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On the Role of Einstein-Cartan Gravity in Fundamental Particle Physics
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Einstein Centre for Local-Realistic Physics, 15 Thackley End, Oxford OX2 6LB, United Kingdom

Two of the major open questions in particle physics are: (1) Why are the elementary fermionic
particles that are so far observed have such low mass-energy compared to the Planck energy scale?
And (2), what mechanical energy may be counterbalancing the divergent electrostatic and strong
force energies of point-like charged fermions in the vicinity of the Planck scale? In this paper, using a
hitherto unrecognized mechanism derived from the non-linear amelioration of Dirac equation known
as the Hehl-Datta equation within Einstein-Cartan-Sciama-Kibble extension of general relativity,
we present detailed numerical estimates suggesting that the mechanical energy arising from the
gravity-induced self-interaction in the ECSK theory can address both of these questions in tandem.

I. INTRODUCTION

For over a century Einstein’s theory of gravity has provided remarkably accurate and precise predictions for the

behaviour of macroscopic bodies within our cosmos. For the elementary particles in the quantum realm, however,

Einstein-Cartan theory of gravity may be more appropriate, because it incorporates spinors and associated torsion

within a covariant description [1][2]. For this reason there has been considerable interest in Einstein-Cartan theory,

in the light of the field equations proposed by Sciama [3] and Kibble [4]. For example, in a series of papers Poplawski

has argued that Einstein-Cartan-Sciama-Kibble (ECSK) theory of gravity [5] solves many longstanding problems in

physics [6][7][8][9]. His concern has been to avoid singularities endemic in general relativity by proposing that our

observed universe is perhaps a black hole within a larger universe [7]. Our concern, on the other hand, is to point out

using numerical estimates that ECSK theory also offers solutions to two longstanding problems in particle physics.

The first problem we address here concerns the well known fact that in the limit of vanishing radii (or point limit)

the electrostatic and strong force self-energies of point-like fermions become divergent. We will show, however, that

torsion contributions within the ECSK theory resolves this difficulty as well, at least numerically, by counterbalancing

the divergent electrostatic and strong force energy densities near the Planck scale. In fact, the negative torsion energy

associated with the spin angular momentum of elementary fermions may well be the long sought after mechanical

energy that counteracts the divergent positive energies stemming from their electrostatic and strong nuclear charges.

Because of this counterbalancing, however, our suggestion does not have anything to do with high energy physics.

The second of these problems can be traced back to the fact that gravity is a considerably weaker “force” compared

to the other forces. When Newton’s gravitational constant is combined with the speed of light and Planck’s constant,

one arrives at the energy scale of ∼ 1019 GeV, which is some 17 orders of magnitude larger than the heaviest known

elementary fermion (the top quark) observed at the mass-energy of ∼ 172 GeV. Thus there is a difference of some 17

orders of magnitude between the electroweak scale and the Planck scale. There have been many attempts to explain

this difference, but none is as simple as our explanation based on the torsion contributions within the ECSK theory.
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II. EVALUATION OF THE CHARGED FERMIONIC SELF-ENERGY WITHIN ECSK THEORY

The ECSK theory of gravity is an extension of general relativity allowing spacetime to have torsion in addition to

curvature, where torsion is determined by the density of intrinsic angular momentum, reminiscent of the quantum-

mechanical spin [1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16]. As in general relativity, the gravitational Lagrangian

density in the ECSK theory is proportional to the curvature scalar. But unlike in general relativity, the affine

connection Γ k
i j is not restricted to be symmetric. Instead, the antisymmetric part of the connection, Skij = Γ k

[i j] (i.e.,

the torsion tensor), is regarded as a dynamical variable similar to the metric tensor gij in general relativity. Then,

variation of the total action for the gravitational field and matter with respect to the metric tensor gives Einstein-type

field equations that relate the curvature to the dynamical energy-momentum tensor Tij = (2/
√−g)δL/δgij , where L

is the matter Lagrangian density. On the other hand, variation of the total action with respect to the torsion tensor

gives the Cartan equations for the spin tensor of matter [5]:

sijk =
1

κ
S[ijk] , where κ =

8πG

c4
. (1)

Thus ECSK theory of gravity extends general relativity to include intrinsic spin of matter, with fermionic fields such

as those of quarks and leptons providing natural sources of torsion. Torsion, in turn, modifies the Dirac equation for

elementary fermions by adding to it a cubic term in the spinor fields, as observed by Kibble, Hehl and Datta [1][4][5].

It is this nonlinear Hehl-Datta equation that provides the theoretical background for our proposal. The cubic term

in this equation corresponds to an axial-axial self-interaction in the matter Lagrangian, which, among other things,

generates a spinor-dependent vacuum-energy term in the energy-momentum tensor (see, for example, Ref. [13]). The

torsion tensor Skij appears in the matter Lagrangian via covariant derivative of a Dirac spinor with respect to the

affine connection. The spin tensor for the Dirac spinor ψ then turns out to be totally antisymmetric:

sijk = − i~c
4
ψ̄γ[iγjγk]ψ, (2)

where ψ̄ ≡ ψ†γ0 := (ψ∗
1 , ψ

∗
2 , −ψ∗

3 , −ψ∗
4) is the Dirac adjoint of ψ and γi are the Dirac matrices: γ(iγj) = 2gij. The

Cartan equations (1) render the torsion tensor to be quadratic in spinor fields. Substituting it into the Dirac equation

in the Riemann-Cartan spacetime with metric signature (+, −, −, −) gives the cubic Hehl-Datta equation [1][4][5]:

i~ γkψ:k = mcψ +
3κ~2c

8

(

ψ̄γ5γkψ
)

γ5γkψ, (3)

where the colon denotes a general-relativistic covariant derivative with respect to the Christoffel symbols, and m is

the mass of the spinor. The Hehl-Datta equation (3) and its adjoint can be obtained by varying the following action

with respect to ψ̄ and ψ (respectively), without varying it with respect to the metric tensor or the torsion tensor [13]:

I =

∫

d4x
√−g

{

− 1

2κ
R+

i~c

2
(ψ̄γkψ:k − ψ̄:kγ

kψ)−mc2ψ̄ψ − 3κ~2c2

16
(ψ̄γ5γkψ)(ψ̄γ

5γkψ)

}

. (4)

The last term in this action corresponds to the effective axial-axial, self-interaction mentioned above:

LAA = −√−g 3κ~2c2

16
(ψ̄γ5γkψ)(ψ̄γ

5γkψ). (5)

This self-interaction term is not renormalizable. But it is an effective Lagrangian density in which only the metric

and spinor fields are dynamical variables. The original Lagrangian density for a Dirac field in which the torsion tensor

is also a dynamical variable (giving the Hehl-Datta equation), is renormalizable, since it is quadratic in spinor fields.

