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Abstract

We consider the model of modified gravity with dynamical torsion. This model was
previously found to have promising stability properties about various backgrounds.
Here we study the stability of linear perturbations about the self-accelerating solution.
We apply the (3 + 1)-decomposition and consider the scalar sector of perturbations.
We find that the number of degrees of freedom is equal to 2, which is the same as in
Minkowski background. However, there is at least one instability in the scalar sector, if
the value of background torsion is large enough. This does not rule out the possibility of
stable self-acceleration with torsion of the order of the effective cosmological constant.

1 Introduction

Cosmological observations show that the expansion of our Universe is accelerating. The
mechanism of acceleration is, however, not understood. One way of solving the acceleration
problem is the IR-modification of gravity.

Many IR-modified gravitational theories have been proposed, see reviews [IH6]. How-
ever, the self-accelerating solutions are often unstable because of the ghost and/or gradient
instabilities in the spectrum of the linearized perturbations.

We focus here on gravities with dynamical torsion, which are promising candidates for
the consistent infrared modified gravity. Gravity with dynamical torsion is a natural gen-
eralization of General Relativity which treats the connection and vierbein as independent
dynamical variables. The torsion is capable of propagating due to the terms in the La-
grangian quadratic in torsion and curvature. These theories are often considered in the
framework of Poincaré gauge gravities [7HI0].

The spectrum of linearized perturbations in gravities with dynamical torsion contains
additional degrees of freedom as compared to General Relativity. Not all theories from this
class are stable about Minkowski background at the linearized level. The stability about
Minkowski background was thoroughly investigated in Refs. [ITHI4] where stable models
were identified.
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Self-accelerating solutions, without explicit cosmological constant term in the action,
were found in various gravities with dynamical torsion in Refs. [I5H24]. The open question
is the stability of self-accelerating solutions in these theories, at least at the linearized level.
It is the question we address in the present paper.

Let us mention that there is another approach to make torsion propagating, so-called
f(T) gravities. These theories, as well as the cosmological solutions and perturbations about
the cosmological solutions in these theories, are widely investigated, for example, in [25H29]
and references therein.

We consider a particular model studied in Refs. [24] 30-32]. This model has nice stability
properties. Namely, it was shown that ghosts, gradient instabilities and tachyons are absent
in the Minkowski background, de Sitter and anti-de Sitter spaces and arbitrary torsionless
Einstein backgrounds of sufficiently small curvature [13] 31, 32]. The model also admits self-
accelerating solution, without explicit cosmological constant term in the action [24], with
self-acceleration due to the non-trivial connection.

In this paper we study linear perturbations about the self-accelerating solution found in
Ref. [24]. Known examples show that the most dangerous in this regard is the scalar sector
of perturbations. Therefore, we focus in this paper on the scalar sector.

The first issue to worry about is the possible existence of the Bouleware-Deser modes [33].
In other models it often happens that the Minkowski background is stable, but extra modes
appear in curved backgrounds. These modes usually have wrong sign kinetic terms. However,
this pathology is not necessary present: one famous counterexample is dARGT model [34H36].
Other dangerous features are the ghost and gradient instabilities.

This paper is organized as follows. In Section 2 we present the Lagrangian, write the
field equations and recall the earlier results. In Section 3 we derive the generalized Bianchi
identities. We introduce conformal time and perform conformal transformation in Section 4.
In Section 5 we make (3 + 1)-decomposition of perturbations. Section 6 contains our main
results. We study the scalar perturbations about the self-accelerating solution. We show
that there are no Bouleware-Deser mode in the scalar sector. The number of dynamical
degrees of freedom is the same as in Minkowski background and is equal to 2. However, we
show that at least one of these degrees of freedom is exponentially growing if the value of
background torsion is large enough. We conclude in Section 7.

