(A2 − B2)B = 0 (6.40)

Solving these differential equations gives following solutions for A and B, we obtain folloing

solution for A(z) and B(z).

A(z) =
−i23/4(

√
2b− Λ)√
a

√
(
√
2b+ Λ) cosh(z

√
2b2 − Λ2)

[Λ cosh(2z
√
2b2 − Λ2)−

√
2b]

(6.41)

B(z) =
−i23/4(

√
2b+ Λ)√
a

√
(
√
2b− Λ) sinh(z

√
2b2 − Λ2)

[Λ cosh(2z
√
2b2 − Λ2)−

√
2b]

(6.42)
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This is the generalization of the equations for A(z) and B(z) in section III of [34]. Putting

λ = 0.5 (equivalently a =
√
2) and m = 1 (equivalently m0 = −1) in equations 6.41, 6.42,

reduces to Alvarez’s equations. This solution is also found by [35] with a(l) = a(Lpl) and b(l)

= b(Lpl).

Non static solution in 1+1 dimension (t,z)

F1 =

√
(2b2 − Λ2)

2

[−i23/4√
a

√
(
√
2b− Λ) cosh(z

√
2b2 − Λ2)

[Λ cosh(2z
√
2b2 − Λ2)−

√
2b]

+
23/4√
a

√
(
√
2b+ Λ) sinh(z

√
2b2 − Λ2)

[Λ cosh(2z
√
2b2 − Λ2)−

√
2b]

]
e−iΛt

(6.43)

F2 =

√
(2b2 − Λ2)

2

[−i23/4√
a

√
(
√
2b− Λ) cosh(z

√
2b2 − Λ2)

[Λ cosh(2z
√
2b2 − Λ2)−

√
2b]

− 23/4√
a

√
(
√
2b+ Λ) sinh(z

√
2b2 − Λ2)

[Λ cosh(2z
√
2b2 − Λ2)−

√
2b]

]
e−iΛt

(6.44)

ξ =
−2

√
2(2b2 − Λ2)(

√
2b− Λ cosh(2z

√
2b2 − Λ2)

a[Λ cosh(2z
√
2b2 − Λ2)−

√
2b]2

(6.45)

(T − S)ij for non-static Solution 1+1 dimension (t,z)

(T−S)ij = ~c




(
Λ[A2 +B2]− a[A2−B2]2

2
√
2

)
0 −ΛAB 0

0

(
a[A2−B2]2

2
√
2

)
0 0

−ΛAB 0

(
a[A2−B2]2

2
√
2

)
0

0 0 0

(
[AB′ − BA′] + a[A2−B2]2

2
√
2

)




(6.46)

Λ is a free parameter in the solution. We will analyze this tensor ”T-S” for various types

of values of Λ.

Case 1: Λ = 0

A and B reduce to following:

A(z) = 2i

√
b

a
cosh(

√
2zb) =

i√
3πl3

cosh

(
z

2l

)
(6.47)

B(z) = 2i

√
b

a
sinh(

√
2zb) =

i√
3πl3

sinh

(
z

2l

)
(6.48)

(6.49)

Dirac spinor in this case is:
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F1

F2

G1

G2




=
1

2




i√
3πl3

cosh

(
z
2l

)
− 1√

3πl3
sinh

(
z
2l

)

i√
3πl3

cosh

(
z
2l

)
+ 1√

3πl3
sinh

(
z
2l

)

i√
3πl3

cosh

(
z
2l

)
+ 1√

3πl3
sinh

(
z
2l

)

i√
3πl3

cosh

(
z
2l

)
− 1√

3πl3
sinh

(
z
2l

)




(6.50)

With this Dirac state, the quantity ξ is a real positive constant and has following value:

ξ =
1

6πl3
(6.51)

The tensor T-S reduces to following ∀ z

(T − S)ij|Λ=0 = ~c




(
−1
6πl4

)
0 0 0

0

(
1

6πl4

)
0 0

0 0

(
1

6πl4

)
0

0 0 0 0




(6.52)

Case II: Λ =
√
2b

This case makes everything reduce to zero and is z trivial solution. We don’t want this type of

solution.

Case III:
√
2b = 0 =⇒ l −→ ∞

We are not much interested in these kinds of solutions where l −→ ∞. Because Lpl can’t

go to infinity and Lcs will go to infinity only for infinitely large or infinitesimally small masses.

6.4.2 Plane wave solutions to HD equations

We begin with by substituting following plane wave ansatz in equations (6.10 - 6.13) as follows:




F1

F2

G1

G2



=




u0

u1

v̄0′

v̄1′



eik.x (6.53)

With this ansatz, ξ and ξ∗ are as follows

ξ = uAv̄A′ (6.54)

ξ∗ = ūA
′

vA (6.55)
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We assume ξ to be a real constant such that ξ = uAv̄A′ = ūA
′

vA = ξ∗ = (Real constant ξ).

Putting The above ansatz in the equations (6.10 - 6.13), we obtain:

(k0 + k3)u
0 + (k1 + ik2)u

1 − µ(ξ)v̄0′ = 0 (6.56)

(k0 − k3)u
1 + (k1 − ik2)u

0 − µ(ξ)v̄1′ = 0 (6.57)

(k0 + k3)v̄1′ − (k1 − ik2)v̄0′ − µ(ξ)u1 = 0 (6.58)

(k0 − k3)v̄0′ − (k1 + ik2)v̄1′ − µ(ξ)u0 = 0 (6.59)

Where µ(ξ) =
√
2(b+aξ). µ is a function of ξ which remains a undetermined before finding

a complete solution. Only we have to make sure the fact that ξ is a real constant.




