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Abstract

We consider the model of modified gravity with dynamical torsion. This model was

found to have promising stability properties about various backgrounds. The model

admits a self-accelerating solution. We have shown previously that if the parameters are

adjusted in such a way that the torsion is much greater than the effective cosmological

constant, the self-accelerating solution is unstable: there are exponentially growing

modes. Here we study the scalar perturbations in the case when the torsion is of the

order of the effective cosmological constant. We find that there are no exponential

instabilities.

1 Introduction

There have been numerous attempts to construct consistent IR-modified gravities (for re-

views see Refs. [1–6]), having in mind the explanation of the late-time acceleration of the

Universe. Indeed, many theories of IR-modified gravity have self-accelerating solutions. The

problems occur, however, when one considers the perturbations. The self-accelerating solu-

tions are often unstable because of the ghost and/or gradient instabilities in the spectrum

of the linearized perturbations.

We focus here on gravities with dynamical torsion, which, apart from being promis-

ing candidates for consistent infrared modified gravity, represent non-trivial generalizations

of General Relativity (GR) from the geometrical point of few. These gravities treat the

connection and vierbein as independent dynamical variables. The connection is capable of

propagating due to the terms in the Lagrangian which are quadratic in torsion and curvature.

We note in passing that these theories are often, but not exclusively, considered in the

framework of Poincaré gauge gravities (PGT) [7–9], where the connection field directly in-

teracts with spin of matter. This interaction leads to strong constraints on the background

connection in the Universe (see Ref. [10] and references therein). Nevertheless, in this and
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previous papers we consider arbitrary values of the background connection, since the matter

interaction with gravity may be the same as in GR.

We discuss here a particular model of modified gravity with dynamical torsion. This

model was previously studied in Refs. [11–15] and found to have nice stability properties.

Namely, it was shown that ghosts, gradient instabilities and tachyons are absent in the

Minkowski background (see also Refs. [16, 17] where the most general parity-preserving

quadratic 9-parameter Lagrangian was considered), de Sitter and anti-de Sitter spaces and

arbitrary torsionless Einstein backgrounds of sufficiently small curvature [12, 13].

The model also admits a self-accelerating solution, without an explicit cosmological con-

stant term in the action [14]. This solution has the FRW metric and the effective cosmological

constant λ, which is due to the non-trivial connection.

An important issue is the stability of small perturbations about this self-accelerating

solution. In Ref. [15], we made use of the (3+1)-decomposition and started our analysis with

the scalar sector of perturbations, having in mind that it is this sector that is usually the

most dangerous from the viewpoint of instabilities. We found that there are two propagating

degrees of freedom in the scalar sector, the same number as in Minkowski background, i.e.,

there are no Boulware–Deser [18] modes. We derived the dispersion relations for these

degrees of freedom in the limit of large background torsion,

f � λ log2A ,

where A is the initial amplitude of the linear perturbations and f is the torsion strength. We

showed that the self-accelerating solution is unstable, since there is at least one exponentially

growing mode in the scalar sector [15].

In this paper we consider another limiting case,

f ∼ λ . (1)

Note that the connection of the order of λ directly interacting with spin is not in conflict

with any experimental constraints (see Refs. [10] and [19]). Thus, we can treat the model

under study as a Poincaré gauge gravity.

We derive the dispersion relations for the two propagating degrees of freedom in the

scalar sector. We show that there are no exponentially growing modes in this case.

This paper is a follow-up of Ref. [15], so we often refer to it. We present the model in

Section 2. In Section 3 we recap the general treatment of Ref. [15]: we write down the field

equations, make (3+1)-decomposition of the linear perturbations and count propagating

degrees of freedom in the scalar sector. Section 4 contains our main results. We derive

the dispersion relations for scalar perturbations in the case (1) and show that there are no

exponential instabilities. We discuss our results in Section 5.
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2 The Model

We make use of the tetrad formalism and consider vierbein and connection as independent

fields. We follow the notations of Refs. [11–15] and denote the vierbein by εiµ and connection

by Aijµ = −Ajiµ, where µ = (0, 1, 2, 3) is the space-time index, and i, j = (0, 1, 2, 3) are

the tangent space indices. The Lorentz indices are raised and lowered using the Minkowski

metric ηij, so we do not distinguish upper and lower tangent space indices in what follows,

if this does not lead to an ambiguity. The signature of metric is (−,+,+,+).

We consider the model with action

S =

∫
d4x εL , L =

3

2
(α̃F − αR) + c3F

ijFij + c4F
ijFji + c5F

2 + c6(ε · F )2 , (2)

where α, α̃, c3, c4, c5, c6 are coupling constants, ε ≡ det(εiµ); Fijkl is the curvature tensor

constructed with the connection Aijµ,

Fijkl = εµkε
ν
l (∂µAijν − ∂νAijµ + AimµAmjν − AjmµAmiν) ; (3)

Fij = ηklFikjl , F = ηijFij , ε · F ≡ εijklFijkl ;

εijkl is the Levi-Civita symbol defined in such a way that ε0123 = −ε0123 = 1; Rijkl is the

Riemannian curvature tensor,

Rijkl = εµkε
ν
l (∂µωijν − ∂νωijµ + ωimµωmjν − ωjmµωmiν) ; (4)

Rij = ηklRikjl , R = ηijRij ,

where ωijµ is the Riemannian spin-connection:

ωijµ =
1

2
(Cijk − Cjik − Ckij)εkµ

with

Cijk = εµj ε
ν
k(∂µεiν − ∂νεiµ) .

The connection Aijµ can be represented as a sum

Aijµ = ωijµ +Kijµ ,

where Kijµ is the contorsion tensor.

