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Abstract. The influence of space-time torsion on gravitational interaction
at cosmological and astrophysical scales is discussed within the framework
of gauge gravitation theory in Riemann-Cartan space-time. It is shown
that the interaction of the vacuum torsion with proper angular momen-
tums of gravitating objects leads to appearance of additional gravitational
force which can be manifested at astrophysical scale.

1 Introduction

The gauge gravitation theory in 4-dimensional Riemann-Cartan spacetime U4 (GTRC) is a
necessary generalization of metric gravitation theory in the framework of gauge approach by
including the Lorentz group into the gauge group corresponding to gravitational interaction.
Gravitational equations of GTRC and their physical consequences depend on the choice of
gravitational Lagrangian Lg as function of gravitational field strengths - the curvature F ik

µν

and torsion Si
µν tensors, and also on the coupling of matter with gravitational field. By

using minimal coupling the energy-momentum and spin momentum tensors of gravitating
matter play the role of sources of gravitational field. Pioneer works dedicated to GTRC were
connected with investigation of Einstein-Cartan theory, gravitational Lagrangian of which is
given in the form of scalar curvature of U4 [1, 2, 3] (see also [4, 5]) 1. In the frame of Einstein-
Cartan theory the torsion tensor is linear algebraic function of spin momentum of gravitating
matter and in the case of spinless matter the influence of torsion on dynamics of gravitating
system vanishes. In connection with this the opinion that the torsion is created by spin
momentum of matter and in the case of spinless matter has to vanish is widely extended
in literature. However, such situation indicates an exceptional position of Einstein-Cartan
theory. Really by taking into account that the torsion tensor is gravitational field strength
corresponding to 4-translations subgroup of gauge group, which according to Noether theo-
rem is connected with energy-momentum tensor, we have to conclude that generally torsion
in the frame of GTRC can be created by energy-momentum tensor. Such situation takes
place in the frame of GTRC based on gravitational Lagrangians including quadratic in the

1An important contribution to research of Einstein-Cartan theory was made by polish physicists (A.
Trautman, W. Kopczynski, B. Kuchowicz, J. Tafel) in connection with investigation of the problem of
cosmological singularity.
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curvature and torsion terms 2. In the frame of gauge approach the Lagrangian of gauge field
usually is given as function quadratic in the gauge field strength; existence of many invariants
quadratic in the curvature and torsion tensors is notable feature of GTRC, moreover there
is linear in the curvature invariant - scalar curvature. Because the detailed form of gravi-
tational Lagrangian is unknown, we will consider GTRC based on the following sufficiently
general expression of Lg used in a number of papers3:

Lg = f0 F + F αβµν (f1 Fαβµν + f2 Fαµβν + f3 Fµναβ) + F µν (f4 Fµν + f5 Fνµ)

+f6 F
2 + Sαµν (a1 Sαµν + a2 Sνµα) + a3 S

α
µαSβ

µβ , (1)

where fi (i = 1, 2, . . . , 6), ak (k = 1, 2, 3) are indefinite parameters, f0 =
c4

16πG
(G is Newton’s

gravitational constant)4. If one supposes that GTRC corresponds to real Universe, we have
to determine values of parameters fi and ak in expression (1). Restrictions on indefinite
parameters of Lg can be found on request that GTRC allows to solve some principal problems
of general relativity theory (GR) and physical consequences of this theory are the most
satisfactory. Some such restrictions were found from analysis of isotropic cosmology built
in the frame of GTRC based on Lg (1). It should be noted that in the case of spatially
homogeneous isotropic matter contribution assuming in the frame of isotropic cosmology
the average of spin momentum is equal to zero. The cosmological equations generalizing
Friedmann cosmological equations of GR and equations for torsion functions were given in
[9] (see also [8]) in general form without using any restrictions on parameters fi and ak. The
investigation of these equations leads to the following restrictions:

2a1 + a2 + 3a3 = 0, 2f1 − f2 = 0, (2)

by which the solution of the problem of cosmological singularity and the dark energy prob-
lem was obtained [9, 10]. Then equations of isotropic cosmology include three indefinite
parameters: parameter α = f

3f2

0

(f = f1+
f2
2
+ f3+ f4+ f5+3f6 > 0) with inverse dimension

of energy density, parameter b = a2 − a1 with the same dimension as f0 and dimensionless
parameter ω = f2+4f3+f4+f5

f
. The solution of indicated cosmological problems together with

fulfillment of the correspondence principle with GR leads to the following restrictions, which
were defined more exactly by analysis of gravitational equations of GTRC [12, 13]:

0 < x = 1− b

f0
≪ 1, 0 < ω ≪ 1 (3)

and the value of parameter α−1 corresponds to some high energy density. There is a number
of papers dedicated to isotropic cosmology with other restrictions on indefinite parameters

2First this was pointed in the case of homogeneous isotropic models (HIM) built in [6] and in series of
papers dedicated to GTRC [7].