(k0 + k3) (k1 + ik2) −µ(ξ) 0

(k1 − ik2) (k0 − k3) 0 −µ(ξ)
0 −µ(ξ) −(k1 − ik2) (k0 + k3)

−µ(ξ) 0 (k0 − k3) −(k1 + ik2)







u0

u1

v̄0′

v̄1′




=




0

0

0

0




(6.60)

We fisrt assume k1 = k2 = k3 = 0 (This is like attempting a solution in a rest frame). The

above equation reduces to




k0 0 −µ(ξ) 0

0 k0 0 −µ(ξ)
0 −µ(ξ) 0 k0

−µ(ξ) 0 k0 0







u0

u1

v̄0′

v̄1′




=




0

0

0

0




(6.61)

For above system to have solution, we must have Det(coefficient matrix in 24) = 0. This

gives

⇒[k20 − µ(ξ)2]2 = 0

⇒k0 = ±µ(ξ)

The plane wave solution(s) for 2 cases

Case I: k0 = +µ(ξ), general solution is of the form:




F1

F2

G1

G2




=
α1√
V




0

1

0

1



eiµ(ξ)x0 +

β1√
V




1

0

1

0



eiµ(ξ)x0 (6.62)

where, |α1|2 + |β1|2 = 1 is the normalization condition
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Here ξ and µ are as follows:

ξ =
|α2|2 + |β2|2

V
=

1

V

µ =
√
2

(
b+

a

V

)

Case II: k0 = −µ(ξ), general solution is of the form:




F1

F2

G1

G2




=
α2√
V




0

−1

0

1



e−iµ(ξ)x0 +

β2√
V




−1

0

1

0



e−iµ(ξ)x0 (6.63)

where, |α2|2 + |β2|2 = 1 is the normalization condition

Here ξ and µ are as follows:

ξ =
−|α2|2 − |β2|2

V
=

−1

V

µ =
√
2

(
b− a

V

)

(T − S)ij for Plane wave solutions

For case I:

(T − S)ij = ~c




−
(

V+18πl3

V 2l

)
0 0 0

0

(
6πl2

V 2

)
0 0

0 0

(
6πl2

V 2

)
0

0 0 0

(
6πl2

V 2

)




(6.64)

For case II

(T − S)ij = ~c




−
(

V−18πl3

V 2l

)
0 0 0

0

(
6πl2

V 2

)
0 0

0 0

(
6πl2

V 2

)
0

0 0 0

(
6πl2

V 2

)




(6.65)

Comments:

We observe that for both cases that (T − S)ij goes to zero only when V −→ ∞. But V

going to ∞ implies ξ going to zero. So in case of vanishing torsion only, T-S has any hopes of

becoming zero.
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6.4.3 Solution by reduction to (2+1) Dim in cylindrical coordinates

(t,r,φ)

Here the equations are

r∂tF1 + cr∂rF2e
iφ + ic∂φF2e

iφF1 = icr
√
2(b+ aξ)G1 (6.66)

r∂tF2 + cr∂rF1e
−iφ − ic∂φF1e

−iφ = icr
√
2(b+ aξ)G2 (6.67)

r∂tG2 − cr∂rG1e
−iφ + ic∂φG1e

−iφ = icr
√
2(b+ aξ∗)F2 (6.68)

r∂tG1 − cr∂rG2e
iφ − ic∂φG2e

iφ = icr
√
2(b+ aξ∗)F1 (6.69)

We again take the ansatz, F2 = G2 and F1 = −G1

r∂tF1 + r∂rF2e
iφ + i∂φF2e

iφ = −ir
√
2(b+ aξ)F1 (6.70)

r∂tF2 + r∂rF1e
−iφ − i∂φF1e

−iφ = ir
√
2(b+ aξ)F2 (6.71)

We choose following ansatz in the above equation

[
F1

F2

]
=

[
iA(r)e

iφ
2

B(r)e
−iφ
2

]
e−iωt (6.72)

Putting this ansatz in above equations, we obtain the 2 differential equations as follows:

−rBω + r∂rA+
A

2
= r

√
2[b+ a(B2 − A2)]B (6.73)

rAω + r∂rB +
B

2
= r

√
2[b+ a(B2 − A2)]A (6.74)

We add and subtract above 2 equations and put following in it:

ψ1 = B(r) + A(r) (6.75)

ψ2 = B(r)−A(r) (6.76)

And we obtain:

−rωψ2 + rψ′
1 +

ψ1

2
− r

√
2(b+ aψ1ψ2)ψ1 = 0 (6.77)

rωψ1 + rψ′
2 +

ψ2

2
+ r

√
2(b+ aψ1ψ2)ψ2 = 0 (6.78)
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6.4.4 Solution by reduction to (3+1) Dim in spherical coordinates

(t,r,θ,φ)

We begin by putting following ansatz in HD equations with spherical coordinates:




F1

F2

G1

G2



=




R− 1

2

(r)S− 1

2

(θ)e+iφ/2

R+ 1

2

(r)S+ 1

2

(θ)e−iφ/2

R+ 1

2

(r)S− 1

2

(θ)e+iφ/2

R− 1

2

(r)S+ 1

2

(θ)e−iφ/2



e−iωt (6.79)

With this ansatz, equations 6.18 - 6.21

(
− iωR− 1

2

S− 1

2

+ cos θR′
− 1

2

S− 1

2

− sin θ

r
R− 1

2

S ′
− 1

2

+
1

2r sin θ
R+ 1

2

S+ 1

2

+ sin θR′
+ 1

2

S+ 1

2

+
cos θ

r
R+ 1

2

S ′
+ 1

2

)

= i
√
2(b+ aξ)R+ 1

2

S− 1

2

(6.80)

(
− iωR+ 1

2

S+ 1

2

− cos θR′
+ 1

2

S+ 1

2

+
sin θ

r
R+ 1

2

S ′
+ 1

2

− 1

2r sin θ
R− 1

2

S− 1

2

+ sin θR′
− 1

2

S− 1

2

+
cos θ

r
R− 1

2

S− 1

2

)′

= i
√
2(b+ aξ)R− 1

2

(r)S+ 1

2

(θ)

(6.81)

(
− iωR− 1

2

S+ 1

2

+ cos θR′
− 1

2

S+ 1

2

− sin θ

r
R− 1

2

S ′
+ 1

2

+
1

2r sin θ
R+ 1

2

S− 1

2

− sin θR′
+ 1

2

S− 1

2

− cos θ

r
R+ 1

2

S ′
− 1

2

)

= i
√
2(b+ aξ∗)R+ 1

2

(r)S+ 1

2

(θ)

(6.82)

(
− iωR+ 1

2

(r)S− 1

2

(θ)− cos θR′
+ 1

2

S− 1

2

+
sin θ

r
R+ 1

2

S ′
− 1

2

− 1

2r sin θ
R− 1

2

S+ 1

2

− sin θR′
− 1

2

S+ 1

2

− cos θ

r
R− 1

2

S ′
+ 1

2

)

= i
√
2(b+ aξ∗)R− 1

2

S− 1

2

(6.83)

Where

ξ = R− 1

2

S− 1

2

R̄+ 1

2

S̄− 1

2

+R+ 1

2

S+ 1

2

R̄− 1

2

S̄− 1

2

(6.84)

ξ∗ = R̄− 1

2

S̄− 1

2

R+ 1

2

S− 1

2

+ R̄+ 1

2

S̄+ 1

2

R− 1

2

S− 1

2

(6.85)

6.5 Summary

• Curvature-Torsion duality conjecture presented.
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• Formulated the ECD theory on Minkowski space with torsion.

• Solution to Dirac equation on M4 with torsion by reducing the problem to (1+1)- Dim

found. However, it cannot make T-S vanish for any values of free parameters.

• Plane wave solutions to Dirac equation on M4 with torsion exist. Explicit expression of

plane wave solutions with only time dependence found. However, it cannot make T-S

vanish for any values of free parameters.

• Solution by reducing the problem to (2+1)-Dim attempted. Equations are presented.

However solution is not found yet. More has been discussed in chapter 7

• Solution by reducing the problem to (3+1)-Dim attempted. Equations are presented.

However solution is not found yet. More has been discussed in chapter 7
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Chapter 7

Discussion

7.1 Conclusions and outlook

As discussed in 1.2.1, we found the non-relativistic limit of Einstein-Dirac system [self-gravitating

Dirac field on V4] with generic metric and found that it indeed reproduces the results of [17]

viz. at leading order, the NR limit is Schrödinger-Newton equation. In short, We generalized

their work (by considering generic metric). Next, we found the NR limit for Einatein-Cartan-

Dirac system (self-gravitating Dirac field on U4). At leading order, it also turns out to be

Schrödinger-Newton equation. This suggests that, at leading order, there is NO effect of tor-

sion in the non-relativistic limit. So in order to experimentally probe the effects of torsion, we

will have to go higher orders. Our method of finding NR limit also provides a prescription of

finding the correction terms due to torsion. When we compare it with Einstein-Dirac system,

we can analyze the orders of the coupled equations which are altered due to torsion through

this prescription. This has huge implications for anyone who would like to design experiments

to detect torsion in future. This was all w.r.t standard ECD theory (as in, ECD with standard

length scales as couplings). We also have some interesting results after we take the NR limit of

ECD equations modified with Lcs. In high mass limit, we obtain Poisson equation with delta

function source. We showed that, this result is valid for all energy levels; not only in Non-

relativistic limit. This has interesting implications. We know from [30] that very large masses

are highly localized (In terms of their wave-function, its already in a collapsed state). So it

behaves classically. Hence, we obtain Poisson equation with delta function source (localized

source for point particles) at all levels. this is consistent with ordinary GR and Newton’s law.

It proves that, the modification of theory with Lcs is consistent with the known theories in

large mass limit. Now, in the low mass limit, the Poisson equation is ∇2φ = 0. This suggests

that, “at leading order low masses do not source gravity”. This happens to be consistent with

the hypothesis presented in [21] and also consistent with our duality conjecture presented in 6;

which says that low masses contribute to torsion and not to gravity.