In this paper the following conditions are imposed:

c3 6= c4 , (5)

|c3| ∼ |c4| ∼ |c5| (6)

c3 + c4 = −3c5 , (7)

α < 0, α̃ > 0, c5 < 0, c6 > 0 , (8)

c5 + 16c6 < 0 . (9)
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The combination (c3−c4) appears repeatedly in our formulas, and our reasoning is valid, only

if this combination is non-zero, see also [15]. The conditions (7) and (8) ensure that there

are no pathological degrees of freedom in the Minkowski background [11, 12, 16, 17]. The

condition (9) guarantees the existence of the self-accelerating solution that we consider in this

paper (see [14] for details). It was shown in Ref. [12] that the strength of the gravitational

interaction between the energy-momentum tensors is governed by the parameters α and α̃.

We therefore assume that

|α| ∼ α̃ ∼M2
Pl . (10)

We also assume the validity of (6) for convenience.

It was found in Ref. [12] that there are three propagating modes at the linearized level in

the Minkowski background: the massless spin-2 mode, the massive spin-2 mode with mass

m2 =
α̃(α̃− α)

2αc5
(11)

and the massive spin-0 mode with mass

m2
0 =

α̃

16c6
. (12)

The perturbations about the Minkowski background are free of ghosts and tachyons. It

was also shown that in the theory equipped with the cosmological constant, there are only

healthy degrees of freedom in maximally symmetric backgrounds, as well as in torsionless

Einstein backgrounds of sufficiently small curvature.

We found in Ref. [14] that the model (2) admits a self-accelerating cosmological solution

with spatially flat metric,

ε0̃0 = 1 , εãb = eλtδãb , A0̃ãb̃ = fδãb̃ , Aãb̃c̃ = gεãb̃c̃ , (13)

A0̃ãb = eλtfδãb̃ , Aãb̃c = eλtgεãb̃c̃ ,

with time-independent λ, f and g, where a, ã = (1, 2, 3), and tilde denotes tangent space

indices. The parameters λ, f , g and α, α̃, c5, c6 are related as follows1,

c6 =
α̃λ(α̃f + αλ)

16(λ2 − 4f 2)(α̃f 2 − α̃λf − 2αλ2)
,

c5 =
α̃[2α̃f 2 + λfα̃ + λ2(α̃− 2α)]

4λ(λ+ 2f)(f 2α̃− λfα̃− 2αλ2)
, (14)

g2 = −2αλ2 − α̃f 2 + α̃λf

α̃
.

1We correct a misprint in Ref. [15] where the sign of g2 is wrong in the third line in eq. (14).
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In Ref. [15] we studied the small perturbations about the self-accelerating background

(26) and considered the case of small λ and large enough f . In that case eqs. (14) give

c6 ∼ O(λ) , c5 ∼ O(λ−1) , g = ±f +O(λ) . (15)

We found that there are no Boulware–Deser modes, but some dynamical modes are expo-

nentially growing,

ω ∼ −if
2

λ
and ω ∼ −i

√
−λ

3f

k2
. (16)

The first instability can be pushed beyond the UV cutoff which is necessarily present in the

theory and thus is not fatal, whereas the second one makes the background (13) unstable.

In this paper we study small perturbations about the background (13) in another limiting

case:

|f | = δλ , where δ ∼ 1 . (17)

We recall that for positive λ we have negative f in accordance with (8) and the third formula

in (14), i.e. actually we have

f = −δλ .

In this case eqs. (14) give

c6 =
αΞ(Ξδ + 1)

16λ2(1− 4δ2)(Ξδ2 + Ξδ + 2)
, (18)

c5 =
αΞ(2Ξδ2 − Ξδ + Ξ + 2)

4λ2(2δ − 1)(Ξδ2 + Ξδ + 2)
, (19)

g2 =
λ2(Ξδ2 + Ξδ + 2)

Ξ
, (20)

where

Ξ ≡ α̃

|α|
∼ 1

in accordance with (10). In other words,

|g| ∼ λ , c5 ∼ c6 ∼
α̃

λ2
∼ O(λ−2) . (21)

We are going to see that the case (17) is stable.

Equations (18) - (20) show that the overall scale |α| enters the action (2) as a pre-factor.

This implies that the equations for perturbations, written in terms of f , g and λ, involve the

ratio Ξ = α̃/|α| and not α̃ and α themselves. The same property holds for the dispersion

relations.
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Let us define the range of parameter δ such that the conditions (8) - (9) are satisfied.

According to (8), c6 should be positive while c5 should be negative. We see from eq. (18)

that c6 is positive when 1− 4δ2 < 0, i.e.

δ >
1

2
. (22)

For c5, the numerator in (19) is negative for any δ,

αΞ(2Ξδ2 − Ξδ + Ξ + 2) = αΞ[Ξ(2δ2 − δ + 1) + 2] < 0 ,

because (2δ2 − δ + 1) > 0 and α < 0 by (8). The denominator in (19) is positive if δ > 1/2.

Thus, c5 is negative when (22) is satisfied. Finally, we substitute the eqs. (18) and (19) into

the condition (9) and get the following inequality:

c5 + 16c6 =
αΞ(2Ξδ2 + Ξδ − Ξ + 2)

4λ2(2δ + 1)(Ξδ2 + Ξδ + 2)
< 0 ,

which is sutisfied for

2Ξδ2 + Ξδ − Ξ + 2 = Ξ(2δ2 + δ − 1) + 2 > 0 .

The latter is automatically satisfied for δ restricted by (22). Thus, the conditions (8), (9)

impose the only restriction (22) on δ.

3 Field equations

In this section we review the analysis of Ref. [15], albeit briefly, for better understanding of

Section 4.

