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Uncertainty relation for momentum with torsion
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We show that in the presence of the torsion tensor Sk
ij , the quantum commutation relation for

the momentum is given by [pi, pj ] = 2i~Sk
ijpk.

In nonrelativistic quantum mechanics, the operator F (dx) of an infinitesimal translation by dx acts on a state |x〉
according to [1]

F (dx)|x〉 = |x + dx〉.

Its unitarity requires that F (dx) = I − iK · dx, where I is the identity operator and K is a Hermitian operator. The
correspondence between unitary transformations in quantum mechanics and canonical transformations in classical
mechanics determines a proportionality relation between K and the momentum operator p: K = p/~. This relation
introduces the Planck constant ~ = h/(2π). The commutator [x, F (dx)] = dx gives the commutation relation between
the position and momentum operators: [xj , pk] = i~δjk.

For the wave function representing a quantum state |α〉 in position space, ψα(x) = 〈x|α〉, we have (I−ipxdx/~)|α〉 =
∫

dx′F (dx)|x′〉〈x′|α〉 =
∫

dx′|x′ + dx〉〈x′|α〉 =
∫

dx′|x′〉〈x′ − dx|α〉 =
∫

dx′|x′〉(〈x′|α〉 − dx ∂
∂x′

〈x′|α〉), which gives

px|α〉 =
∫

dx′|x′〉(−i~ ∂
∂x′

〈x′|α〉) [1]. Consequently, 〈x|px|α〉 = −i~ ∂
∂x

〈x|α〉) and the momentum operator in position

space is a partial derivative with respect to the corresponding conjugate coordinate: px = −i~ ∂
∂x

. In flat spacetime,
two infinitesimal translations in two different directions commute: [F (dx), F (dy)] = 0. Consequently, the momentum
operator components along different directions also commute, [pj , pk] = 0, which is consistent with the commutativity
of partial derivatives. This relation is also valid in curved spacetime, where partial derivatives are generalized to co-
variant derivatives. In general relativity, the affine connection is given by the Christoffel symbols which are symmetric
in the lower indices [2]. In curved space, covariant derivatives of the wave function (which is a scalar in nonrelativistic
quantum mechanics) commute.

The conservation law for the total (orbital plus spin) angular momentum of fermions in curved spacetime, consistent
with the Dirac equation, requires that the torsion tensor [3] is not constrained to zero, but is determined by varying
the action with respect to torsion [4]. The torsion tensor is the antisymmetric part of the affine connection:

Si
jk = Γ i

[jk].

The simplest and most natural theory of gravity with torsion is the Einstein-Cartan (EC) theory [5, 6], in which
torsion becomes coupled to the spin of fermions and fermions are the source of torsion. The Cartan equation relating
spin and torsion is given by

Si
jk − Sjδ

i
k + Skδ

i
j = −

1

2
κs i

jk ,

where Si is the torsion vector, s i
jk is the spin tensor of matter, and κ = 8πG/c4 (we use the notation of [6]). This

coupling generates gravitational repulsion at extremely high densities and thus avoids the formation of singularities in
black holes and at the big bang [7]. The collapsing matter in a black hole bounces at a finite density and then expands
into a new, finite region of space with positive curvature on the other side of the event horizon, which may be regarded
as a new universe [8]. Quantum particle production caused by an extremely high curvature near a bounce (which
replaces the big bang) creates enormous amounts of matter and entropy, and generates a finite period of exponential
expansion (inflation) of this universe [9]. EC agrees with all solar system, binary pulsar and cosmological tests of
general relativity, since even at nuclear densities, the corrections from torsion to the Einstein equations are negligible
[5]. EC also modifies the Dirac equation, adding a term that is cubic in spinor fields [10]. That term may solve the
problem of divergent integrals in quantum field theory by providing fermions with spatial extension (about 10−27 m
for an electron) and thus introducing an effective ultraviolet cutoff for their propagators [11].

In the presence of torsion, the parallel transports (which define the covariant derivative) do not commute, which

results from the following construction. The parallel transport of an infinitesimal, four-dimensional vector ~PR = dxi
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from a point P to an infinitesimally close point Q such that ~PQ = dx′j adds to dxi a small correction:

δdxi = −Γ i
jkdx

jdx′k.