3The definitions and notations of our previous papers (see e.g. [8]) are used below. With the purpose to
make quantitative estimations the light velocity c is conserved in formulas.

4In the case of GTRC, which is not invariant with respect to transformations of spatial inversions, a
quantity of additional invariants can be built by using Levi-Civita discriminant tensor and added with
indefinite parameters to Lg (1). Such theories were studied in a number of papers (see e.g. [15, 16, 17]).
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(see e.g. [18, 19, 20]) given in accordance with analysis of particle content of linearized GTRC
fulfilled by supposition that physical space-time in the vacuum is Minkowski space-time [7].
However, as it was shown in [9] on the base of analysis of equations of isotropic cosmology
the physical space-time in the vacuum in the frame of GTRC has the structure of Riemann-
Cartan continuum with de Sitter metric and the strict analysis of particle content has to be
connected with consideration of gravitational perturbations above the vacuum space-time
of GTRC. It should be noted that the deviation of the structure of the vacuum space-time
in the frame of GTRC from Minkowski space-time, which is essential at cosmological scale,
can be unimportant by local analysis given in [7] because of smallness of corresponding
characteristics of metric and torsion for the vacuum (see below). However, we have to
consider corresponding results of [7] as approximative whose range of applicability is limited
by weak fields.

The space-time torsion plays the principal role by the change of gravitational interaction
by certain conditions. Unlike isotropic cosmology, where space-time torsion is created by
spinless matter and spin momentum of gravitating matter is not demonstrated, the interac-
tion of torsion with spinning matter can play principal role in astrophysics (galaxies, galactic
clusters).

Isotropic cosmology in the frame of GTRC based on gravitational Lagrangian (1) was
investigated in a number of our papers (see e.g. [8, 9, 10, 11, 12, 13, 14] and Refs. herein).
In Section 2 some relations of isotropic cosmology are given in connection with consideration
of the role of space-time torsion that is used by discussion of the influence of torsion on
gravitational interaction at astrophysical scale in Section 3.

2 Gravitational interaction at cosmological scale and

vacuum torsion

Any HIM in Riemann-Cartan space-time is described by three functions of time: the scale
factor of Robertson-Walker metric R(t) and two torsion functions - scalar function S1(t) and
pseudoscalar function S2(t). Cosmological equations generalizing Friedmann cosmological
equations of GR by using restrictions (2) take the form [10]

k

R2
+ (H − 2S1)

2 − S2
2 =

1

6f0Z

[

ρc2 − 6bS2
2 +

α

4

(

ρc2 − 3p− 12bS2
2

)2
]

, (4)

Ḣ − 2Ṡ1 +H(H − 2S1) =

− 1

12f0Z

[

ρc2 + 3p− α

2

(

ρc2 − 3p− 12bS2
2

)2
]

, (5)

where H = Ṙ/R is the Hubble parameter (a dot denotes the differentiation with respect to
x0 = ct), k = +1, 0,−1 for closed, flat and open models respectively, ρ is mass density, p is
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pressure and Z = 1 + α (ρc2 − 3p− 12bS2
2). The torsion functions S1 and S2 are:

S1 = − α

4Z
[ρ̇c2 − 3ṗ+ 12f0ωHS2

2 − 12(2b− ωf0)S2Ṡ2], (6)

S2
2 =

ρc2 − 3p

12b
+

1− (b/2f0)(1 +
√
X)

12bα(1− ω/4)
, (7)

where
X = 1 + ω(f 2

0 /b
2)[1− (b/f0)− 2(1− ω/4)α(ρc2 + 3p)] ≥ 0. (8)

In accordance with gravitational equations of GTRC functions ρ and p satisfy the equation
as in GR:

ρ̇+ 3H(ρ+ p/c2) = 0. (9)

By given equation of state of gravitating matter eqs. (4)-(7) allow to find cosmological
solutions of GTRC. Behaviour of cosmological solutions in GTRC differs essentially from
that of GR at the beginning of cosmological expansion and at asymptotics, where the torsion
plays the important role. This follows directly from expression (7) for torsion function S2