3.1 Conformal transformation and field equations

Starting from this moment, it is convenient to use the conformal time,

η =

∫
e−λtdt = −1

λ
e−λt ,

and change the variables:

εiµ = eφeiµ , ενj = e−φeνj , (23)

where

eφ = a(η) = − 1

λη
. (24)
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We do not make any scaling of connection, and keep the Aijµ unchanged. Thus, the connec-

tion with all Lorentz indices now reads:

Aijk ≡ Aijµe
µ
k . (25)

Upon the conformal transformation (23), the background solution (13) can be written in

terms of eiµ and Aijµ as follows:

eiµ = δiµ , A0̃ãb = eφfδãb , Aãb̃c = eφgεãb̃c . (26)

Now we substitute (23) to eqs. (2) - (4) and derive the field equations. These are:

The gravitational equation:

Gij ≡
3

2
α̃e−2φ

(
Fij −

1

2
ηijF

)
− 3

2
αe−2φ

(
Rij −

1

2
ηijR

)
+ e−4φc3 (FkiFkj + FklFkilj) + e−4φc4 (FikFkj + FlkFkilj) + 2e−4φc5FFij

+ 2e−4φc6εklmiFklmj(ε · F )− e−4φ
1

2
ηijL

(2)

− 3

2
αe−2φ

[
−2eµi e

ν
j∇µ∇νφ− ηijgµν∇µ∇νφ+ 2eµi e

ν
j∂µφ∂νφ− 2ηijg

µν∂µφ∂νφ

−ηij (−3gµν∇µ∇νφ− 3gµν∂µφ∂νφ)] = 0 . (27)

Here

L(2) = c3FijFij + c4FijFji + c5F
2 + c6(ε · F )2 ;

Fijkl, Rijkl involve vierbein eµi and connection Aijµ; ∇µ is the Riemannian covariant derivative

constructed from eµi .

The torsion equation:

Tijk ≡ e−3φ
{[

ηik

(
DmPjm −

2

3
DjP

)
−DiPjk

]
−
[
ηjk

(
DmPim −

2

3
DiP

)
−DjPik

]}
+ 4e−3φc6εijkmDm(ε · F ) + e−3φSijk + e−φHijk

+ 3α̃e−φ
(
ηike

µ
j ∂µφ− ηjke

µ
i ∂µφ

)
= 0 , (28)

where Pij and P are:

Pij = c3Fij + c4Fji ,

P = ηijPij ;

the covariant derivative Di involves the vierbein eµi and connection Aijµ,

DiBj ≡ eµiDµBj = eµi (∂µBj − AljµBl) ;
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Sijk and Hijk are defined as follows:

Sijk =
2

3α̃
Hmnk

(
ηimPjn − ηjmPin −

2

3
ηimηjnP + 2c6εijmn(ε · F )

)
,

2

3α̃
Hijk = Kikj −Kjki −Killηjk +Kjllηik .

Note that because of invariance of the action under space-time gauge transformations and

local Lorentz transformations, not all of the field equations are independent (see Sec.3 of [15]

for details).

3.2 Perturbations about self-accelerating background

Here we discuss the linear perturbations about the self-accelerating background (26). Firstly,

we make the 3-dimensional Fourier decomposition. We use the same notations for the

Fourier-transformed variables and replace spatial derivatives ∂ã ≡ eµã∂µ with ikã, where k is

the 3-dimensional momentum. Secondly, we use (3+1)-decomposition of perturbations, since

the background (26) is invariant under spatial rotations. This means that we decompose any

3-dimensional tensor into its irreducible components with respect to the small group SO(2)

of rotations around the spatial momentum, and obtain three independent sectors: scalar

sector (helicity-0), vector sector (helicity-1) and tensor sector (helicity-2). These sectors can

be considered separately, since the field equations are linear.

Known examples show that the most dangerous with regard to instabilities is the scalar

sector of perturbations. Therefore, in this paper we are interested only in the scalar sector,

leaving the vector and tensor sectors for future studies.

The full contorsion tensor can be written as follows,

Kijµ = Aijµ (0) + kijµ ,

where Aijµ (0) is the background quantity (26) and kijµ is the first order perturbation. One

decomposes the first order contorsion tensor kijk = kijµδ
µ
k into its helicity components.

Tensor kijk = −kjik contains helicity 0, 1, 2 components only. We concentrate here on

the scalar sector (formed by the helicity-0 components):

k0a0 = −ka00 = kaξ ,

k0ab = −ka0b = kakbχ+ δabσ + εabckcρ ,

kab0 = εabckcθ ,

kabc = εabdkckdQ+ (kaεbcd − kbεacd)kdu+ (kaδbc − kbδac)M .

There are 8 scalar components ξ, χ, σ, ρ, θ, Q, u and M .
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After conformal transformation for the vierbein (23) we have

eiµ = δiµ + εiµ ,

In what follows we use the standard gauge of the General Relativity - the conformal Newto-

nian gauge - which includes, inter alia,

e0a = 0 .

We also impose the following gauge condition:

eµν = eνµ .

After this gauge fixing we have 2 scalar components of tensor εiµ:

ε00 = −Φ ,

εab = Ψδab .

Thus, in total we have 10 scalar variables. Using eqs.(27)-(28) and the above decomposition

we can derive the field equations for these variables. These equations are written in Appendix

A. We have designed a computer code to check the procedure of deriving equations and

perform further manipulations with them. The code is available at [20].

3.3 Reducing the system of field equations

In total, we have 14 field equations: 6 of them are second order in time derivatives and 8

are first order. The second order equations are eqs. (a5), (a9), (a10), (a11), (a13) and (a14),

while the first order equations are (a1) - (a4), (a6) - (a8) and (a12). These 14 equations are

not totally independent. There are 4 Bianchi identities relating field equations with each

other (see Sec. 6.2 of [15]). These 4 identities can be used to express eqs. (a5), (a9), (a13)

and (a14) (which are second order) in terms of other components. Therefore, these equations

can be ignored, and from this moment we consider the system of 10 equations: 8 first order

equations (a1)-(a4), (a6)-(a8), (a12) and 2 second order equations (a10), (a11).

