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Inflation by spin and torsion in Poincaré gauge theory of gravity

S. Akhshabi,∗ E. Qorani,† and F. Khajenabi‡

Department of Physics, Golestan University, P. O. Box 49138-15759, Gorgan, IRAN

In Poincaré gauge theory of gravity, in addition to mass-energy content, spin is also a source for
gravitational interactions. Although the effects of spin are negligible at low energies, they can play
a crucial role at very early universe when the spin density was very high. In this paper by choosing
a suitable Lagrangian for Poincaré gauge theory of gravity, and suitable energy-momentum and
spin density tensors, we show that the effects of spin and torsion can lead to a inflationary phase
without the need for any additional fields. No fine tuning of parameters is required in this setup.
We also calculate the scalar spectral index at the end of inflation and show that it agrees with the
most recent observational data.

PACS numbers: 98.80.-k, 98.80.Jk, 04.50.+h, 98.80.Es

I. INTRODUCTION

Based on the pioneering works of Hermann Weyl, to-
day, the standard model of particle physics is described
by a gauge theory of the non-Abelian SU(3)× SU(2)×
U(1) group. The main idea of gauge theories is that
global symmetries are not compatible with field theories
and must be replaced with local ones. For keeping physics
invariant under local symmetries, we have to introduce
some compensating fields which then will describe the
fundamental interactions. This scheme applied to the
symmetry group of standard model, accurately describe
three of the four fundamental interactions, namely elec-
tromagnetic, weak and strong nuclear force. The same
framework can also be applied to gravitational interac-
tion. In the absence of gravity, the physical world is
characterized by the theory of special relativity which
has the global Poincaré transformations as its symme-
try group. Localizing the Poincaré transformations and
demanding that the Lagrangian remains invariant under
the new local transformations, introduces two new fields
which turn out to be tetrad and spin connection fields.
These new fields (or similarly their field strengths, cur-
vature and torsion tensors) contain all the information
about the gravitational interaction. The resulting the-
ory is called Poincaré gauge theory of gravity (PGT),
which contains general relativity as a special case. The
geometry of this theory is described by Riemann-Cartan
space-time which has both curvature and torsion [1].

Throughout the paper, the Greek indices µ, ν, .. run
over 0, 1, 2, 3 and refer to the spacetime coordinates and
Latin letters i, j, ... run over 0, 1, 2, 3 and refer to the local
Lorentz (or tangent space) coordinates. In PGT tetrad
and spin connection are dynamical variables and funda-
mental geometric structures of the theory. The tetrad
field is given as the components of a set of 4 linearly in-
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dependent vectors ei = e
µ
i∂µ which form a basis in the

tangent space on every point of the manifold. The dual
of this basis ϑi = eiµdx

µ are coframes. Spin connection

Γ j
µi which is assumed to exist as an independent field

variable is related to the usual holonomic linear connec-
tion Γ ρ

µν by the relation

Γ j
µi = eνie

j
ρ Γ ρ

µν + eνi∂µe
j
ν (1)

The spacetime metric is not an independent dynamical
variable here and is related to the tetrad through the
relations

gµν = ηije
i
µe

j
ν , (2)

ei . ej = ηij (3)

The inverse of the tetrad is defined by eµi e
j
µ = δ

j
i .

Torsion and curvature are given in terms of tetrad and
spin connection as

Tµν
i = 2(∂[µe

i
ν] ) + Γi

[µ|je
j
|ν]), (4)

R
j

µνi = 2(∂[µΓ
j

ν]i + Γ j
[µ|k Γ k

|ν]i ), (5)

They also satisfy the Bianchi identities

∇[µT
i

νρ] ≡ R i
[µνρ] , (6)

∇[µR
ij

νρ] ≡ 0. (7)

General structure and physically acceptable Lagrangians
of PGT have been extensively studied in the literature,
see for example [2–4]. In [4] it has been argued that in
the class of theories described by R+R2 Lagrangian, one
can evaluate the torsion in terms of the spin tensor. The
general Lagrangian of Poincaré gauge theory of gravity
is a quadratic function of curvature and torsion [1]

LG = c4R+ LT + LR + c0 (8)
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Here in this paper, we will only include even parity terms
in the Lagrangian, in this case we have

LT = c1TijkT
ijk + c2TijkT

jik + c3TiT
i (9)

LR = c5R
2 + c6RijR

ij + c7RijR
ji + c8RijklR

ijkl

+c9RijklR
klij + c10(εijklR

ijkl)2 (10)

However cosmological implications of also including the
parity violating terms have been studied in [5, 6]. Field
equations are obtained by variation of Lagrangian with
respect to dynamical variables, tetrad field and spin con-
nection (or equivalently curvature and torsion). They
take the form [2, 7, 8]