In chapter 5, we formulated ECD theory in NP formalism. Dirac equation is modified on
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U4 and presented in NP formalism in equations [5.58 - 5.61]. We also provided the prescription

for finding the expression of EM tensor in NP formalism and also calculated the spin density

term which acts as a correction to the dynamic (and symmetrical) EM tensor; together which

contribute to the Einstein’s tensor made up from Christoffel connection.

Chapter 6 discusses the curvature-torsion duality. As we have mentioned in chapter 3, the

idea of Lcs naturally hints towards a symmetry between higher and lower masses. In this

chapter, we have made this duality mathematically more evident through a conjecture. One

way to test the conjecture is to find the solutions on Minkowski space with torsion and test the

components of tensor “T-S”. This tensor doesn’t vanish for the 2 solutions which are presented

in section 6.4.1 and section 6.4.2. So these solutions do not support our conjecture. Solutions

by reducing the problem to (2+1)-Dim and (3+1)-Dim are under investigation.

7.2 Future plans

• Continue the self-study of gravitational theories with torsion from both theoretical and

experimental perspectives.

• To find the non-relativistic limit of ECD equations with new length scale Lcs for the

masses which are comparable to plank mass. We suspect that it will be something

different from Schrödinger’s equation.

• To understand the implications of the idea of Lcs (in its low mass limit) in the known

theories of particle physics. In its low mass limit, Dirac equation has cubic non-linear

term with λc as coupling constant. It can be tested against known experimental data

and also to make quantitative predictions for the new experiments.

• To find a solution to Hehl-Datta equation on Minkowski space with torsion (either by

continuing the study of reducing the equations to 2+1 Dim and 3+1 Dim as mentioned

in sections 6.4.3 and 6.4.4 or by some other method) such that the tensor “T-S” becomes

zero.
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Appendix A

Results of Long calculations used in

Chapter 4 - Non-relativistic limit of

ECD equations

A.1 Form of Einstein’s tensor evaluated from the generic

metric upto second order

gµν(x) = ηµν +

∞∑

n=1

(√
~

c

)n

g[n]µν (x)

The metric and its inverse, up to second order, can be written as following:

gµν = ηµν +
(√

~

c

)
g[1]µν +

(
~

c2

)
g[2]µν (A.1)

gµν = ηµν −
(√

~

c

)
gµν[1] −

(
~

c2

)
[gµν[1] + gµν[2]] (A.2)

We evaluate Christoffel symbols, Riemann curvature tensor, Ricci tensor and scalar curvature

up to second order using above 2 equations and obtain Einstein tensor at the end. Einstein’s

tensor Gµν is then given by

Gµν =
(√

~

c

)
G[1]

µν +
(
~

c2

)
G[2]

µν (A.3)

Where

G[1]
µν = −1

2
�g[1]µν ; where g

[1]
ij = g[1]µν −

1

2
ηµνg

[1]; g[1] = (ηµνg[1]µν) (A.4)

G[2]
µν = −1

2
�g(2)µν + f(g[1]µν) where g

[2]
ij = g[2]µν −

1

2
ηµνg

[2]; g[2] = (ηµνg[2]µν) (A.5)

f is a function of g
[1]
µν and is given by following equation:
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f(g[1]µν) = −1

4

[
2∂λg[1]∂νg

[1]
λµ − 2∂λg[1]∂λg

[1]
µν − ∂ρg

λ[1]
ν ∂µg

ρ[1]
λ − ∂ρg

λ[1]
ν ∂λg

ρ[1]
µ +

∂ρg
λ[1]
ν ∂ρg

[1]
λµ + ∂νg

λ[1]
ρ ∂µg

ρ[1]
λ + ∂νg

λ[1]
ρ ∂λg

ρ[1]
µ − ∂νg

λ[1]
ρ ∂ρg

[1]
λµ

]

−1

8

[
2∂λg[1]∂νg

[1]
λµ − 2ηµν∂

λg[1]∂λg
[1] − ∂ρg

λ[1]
ν ∂µg

ρ[1]
λ − ∂ρg

λ[1]
µ ∂λg

ρ[1]
ν

+∂ρg
λ[1]
µ ∂ρg

[1]
λν + ∂µg

λ[1]
ρ ∂νg

ρ[1]
λ + ∂µg

λ[1]
ρ ∂λg

ρ[1]
ν − ∂νg

λ[1]
ρ ∂ρgλµ[1]

]

A.2 Metric and Christoffel symbol components

Metric form:

gµν =




1 + ~F (~x,t)
c2

0 0 0

0 −1 + ~F (~x,t)
c2

0 0

0 0 −1 + ~F (~x,t)
c2

0

0 0 0 −1 + ~F (~x,t)
c2




+
∞∑

n=3

O
( 1

cn

)
(A.6)

gµν =




1− ~F (~x,t)
c2

0 0 0

0 −1 − ~F (~x,t)
c2

0 0

0 0 −1 − ~F (~x,t)
c2

0

0 0 0 −1 − ~F (~x,t)
c2




+

∞∑

n=3

O
( 1

cn

)
(A.7)

Christoffel Connection:

The non-zero Christoffel connection components (up to 2nd order in 1/c) corresponding to

metric gµν defined above are as follows

Γ0
0µ =

−~∂µF (~x, t)

2c2
+

∞∑

n=3

O
( 1

cn

)

Γµ
00 =

−~∂µF (~x, t)

2c2
+

∞∑

n=3

O
( 1

cn

)

Γµ
µµ =

+~∂µF (~x, t)

2c2
+

∞∑

n=3

O
( 1

cn

)

(A.8)

[Here µ = 1, 2, 3 i.e., it refers to the spatial coordinates.]