In what follows it is convenient to use the effective values of f , g, λ, α and α̃:

f, g, λ ≡ fe−φ, ge−φ, Λe−φ ,

α, α̃ ≡ βe−2φ, β̃e−2φ . (29)

The relations between g, c5, c6 and Λ, f, β, β̃ have the same form as in eqs. (18) - (20), with

the substitution

f −→ f , α −→ β , etc.
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In the manipulations described in this section we use the relations (18) - (20) to simplify the

equations.

The two second order equations (a10) and (a11) can be replaced by first order equations.

To this end, we combine these second order equations with the remaining first order equations

and their time derivatives. The resulting equations (b1), (b2) are first order, their explicit

forms are given in Appendix B. Therefore, at this stage we have 10 first order equations,

(a1) - (a4), (a6) - (a8), (a12), (b1), (b2), for 10 variables describing scalar perturbations.

The variables in the resulting system of equations are of two types. The variables of the

first group,

σ , Φ , ξ , θ , (30)

enter these equations without time derivatives. The variables of the second group,

Ψ , χ , ρ , Q , u , M , (31)

enter with first time derivatives. One can make use of any 4 of the remaining 10 equations

to express the 4 variables (30) in terms of the variables (31) and their first time derivatives.

There remain 6 first order equations for the 6 variables (31).

Moreover, two linear combinations of the 10 equations (a1) - (a4), (a6) - (a8), (a12),

(b1), (b2) are actually algebraic and involve only the variables (31) (for details, see Sec. 6.3

of [15]). Therefore, one can make use of these two algebraic equations to express 2 variables

from the set (31) (M and ρ) in terms of four remaining variables from this set (Ψ, χ, Q, u).

After this is done, we have four first order equations for the 4 variables from (31).

Thus, we have 2 degrees of freedom. All the procedure is done by making use of the

code [20] and until now is totally equivalent to the one described in [15].

4 Limit of small Λ

In practice, it is convenient to express σ, ξ, Φ, θ by making use of eqs. (a3), (a4), (a7)

and (a8), respectively, and substitute these into eqs. (a2), (a6), (b1) and (b2). After that

we express M , ρ, M ′ and ρ′ from the algebraic equations and their time derivatives, and

substitute these in eqs. (a2), (a6), (b1), (b2). Thus, our linearized system reduces to four

first order equations (a2), (a6), (b1), (b2) written in terms of variables Ψ, χ, Q, u.

Let us now consider the case of Λ being the smallest parameter of the problem and

f = −δΛ , δ ∼ 1 .

In what follows we make use of the relations (18) - (20) (written for the effective values

f, g etc.), and obtain equations in terms of the time-dependent parameter Λ and time-

independent parameters δ, Ξ and also b ≡ c3
c4

(the latter ratio, in fact, does not enter the
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final result). Then, as long as we are working in the small-Λ limit, the first order equations

for Ψ, χ, Q, u become series in Λ.

For small Λ, parameters f, g, Λ, β, β̃ have slow dependence on time. We seek for solutions

in the WKB form F ∼ ei
∫
ωdη, where F is any of the variables Ψ, χ, Q, u, and

ω � Λ, k2 ≡ kaka � Λ2 . (32)

Then the time derivative is replaced by

∂0 → iω .

In this way we obtain the system of 4 linear homogeneous algebraic equations (a2), (a6),

(b1), (b2) for Ψ, χ, Q, u, which determine the dispersion relations ωi = ωi(k), i = 1, . . . , 4.

Equating the determinant of the system to zero we get a fourth order equation for ω. To

the leading order in Λ it reads:

[ω4 − (2δ + 1)k2ω2 + 4ik2δ(2δ + 1)Λω − (2δ + 1)(4δ + 1)k2Λ2]

+K(Ξ, δ, b)Λ

(
Λ

k

)2n

ω3 = 0 , (33)

where n ≥ 0, and K(Ξ, δ, b) is some coefficient. The particular structure of the term with

K(Ξ, δ, b) is due to the cancellation that occurs in the term with ω3. Without the cancella-

tion, this term would be proportional to ω3k2/Λ. We have found by direct calculation that

the cancellation occurs at least in two leading orders in Λ. We have not calculated the term

with K(Ξ, δ, b), since it is subdominant in all regimes anyway, as we see below.

Equation (33) is fourth order in ω. Our approach is to find all 4 roots of eq. (33) and

then figure out the roots obeying ω � Λ. In this way we gain confidence that no relevant

solutions to eq. (33) are lost. We are going to see that there are four roots of the dispersion

equation (33): two imaginary,

ω ∼ ±iΛ , (34)

and two real,

ω ∼ k . (35)

We emphasize that the roots (34) do not obey ω � Λ, which is our original assumption, see

(32). So, we cannot be confident of the instability with the time scale of order Λ−1, but even

if it is there, this time scale is large and hence the instability is not dangerous. To get to

the result (34), (35), we consider limiting cases.

• ω � Λ. In this case the term with ω = 0 is larger than others, and eq. (33) reduces to

(2δ + 1)k2Λ2 = 0 .

There are no solutions.
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• ω ∼ Λ. The second, third and fourth terms in square brackets survive and we have

−(2δ + 1)k2ω2 + 4ik2δ(2δ + 1)Λω − (2δ + 1)(4δ + 1)k2Λ2 ∼ k2Λ2 ,

while the term with K(Ξ, δ, b) is smaller,

K(Ξ, δ, b)Λ

(
Λ

k

)2n

ω3 ∼
(

Λ

k

)2n

Λ4 .