2 The Model

We make use of the tetrad formalism and consider vierbein and connection as independent
fields. Following the notations of Refs. [24] 30H32], we denote the vierbein by ei and connec-
tion by Ajj, = —Ajip,
the tangent space indices. In tangent space basis the indices are raised and lowered using

where = (0, 1,2, 3) is the space-time index, and i, 7 = (0, 1,2, 3) are



the Minkowski metric 7;;, so we do not distinguish upper and lower tangent space indices in
what follows, if this does not lead to an ambiguity. The signature of metric is (—, +, +, +).
The action of the model is

3 3 3
S:/ d*z el , L:§(dF—aR)—I—Cg,F”F,-j+C4F”Fji+05F2+06(€'F)2, (1)

where «, @, c3, ¢4, C5, Cg are coupling constants, e = det(ei); Fji; is the curvature tensor
constructed with the connection A

I
N N 4 .
Fijkl = €.€ (au,Aiju - al/Aij,u + Aim,uAmju - Ajm,uAmiu) )
Fj=n"Fyu, F=n"F F=eMFjn;
i = N Likjl =nrty, €I =¢€ ijkl 3

€ijrt is the Levi-Civita symbol defined in such a way that €”?* = —eg03 = 1; Ryjp is the
Riemannian curvature tensor,

— kv .
Rijkl = €L (a,uwiju - auwij,u + WimpWmjiy — wjm,uwmiu) )
kl ij
Rij=n"Rigji, R=n"Ry;,

where w;j, is the Riemannian spin-connection. It is expressed in terms of the vierbein as
follows:

1
k k

where
_ K
Cij. = €} ep(Opein — Opeiy) -

Its relation to Christoffel symbols is
Wiy = =LY eres, — ei,0,e”
ijp = L ua€i Civ — €pOuC; -
The connection A;;, can be represented as a sum
Aijp = Wiju + Kiju

where Kj;, is the contorsion tensor.
We impose the following conditions on the couplings:

c3 # ¢4, (2)
C3+cy = —305 y (3)
a<0, a>0, <0, ¢>0. (4)

The reason for imposing the condition (2)) will become clear in Sec. [, while the conditions ()
and (4)) ensure that there are only healthy degrees of freedom in the Minkowski background
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[T1H14) 30}, 31]. It was shown in Ref. [31] that the strength of the gravitational interaction
between the energy-momentum tensors is govered by the parameters a and a. We assume

that |a| ~ &, and hence
o ~ G ~ M, (5)

In Ref. [32] it was found that there are three propagating modes at the linearized level in
the Minkowski background: the massless spin-2 mode, the massive spin-2 mode with mass

— _ 6
mn 2acs (6)

and the massive spin-0 mode with mass

.«
_1606.

m (7)
There are no ghosts or tachyons in the Minkowski background. It was also shown that in the
theory equipped with the cosmological constant, the perturbations are healthy in maximally
symmetric backgrounds, as well as in torsionless Einstein backgrounds of sufficiently small
curvature.

There are two sets of field equations in our model. One consists of the gravitational field
equations obtained by varying the action with respect to vierbein,

2 2 2
+ ¢y (FipFrj + Fi Fraj) + 2c5 F F;

5 3. 1 3 1
Gij =50 (Fz’j - _nijF) — o (Rij - —77in) + ¢3 (Frilj + FraFlay)

1
+ 2¢6€k1mi Frimj (€ - F') — §7h‘jL(2) =0, (8)

where
L(2) = CgFijFij + C4F’Z‘jF’ji + C5F2 + 06(6 . F)2

is the part in the Lagrangian which is bilinear in Fj;;. Another set of equations is obtained
by varying the action with respect to the connection A;;,,,

3 3
+ 4cg€ijmDm(€ - F) + Sijr =0, 9)

. 2 2
Tow =Higi + { {mk (Dijm - —DjP) - Dink] - [njk (Dmﬂm - —DiP) - D]-Pik] }

where P;; and P are defined as follows:

Py = c3Fij + caFj;
P = UijPij ;



the covariant derivative D; involves the connection A;;,,,
D;Bj = ¢ D, Bj = ¢;(9,B; — A, B1)

Sijk is defined as follows:

2 2
Sijk = 3_&Hmnk (nsz)jn - ,r]ijZTL - gnzmnjnp + 206€ijmn(€ ' F)) )

and H;jj, is written in terms of contorsion:

2
ﬁHz’jk = Kinj — Kjpi — Kumjr + Kjuni - (10)
The emergence of this object is clarified in Appendix A.