∇νH
µν
i − E

µ
i = T µ

i , (11)

∇νH
µν

ij − E
µ

ij = S
µ

ij , (12)

where we have defined

H
µν

i :=
∂eLG

∂∂νeiµ
= 2

∂eLG

∂Tνµi
, (13)

Hij
µν :=

∂eLG

∂∂νΓ
ij
µ

= 2
∂eLg

∂Rνµ
ij
, (14)

and

Ei
µ := eµieLG − Tiν

jHj
νµ −Riν

jkHjk
νµ, (15)

Eij
µ := H[ij]

µ. (16)

The source terms here are energy-momentum and spin
density tensors respectively and are defined by

Ti
µ :=

∂eLM

∂eµi
, (17)

Sij
µ :=

∂eLM

∂Γµ
ij
, (18)

where LM is the matter Lagrangian and e is the deter-
minant of the tetrad.
So there are two field equations in Poincaré gauge the-

ory of gravity and their sources are energy-momentum
and spin tensors. For a thorough review of gauge theories
of gravity including PGT and its cosmological solutions
see [7].

II. COSMOLOGY OF POINCARÉ GAUGE

THEORY OF GRAVITY

In this paper we consider a Lagrangian with the form

Lg = c1TijkT
ijk+c2TijkT

jik+c3TiT
i+c4R+c5R

2 (19)

To find the field equations, first we should determine the
suitable form of energy-momentum, spin and torsion ten-
sors by using large-scale homogeneity and isotropy of the

Universe (cosmological principle). In Einestein-Cartan
theory, the special case of Poincaré gauge theory of grav-
ity, Weyssenhoff fluid is usually used to describe spin fluid
[9, 10]. However, it can be shown that the Weyssenhoff
fluid description of the spin tensor is not compatible with
cosmological principle [11–13]. In cosmological solutions
in Riemann-Cartan spacetime, where connection is as-
sumed to be independent of the metric, both the metric
and connection should satisfy the killing equation [11]

Lξgµν = 0 ; LξΓ
µ
νρ = 0 (20)

where L is the Lie derivative in the direction of ξ. By
the above argument the only non-zero components of spin
tensor are [13]

q(t) = S011 = S022 = S033 = −Si0i (21)

s(t) = S123 = S312 = S231 = S[123] (22)

Likewise, for torsion tensor

h(t) = T110 = T220 = T330 = −Ti0i (23)

f(t) = T123 = T312 = T231 = T[123] (24)

Where due to cosmological principle, q, s, h and f
can only depend on time. Moreover, similar to standard
cosmology, we assume that the energy-momentum tensor
has the form of a perfect fluid.
The dual basis (or tetrad) is assumed to be homoge-

nous and isotropic FRW type in the form of

ϑ0 = dt , ϑA = a(t)(1 +
1

4
kr2)−1dxA (25)

(k = 0,±1) , (A = 1, 2, 3)

Using equation (2), this gives the usual FRW metric

ds2 = −dt2 + a2(t)
[ dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]

(26)

By using the above definitions and equations (13-
16) the field equations are obtained by varying the La-
grangian with respect to tetrad and spin connection

12c5(M
2 −N2) + σ(2hH − h2)− (c1 + 3c2)f

2 − 2c4N

= −
1

3
ρ (27)

12c5(M
2 −N2) + σ(3h2 − 4hH − 2ḣ) + (c1 + 3c2)f

2

+2c4(2M +N) = −p (28)
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2(2c4 − σ)h− 24c5(ϕ̇− 2hϕ) = −q (29)

2(c4 − 2c1 − 6c2)f + 24c5fϕ = −s (30)

Where we have defined

H = h+
ȧ

a
; M = Ḣ +

ȧ

a
H

N = H2 +
k

a2
−

1

4
f2 ; F =

1

2
(ḟ +

ȧ

a
f)

ϕ =M +N =
1

6
R ; ψ = fH + F =

1

12
Rijklε

ijkl

σ = c1 + 3c3

Here a dot denotes differentiation with respect to time
and a(t) is the scale factor in FRW line element. The
Bianchi identities (6) and (7) have been used to simplify
the above equations. The trace of tetrad field equation
is

(c1 + 3c2 −
1

2
c4)f

2 =
1

6
(ρ− 3p) + (σ − 2c4)(ḣ+ h2

+3
ȧ

a
h)− 2c4(

ä

a
+ (

ȧ

a
)2 +

k

a2
) (31)

Furthermore, fluid equation describing the conserva-
tion of energy-momentum and spin tensors is

ρ̇+ 3
ȧ

a
(ρ+ p) = 3(sF − qM) (32)