After effecting the transport, the vector dxi + δdxi points to a point T . The parallel transport of the vector dx′i from
a point P to an infinitesimally close point R adds to dxi a small correction:

δdx′i = −Γ i
jkdx

jdx′k.

After effecting the transport, the vector dx′i + δdx′i points to a point T ′. Without torsion, points T and T ′ would
coincide and form, together with points P , Q, andR, a parallelogram because δdx′i−δdxi = Γ i

kjdx
jdx′k−Γ i

jkdx
jdx′k =

0. If the torsion tensor is not zero, however, the affine connection is asymmetric in the lower indices and

δdx′i − δdxi = −Si
jkdx

jdx′k.

Points T and T ′ do not coincide, the parallogram is not closed, and the combination of two displacements of point P
(through dxi and dx′j) depends on their order. Accordingly, covariant derivatives of a scalar ψ do not commute:

∇i∇jψ −∇j∇iψ = ∂i∇jψ − Γ k
ji∇kψ − ∂j∇iψ + Γ k

ij∇kψ = ∂i∂jψ − ∂j∂iψ + 2Sk
ij∇kψ = 2Sk

ij∇kψ. (1)

Since the momentum is defined in mechanics as a generator of a translation [12] and the translation is described in
terms of the covariant derivative and parallel transport, the four-dimensional momentum operator in position space
is related to the covariant derivative:

pk = i~∇k. (2)

This relation generalizes the standard relations E = i~ ∂
∂t

and px = −i~ ∂
∂x

. Combining equations (1) and (2) gives

[pi, pj ] = 2i~Sk
ijpk. (3)

This equation indicates that the four-dimensional momentum operators do not commute.
Since torsion is significant only at extremely high densities or energies (probing the distances on the order of 10−27

m and smaller), the right-hand side of (3) is nearly zero at the scales currently available, effectively reproducing the
standard commutation relation. However, the integration in momentum space to calculate radiative corrections to the
photon and electron propagators in Feynman diagrams in quantum field theory [13] may be affected. Currently, such
integration (to infinity) involves divergent integrals that are treated by regularization. We argue below that at larger
energies and momenta, the noncommutativity of the four-dimensional momentum (3) should affect the integration, as
it does for position space [14], and eliminate the divergence of radiative corrections and the necessity of regularization.

For the Dirac fields, the spin tensor is completely antisymmetric, and so is the torsion tensor. Therefore, we can
define the torsion pseudovector:

Ai = ǫijklSjkl,

where ǫijkl is the Levi-Civita pseudotensor (in spacetime where the metric tensor is locally flat). If this pseudovector
is timelike, one can find a coordinate frame in which the only nonzero component is the time component A0. The
commutation relation (3) becomes

[px, py] = −2i~A0pz, [py, pz] = −2i~A0px, [pz, px] = −2i~A0py,

resembling the commutation relations for the angular momentum: [Lx, Ly] = i~Lz], etc. [1]. Those relations derive
the separation between adjacent eigenvalues of Lz; this separation is ~. The momentum components commute with
p2 and the energy component p0, and p2 and p0 commute too. It is reasonable to assume that A0 is an increasing

function of p =
√

p2. Defining C = −2~A0 = kpα, where C, k, and α > 0 are constants, nx = px/C (similarly for y

and z), and n =
√

n2
x + n2

y + n2
z gives

∫

d4p

p4
∼

∫

dp

p
∼

∑ 1

p
∼

∞
∑

n=1

1

Cn
=

∞
∑

n=1

(nk)
1

α−1 .

The last sum is convergent for 0 < α < 1, showing that the logarithmically divergent integrals of form
∫

dp4/p4

that appear in radiative corrections in quantum electrodynamics should become convergent (in this range of α) if



3

the noncommutativity of the momentum is taken into account. The noncommutativity of the momentum, resulting
from torsion, regularizes those integrals. The value of α could be determined from the commutation relations for the
torsion tensor, which we started calculating in [15].

This work was funded by the University Research Scholar program at the University of New Haven. I am grateful
to Gabe Unger for inspiring my research.
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