Other non zero Christoffel connection components have all orders of terms from order 3 viz.
∑∞

n=3O
(

1
cn

)
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A.3 Tetrad components

e(i)µ =




1 + ~F (~x,t)
2c2

0 0 0

0 1− ~F (~x,t)
2c2

0 0

0 0 1− ~F (~x,t)
2c2

0

0 0 0 1− ~F (~x,t)
2c2




+

∞∑

n=3

O
( 1

cn

)
(A.9)

eµ(i) =




1− ~F (~x,t)
2c2

0 0 0

0 1 + ~F (~x,t)
2c2

0 0

0 0 1 + ~F (~x,t)
2c2

0

0 0 0 1 + ~F (~x,t)
2c2




+

∞∑

n=3

O
( 1

cn

)
(A.10)

eν(k) =




1 + ~F (~x,t)
2c2

0 0 0

0 −1 + ~F (~x,t)
2c2

0 0

0 0 −1 + ~F (~x,t)
2c2

0

0 0 0 −1 + ~F (~x,t)
2c2




+
∞∑

n=3

O
( 1

cn

)
(A.11)

eν(k) =




1− ~F (~x,t)
2c2

0 0 0

0 −1− ~F (~x,t)
2c2

0 0

0 0 −1− ~F (~x,t)
2c2

0

0 0 0 −1− ~F (~x,t)
2c2




+
∞∑

n=3

O
( 1

cn

)
(A.12)

A.4 Components of the Riemann part of Spin Connec-

tion γ(a)(b)(c)

γ(0)(0)(0) =
−~∂0F

2c2

(
1 + ~F

2c2

)

(
1− ~F

2c2

) +

∞∑

n=3

O
( 1

cn

)
γ(i)(0)(0) =

(−~∂iF

2c2

)
~F/2c2(
1 + ~F

2c2

) +

∞∑

n=5

O
( 1

cn

)

γ(0)(i)(0) =
−~∂iF

2c2

(
1 + ~F

2c2

)

(
1− ~F

2c2

) +

∞∑

n=3

O
( 1

cn

)
γ(0)(0)(i) =

~∂iF

2c2
1(

1 + ~F
2c2

)

γ(i)(i)(i) =
~∂iF

2c2
~F/2c2(
1 + ~F

2c2

) +
∞∑

n=5

O
( 1

cn

)
γ(i)(i)(0) = γ(i)(0)(i) = +

∞∑

n=3

O
( 1

cn

)

γ(0)(i)(i) =
−~∂0F

2c2
+

∞∑

n=3

O
( 1

cn

)
γ(0)(i)(j) = γi0j = γij0 = +

∞∑

n=3

O
( 1

cn

)

γ(i)(j)(j) =
−~∂0F

2c2

(
1− ~F

2c2

)

(
1 + ~F

2c2

) +

∞∑

n=3

O
( 1

cn

)
γ(i)(j)(k) = γ(i)(j)(i) = γ(j)(j)(i) = +

∞∑

n=3

O
( 1

cn

)

(A.13)
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A.5 Components for Einstein’s tensor

In this weak field limit we get,

G[2]
µν = −1

2
�g[2]µν ;where g[2]µν = g[2]µν −

1

2
ηµν(η

αβhαβ) (A.14)

ηµνhµν =




1 0 0 0

0 -1 0 0

0 0 -1 0

0 0 0 -1







~F (~x,t)
c2

0 0 0

0 ~F (~x,t)
c2

0 0

0 0 ~F (~x,t)
c2

0

0 0 0 ~F (~x,t)
c2




=
−2~F (~x, t)

c2
(A.15)

It can easily be seen that Gij for i 6= j is equal to 0.

We now calculate the diagonal components,

G00 = −1

2
�g

[2]
00 = − ~

c2
�F (~x, t) =

[
− ~∂2t F (~x, t)

c4
+

~∇2F (~x, t)

c2

]
(A.16)

Gαα = 0; because g[2]αα = 0; α ∈ (1, 2, 3) (A.17)

A.6 generic components of Tµν
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Tij = −i~c
4




2ψ̄γ0(∂0ψ

+
1

4
[γ00iγ

0γi + γ0i0γ
iγ0]ψ)

−(∂0ψ̄ +
1

4
[γ00iγ

0γi

+γ0i0γ
iγ0]ψ̄)2γ0ψ

ψ̄γ0∂1ψ + ψ̄γ1(∂0ψ

+
1

4
[γ00iγ

0γi + γ0i0γ
iγ0]ψ)

−∂1ψ̄γ0ψ − (∂0ψ̄ +
1

4
[γ00iγ

0γi

+γ0i0γ
iγ0]ψ̄)γ1ψ)

ψ̄γ0∂2ψ + ψ̄γ2(∂0ψ

+
1

4
[γ00iγ

0γi + γ0i0γ
iγ0]ψ)