But as we will see, renormalization may not be required if ECSK gravity turns out to be what is realized in Nature,

because it gives physical justification for the counter terms.
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Before proceeding further we note that the above action is not the most general possible action within the present

context. In addition to the axial-axial term, an axial-vector and a vector-vector terms can be added to the action, albeit

as non-minimal couplings (see, for example, Ref. [15]). However, it has been argued in Ref. [13] that minimal coupling

is the most natural coupling of fermions to gravity because non-minimal couplings are sourced by components of the

torsion that do not appear naturally in the models of spinning matter. For this reason we will confine our treatment to

the minimal coupling of fermions to gravity and the corresponding Hehl-Datta equation, while recognizing that strictly

speaking our neglect of non-minimal couplings amounts to an approximation, albeit a rather good approximation, at

least as far as electrodynamics is concerned.

A. S-matrix Evaluation of the Charged Fermionic Self-Energy within QED

It is instructive for our purposes to first review in this subsection the standard treatment of the charged fermionic

self-energy within QED, ignoring the ECSK gravity. To this end, recall that the canonical evaluation of the electron

self-energy was performed by Weisskopf in 1939 [17], which revealed that in general the self-energy of an electron is

logarithmically divergent. An S-matrix evaluation for the electromagnetic mass, δm, confirms Weisskopf’s result [18]

[19]. In the units of ~ = c = 1 and α = e2/4π, together with a high-energy cutoff Λ, this electromagnetic mass can be

expressed as

δm =
3αm

2π
ln

(

Λ

m

)

(for Λ >> m), (6)

where “ln” stands for the natural logarithm. Since m = 1/r, we can put the above equation in a more familiar form

for electromagnetic energy,

δm =
3αm

2π
ln

(

Λ

m

)

=
3α

2πr
ln

(

Λ

m

)

=
3 e2

8π2 r
ln

(

Λ

m

)

, (7)

so that now we can see more easily that δm goes to infinity as r → 0. In other words, m in the last equation is not

really the observed mass of the fermion but is more like a so-called bare mass as Milonni suggests [18]. Moreover,

we note that the mass in that expression comes in via the fermion propagator which can be off-mass-shell so it could

have any value. Weinberg in [19] obtains a result for the complete electromagnetic self-energy function renormalized

to order α in his eq. (11.4.14); and for our rest frame scenario we obtain a corresponding result of

δmR =
(ln(16) + 1)mB e

2
R

8π2
=

ln(16e) e2R
8π2 rB

, (8)

where e in ln(16e) is Euler’s number. However, in our view the mass in Weinberg’s result is still the “bare” mass because

we will soon show that the observed mass of a fermion depends on the electromagnetic mass minus a mechanical mass.

If the natural log function in eq. (6) is taken to equal unity, then there is only a small difference between Weinberg’s

result and Weisskopf’s result. We will use this result in further calculations as the cutoff has now been removed.

We know from experiments that the radius of an electron is likely to be less than 10−22m [20]. Substituting that

bound for rB gives

δmR =
ln(16e) e2R

8π2 (10−22m)
' 5.051× 103GeV, (9)

which, although finite, is still a very large electromagnetic energy contribution, with the actual value likely to be even

greater. Thus according to this estimate the electromagnetic mass is going to be very large near Planck length and will

have to be compensated for in order to recover the observed rest mass of a charged fermion. And the compensation

will have to be negative mass-energy relative to the positive electromagnetic energy:

mobs = −X + δmR = −X +
ln(16e)α

2πrB
−→ −X

r
+

ln(16e)α

2πrB
. (10)
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We suspect that the unknown variable X might be related to the Hehl-Datta self-interaction term (5) because that

term varies as 1/rx. Our goal then is to investigate this possibility.

To that end, note that the full second order S-matrix calculation within QED worked out by Milonni [18] gives

S
(2)
fi (E) = −i(2π)4δ4(pf − pi)

√

m2

EiEf

1

r3
ū(pf , sf )Σ(pi)u(pi, si), (11)

where Σ(pi) = −ie2
∫

d4k

(2π)4
gµν

k2 + iǫ
γµ

1

/pi − /k −m+ iǫ
γν. (12)

Milonni’s evaluation of Σ(pi) produces the result for δm noted in our eq. (6). This suggests that a convenient path

to evaluate the charged fermion self-energy is in the rest frame so that only time remains a variable parameter apart

from r. Because Ei = Ef = E = m, pf = pi and sf = si in the rest frame, eq. (11) can be further simplified to (cf.

Appendix B):

S
(2)
fi (E) = −it

{

3α

2π r
ln

(

Λ

m

)}







1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0






. (13)

However, we will replace the term in brackets with our renormalized term derived above from Weinberg’s result.

S
(2)
fi (E) = −it

{

ln(16e)α

2π r

}







1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0






. (14)

B. S-matrix Evaluation for the Charged Fermionic Self-Energy within Einstein-Cartan Gravity

Building on the results of the previous subsection, we now reevaluate the S-matrix process including the contribution

from the ECSK gravity. For the ECSK theory the interaction Hamiltonian density, analogous to that used in (11), is

hI(x) = − 3κ

16
(ψ̄(x)γ5γkψ(x))(ψ̄(x)γ

5γkψ(x)), (15)

where we have set ~ = c = 1 for the time being. For our purposes it is sufficient to evaluate the S-matrix in a rest

frame, in which the above interaction Hamiltonian reduces to a single term of the Hehl-Datta spin density squared

factor taken from eq.(5), giving

hI(t) = − 3κ

16
(ψ̄(t)γ5γ0ψ(t))(ψ̄(t)γ

5γ0ψ(t)). (16)

Furthermore, as shown in Appendix B, the first order S-matrix term in the rest frame is now simplified to

S
(1)
fi (E1) = it

3κ

16 r3







1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0






. (17)