Here we have used the definitions and notations of refer-
ence [13] (see also [14]). In addition to the above equa-
tions, one should also specify a suitable form of the equa-
tion of state p = ωρ. The first two of the field equa-
tions, e.g equations (27) and (28) can be regarded as the
PGT analogues to Einstein field equations of general rel-
ativity and can be obtained by variation of gravitational
and matter Lagrangians with respect to the tetrad field.
They have components of the energy-momentum tensor
as their source. The next two field equations (29) and
(30) however, are unique to PGT and are obtained by
variation with respect to the spin connection field. The
spin tensor components which are the source of these two
equations, can be regarded as negligible in late-time cos-
mological dynamics due to very low density of spinning
matter. However, in the early universe, when the den-
sities were extremely high, they can play a crucial role
in the dynamics. It should be noted that the spin of

particles in the early universe were most probably ran-
domly oriented and as a result will probably cancel out
when averaged over a macroscopic region. However, even
if this was the case, many of the corrections in the field
equations are quadratic in spin and will not vanish by av-
eraging procedure. As a result even in macroscopic limit,
one should expect some new dynamics due to effects of
spin in the early universe [15, 16]. The field equations
(27-30) together with the equation of state give us five
equations for seven unknown functions q, s, h , f , ρ , p
and the scale factor a(t). To proceed further in solving
the equations, one need to specify an exact model for de-
scribing the spin density tensor. Here one could proceed
in several ways. One way is to specify exact equation
of state parameter for the spin functions q and s in the
form of q = ωqρ and s = ωsρ. This will bring down the
number of independent parameters to five and allow us
to solve the system of equations, however the choice of
equation of state parameters in this method is quite ar-
bitrary and we will not employ it here. Instead one could
treat spin functions q and s as macroscopically averaged
quantities and perform the averaging procedure to get
a specific relation between q , s and ρ. One assumes a
universe filled with unpolarized particles of spin 1

2 , then
using the averaging procedure given in references [16, 17]
we have

σ2 =
1

2
〈SijkS

ijk〉 =
1

8
~
2A−2/(1+ω)

ω ρ2/(1+ω) (33)

where ω is the equation of state of the perfect fluid and
Aω is a dimensional constant depending on ω. Applying
this relation to the spin tensor given by (21) and (22),
gives us the relation between q , s and ρ. Assuming that
q and s are macroscopically averaged quantities, equation
(33) gives

q2 + s2 =
1

48
~
2A−2/(1+ω)

ω ρ2/(1+ω) (34)

One can also follow the method described in reference
[12] and describe the spinning particles quantum me-
chanically, i.e. with a Dirac field. In this method the
macroscopic average of the spin density is obtained by
the relativistic Wigner function formalism. The macro-
scopic spin density tensor is given in this model by

Sµνρ = ǫµνρτSτ (35)

where ǫµνρτ is four-dimensional Levi-Civita tensor and
Sτ is macroscopic spin vector field defined in equation
(3.25) in reference [12]. Applying equation (35) to (21)
and (22) and noting that the spin tensor defined in (35) is
a completely antisymmetric tensor, we conclude that the
spin function q(t) should be zero in this model. In the
next section we solve the set of equations (27-30) together
with the equation of state and relation (34) to determine
seven unknown functions. To bring the number of equa-
tions to seven, we impose the condition M = N , which
ensures that the tetrad field equation leads to the usual



4

Einstein’s equation of GR in the appropriate limit [13].
Equations (31) and (32) can be used to simplify the field
equations.
We are interested in the dynamics of the early universe,

specially the inflation era. The analysis is done using the
most general assumptions.

III. DYNAMICS OF EARLY UNIVERSE AND

INFLATIONARY EPOCH

Usually studying the role of spin in the dynamics
of early universe has been done in the framework of
Einstein-Cartan theory using a Weyssenhoff fluid to de-
scribe the spin density tensor [16, 18–21]. It has been
shown that by using a suitable spin fluid in Einestein-
Cartan theory, we get to an inflationary epoch, how-
ever in this framework the fine tuning of parameters is
required [16]. Also inflationary solutions in PGT has
been studied in [22] but with the assumption of vanish-
ing spin tensor. Here we show that in PGT using the
Lagrangian in the form of (11), the effects of spin and
torsion cause the Universe to enter an inflationary epoch
with a wide range of parameters. Also, using the as-
sumption of vanishing spin tensor at late times, it has
been shown that Poincaré gauge theory of gravity is also
able to explain present time accelerated expansion of the
universe [5, 8, 23–25].