2 .
The presence of

√
X in formula (7) leads to appearance of limiting (i.e. maximum allowable)

energy density. Gravitational interaction near limiting energy density has repulsive character
and corresponding cosmological solutions describe regular transition from compression to
expansion (”Big Bounce”). In the case of HIM with restrictions (3) filled with gravitating
matter with equation of state p = p(ρ) the Hubble parameter with its time derivative near
a bounce in the first approximation with respect to

√
X are:

H± = ± 2b2

3f 2
0ωα

√
X [(1/4b)(ρmc

2 + pm)− (k/R2)− 1−b/(2f0)
24f0α

]1/2

(3 1
c2

dpm
dρm

+ 1)(ρmc2 + pm)
,

Ḣ =
4b2

3f 2
0ωα

(1/4b)(ρmc
2 + pm)− (k/R2)− 1−b/(2f0)

24f0α

(3 1
c2

dpm
dρm

+ 1)(ρmc2 + pm)
. (10)

H−- and H+-solutions describe the stages of compression and expansion correspondingly,
and the transition from compression to expansion takes place by reaching limiting energy
density determined from equality X = 0: (ρmaxc

2) ∼ (ωα)−1, which in the frame of our
classical theory has to be less than the Planckian one. Because energy density near a bounce
is close to (ρmaxc

2) , the constant term 1−b/(2f0)
24f0α

in (10) is not essential.
The principal influence of torsion on gravitational interaction becomes apparent also

when energy density is small and its influence on geometrical structure of space-time in the
vacuum is essential. Unlike GR (without cosmological constant) where space-time in the
vacuum (in the case of flat models with k = 0) is Minkowski space-time, in the frame of
GTRC space-time in the vacuum has the structure of Riemann-Cartan continuum with de
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Sitter metric [9]. It is connected with the presence of constant term - vacuum torsion - in
expression (7) of S2

2 :

S
2(vac)
2 =

[

1− b

2f0
[1 +

(

1− ω(1− b/f0)
f 2
0

b2

)1/2

]

]

[12αb(1− ω/4)]−1. (11)

Then in accordance with eqs. (4)-(7) the vacuum value of H2 (in the case k = 0) is:

H2(vac) =
6b2

f0
αS

4(vac)
2 [1− 6α(2b+ ωf0)S

4(vac)
2 ]−1. (12)

At asymptotics when energy density is small (αρc2 ≪ 1), by using the restriction 0 < x =
1− b

f0
≪ 1 the expression (7) for S2

2 in the lowest approximation with respect to x takes the
form:

S2
2 =

1

12b

[

ρc2 − 3p+
1− b/f0

α

]

, (13)

and as a result cosmological equations (4)-(5) at asymptotics are:

k

R2
+H2 =

1

6b

[

ρc2 +
1

4α

(

1− b

f0

)2
]

, (14)

Ḣ +H2 = − 1

12b

[

(ρc2 + 3p)− 1

2α

(

1− b

f0

)2
]

. (15)

According to (13)-(14) and in compliance with (11)-(12) we have:

S
2(vac)
2 =

1− b/f0
12bα

, H2(vac) =

(

1− b
f0

)2

24bα
. (16)

The effective cosmological constant in (14)-(15) is induced by the vacuum torsion S
2(vac)
2 .

Unlike standard ΛCDM-model effective cosmological constant appears in (14)-(15) as a
result of solution of gravitational equations for HIM that leads to the change of gravita-
tional interaction when energy density is small and comparable with cosmological constant
- the vacuum gravitational repulsion effect leading to accelerating cosmological expansion at
present epoch.

Because of restriction 0 < x = 1− b
f0

≪ 1 the vacuum value of H and the vacuum torsion

function |S1| are negligibly small in comparison with |S(vac)
2 |. Owing to this the curvature

tensor (see [11, 8]) has the following vacuum components:

F 12
12 = F 13

13 = F 23
23 = −S

2(vac)
2 . (17)

Unlike the torsion function S1, the influence of which on gravitational interaction is essen-
tial only at extreme conditions near a bounce, the torsion function S2