On the other hand, for mψ̄ψ in the rest frame we have,

S
(1)
fi (E2) = −im

∫

d4x 〈f | ψ̄(t)ψ(t) | i〉 = −im
r3

(2π)4δ4(m, 0) ūf(m)ui(m) = −imt







1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0






. (18)
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Noting that the transition probability corresponding to this expression is equal to one since the mass remains invariant

over time, we assume that the sum of the two self-interaction S-Matrix terms will also have a transition probability

of one so that

|S(2)
fi (E) + S

(1)
fi (E1)|2 = |S(1)

fi (E2)|2 −→ ln(16e)α

2π r
− 3κ

16 r3
= m. (19)

Reinstating ~ and c we thus arrive at

ln(16e)α~c

2πr
− 3κ(~c)2

16 r3
= mc2. (20)

An identical result can be obtained also for the anti-fermion spinor, v(m), so that the equation remains the same for

both fermion and anti-fermion. In what follows we will use this S-matrix result for our numerical approximations. It

turns out to be compatible with the semi-classical result obtained below in eq. (24). From these equivalent results,

after solving for r, it is evident that the complete process is finite, without divergences. This suggests that the above

is the correct S-matrix solution for the fermion self-energy problem, with all other orders of the S-matrix expansion

vanishing because the genuine fermionic self-energy must naturally be evaluated only in the rest frame, with all other

contributions summing to zero. Any higher loop corrections in squared charge will be automatically compensated by

higher loop corrections from squared spin.

C. Semi-classical Evaluation of Charged Fermionic Self-Energy within Einstein-Cartan Gravity

In this subsection we present semi-classical results within the ECSK theory for comparison with those derived above

using the S-matrix approach. To this end, we begin by requiring the action (4) to be invariant under local phase

transformations. Then ψ:k transforms to ψ:k − iqAkψ/~ for a charge q and gauge field Ak, and eq. (3) generalizes to

i~ γkψ:k + q γkAk ψ = mcψ +
3κ~2c

8

(

ψ̄γ5γkψ
)

γ5γkψ . (21)

In the rest frame of the particle and anti-particle, with the metric signature (+, −, −, −), this equation simplifies to

i~ γ0
∂ψ

∂t
+ qcA0 γ

0ψ = mc2 ψ +
3κ~2c2

8

(

ψ̄γ5γ0ψ
)

γ5γ0ψ , (22)

which can be further simplified (see Appendix C) to arrive at our semi-classical equation, for any electroweak fermion

of charge q and mass m and its anti-particle in the Riemann-Cartan spacetime in this semi-classical theory:

q2

4πε0 r
− 3πG~2

c2 r3
= mc2 (23)

where r is the radial distance from q and this equation represents both particle and anti-particle. Replacing q with

electron or positron charge and simplifying gives us,

α~c

r
− 3κ(~c)2

8 r3
= mc2. (24)

When we compare this result with the result of the previous subsection we can see that with our QFT results we are

on the right track using bare mass for m.

It is also worth noting that without ameliorating the Dirac equation with a cubic term, eq. (23) would reduce for

an electron to α~/re = mec, giving re = α~/(mec) ∼ 10−15 m, where α = e2/(4πε0~c) is the fine structure constant.

This is the classical electron radius. Experimental evidence, however, suggests that electron radius is much smaller

[20]. As we shall see, our calculations with the cubic term included predicts the electron radius to be of the order of

10−34 m, which is closer to the Planck length. This may turn out to be the correct value of the electron radius.



6

Needless to say, what we have presented above is a derivation of eq. (23) within a theory that may be viewed as a

semi-classical theory of Dirac fields in a Riemann-Cartan spacetime [4][5]. It can be interpreted also as a theory of

gravity-induced self-interaction within standard general relativity [1][5]. An equivalent second-quantized generalization

of this theory is presented in subsection IIA. However, any such generalization must necessarily reproduce the Hehl-

Datta equation (3) for single fermions even at reasonably high energies, just as Dirac equation remains valid for

single fermions at high energies [16]. It is therefore not unreasonable to use eq. (23) derived above for our numerical

estimates since it is compatible with the result derived using the S-matrix formalism.

Finally, it is important to note here that, despite the appearance of four spinors in the interaction term of eq. (4), it

describes the self-interaction of a single fermion, of range ∼ 10−34 m, not mutual interactions among the spins of four

distinct fermions. That is to say, it does not describe a “spin field” of some sort as a carrier of a new interaction [5].

If, however, one insists on interpreting the interaction term in eq. (4) as describing interactions among four distinct

fermions, then the mass of the corresponding exchange boson would have to exceed 1015 GeV, which is evidently quite

unreasonable. Moreover, as we shall see in the next section, this energy is a fictitious quantity and therefore there is

no justification for assuming some kind of a new torsion interaction between different fermions. What is more, as we

shall soon see, within our scheme any corrections due to vacuum polarization are automatically compensated for in

the production of electroweak mass-energy, dictated by eq. (23) above.

D. Evaluation of Charged Fermionic Self-Energy by Dimensional Analysis

It is instructive to compare the results of the previous two subsections with the evaluation of the charged fermionic

self-energy using only dimensional analysis. To this end, we begin with the following physically reasonable assumptions:

1. ECSK theory of gravity is the correct theory of spacetime for addressing the fermionic self-energy problem since

it allows the dimension-full gravitational constant, G, to enter elementary particle physics in a natural manner.

2. Since experiments to date indicate that an electron is a point-like particle without any substructure and put an

upper bound of 10−22 meters on its radius, we assume that the radius of electron is much less than that value.

3. We assume that the radial distance, r, on which the electromagnetic self-interaction depends is the same radial

distance on which the self-interaction arising from the ECSK gravity-induced torsion spin density also depends.