Thus, we have in this case the second order equation

− (2δ + 1)k2ω2 + 4ik2δ(2δ + 1)Λω − (2δ + 1)(4δ + 1)k2Λ2 = 0 , (36)

which has two roots (cf. eq. (34)):

ω1 = iΛ , (37)

ω2 = −iΛ(4δ + 1) . (38)

As we discussed above, these roots do not obey ω � Λ and thus are irrelevant.

• Λ � ω � k. The second term in the square brackets is the largest. The term with

K(Ξ, δ, b) is again irrelevant:

ω3Λ

(
Λ

k

)2n

� k2ω2 .

Thus, eq. (33) reduces to

(2δ + 1)k2ω2 = 0 .

There are no roots.

• ω ∼ k. The terms with ω4 and ω2 survive, and we have the following equation:

ω4 − (2δ + 1)k2ω2 = 0 . (39)

There are two roots,

ω3,4 = ±
√

(2δ + 1)k2 . (40)

Recall that δ > 0, so what these frequencies are real.

• ω � k. The term with ω4 is much larger than others, thus there are no solutions.

So, the four roots of eq. (33) are given by (37), (38) and (40), as promised. There is

no instability with the time scale exceeding Λ−1.
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5 Discussion

In this paper we continued our analysis started in Ref. [15]. We studied the stability of the

self-accelerating solution (13) in the model (2) at the linearized level in the case of small

background torsion (17). We made use of the (3 + 1)-decomposition and considered the

scalar sector of perturbations which has two degrees of freedom [15]. In the case of small

background torsion we have found two oscillating modes with frequencies

ω = ±
√

(2δ + 1)k2 .

Two other modes with the time scale of order λ−1 may exist, but they are not covered by

our analysis. These modes, even if naively unstable, correspond to the large time scale and

hence are not dangerous.

Our analysis reveals the following subtle feature of the model under study. In our case

of small background torsion, |f |, |g| ∼ λ , the self-accelerating solution (13) tends to the

Minkowski space as λ→ 0:

εiµ → δiµ , Aijµ → 0 .

However, in terms of the dynamics of perturbations in the gravitational sector, the Minkowski

space and self-accelerating solution are different branches not connected to each other. Al-

though the number of degrees of freedom in self-accelerating background (13) is the same as

in Minkowski background, the dispersion relations are fundamentally different.

We also note that the dispersion relations (37), (38) and (40) are completely different

from ones found in Ref. [15] where the limit of large background torsion was considered (cf.

(16)). Namely, the results (37), (38), (40) cannot be obtained by taking the limit f → λ

in formulas of Ref. [15]. This is not surprising. Indeed, in Ref. [15] we examined the small

perturbations in two regimes,

k2 � λf and f 3λ� k2 � f 5

λ
,

which are both inconsistent with our case f ∼ λ and k � λ.

Although it is likely that the modes (40) are healthy, we cannot rule out at the moment

the possibility that these are ghosts. Also, to fully investigate the stability of the self-

accelerating background in this model, the vector and tensor sectors need to be considered.

We plan to study these issues in future.
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Appendix A

Here we write the 14 scalar field equations. We use the notation (29) and recall the relation

(7). Equations obtained from (27) are as follows.

(00)-component:

G(00) ≡− 96c6k
2Λgu′ − 48c6k

2ΛgQ′ + (−9β̃f− 9βΛ− 576c6g
2f)Ψ′

+ (576c6g
2f + 9β̃f)σ + (144c6g

2Λ2 + 9βΛ2)Φ

+ [k2(3β̃ − 3β)− 9β̃(f2 − g2) + 144c6g
2(Λ2 − 8f2)]Ψ

+ (−6k2β̃g + 384k2c6f
2g)u+

1

2
(−6k2β̃g + 384k2c6f

2g)Q+ 3ik2β̃M

+ (3k2β̃f + 192k2c6g
2f)χ+ 192ik2c6fgρ+ 48ik2c6Λgθ = 0 (a1)

(a0)-component:

G(a0) ≡− i(3β̃ + 4Λfc3)M
′ − i[2Λg(c4 − c3)− 96c6g(Λ− 2f)]ρ′ + (3β − 3β̃)Ψ′

+ [−6g2Λc5 + 4Λc3(f
2 − g2)]Ψ− i[6g2Λc5 − 4Λ(f2 − g2)c3]M

+ [−3βΛ− 3β̃f + 96c6g
2(Λ− 2f) + 4Λ(g2 − f2)c3 + 6Λg2c5]Φ

− 4Λfc3σ − i(8Λfgc3 + 6Λfgc5)ρ+ (6Λgk2c5 + 4Λgk2c3)u

− i[4Λ(f2 − g2)c3 − 6g2Λc5 − 96c6Λ(Λ− 2f) + 3β̃f]ξ

− i[−8Λfgc3 − 6Λfgc5 − 96c6fg(Λ− 2f)− 3β̃g]θ = 0 (a2)

(0a)-component:

G(0a) ≡(3β − 3β̃)Ψ′ − 4ic3(f
2 − g2)M ′ − 4i(c4 − c3)fgρ′

+ i(12c3g
2f + 12g2fc5 − 4c3f

3)ξ − i(−12c3gf
2 − 12c5gf

2 + 4c3g
3)θ

− i[3β̃f− 96c6g
2(Λ− 2f) + 12c3g

2f + 12c5g
2f− 4c3f

3]M

− i[−3β̃g− 96c6gf(Λ− 2f) + 12c3gf
2 + 12c5gf

2 − 4c3g
3]ρ

+ [−96c6k
2g(Λ− 2f)− 4(c4 − c3)gfk2]u+ [3β̃ − 4c3(f

2 − g2)]σ

+ [−3β̃f + 96c6g
2(Λ− 2f)− 12c3g

2f− 12c5g
2f + 4c3f

3]Ψ

+ [−3βΛ− 4c3f(f
2 − g2)− 4g2f(c4 − c3)]Φ = 0 (a3)
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(ab)-component, kãkb:

G(k⊗k) ≡− (48c6Λg− 96c6fg)Q′ − [−3c5Λf−
3

2
β̃ − 3c5(f

2 − g2)]χ′ − (96c6fg− 48c6Λg)u′

− [−3

2
β +

3

2
β̃ + 3c5(g

2 − f2 − Λf)]Ψ− [3c5Λf +
3

2
β̃ − 3

2
β + 3c5(f

2 − g2)]Φ

− (−48ic6Λg + 96ic6fg)θ − (−48ic6Λg + 96ic6fg)ρ− [3ic5(f
2 − g2 + Λf) +

3

2
iβ̃]ξ

− (−3c5f
3 − 3c5Λf

2 − 48c6g
2Λ + 96c6g

2f + 3c5g
2f +

3

2
fβ̃)χ

− (3c5f
2g + 3c5Λfg− 3c5g

3 − 48c6Λfg + 96c6f
2g− 3

2
gβ̃)Q

− [−3ic5(f
2 − g2 + Λf) +

3

2
iβ̃]M

− u(−96c6gf
2 − 3c5f

2g + 3c5g
3 + 48c6Λfg− 3c5Λfg +

3

2
gβ̃) = 0 (a4)

(ab)-component, δab:

G(δ) ≡(−3β̃ + 3β)Ψ′′ + (−16c6Λgk
2 − 32k2c6fg)u′ + (−32c6Λgk

2 + 32k2c6fg)Q′

+ (−192c6fg
2 + 6βΛ + 3fβ̃)Ψ′ + (c5k

2Λf +
3

2
k2β̃ − c5k2g2 + c5k

2f2)χ′ + 3β̃σ′

+ [−ic5k2(f2 − g2 + Λf)− 3

2
ik2β̃]ξ + (32ik2c6fg + 16ik2c6Λg)ρ+ (32ik2c6Λg

+ [−c5k2(f2 − g2 + Λf) + 48c6Λ
2g2 − 3β̃Λf− 9βΛ2 − 3

2
k2β̃ +

3

2
k2β]Φ

+ [−3β̃Λf + 48c6Λ
2g2 + c5k

2(f2 − g2 + Λf)− 384c6f
2g2 +

3

2
k2β

+ 3β̃f2 − 3

2
k2β̃ − 3β̃g2]Ψ− 32ik2c6fg)θ + (−3β̃f + 192c6g

2f)σ

+ (c5k
2Λf2 − c5k2g2f−

3

2
k2fβ̃ + c5k

2f3 + 32k2c6fg
2 + 16k2c6Λg

2)χ

+ (−c5k2g3 + 160k2c6f
2g + c5k

2f2g + c5k
2Λfg− 16k2c6Λgf +

3

2
k2gβ̃)u

+ [32k2c6f
2g + 16k2c6Λgf− c5k2Λfg + c5k

2g3 +
3

2
k2gβ̃ − c5k2f2g]Q

+ [ic5k
2(f2 − g2 + Λf)− 3

2
ik2β̃]M = 0 (a5)
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(ab)-component, εabckc:

G(εk) ≡− i(−3c5f
2 − 3c5Λf− 2c3Λf− 2c3g

2 − 3

2
β̃ + 2c3f

2 + 3c5g
2)ρ′

− i(4c3fg + 12c5fg + 96c6fg− 48c6Λg− 2c3Λg)M ′

+ (−12c5fg− 6c5Λg)Ψ′

− i(−3

2
gβ̃ + 3c5g

3 + 9c5f
2g− 2c3g

3 + 6c3f
2g

− 3c5Λfg− 48c6Λfg + 96c6gf
2 − 4c3Λfg)ξ

+ (
3

2
k2β̃ + 2k2c3Λf + 3k2c5g

2 + 2k2c3g
2 − 3k2c5f

2 − 3k2c5Λf− 2k2c3f
2)u

+ (−96c6fg + 2c3Λg + 48c6Λg + 6c5Λg− 4c3fg)σ

− i(−3c5f
3 + 48c6g

2Λ + 2c3f
3 − 6c3g

2f− 3c5Λf
2 − 9c5g

2f− 2c3Λf
2

− 3

2
fβ̃ + 2c3g

2Λ− 96c6fg
2)θ

+ (−2c3f
2g + 3c5f

2g− 96c6gf
2 + 3c5fgΛ +

3

2
gβ + 2c3Λfg− 4c3f

2g

+ 48c6Λfg + 2c3Λfg− 12c5f
2g− 3c5g

3 + 2c3g
3)Φ

+ (−3c5Λfg + 3c5f
2g− 3c5g

3 − 2c3g
3 − 3

2
gβ̃

+ 96c6gf
2 + 6c3f

2g− 4c3Λfg− 48c6Λfg)Ψ

− i(−6c3f
2g + 48c6Λfg +

3

2
gβ̃ − 3c5f

2g + 3c5Λfg

− 96c6gf
2 + 4c3Λfg + 3c5g

3 + 2c3g
3)M

− i(−6c5g
2Λ + 3c5g

2f + 2c3Λf
2 − 3c5Λf

2 − 48c6g
2Λ + 96c6fg

2

+ 6c3g
2f− 2c3g

2Λ +
3

2
β̃f− 3c5f

3 − 2c3f
3)ρ = 0 (a6)

Equations obtained from (28) are as follows.