2 plays important role
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also at asymptotics. Connection between parameters b and α can be found by supposition
that the value of effective cosmological constant in eqs. (14)-(15) corresponds to observable
accelerating cosmological expansion. Parameter ω together with α play important role at
extreme conditions near a bounce. By energy densities, which are much smaller than lim-

iting energy density and greater than constant term in (14) 1
4α

(

1− b
f0

)2

the behaviour of

cosmological solutions of eqs. (14)-(15) practically coincides with that of Friedmann cos-
mological equations of GR.We deal with such energy densities in astrophysics in the case
of various objects in galaxies and galactic clusters. In general case the description of such
systems in the frame of GTRC is difficult problem because of complexity of gravitational
equations. The situation is simplifying, when minimum GTRC was determined [13]. This
theory includes three indefinite parameters, which can be expressed through parameters of
isotropic cosmology 5. By neglecting terms with small parameter ω equations of minimum
GTRC lead to gravitation equations for metric in the form of Einstein gravitation equations
with cosmological constant, which are valid for spinless gravitating systems at wide range of
energy density - beginning with extremely high energy densities defined by α−1:

Gµ
λ = − 1

2b

[

Tλ
µ + δµλ

(1− b
f0
)2

12α

]

, (18)

where Gµ
λ is Einstein tensor. The influence of torsion appears in eq. (18) via formation

of effective cosmological constant and the change of gravitational constant. We see that
the correspondence principle with GR will be fulfilled if parameter b satisfies the condition
0 < 1− b

f0
≪ 1. Nonvanishing components of torsion tensor Sαµν satisfy the relation [13]:

Sλµν(S
λµν − 2Sµνλ) =

1

2b

[

T +
1− b/f0

α

]

, (19)

where T = Tµ
µ. This relation corresponds to formula (13) of isotropic cosmology, if we take

into account that S2
2 = −1

6
SαµνS

αµν with α, µ, ν = 1, 2, 3 ( α 6= µ, α 6= ν).

3 Vacuum torsion and gravitational interaction at as-

trophysical scale

By neglecting spin effects the description of various astrophysical objects in the frame of
minimum GTRC practically coincides with that in GR 6, because the influence of cosmo-
logical constant in (18) is negligibly small at astrophysical scale. In the case of spinning
matter corrections of the metric determined by eq. (18) are also sufficiently small. However

5The gravitational Lagrangian of minimum GTRC is given by (1), if we assume that f1 = f2 = f3 = f4 =
0, a1 = b, a2 = 2b, a3 = − 4

3
b, f5 = 3f2

0αω, f6 = f2
0α(1− ω) and 0 < ω ≪ 1.

6We don’t discuss here objects with extremely high energy densities, consideration of which is possible
by taking into account terms with parameter ω in gravitational equations.
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spin effects can be manifested as a result of interaction of vacuum torsion S
2(vac)
2 defined ac-

cording to (16) with proper angular momentums of astrophysical objects (stars in galaxies,
galaxies in galactic clusters) that can have an influence on their movement. Because the
value of vacuum torsion is much greater than cosmological constant (by virtue of restriction
0 < x = 1 − b

f0
≪ 1), its influence quantitatively can become apparent at non-relativistic

approximation.
With the purpose to study movement of an object with proper angular momentum in

gravitational field we will use equations of motion of particle with momentum in Riemann-
Cartan space-time [21] generalizing Papapetrou’s equations for rotating particle in GR [22]
7. In the case of rotating particle with angular velocity tensor Ωik corresponding equations
of motion by conserving terms, which are essential at non-relativistic approximation, are:

DPi

dτ
=

1

2
IΩmnF

mn
ilv

l (i, l,m, n = 1, 2, 3), (20)

where D
dτ

denotes riemannian absolute derivative with respect to proper time τ , Pi is gener-
alized momentum, I is inertia momentum and vl is velocity of particle. In non-relativistic
approximation Pi = mvi (m is particle mass), Ωmn = const and influence of curvature tensor
in right side of (20) can become apparent by means of vacuum curvature (17). The right
side of equation (20) determines additional gravitational force connected with interaction of
vacuum torsion with proper angular momentum of particle.

As example we will consider the circular motion of rotating particle in spherically sym-
metric gravitational field created by mass M in non-relativistic approximation. By taking
into account that g00 = 1 + 2φ

c2
(φ is newtonian potential), components of angular velocity

Ωi = ǫiklΩ
kl and relation (17) we obtain in the case of motion in plane XOY (centrum of

mass M is in origin of coordinates, vector of orbital angular momentum is directed along
the axe OZ) equation of motion in usual form mdv

dt
= F with the following expression of the

force vector:

F = −m
dφ

dr
+ IΩ3S

2(vac)
2 v

r

r
. (21)