Given these assumptions, we ask: What physical mechanism is responsible for the observed rest mass mx of the

elementary charged fermions? To answer this question we express the rest mass energy in CGS units, and assume

that it is at least partially1 electromagnetic in nature, so that it satisfies a relation like

mxc
2 ∼ e2

r
+X, (25)

where the dimensionality of X is necessarily that of energy. However we already know that the value of r < 10−15m

produces an energy greater than mxc
2. Therefore X must be negative energy, giving

mxc
2 ∼ e2

r
+ (−X). (26)

1 As is well known, assuming that the rest mass energy is entirely electromagnetic in nature leads to the classical radius of the electron,

which has been ruled out by experiments. But our assumption of it being at least partially electromagnetic in nature is quite reasonable.
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Now, since fermions have spin ~/2, it is reasonable to assume that it is involved in a mechanical-like energy resulting

from the spin interacting with itself analogous to charge, so that we may have a relation like

−X ∼ −
(

~

2

)2
1

r
, (27)

and we note that spin-squared will be negative. But it is evident from this expression that what we have on its RHS

is energy × mass × length = EML, so we will have to divide out by mass and length to get the dimensions of energy,

giving

−X ∼ −
(

~

2r

)2
1

M
, (28)

which in terms of the gravitational constant G ∼ L3/MT 2 can be written as

−X ∼ −G
(

~

2r

)2

. (29)

The dimensions on the RHS of this expression now give us E×L3/T 2, so we will have to cancel out L3/T 2. A natural

candidate to accomplish that is the speed of light, c, giving

−X ∼ − G

c2r

(

~

2r

)2

= −G

r3

(

~

2c

)2

, (30)

provided we cancel out the extra L with 1/r. Thus we now have the dimensions of energy on the RHS, so that we

finally have

mxc
2 ∼ e2

rx
− G

r3x

(

~

2c

)2

. (31)

This is the basic form of our central equation (apart from some numerical constants) which we have derived also using

two other methods in the previous subsections. Solving this equation for rx with electron mass for mx gives a value

of the order of 10−34m. However, rather surprisingly, we also found a solution for rx for the classical electron radius.

III. PARTICLE MASSES VIA TORSION ENERGY CONTRIBUTION

For our numerical analysis it is instructive to bring out the physical content of eq. (23) in purely classical terms. To

this end, recall that when the self-energy of an electron is attributed solely to its electrostatic content, it is found that

that energy is divergent, provided we assume the electron to be a point particle. This energy is called “self-energy”,

because it arises from the interaction of the charge of the electron with the electrostatic field that it itself is creating.

With the help of our result (23) above we can avoid this fundamental difficultly as follows. Multiplying through eq.

(23) with 3/4π, it can be written as

(

q2

4πε0 r

)

3

4πr3
−
(

3πG~2

c2 r3

)

3

4πr3
=
(

mc2
) 3

4πr3
. (32)

With 4πr3/3 recognized as a volume of a sphere of radius r, it is now easy to recognize each quantity in the parenthesis

in this equation as energy, and each term as the corresponding energy density. From that it is easy to make a

comparison of the semi-classical result to our S-matrix based result for a fermion:

(

ln(16e)α~c

2πr
− 3πG~2

2 c2 r3

)

= mc2 −→
(

ln(16e)q2

8π2ε0r
− 3πG~2

2 c2 r3

)

= mc2. (33)
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Although this comparison is encouraging, it is unfortunate that the first term in eq. (33) diverges as r → 0. But if

we set r to Planck length we obtain

ln(16e)α

2π lP
≈ 3.125× 1016GeV, (34)

which is close to Planck energy. Although finite, this is still an extremely large energy. But such a large energy for

charged leptons is not realized in Nature. A natural question then is: Is there a negative mechanical energy that

cancels out most of this energy to produce the observed rest mass-energy of leptons? We believe the answer lies in

the second term of eq. (33), which – as we saw above – arises from the non-linear amelioration of the Dirac equation

within ECSK theory. Indeed, if we again set the Planck length for r in the second term of eq. (33), then we obtain

− 3πG~2

2 c2 (lP )3
≈ − 5.773× 1019 GeV. (35)

Comparing this value with the electrostatic energy at the Planck length estimated in eq. (34) we see at once that the

torsion-induced mechanical energy (35) can indeed counterbalance the huge electrostatic energy. This is a surprising

observation, considering the widespread belief that “the numerical differences which arise [between GR and ECSK

theories] are normally very small, so that the advantages of including torsion are entirely theoretical” [16].

Moving forward to our goal of numerical estimates, let us note that whenever terms quadratic in spin happen to

be negligible, then the ECSK theory is observationally indistinguishable from general relativity. Therefore, for post-

general-relativistic effects, the density of spin-squared has to be comparable to the density of mass. The corresponding

characteristic length scale, say for a nucleon, is referred to as the Cartan or Einstein-Cartan radius [2][16], defined as

rCart ≈ (l2P λC)
1

3 , (36)

where λC is the Compton wavelength of the nucleon. Now it has been noted by Poplawski [6][7][8][9] that quantum

field theory based on the Hehl-Datta equation may avert divergent integrals normally encountered in calculating

radiative corrections, by self-regulating propagators. Moreover, the multipole expansion applied to Dirac fields within

the ECSK theory shows that such fields cannot form singular, point-like configurations because these configurations

would violate the conservation law for the spin density, and thus the Bianchi identities. These fields in fact describe

non-singular particles whose spatial dimensions are at least of the order of their Cartan radii, defined by the condition

ǫ ∼ κs2, (37)

where
√
s2 ∼ ~c |ψ|2 is the spin density, ǫ ∼ mc2|ψ|2 is the rest energy density, and |ψ|2 ∼ 1/r3 is the probability

density, giving the radius (36). Consequently, at the least the de Broglie energy associated with the Cartan radius

of a fermion (which is approximately 10−27m for an electron) may introduce an effective ultraviolet cutoff for it in

quantum field theory in the ECKS spacetime. The avoidance of divergences in radiative corrections in quantum fields

may thus come from spacetime torsion originating from intrinsic spin. Poplawski and others, however, took ǫ to be

the mass-energy density of the fermion to arrive at the Cartan radius (36). But it is easy to work out from the first

term of our eq. (33) that at the Cartan radius the electrostatic energy density for an electron is still extremely large:

ln(16e)α~c

2π(10−27m)4
≈ 5.051× 1089GeVm−3. (38)

For this reason it is not correct to identify ǫ with the rest mass-energy density, which is ≈ 5.1099× 1077 GeV m−3

for an electron at the Cartan radius. The electrostatic energy density of an electron is thus about fourteen orders of

magnitude higher. Therefore ǫ is better identified with the electrostatic energy density provided most of it is canceled

out.
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If in eq. (33) we set the electrostatic energy appearing in its first term to be equal to the spin squared energy

induced by the self-interaction appearing in its second term and solve for r, then we obtain

rt = π

√

3

α ln(16e)
lP , (39)

the value of which works out to be

rt ≈ 5.300× 10−34 m . (40)

Thus our rt is about 33 times larger than the Planck length, and, as we can see, it is a remarkably simple constant in

terms of the Planck length, lP , and the fine structure constant, α (recall that e in ln(16e) is Euler’s number). According

to eq. (33), rt is the effective radius at which energy density due to spin density should completely compensate the

huge electrostatic energy seen in eq. (34). In our view this is the correct Cartan radius, at least for the charged

leptons, and that may still provide a plausible mechanism for averting singularities, since it is still larger than the

Planck length. It is important to note, however, that these huge energy densities never actually occur in Nature,

because according to our eq. (33) they are automatically compensated. The physical mechanism described above is

simply to enable extraction of the radius rt for different charged fermions.