−∂2ψ̄γ0ψ − (∂0ψ̄ +
1

4
[γ00iγ

0γi

+γ0i0γ
iγ0]ψ̄)γ2ψ)

ψ̄γ0∂3ψ + ψ̄γ3(∂0ψ

+
1

4
[γ00iγ

0γi + γ0i0γ
iγ0]ψ)

−∂3ψ̄γ0ψ − (∂0ψ̄ +
1

4
[γ00iγ

0γi

+γ0i0γ
iγ0]ψ̄)γ3ψ)

ψ̄γ1(∂0ψ

+
1

4
[γ00iγ

0γi + γ0i0γ
iγ0]ψ)

+ψ̄γ0∂1ψ − (∂0ψ̄ +
1

4
[γ00iγ

0γi

+γ0i0γ
iγ0]ψ̄)γ1ψ − ∂1ψ̄γ0ψ

2(ψ̄γ1∂1ψ − ∂1 ¯ψγ1ψ)
ψ̄γ1∂2ψ + ψ̄γ2∂1ψ

−∂2ψ̄γ1ψ − ∂1ψ̄γ2ψ

ψ̄γ1∂3ψ + ψ̄γ3∂1ψ

−∂3ψ̄γ1ψ − ∂1ψ̄γ3ψ

ψ̄γ2(∂0ψ

+
1

4
[γ00iγ

0γi + γ0i0γ
iγ0]ψ)

+ψ̄γ0∂2ψ − (∂0ψ̄ +
1

4
[γ00iγ

0γi

+γ0i0γ
iγ0]ψ̄)γ2ψ − ∂2ψ̄γ0ψ

ψ̄γ2∂1ψ + ψ̄γ1∂2ψ

−∂1ψ̄γ2ψ − ∂2ψ̄γ1ψ
2(ψ̄γ2∂2ψ − ∂2 ¯ψγ2ψ)

ψ̄γ2∂3ψ + ψ̄γ3∂2ψ

−∂3ψ̄γ2ψ − ∂2ψ̄γ3ψ

ψ̄γ3(∂0ψ

+
1

4
[γ00iγ

0γi + γ0i0γ
iγ0]ψ)

+ψ̄γ0∂3ψ − (∂0ψ̄ +
1

4
[γ00iγ

0γi

+γ0i0γ
iγ0]ψ̄)γ3ψ − ∂3ψ̄γ0ψ

ψ̄γ3∂1ψ + ψ̄γ1∂3ψ

−∂1ψ̄γ3ψ − ∂3ψ̄γ1ψ

ψ̄γ3∂2ψ + ψ̄γ2∂3ψ

−∂2ψ̄γ3ψ − ∂3ψ̄γ2ψ
2(ψ̄γ3∂3ψ − ∂3 ¯ψγ3ψ)




(A.18)
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Appendix B

Tetrad formalism/ NP formalism and

formulating ECD equations in NP

formalism

B.1 Tetrad formalism and formulating Covariant deriva-

tive for Spinors

The usual method in approaching the solution to the problems in General Relativity was to

use a local coordinate basis êµ such that êµ = ∂µ. This coordinate basis field is covariant

under General coordinate transformation. However, it has been found useful to employ non-

coordinate basis techniques in problems involving Spinors. This is the tetrad formalism which

consists of setting up four linearly independent basis vectors called a ‘tetrad basis’ at each

point of a region of spacetime; which are covariant under local Lorentz transformations. [One

of the reason of using tetrad formalism for spinors is essentially this fact that transformation

properties of spinors can be easily defined in flat space-time]. The tetrad basis is given by

ê(i)(x). These are 4 vectors (one for each µ) et every point. This tetrad field is governed by a

relation êi(x) = eiµ(x)ê
µ where trasformation matrix eiµ is such that,

e(i)µ e
(k)
ν η(i)(k) = gµν ; (B.1)

Any ‘object’ now can be expressed in coordinate or tetrad basis as follows:

V = V (a)ê(a) −−−−−−− Tetrad basis (B.2)

V = V µ∂µ −−−−−−−−Coordinate basis (B.3)

Trasformation matrix e
(i)
µ allows us to convert the components of any world tensor (ten-

sor which transforms according to general coordinate transformation) to the corresponding

components in local Minkowskian space (These latter components being covariant under local

Lorentz transformation). [Ex. Tµν = e
(i)
µ e

(k)
ν T(i)(k)]. Greek indices are raised or lowered using

72



the metric gµν , while the Latin indices are raised or lowered using η(i)(k). parenthesis around

indices is just a matter of convention already defined. A

A(a),(b) = eµ(b)
∂

∂xµ
A(a) = eµ(b)

∂

∂xµ
[eν(a)Aν ] (B.4)

= eµ(b)[Aν∂µe
ν
(a) + eν(a)∂µAν ] (B.5)

= eµ(b)[A
ρ∇µe(a)ρ + eν(a)∇µAν − Γν

µρ 6 eρ(a)Aν + Γν
µρ 6 eρ(a)Aν ] (B.6)

(B.7)

From this, we get the expression for Covariant derivative of object with tetrad index

∇(b)A(a) = ∂(b)A(a) − eρ(c)∇µe(a)ρe
µ
(b)A

(c) (B.8)

= ∂(b)A(a) − γ(c)(a)(b)A
(c) (B.9)

where γ(c)(a)(b) are called Ricci rotation coefficients which are anti-symmetric in first pair

of indices and are defined as

γ(c)(a)(b) = eµ(c)∇νe(a)µe
ν
(b) (B.10)

= eν(b)e
µ
(c)

[
δαµ∂ν −

{
α

µν

}
+K α

νµ

]
e(a)α (B.11)

= γo(c)(a)(b) −K(b)(a)(c) (B.12)

There are various prescriptions wherein we associate objects in 4-dim Minkowski space with

those in 2-dim complex space C2. The elements in SL(2,C) get associated with the elements

of given representation (determined by the prescription used) of Lorentz group in Minkowski

space.