The force (21) includes besides Newtonian term additional force, direction of which depends
on relative orientation of proper and orbital angular momentums. We have the force of
attraction or repulsion depending on Ω3 < 0 or Ω3 > 0, as result its value is:

F = G
mM

r2
± IΩS

2(vac)
2 v, (22)

where Ω = |Ω3|. By taking into account that the force (22) is centripetal force we obtain the
following dependence of velocity on distance from centrum and parameters of particle and
gravitational field:

v = ± I

2m
ΩS

2(vac)
2 r +

[

(
I

2m
ΩS

2(vac)
2 r)2 +

GM

r

]
1

2

. (23)

7In [21] the curvature tensor was defined with opposite sign and signature (+2) was used.
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By given parameters of particle and gravitational field values of the force (22) and velocity
(23) depend on parameter x = 1 − b

f0
. By taking into account that average mass density

in the Universe at present epoch ρ1 = x2

4c2α
is of order 10−26 kg

m3 , we obtain that at the first
approximation

S
2(vac)
2 =

16πG

3c2x
ρ1 ∼

10−52

x
(m−2). (24)

Now we will consider the application of (23) in the case of attraction force to star similar
to Solar (I/m ∼ 1018 m2, Ω ∼ 0.5 · 10−6 s−1) moving in galaxy similar to Andromeda (M =

2 · 1041 kg) by taking x = 10−25 and consequently S
2(vac)
2 = 10−27(m−2) that corresponds

to high energy density scale α−1 = 107ρnuclc
2 (ρnucl is nuclear mass density). As numerical

analysis shows at distances r < 9 kpc (1kpc= 0, 3086 · 1020m) Newtonian term in (23) plays
the definitive role, by growth of r from 9 kpc to 25 kpc the velocity v according to Newtonian
law decreases from 219 · 103 km/s to 132 · 103 km/s, but according to (3.4) the velocity v
changes only from 256 · 103 km/s to 259 · 103 km/s. By further increase of r essential growth
of velocity v takes place according to (23); this effect can be essential in galactic clusters,
where we deal with vast space scale of order 10 Mpc and more. We see that the force of
interaction of the vacuum torsion with proper angular momentums of stars can be essential
by formation of rotation curves in galaxies that can be interesting in connection with dark
matter problem. Effects discussed above at galactic scale (at x ∼ 10−25) are negligible when
moving the planets in the Solar system due to the smallness of the additional force in (22)
in comparison with the Newtonian force. For example, in the case of Earth the additional
force of attraction is only 10−12 part of the Newtonian force.

Effects connected with interaction of vacuum torsion with proper angular momentums
can be important in astrophysics also in the case of systems of stars with high angular
velocity of proper rotation, for example systems of double pulsars.

Although given above consideration was realized in the frame of minimum GTRC, similar
effects take place in other GTRC because of existence of the vacuum torsion.

4 Conclusion

Research of gravitation theory in Riemann-Cartan space-time shows that satisfying the corre-
spondence principle with general relativity theory GTRC leads to certain principal differences
concerning gravitational interaction at cosmological and astrophysical scales. Distinctions
are connected with geometrical structure of physical space-time, namely with space-time
torsion. The torsion created by spinless matter changes the character of gravitational inter-
action at extreme conditions and leads to possible existence in the nature of limiting energy
density. Gravitational repulsion at extreme conditions ensures the regular behaviour of all
HIM, including inflationary cosmological models. The deviation of the structure of phys-
ical space-time in the vacuum from that of Minkowski space-time leads also to important
physical consequences concerning gravitational interaction at cosmological and astrophysical
scales. The vacuum torsion generates effective cosmological constant by changing gravita-
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tional interaction at cosmological scale when energy density is small that allows to explain
accelerating cosmological expansion at present epoch. The interaction of the vacuum torsion
with proper angular momentums of gravitating objects leads to corrections of gravitational
interaction at astrophysical scale, namely to appearance of additional gravitational force,
which can have an influence on movement of stars in galaxies and galaxies in galactic clus-
ters. The search of possible observational demonstrations of this phenomenon is of direct
physical interest.

It should be noted that discussed phenomena connected with the change of gravitational
interaction have essentially non-linear origin. Because of non-linear character of gravitating
vacuum approximative analysis of GTRC based on investigation of linearized theory and
perturbations of gravitational field above Minkowski space-time [7] has to be re-examined.
In particular this concerns the analysis of particle content of GTRC, where it would be taken
into account not only deviation of space-time metric in the vacuum from that of Minkowski
space-time, but also presence of the vacuum torsion (compare with [23]) 8.
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