We can now use eq. (33) to solve for rx for the different charged leptons and anti-leptons which leads us to the

following formula for our numerical estimates:

ln(16e)α~c

2πrx
− 3 πG~2

2c2 r3x
= +mxc

2 . (41)

As shown in the Appendix A below, we were able to find solutions for rx for the charged leptons using arbitrary

precision in Mathematica. The first in our results listed below is the solution for rt up to 24 significant figures. Then,

using the same precision for comparison, we list the results for re for an electron, rµ for a muon, and rτ for a tauon,

along with the anti-fermions:

rt = 5.30042667383830634827564× 10−34 m −→ 0.0 MeV ,

re− = re+ = 5.30042667383830634910588× 10−34 m −→ 0.511 MeV ,

rµ− = rµ+ = 5.30042667383830651994161× 10−34 m −→ 106 MeV ,

rτ− = rτ+ = 5.30042667383830923512287× 10−34 m −→ 1777 MeV .

We should note that there is also a positive solution obtained for the reduced Compton wavelength for these fermions

in the form of

rx =
ln(16e)α

2π

~

mxc
. (42)

This is so because the spin density squared term becomes very small of order 10−39 MeV when rx is equal to that

result so it can be considered effectively as zero. We ignore this solution for fermion radius because experiment has

already ruled it out. However, our formulation also reproduces the Compton wavelength for fermions that is useful

for other things besides particle radii. Such as the radius of an effective quantum vacuum screening boundary where

low energy electrons scatter off each other as if they had this radius.

Evidently, very minute changes in the radii are seen to cause large changes in the observed rest mass-energies of the

fermions. But as the differences in the radii go larger, the resultant mass-energies go higher, as one would expect. It

seems extraordinary that Nature would subscribe to such tiny differences resulting from a large number of significant

figures, but that might explain why the underlying relationship between the observed values of the masses of the

elementary particles has remained elusive so far. In addition to the possible reasons for this mentioned above, it
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is not inconceivable that the difference between the spin energy density and the electrostatic energy density radii

with respect to rt arises due to purely geometrical factors. We also suspect that there may possibly be some kind of

symmetry breaking mechanism at work similar to the Higgs mechanism, and this symmetry breaking results in the

observed mass-energy generation.

As a consistency check, let us verify that the tiny length differences seen above vanish, ∆r → 0, as the corresponding

rest mass-energy differences tend to zero: ∆E → 0. To this end, we recast eq. (41) for arbitrary rx in a form involving

only rest mass-energy on the RHS as:

ln(16e)α~c

2π rx
− 3π l2P~c

2r3x
= mxc

2. (43)

If we now set

A ≡ ln(16e)α~c

2π
and B ≡ 3π l2P~c

2
, (44)

then, with ∆E = mxc
2 and setting rx = rt as the cancellation radius for which ∆E = 0, we obtain

rt =
√

B/A . (45)

This allows us to derive a general expression for rx when ∆E 6= 0:

A

rx
− B

r3x
= ∆E. (46)

From this expression it is now easy to see that

lim
∆E→ 0

{(

A

rx
− B

r3x

)

= ∆E

}

=

(√
A

3

√
B

−
√
A

3

√
B

)

ln

√

B/A

lP
= 0 =⇒ rx =

√

B/A = rt , (47)

and conversely, using (45),

lim
rx → rt

{(

A

rx
− B

r3x

)

= ∆E

}

=⇒ ∆E = 0 . (48)

Consequently, with ∆r ≡ | rt − rx|, we see from the above limits that ∆r → 0 as ∆E → 0, and vice versa.

As a rough estimate the calculation for the radius rq of elementary quarks can be performed in a similar manner as

that for charged leptons, since at such short distances the strong force reduces to a Coulomb-like force. One must also

factor-in the electrostatic energy, so that a relationship like the following must be calculated, say, for the top quark:

2 ln(16e)α~c

9π rqx
+
αs~c

3 rqx
− 3πG~2

2c2 r3qx
= mtc

2 . (49)

Here αs is the appropriate strong force coupling (we use 0.1). Needless to say, a cancellation radius different from

that of the charged leptons should be calculated for comparison, by setting

2 ln(16e)α~c

9π rqt
+
αs~c

3 rqt
− 3πG~2

2c2 r3qt
= 0. (50)

A calculation of the radius for the top quark based on eq. (49) can be found in the Appendix and is ≈ 1.868×10−34m.

We expect it to be only a very rough estimate of the actual value of the radius. Since only one spin density is involved,

the above calculation might be able to approximate the behaviour of the quarks. The calculation of the radii rqx for

the up and down quark will probably be problematic, since their masses are not well known.

With regard to neutrinos the story is quite different since they don’t have self-energy due to electric or color charge.

That means that their rest mass-energy comes entirely from torsion energy due to intrinsic spin. Solving that gives

us a radius for electron neutrinos of the order of 10−26m. However, the torsion (spin-squared) self-energy is negative

relative to the positive rest mass. We suspect that this means that neutrinos have anti-gravity properties [22]. The

anti-gravity effect with normal matter for single neutrinos is practically negligible but the cosmological implications

could be large.
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IV. POSSIBLE SOLUTION OF THE HIERARCHY PROBLEM

As alluded to in the introduction, the Hierarchy Problem refers to the fact that gravitational interaction is extremely

weak compared to the other known interactions in Nature. One way to appreciate this difference is by combining the

Newton’s gravitational constant G with the reduced Planck’s constant ~ and the speed of light c. The resulting mass

scale is the Planck mass, mP , which some have speculated to be associated with the existence of smallest possible

black holes [7]. If we compare the Plank mass with the mass of the top quark (the heaviest known elementary particle),

mP =

√

~c

G
≈ 2.1765× 10−8 kg ,

mt =
173.21 GeV

c2
≈ 3.1197× 10−25 kg ,

then we see that there is some 17 orders of magnitude difference between them. This illustrates the enormous difference

between the Planck scale and the electroweak scale. Many solutions have been proposed to explain this difference,

such as supersymmetry and large extra dimensions, but none has been universally accepted, for one reason or another.