B.2 Natural connection between SL(2,C) Spinor formal-

ism NP formalism

4-vector on a Minkowski space can be represented by a hermitian matrix by some transfor-

mation law. Unimodular transformations on complex 2-Dim space induces a Lorentz trans-

formation in Minkowski space. Unimodular matrices form a group under multiplication and

is denoted bySL(2,C) - special linear group of 2 x 2 matrices over complex numbers. By a

simple counting argument, it has six free real parameters corresponding to those of the Lorentz

group. For a Lorentz transformation acting on Minkowski space, there are strictly speaking

two transformations ±L ∈ SL(2,C). But this sign ambiguity may be resolved by choosing

a path connected to the identity transformation. The levi-civita symbol ǫAB′ acts as metric

tensor in this space C
2 which preserves the scalar product under Unimodular transformations.
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B.3 Computation of Contorsion spin coefficients

We first define the product γαγβγµ.

γαγβγµ =

(
0 (σ̃α)∗(σβ)∗(σ̃µ)∗

(σα)∗(σ̃β)∗(σµ)∗ 0

)
(B.13)

This can be expanded fully in terms of vander-warden symbols and finally it takes the form

γαγβγµ = 2
√
2




0 0

[
nln− nm̄m

−m̄mn + m̄nm

] [
−nlm̄+ nm̄l

+m̄mm̄− m̄nl

]

0 0

[
−mln +mm̄m

+lmn− lnm

] [
mlm̄−mm̄l

−lmm̄ + lnl

]

[
lnl − lm̄m−
m̄ml + m̄lm

] [
lnm̄− lm̄n

−m̄mm̄+ m̄ln

]
0 0

[
mnl −mm̄m

−nml + nlm

] [
mnm̄−mm̄n

−nmm̄+ nln

]
0 0




αβµ

(B.14)

We will show the explicit calculation for one Contorsion spin coefficient viz. ρ1. It is given by

ρ1 = −K(1)(3)(4) = −lµmνm̄αK
µνα = −2iπl2[lµmνm̄α]ψ̄γ

[µγνγα]ψ (B.15)

The only quantity which would give non-zero scalar product with lµmνm̄α is nµm̄νmα (This can

occur in any order amongst 3 vectors because we have all the orders possible in the definition

of γ[µγνγα]) and the product is lµmνm̄αn
µm̄νmα = 1. We can easily deduce that

[lµmνm̄α]ψ̄γ
[µγνγα]ψ =

√
2

3
ψ̄

[
+




0 0 −1 0

0 0 0 0

0 0 0 0

0 0 0 0




−




0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0




+




0 0 −1 0

0 0 0 0

0 0 0 0

0 0 0 0




−




0 0 0 0

0 0 0 0

0 0 0 0

0 0 −1 0




+




0 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0




−




0 0 0 0

0 0 0 0

0 0 0 0

0 −1 0 0




]

=

√
2

3

(
Q0 Q1 P̄ 0′ P̄ 1′

)




0 0 −3 0

0 0 0 0

0 0 0 0

0 3 0







P 0

P 1

Q̄0′

Q̄1′




(B.16)

=
√
2[P̄ 1′P 1 −Q1Q̄1′ ] (B.17)

=
√
2[F2F̄2 −G1Ḡ1] (B.18)
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This gives full expression for ρ

ρ = −K(1)(3)(4) = −2
√
2iπl2[F2F̄2 −G1Ḡ1] (B.19)

B.4 Computation of Dynamical EM tensor on M4 with

torsion in NP formalism

Σ
(NP )
11 ({}) = i~c

2
√
2

(
Ḡ1(D +∆)G1 + Ḡ2(D +∆)G2 − (D +∆)Ḡ1G1 − (D +∆)Ḡ2G2

+ F̄1(D +∆)F1 + F̄2(D +∆)F2 − (D +∆)F̄1F1 − (D +∆)F̄2F2

)

(B.20)

Σ
(NP )
21 ({}) = i~c

4
√
2

(
F̄1(δ + δ∗)F1 + F̄2(δ + δ∗)F2 + Ḡ1(δ + δ∗)G1 + Ḡ2(δ + δ∗)G2

− F̄2(D +∆)F1 − F̄1(D +∆)F2 + Ḡ2(D +∆)G1 + Ḡ1(D +∆)G2

− (δ + δ∗)F̄1F1 − (δ + δ∗)F̄2F2 − (δ + δ∗)Ḡ1G1 − (δ + δ∗)Ḡ2G2

+ (D +∆)F̄2F1 + (D +∆)F̄1F2 − (D +∆)Ḡ2G1 − (D +∆)Ḡ1G2

)