A. Numerical results

To find scale factor and other parameters we set

k = 0, c1 = 0.025, c2 = 0.05,

c3 = −0.1 c4 = 0.5, c5 = 10−4

This choice corresponds to the so-called ’scalar torsion
mode’ which has spin and parity 0+ [26]. For describing
density and pressure of perfect fluid we use the equation
of state of radiation-dominated Universe p = 1

3ρ in the
following numerical demonstrations, however any physi-
cally acceptable equation of state parameter leads to the
same cosmological dynamics at the very early universe.
We also use equation (33-34) with Aω = 1 to describe
macroscopically averaged spin tensor parameters . The
condition M = N leads to the following equation

5.25 ḣ+ 4.33
ä

a
+ 2.33

ȧ2

a2
+ 11.75 h

ȧ

a
+ 3.25 h2 = 0 (36)

Then, the system of equations (27-30) can be manip-
ulated to give the following relation between the scale
factor a(t) and torsion function h(t)

h =
1

2

äa+ ȧ2

aȧ
(37)

For numerical analysis of equations, we have used two
sets of initial values

a(0) = 0.001, ȧ(0) = 1, h(0) = 1

a(0) = 0.001, ȧ(0) = 1, h(0) = −1

However as can be seen from the figures, both sets of ini-
tial values will yield almost similar results. Figures (1)
shows the qualitative evolution of the scale factor a(t)
and density function ρ(t) versus the cosmic time. As we
see in figure 1, the effects of spin and torsion causes the
universe to enter an inflationary epoch where the scale
factor grows quasi-exponentially with a positive acceler-
ation. There is no need for any additional scalar (or any
other) field in this setup. The question of graceful exit
from inflation should be considered in subsequent stud-
ies, however figures (2) show that two torsion functions
h(t) and f(t) and also two spin tensor functions q(t) and
s(t) all approach zero at late times. Consequently, the
effects of spin tensor in the large-scale dynamics of the
universe will only be relevant at the very early times.
However, one should note that due to the fundamental
difference between the field equations of PGT and their
general relativistic counterparts, torsion can also effects
the late-time dynamics of the universe, as has been shown
in [5, 8, 23, 24]
One of the most important tests for any inflation-

ary model is its ability to generate nearly scale-invariant
spectrum of scalar perturbations at the end of inflation.
The scalar spectral index is given by [27]

ns(k)− 1 ≡
d lnA2

s

d ln k
(38)

where As is the amplitude of scalar perturbations at the
time of horizon crossing

As(k) ≡
4

5

H2

m2
pl|H

′ |
|k=aH (39)

and

k = aH exp[−N ] (40)

N is the number of e-folding which can be calculated by

N ≡

∫

H(t)dt (41)

Which we have obtained N = 35.11 at the end of the in-
flation. As(k) and n(k) are shown in figure (7) and (8).
As can be seen in figure (3) the scalar spectral index ap-
proaches unity at the end of inflation which is compatible
with observation that predicts nearly scale-invariant but
slightly red-tilted spectrum [28].
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FIG. 1: Evolution of scale factor a(t) and the matter density ρ(t) as function of time.

FIG. 2: Evolution of torsion functions h(t) and f(t) and spin density functions q(t) and s(t) as functions of time. They all
approach zero at late times as expected.
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FIG. 3: The amplitude of scalar perturbations As and The scalar spectral index ns as function of time. ns is almost 1 at the
time t=1.0001 which is the end of inflation as calculated by equation (25).

IV. CONCLUSION

Recently a cosmological model based on the Poincaré
gauge theory with quadratic Lagrangian has been con-
structed [8]. This model with suitable Lagrangian pa-
rameters, can explain the accelerated expansion of the
universe without the need for ’dark energy’. By extend-
ing the work to the early universe, with a non-zero spin
density tensor, we numerically solved the set of field equa-
tions of PGT and found the evolution of geometric and
matter parameters at the time of inflation. High density
of particles with spin can be considered as a source of tor-
sion in early universe. Although, because of random ori-
entation of spin of particles, the expectation value of spin
tensor may be zero, nevertheless the expectation value of
the square of the spin tensor may not be so. As a result,
the effects of torsion play a crucial role in high densi-
ties. In this paper by choosing a suitable Lagrangian for
Poincaré gauge theory of gravity and suitable spin and
torsion tensors, we have shown that the effects of spin

and torsion can lead to an inflationary epoch with expo-
nential expansion in early universe without the need for
any additional fields. One of the most fundamental test
of any cosmological model is the issue of cosmological
perturbations. The scalar spectral index in this frame-
work also approaches the Harrison-Zel’dovich spectrum
which is perfectly consistent with recent observations.
The number e-foldings at the end of the inflation is also
of the order of magnitude required to solve the problems
with standard big bang cosmology. Here in PGT, in addi-
tion to perturbation modes originating from a perturbed
coframe, there are also independent connection modes.
By studying the dynamics and spectrum of extra modes,
we can test the validity of the model against current ob-
servational date and compare the results to the standard
models. For example, the extra modes generating from
a propagating spin connection, may result in some iden-
tifiable signature in the anisotropy and non-Gaussianity
spectrum of the cosmic microwave background radiation.
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