Furthermore, recent experiments performed with the Large Hadron Collider are gradually ruling out some of these

proposals. But regardless of the nature of any specific proposal, it is clear from the above values that predictions of

numbers with at least 17 significant figures are necessary to successfully explain the difference between mP and mt.

We saw from our numerical demonstration in the previous section that within the ECSK theory minute changes in

length can induce sizable changes in the observed masses of elementary particles, and that we do have numbers at

our disposal with more than 17 significant figures for producing those masses. Moreover, all length changes occurring

in our demonstration are taking place close to the Planck length. Thus, since we are “canceling out” near the Planck

length to obtain masses down to the electroweak scale, ours is clearly a possible mechanism for resolving the Hierarchy

Problem. We can appreciate this fact by simplifying our central equation by setting ~ = c = 1, which then reduces to

ln(16e)α

2π rx
− 3πG

2 r3x
= mx . (51)

It is now easy to see from this equation that the observed mass-energy only depends on the coupling constants and

the radii. Moreover, it is confined entirely within a volume close to the Planck volume, as we saw in our calculations

in the previous section. Thus we are led to

Planck Scale =⇒ Electroweak Scale.

In other words, there is no hierarchy problem in the ECSK theory, because Planck scale physics is producing the

electroweak scale physics in the form of the mass-energy of fermions as a byproduct of the very geometry of spacetime.

Within the ECSK theory, which extends general relativity to include spin-induced torsion, gravitational effects

near micro scales are not necessarily weak. On the other hand, since torsion is produced in the ECSK theory by the

spin density of matter, it is mostly confined to that matter, and thus is a very short range effect, unlike the infinite

range effect of Einstein’s gravity produced by mass-energy. In fact the torsion field falls off as 1/r6, as shown in the

calculations of Sect. III, since it is produced by spin density squared, confined to the matter distribution [9].

To compare the strengths of gravitational and torsion effects at various scales, we may define a mass-dependent

dimensionless gravitational coupling constant, Gm2/(~c), and evaluate it for the electron, top quark, and Planck
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masses:

αGe
=
Gm2

e

~c
≈ 1.7517× 10−45,

αGt
=
Gm2

t

~c
≈ 1.1620× 10−36,

αGP
=
Gm2

P

~c
= 1 ,

αe =
e2

4πε0~c
≃ 7.2973× 10−3.

Here αe is the electromagnetic coupling constant, or the fine structure constant. From these values we see that near

the Planck scale the gravitational coupling is very strong compared to the electromagnetic coupling. However, as we

noted above and in Sect. III, near the Planck scale torsion effects due to spin density are also very strong, albeit with

opposite polarity compared to that of Einstein’s gravity, akin to a kind of “anti-gravity” effect of a very short range.

For our demonstration above we have used electrostatic energy density and spin density for matter in a static

approximation, for which the field equation within the ECSK theory reduces to G00 = T 00. A numerical estimate for

G00 from the contributions of the electrostatic energy and spin density parts of T 00 at our cancellation radius gives

G00
stat =

8πG

c4
ln(16e)α~c

2π r4t
≈ +3.644× 1062 m−2 (52)

and G00
spin = −8πG

c4
3 πG~2

2 c2r6t
≈ −3.644× 1062 m−2. (53)

Evidently, these field strengths at the cancellation radius are quite large even for a single electron. Fortunately they are

never realized in Nature, because, as we can see, they cancel each other out to produce G00
net = 0. On the other hand, if

we use only the mass-energy density for electron at the cancellation radius, then we obtain G00
mass ≈ 3.0674× 1043m−2,

which is again some 19 orders of magnitude off the mark. What is more, the latter field strength does not fall off as

fast as that due to the spin-induced torsion field. Thus it is reasonable to conclude that without the cancellation of

divergent energies due to the spin self-interaction we have explored here, our universe would be highly improbable.

V. CONCLUDING REMARKS

In this paper we have addressed two longstanding questions in particle physics: (1) Why are the elementary

fermionic particles that are so far observed have such low mass-energy compared to the Planck scale? And (2), what

mechanical energy may be counterbalancing the divergent electrostatic and strong force energies of point-like charged

fermions in the vicinity of the Planck scale? Using a hitherto unrecognized mechanism extracted from the well known

Hehl-Datta equation, we have presented numerical estimates suggesting that the torsion contributions within the

Einstein-Cartan-Sciama-Kibble extension of general relativity can address both of these questions in conjunction.

The first of these problems, the Hierarchy Problem, can be traced back to the extreme weakness of gravity compared

to the other forces, inducing a difference of some 17 orders of magnitude between the electroweak scale and the Planck

scale. There have been many attempts to explain this huge difference, but none is simpler than our explanation based

on the spin induced torsion contributions within the ECSK theory of gravity. The second problem we addressed here

concerns the well known divergences of the electrostatic and strong force self-energies of point-like fermions at short

distances. We have demonstrated above, numerically, that torsion contributions within the ECSK theory resolves this

difficulty as well, by counterbalancing the divergent electrostatic and strong force energies close to the Planck scale.

It is widely accepted that in the standard model of particle physics charged elementary fermions acquire masses

via the Higgs mechanism. Within this mechanism, however, there is no satisfactory explanation for how the different
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couplings required for the fermions are produced to give the correct values of their masses. While the Higgs mechanism

does bestow masses correctly to the heavy gauge bosons and a massless photon, and while our demonstration above

does not furnish a fundamental explanation for the fermion masses either, we believe that what we have proposed in

this paper is worthy of further research, since our proposal also offers a possible resolution of the Hierarchy Problem.

In Ref. [23] Singh points out that there appears to be a symmetry between small and large masses for spin-torsion

coupling and energy-curvature coupling. We have noted that there also appears to be a symmetry in that the energy-

curvature coupling is effectively infinite while the spin-torsion coupling is very short-ranged near the Planck length.

Needless to say, the geometrical cancellation mechanism for divergent energies we have proposed here also dispels

the need for mass-renormalization, since we have obtained finite solutions for rx taming the infinities. Thus both

classical and quantum electrodynamics appear to be more complete with torsion contributions included.
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Appendix A: Calculations of Fermion Radii using Wolfram Mathematica

In this appendix we explain how we used the arbitrary-precision in Mathematica to solve the numerical equations

out to 24 significant figures. Each equation displayed below — derived from our central equation (33) — is simplified

so that only the numerical factors have to be used, since the dimensional units cancel out, leaving lengths in meters.