(0a0)-component:

T (0a0) ≡− 2c5k
2χ′ + i(4c4g + 6c5g)ρ′ + 4c3ifM

′ + 2c5k
2gQ

+ i(6c5g
2 + 2k2c5 + 4c3f

2 + 4c4g
2)ξ + (16c5k

2g + 4gc4k
2)u

+ 4c3fσ + i(8c4gf + 18c5gf)θ − i(96Λc6g− 192c6fg + 8c4gf + 6c5gf)ρ

+ (4c3f
2 + 4c4g

2 + 2k2c5 + 6c5g
2)Φ− 2ik2c5fχ

+ (−2c5k
2 − 4c4g

2 − 4c3f
2 − 18c5g

2)Ψ

− i(4c3f2 + 18c5g
2 − 3β̃ + 4c4g

2 + 2c5k
2)M = 0 (a7)
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(ab0)-component:

T (ab0) ≡− 32c6k
2u′ − 16c6k

2Q′ − (96c6g + 12c5g)Ψ′ − i(6c5f + 4c4f)ρ
′

+ 4ic3gM
′ + 32c6k

2fQ+ i(96Λc6g + 6c5gf− 192c6fg + 8c4gf)M

+ (48c6Λg + 8c4gf− 192c6fg + 6c5gf)Ψ + 32c6k
2gχ

− i(8c4gf + 18c5gf)ξ − (−64c6k
2f + 4fk2c4 + 6fk2c5)u

+ (96c6g− 4c4g)σ + i(16c6k
2 − 4c4f

2 − 4c3g
2 − 6c5f

2)θ

+ i(32c6k
2 + 4c4f

2 + 3β̃ + 18c5f
2 + 4c3g

2)ρ− (8c4gf + 18c5gf− 48c6Λg)Φ = 0 (a8)

(0ab)-component, kakb:

T (k⊗k) ≡3c5χ
′′ + 3c5gQ

′ − 3c5Φ
′ − 3c5gu

′ − (2ic4 + 3ic5)M
′ − 3ic5ξ

′ + 3c5Ψ
′

− (−3c5Λf + 3c5f
2 +

3

2
β̃)χ− (3ic5f + 2ic4f)ξ

− (3c5f + 2c4f)Φ− (2c4 + 6c5)σ + 2ic3gρ

− (3c5Λg− 96c6fg + 3c5fg + 48c6Λg)u− (−3c5f− 2c4f)Ψ + 2ic4gθ

− (−2ic4f− 3ic5f)M − (−48Λc6g + 96c6fg− 3c5Λg− 3c5fg)Q = 0 (a9)

(0ab)-component, δab:

T (δ) ≡c5k2χ′′ + (5k2c5g + 32k2c6g)Q′ − c5k2Φ′ + (c5k
2 + 192c6g

2)Ψ′

− ik2c5ξ′ + (−5ik2c5 − 2ik2c4)M
′ + (64k2c6g + 7k2c5g)u′ + (5ik2c5f + 2ik2c4f)M

+ (−160k2c6gf + 5k2c5Λg + 48k2c6Λg + k2c5fg)Q+ (−32ik2c6g + 2ik2c4g)θ

+ (48k2c6Λg− k2c5fg− 224k2c6fg + 7k2c5Λg)u+ (−5ik2c5f− 2ik2c4f)ξ

+ (2k2c4f + 5k2c5f + 576c6g
2f + 3fβ̃ − 24c5Λg

2 − 192c6Λg
2)Ψ

+ (−96c6Λg
2 − 5k2c5f− 2k2c4f− 12c5Λf

2 + 3Λβ̃)Φ + (−64ik2c6g + 2ik2c3g)ρ

+ (2k2c3 − 3β̃ − 192c6g
2)σ + (−k2c5f2 −

3

2
k2β̃ + k2c5Λf− 64k2c6g

2)χ = 0 (a10)
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(0ab)-component, εabckc:

T (εk) ≡i(2c4 + 3c5)ρ
′′ − 3ic5gM

′ − 16k2c6Q
′ + i(2c4f + 3c5f)θ

′ + i(2c4g + 3c5g)ξ′

+ (3k2c5 + 2k2c4 − 32k2c6)u
′ + (3c5g + 2c4g)Φ′ + (−2c4g− 9c5g− 96c6g)Ψ′

− i(−3c5gf− 48c6Λg− 4c4gf + 96c6gf− 2c4Λg− 3c5Λg)ξ

+ (2fk2c4 + 64k2c6f + 3k2fc5)u+ (96c6g + 6c5g + 2c4g)σ

− i(−9c5f
2 − 2c4Λf + 6c5g

2 − 2c4f
2 − 16c6k

2 − 3

2
β̃ − 3c5Λf + 2c4g

2)θ

− i(−2c4g
2 − 32c6k

2 + 9c5Λf− 6c5g
2 − 3

2
β̃ + 2c4Λf + 2c4f

2 + 3c5f
2)ρ

+ (3c5Λg + 2c4fg + 2c4Λg + 2c4gf + 48c6Λg + 3c5fg)Φ

+ (−4c4gf− 2c4Λg− 192c6fg + 48c6Λg− 9c5fg− 3c5Λg)Ψ

+ 32c6k
2gχ− i(4c4gf + 2c4Λg + 3c5Λg + 9c5gf + 96c6fg− 48c6Λg)M

+ 32k2c6fQ = 0 (a11)

(abc)-component, εabdkckd:

T (εk⊗k) ≡− (3ic5 + 2ic4)ρ
′ + 3c5gχ

′ + 2ic3gξ − (3c5g
2 − 3

2
β̃ + 3k2c5 + 2k2c4 + 6c5Λf)u

− (2ic4f + 3ic5f)θ + (2ic4f + 3ic5f)ρ+ 2c3gΦ− (48c6Λg− 96c6fg + 3c5gf)χ

+ 2c4gΨ + 2ic4gM − (
3

2
β̃ − 6c5Λf− 3c5g

2)Q = 0 (a12)

(abc)-component, δackb − δabkc:

T (δ⊗k) ≡2ic3M
′′ − 2c3fΨ

′ + 2c3fΦ
′ + 3ic5gρ

′ − 2ic3gθ
′ + 2ic3fξ

′ + 2c3σ
′ − k2c5χ′

− i(−2c3f
2 +

3

2
β̃ − k2c5 − 2c3Λf− 2c4g

2 − 9c5g
2)ξ + (2gc4k

2 + 2gc5k
2)u

+ 2c3fσ − i(2c3Λg− 3c5fg + 96c6fg− 48c6Λg− 4c4gf)θ

− i(−48c6Λg + 4c4gf + 9c5gf + 2c4Λg + 96c6fg)ρ

+ (2c3Λf + 2c3f
2 − 2c3g

2 + 3c5g
2 + c5k

2)Φ

+ (−2c3Λf− 2c4g
2 − 2c3f

2 − 3c5g
2 − k2c5)Ψ− c5k2fχ

− i(k2c5 +
3

2
β̃ + 2c4g

2 + 2c3f
2 + 3c5g

2 + 2c3Λf)M + c5k
2gQ = 0 (a13)
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(abc)-component, εabc:

T (ε) ≡− 32c6k
2u′′ − 16c6k

2Q′′ + (−96c6g− 12c5g)Ψ′′ + (5k2c5g + 32k2c6g)χ′

+ (32ic6k
2 − 2ik2c4 − 3ik2c5)ρ

′ + (−48c6Λg− 384c6fg)Ψ′ + 48c6ΛgΦ′ + 16ik2c6θ
′

+ (12c5g + 96c6g)σ′ + (−8ik2c5g− 2ik2c4g)ξ + (2ik2c4g + 2ik2c5g)M

+ (32ik2c6f− 3ik2c5f− 2ik2c4f)θ + (160k2c6gf− k2c5fg− 16k2Λgc6)χ

+ (−3k4c5 − 2k4c4 + 64k2c6Λf−
3

2
k2β̃ − k2c5g2 + 6k2c5Λf + 128k2c6f

2)u

+ (−2k2c4g− 3k2c5g + 96c6Λ
2g− 12c5Λfg− 5k2c5g + 96c6Λfg)Φ

+ (32k2c6Λf + 64k2c6f
2 + k2c5g

2 + 6k2c5Λf−
3

2
k2β̃)Q+ 384c6fgσ

+ (2k2c5g− 192c6Λfg + 3gβ̃ − 576c6f
2g + 96c6Λ

2g + 2k2c4g− 24c5Λfg)Ψ

+ (3ik2c5f + 64ik2c6f + 2ik2c4f)ρ = 0 (a14)

Note that eqs. (a5), (a9), (a10), (a11), (a13) and (a14) are second order, while eqs. (a1)-

(a4), (a6)-(a8) and (a12) are first order.

Appendix B

Here we give explicit forms of the first order equations which replace the eqs. (a11) and

(a12):

D(1) ≡ 4ic3k
2M ′ + (12c5gk

2 + 96c6gk
2)Q′ + 576c6g

2Ψ′ + 2(12c5gk
2 + 96c6gk

2)u′

+ (4c3k
2 − 9β̃ − 576c6g

2)σ + 4ik2c3fξ + (−192ik2c6g + 4ik2c3g)ρ

+ (12k2c5Λg + 96c6k
2Λg− 384c6k

2gf)Q+ 2(12k2c5Λg

− 4ik2c3fM + 96c6k
2Λg− 384c6k

2gf)u

+ (−96c6ik
2g + 4ik2c4g)θ + (−3k2β̃ − 192k2c6g

2)χ

+ (4k2c3f− 36c5Λf
2 − 288c6Λg

2 + 9β̃Λ)Φ

+ [−72c5Λg
2 − 4k2c3f + 9β̃(f + Λ)− 576c6g

2(Λ− 3f)]Ψ = 0 , (b1)
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D(2) ≡ [3β̃ − 12c5Λf]u
′ + [−3β̃ + 12c5Λf]Q

′ + [6c5Λg− 96c6g(Λ− 2f)]χ′

+ 8(c4 − c3)igM ′ + 4(c4 − c3)ifρ′ + [3iβ̃ − 8ic3(f
2 − g2)− 4(c4 − c3)ig2]θ

+ 8(c4 − c3)gσ + [96ic6g(Λ− 2f)− 6ic5Λg + 12(c4 − c3)ifg]ξ

+ [−96c6gi(Λ− 2f)− 6ic5Λg− 12i(c4 − c3)fg]M

+ [−3iβ̃ − 12ic5Λf + 16ic3(f
2 − g2) + 4(c4 − c3)if2]ρ

+ [−12(c4 − c3)fg− 6c5Λg]Ψ + [12(c4 − c3)fg− 6c5Λg]Φ

+ [3β̃g− 18c5Λfg + 192c6f
2g− 192c6Λ

2g + 288c6Λfg]χ

+ [96c6g
2(Λ− 2f) + 6Λβ̃ + 3fβ̃ + 4(c4 − c3)fk2 − 6c5Λg

2 − 12c5Λf
2 − 24c5Λ

2f]u

+ [−3fβ̃ − 6Λβ̃ − 96c6g
2(Λ− 2f) + 6c5Λg

2 + 12c5Λf
2 + 24c5Λ

2f]Q = 0 . (b2)

These equations are obviously first order.
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