(B.21)

Σ
(NP )
31 ({}) = i~c

4
√
2

(
iF̄1(δ − δ∗)F1 + iF̄2(δ − δ∗)F2 + iḠ1(δ − δ∗)G1 + iḠ2(δ − δ∗)G2

iF̄2(D +∆)F1 − iF̄1(D +∆)F2 − iḠ2(D +∆)G1 + iḠ1(D +∆)G2

− i(δ − δ∗)F̄1F1 − i(δ − δ∗)F̄2F2 − iG1(δ − δ∗)Ḡ1 − (δ − δ∗)iḠ2G2

− i(D +∆)F̄2F1 + i(D +∆)F̄1F2 + (D +∆)iḠ2G1 − (D +∆)iḠ1G2

)

(B.22)

Σ
(NP )
41 ({}) = i~c

4
√
2

(
F̄1(D −∆)F1 + F̄2(D −∆)F2 + Ḡ1(D −∆)G1 + Ḡ2(D −∆)G2

− F̄1(D +∆)F1 + F̄2(D +∆)F2 + Ḡ1(D +∆)G1 − Ḡ2(D +∆)G2

− (D −∆)F̄1F1 − (D −∆)F̄2F2 − (D −∆)Ḡ1G1 − (D −∆)Ḡ2G2

+ (D +∆)F̄1F1 − (D +∆)F̄2F2 − (D +∆)Ḡ1G1 + (D +∆)Ḡ2G2

)

(B.23)

Σ
(NP )
22 ({}) = i~c

2
√
2

(
− F̄2(δ + δ∗)F1 − F̄1(δ + δ∗)F2 + Ḡ2(δ + δ∗)G1 + Ḡ1(δ + δ∗)G2

+ (δ + δ∗)F̄2F1 + (δ + δ∗)F̄1F2 − (δ + δ∗)Ḡ2G1 − (δ + δ∗)Ḡ1G2

) (B.24)

75



Σ
(NP )
32 ({}) = i~c

4
√
2

(
iF̄2(δ + δ∗)F1 − iF̄1(δ + δ∗)F2 − iḠ2(δ + δ∗)G1 + iḠ1(δ + δ∗)G2

− iF̄2(δ − δ∗)F1 − iF̄1(δ − δ∗)F2 + iḠ2(δ − δ∗)G1 + iḠ1(δ − δ∗)G2

)

− i(δ + δ∗)F̄2F1 + (δ + δ∗)iF̄1F2 + (δ + δ∗)iḠ2G1 − (δ + δ∗)iḠ1G2

+ (δ − δ∗)iF̄2F1 + (δ − δ∗)iF̄1F2 − (δ − δ∗)iḠ2G1 − (δ − δ∗)iḠ1G2

)

(B.25)

Σ
(NP )
42 ({}) = i~c

4
√
2

(
− F̄1(δ + δ∗)F1 + F̄2(δ + δ∗)F2 + Ḡ1(δ + δ∗)G1 − Ḡ2(δ + δ∗)G2

− F̄2(D −∆)F1 − F̄1(D −∆)F2 + Ḡ2(D −∆)G1 + Ḡ1(D −∆)G2

+ (δ + δ∗)F̄1F1 − (δ + δ∗)F̄2F2 − (δ + δ∗)Ḡ1G1 + (δ + δ∗)Ḡ2G2

+ (D −∆)F̄2F1 + (D −∆)F̄1F2 − (D −∆)Ḡ2G1 − (D −∆)Ḡ1G2

)

(B.26)

Σ
(NP )
33 ({}) = i~c

2
√
2

(
− F̄2(δ − δ∗)F1 + F̄1(δ − δ∗)F2 + Ḡ2(δ − δ∗)G1 − Ḡ1(δ − δ∗)G2

)

+ (δ − δ∗)F̄2F1 − (δ − δ∗)F̄1F2 − (δ − δ∗)Ḡ2G1 + (δ − δ∗)Ḡ1G2

) (B.27)

Σ
(NP )
43 ({}) = i~c

4
√
2

(
− iF̄1(δ − δ∗)F1 + iF̄2(δ − δ∗)F2 + iḠ1(δ − δ∗)G1 − iḠ2(δ − δ∗)G2

+ iF̄2(D −∆)F1 − iF̄1(D −∆)F2 − iḠ2(D −∆)G1 + iḠ1(D −∆)G2

+ i(δ − δ∗)F̄1F1 − i(δ − δ∗)F̄2F2 − i(δ − δ∗)Ḡ1G1 + i(δ − δ∗)Ḡ2G2

− i(D −∆)F̄2F1 + i(D −∆)F̄1F2 + i(D −∆)Ḡ2G1 − i(D −∆)Ḡ1G2

)

(B.28)

Σ
(NP )
44 ({}) = i~c

2
√
2

(
− F̄1(D −∆)F1 + F̄2(D −∆)F2 + Ḡ1(D −∆)G1 − Ḡ2(D −∆)G2

+ (D −∆)F̄1F1 − (D −∆)F̄2F2 − (D −∆)Ḡ1G1 + (D −∆)Ḡ2G2

)

(B.29)
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