For decimal factors, the numbers must be padded out to 26 digits with zeros. Then the numerical part of electrostatic

energy density is defined as A and the numerical part of spin energy density is defined as B, just as in eq. (44) above.

These are then used throughout to perform the calculations. For the values of various physical constants involved in the

calculations we have used the 2014 CODATA values, Ref. [24], and values from the Particle Data Group, Ref. [25].

Calculation of the Cancellation Radius for Charged Leptons using Formula (33):

ln(16e)α~c

2π
r2t −

3 πG~2

2c2
= 0 (A1)

A:=N [ln(16e) (7.2973525664000000000000000× 10−3)(1.0545718000000000000000000× 10−34)

× (2.9979245800000000000000000× 108)/(2π), 26];

B:=N [(3π(6.6740800000000000000000000× 10−11)(1.0545718001391130000000000× 10−34)2)/

(2 (2.9979245800000000000000000× 108)2), 26];

N [Solve[A ∗ r2t −B == 0, rt], 26] //Last

{rt → 5.30042667383830634827564 × 10−34}

Calculation of Radius re of Electron and Positron

ln(16e)α~c

2π
− 3πG~2

2c2r2e
−mec

2re = 0 (A2)

C1:=N [(9.1093835600000000000000000× 10−31)((2.9979245800000000000000000× 108)2), 26];

N
[

Solve
[(

A− B
/(

r2e
))

− C1 ∗ re == 0, re
]

, 26
]

//Last

{re → 5.30042667383830634910588 ×10−34}
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Calculation of Radius rµ of Muon and Anti-Muon

ln(16e)α~c

2π
− 3πG~2

2c2r2µ
−mµc

2rµ = 0 (A3)

C2:=N [(1.8835315940000000000000000 ∗ 10−28)((2.9979245800000000000000000 ∗ 108)2), 26];
N
[

Solve
[(

−A+B
/

(r2µ)
)

− C2 ∗ rµ == 0, rµ
]

, 26
]

//Last

{rµ → 5.30042667383830651994161× 10−34}

Calculation of Radius rτ of Tau and Anti-Tau

ln(16e)α~c

2π
− 3 πG~2

2c2r2τ
−mτc

2rτ = 0 (A4)

C3:=N [(3.1674700000000000000000000× 10−27)((2.9979245800000000000000000 ∗ 108)2), 26];
N
[

Solve
[(

−A+B
/(

r2τ
))

− C3 ∗ rτ == 0, rτ
]

, 26
]

//Last

{rτ → 5.30042667383830923512287 ×10−34}

Calculation of the Cancellation Radius for (2e/3) Quarks using Formula (50):

4 ln(16e)α~c

9(2π)
+
αs~c

3
− 3πG~2

2c2r2qt
= 0. (A5)

D:=N [(1/3)(1/10)(1.0545718000000000000000000× 10−34)(2.9979245800000000000000000× 108), 26];

N
[

Solve[((4/9)A+D) ∗ r2qt −B == 0, rqt], 26
]

//Last

{rqt → 1.86790525013708085628559 ×10−34}

Calculation of Radius rtq of Top Quark:

4 ln(16e)α~c

9(2π)
+
αs~c

3
− 3πG~2

2c2r2tq
−mtc

2rtq = 0 (A6)

E:=N [(3.0877000000000000000000000× 10−25)((2.9979245800000000000000000× 108)2), 26];

N [Solve[
(

(4/9)A+D −B
/(

r2tq
))

− E ∗ rtq == 0, rtq], 26] //Last

{rtq → 1.86790525013708519661246 ×10−34}

Appendix B: Miscellaneous Derivations for S-matrix Evaluation

Since the initial and final momenta are the same in the rest frame, the Dirac delta function can be split into space

and time components, and then, together with E = m = ω = 2π/t, where ω is angular frequency, it evaluates to

δ4(pf − pi) = δ4(m, 0) =

∫

d3r

(2π)3
ei·(p=0)·r

∫

dt

2π
eiEt =

r3 t

(2π)4
, (B1)

where r is a 3-vector and the time-dependence of the exponential is unity.
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The derivation for eq.(13) in the rest frame is as follows. From eqs.(6) and (11) we have

S
(2)
fi (E) = −i(2π)4δ4(pf − pi)

√

m2

EiEf

1

r3
ū(pf , sf )

(

3mα

2π
ln

Λ

m

)

u(pi, si),

= −i(2π)4δ4(m, 0) 1
r3
ū(m)

(

3mα

2π
ln

Λ

m

)

u(m),

= −i(2π)4 r3 t

(2π)4
1

r3
ū(m)

(

3mα

2π
ln

Λ

m

)

u(m),

= −it
(

3mα

2π
ln

Λ

m

)







1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0






,

= −it
(

3α

2π r
ln

Λ

m

)







1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0






. (B2)

For use in deriving eq.(B7) below, we begin with the fermion anticommutator,

{bi(p), b†j(p′)} = {di(p), d†j(p′)} = (2π)3
E

m
δijδ

3(p− p′), (B3)

and since there is only one electron and no positron in both the initial and final states for the rest frame and

Ei = Ef = pi = pf = m = ω = 2π/t, we have

ψ(0, t) | i〉 =
√

m

Eir3
ψ(0, t)b†i (pi) | 0〉

=

√

1

r3

∫

d3p

(2π)3

2
∑

j=1

bj(m)uj(m)e−iEtb†i (m) | 0〉

=

√

1

r3

∫

d3p

(2π)3

2
∑

j=1

uj(m)e−iEt{bj(m), b†i (m)} | 0〉

=

√

1

r3
ui(m)e−iEt,

and similarly

〈f | ψ̄(0, t) =
√

1

r3
ūf (m)e+iEt,

ψ(0, t) | i〉 =
√

1

r3
vi(m)e+iEt,

〈f | ψ̄(0, t) =
√

1

r3
v̄f (m)e−iEt, (B4)

in which the fermion anticommutator eq.(B3) was used for simplification.

The derivation for eq.(17) in the text is as follows. We begin with eq.(16),

hI(t) = − 3κ

16
(ψ̄(t)γ5γ0ψ(t))(ψ̄(t)γ

5γ0ψ(t)), (B5)

and substitute it into the first order S-Matrix, remembering that we are working in the rest frame:

S
(1)
fi (E1) = i

3κ

16

∫

d4x 〈f | (ψ̄(t)γ5γ0ψ(t))(ψ̄(t)γ5γ0ψ(t)) | i 〉. (B6)
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Switching to momentum space and using eq.(B4) above, the S-matrix expression works out to give

S
(1)
fi (E1) = i

3κ

16 r6

∫

d4 p
(

ūf(m)e+imt γ5γ0 v
i(m)e+imt v̄f (m)e−imt γ5γ0 ui(m)e−imt

)

= i
3κ

16 r6

∫

d4 p ūf (m) γ5γ0 (−1)







0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1






γ5γ0 ui(m)

= i(2π)4
3κ

16 r6
δ4(m, 0) (1)







1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0







= i
3κ r3t

16 r6







1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0







= i t
3κ

16 r3







1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0






, (B7)

where we have taken δ4(m, 0) = r3t/(2π)4 as shown above. Similarly, the S-matrix expression for the anti-fermion

works out to give

S
(1)
fi (E3) = i

3κ

16 r6

∫

d4 p
(

v̄f (m)e−imt γ5γ0 u
i(m)e−imt ūf(m)e+imt γ5γ0 vi(m)e+imt

)

= i
3κ

16 r6

∫

d4 p v̄f (m) γ5γ0







1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0






γ5γ0 vi(m)

= i(2π)4
3κ

16 r6
δ4(m, 0)(−1)







0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1







= −i t 3κ

16 r3







0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1






. (B8)

From the last two equations it is easy to see that the fermion and anti-fermion S-matrix equations are coupled similar

to that in the semi-classical derivation.

Appendix C: Semi-Classical Derivation of Charged Fermion Self-Energy

From eq.(22), in the rest frame, with natural units ~ = c = 1, we have

i γ0
∂ψ

∂t
+ qA0 γ

0ψ = mψ +
3κ

8

(

ψ̄γ5γ0ψ
)

γ5γ0ψ , (C1)
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which can be further simplified to

i





















+∂ψ1

∂t

+∂ψ2

∂t

−∂ψ3

∂t

−∂ψ4

∂t





















+ qA0



















+ψ1

+ψ2

−ψ3

−ψ4



















= m



















+ψ1

+ψ2

+ψ3

+ψ4



















− 3κ

8
{ψ∗

1ψ3 + ψ∗
2ψ4 + ψ1ψ

∗
3 + ψ2ψ

∗
4}



















−ψ3

−ψ4

+ψ1

+ψ2



















, (C2)

where we have used

γ0 =







+1 0 0 0
0 +1 0 0
0 0 −1 0
0 0 0 −1






and γ5 =







0 0 +1 0
0 0 0 +1
+1 0 0 0
0 +1 0 0






. (C3)

If we now represent the particles and anti-particles with two-component spinors ψa and ψb, respectively [21], where

ψa :=

(

ψ1

ψ2

)

and ψb :=

(

ψ3

ψ4

)

(C4)

are the two-component spinors constituting the four-component Dirac spinor, then the above equation can be written

as two coupled partial differential equations:

+ i
∂ψa
∂t

+ qA0 ψa = mψa +
3κ

8
{ψ∗

1ψ3 + ψ∗
2ψ4 + ψ1ψ

∗
3 + ψ2ψ

∗
4} ψb (C5)

− i
∂ψb
∂t

− qA0 ψb = mψb −
3κ

8
{ψ∗

1ψ3 + ψ∗
2ψ4 + ψ1ψ

∗
3 + ψ2ψ

∗
4} ψa . (C6)

Unlike the case in Dirac equation, these equations for the spinors ψa and ψb are coupled equations even in the rest

frame. They decouple in the limit when the torsion-induced axial-axial self-interaction is negligible. On the other

hand, at low energies it is reasonable to assume that, in analogy with the Dirac spinors in flat spacetime, the above

two-component spinors for free particles decouple in the rest frame, admitting plane wave solutions of the form

ψa(t) =

√

1

V
e−iEtψa(0) and ψb(t) =

√

1

V
e+iEtψb(0), (C7)

where E = m = ω = 2π/t in the rest frame as specified for eq.(B1). We now note that in the rest frame the derivative

term in the eqs. (C5) and (C6) vanishes since ψ is constant, because in the rest frame the probability of finding the

particle in a given volume at time t is one. Moreover E = 2π/t gives

ψa(t) = ψb(t). (C8)

Consequently eqs. (C5) and (C6) uncouple and simplify to

+qA0 ψa = mψa +
3κ

8
{ψ∗

1ψ1 + ψ∗
2ψ2 + ψ3ψ

∗
3 + ψ4ψ

∗
4} ψa , (C9)

−qA0 ψb = mψb −
3κ

8
{ψ∗

1ψ1 + ψ∗
2ψ2 + ψ3ψ

∗
3 + ψ4ψ

∗
4} ψb . (C10)

Substituting the ψ’s from eq. (C7) and simplifying reduces eqs. (C9) and (C10) to the following pair of equations:

+qA0ψa(0) = mψa(0) +
3κ

8
|ψ(0)|2 ψa(0) (C11)

and − qA0ψb(0) = mψb(0)−
3κ

8
|ψ(0)|2 ψb(0) . (C12)
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And since |ψ(0)|2 = 1/r3 in the rest frame, these equations can be further simplified to

+ qA0 = m+
3κ

8 r3
, (C13)

and − qA0 = m− 3κ

8 r3
. (C14)

Substituting in natural units for the scalar field A0 = V = q/(r) in the Lorentz gauge (where V is the electric potential),

and for κ = 8πG, we finally arrive at our central equations, for any electroweak fermion of charge q and mass m and

its anti-particle in the Riemann-Cartan spacetime:

q2

r
− 3πG

r3
= +m (C15)

and
q2

r
− 3πG

r3
= −m, (C16)

where r is the radial distance from q and the two equations correspond to the particle and anti-particle, respectively.

However, since the anti-fermion must satisfy (/p+m)v(p) = 0, the sign on the mass term must be changed giving for

both fermion and anti-fermion

q2

r
− 3πG

r3
= m. (C17)

Finally, replacing q with electron or positron charge and replacing ~ and c gives us eq. (24) as our central equation

for the semi-classical evaluation:

α~c

r
− 3κ(~c)2

8 r3
= mc2. (C18)
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