Note that because of invariance of the action under space-time gauge transformations and
infinitesimal local Lorentz transformations, not all of the field equations are independent.
In Ref. [31] it was shown that the model (I) admits a self-accelerating cosmological

solution with spatially flat metric,
68 =1, e= e/vég , o Agas = fa 0 Asie = 940z » (11)

with time-independent A, f and g, where a,a = (1,2, 3), tilde denotes tangent space indices,
and space-time indices do not have tilde. The parameters A, f, g and «, &, c5, ¢g are related
as follows,

aiaf + al)
602 — 472)(af2 — arf — 2an?) |
G[2af? + Mfa + \2(G — 2a))]
“ = INO+2) (20 — Mfa —2a07) (12)
20N =GN
«

Cg —

In this paper we consider the case of small A and large enough f,
f> Aog® A, (13)

where A is the initial amplitude of perturbation, see Sec. [6l In this case, the small value of
the effective cosmological constant A is obtained provided that there is a hierarchy between
the dimensionless couplings: to the leading order in A

« (0%

_)\64—.]03 , C5 = W . (14)
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In the small-\ limit the parameters f, g and A are related to the couplings as follows:

&1/2
f= 4(—c5cq)1/4
g==xf+0(}))

Note that eq. (I4) implies that the overall scale || enters the action (II) as a pre-factor.
This implies that the equations for perturbations, written in terms of f, g and A, involve the
ratio &/« and not & and « themselves. The same property holds for dispersion relations.

3 Generalized Bianchi Identities

Let us obtain the identities relating field equations with each other. The reasoning is similar
to that used for deriving the Bianchi identities in General Relativity.

The first identity follows from the invariance under space-time gauge transformations.
Making an infinitesimal gauge transformation, ' = z* + £*, we find the variations of eZ
and A;j,:

del, = = 0xel, — €40,6 = = Vel — eV, (15)
0Aiju = = AV = VA, (16)
where V, is the covariant derivative involving the Christoffel symbols,
Ve, = d,e, — Fiweg .

Varying the action with respect to e/, and Ay, of the form (I5), (I6) we find, after integrating
by parts, the following identity:

- 2Qikekuvueiu - 2vl/(gAikekueiu) - ekVVuAijuﬁjk + VV(ekVAijuﬁjk) =0 (17)

(see egs. (8) and (@) for definition of G;; and T;;). The left hand side of eq. (I7) contains
one free index .

Another two identities come from the local Lorentz invariance. The model discussed is a
gauge theory with Lorentz group as a gauge group. The variations of ez and A;;, under the
infinitesimal Lorentz transformation are

56? = wije’j s (18)

0Aiju = —Ouwij + wipApju — WipApip (19)



where w;; = —wj; are the parameters of transformation. The invariance of the action under
this transformation gives another identity,

A

(Gij — Gji) + Vu(Tijne™) + 2" (Tow Ajpy — TipeAipy) = 0. (20)

The left hand side of eq. (20) contains two free indices, i and j, and is antisymmetric in
them.

As a result, we have two sets of generalized Bianchi identities, which relate the field
equations () and (@) with each other.

4 Extracting Conformal Factor from Vierbein

The purpose of this paper is to study small perturbations about self-accelerating background
(). To this end, we define conformal time,

1
At At
t= .
Ui /e d )\e

We work with conformal time in what follows and denote by prime the derivative with respect
to it. At this point it is convenient to change the notation. We denote the vierbein of the
original theory by ¢!, and then write,

&, = ed’ei , €= e_‘z’e]’f ) (21)
where 1
¢ = alm) =~ (22)
Note that
¢ = Xe? .

We do not make any scaling of connection, and keep the notation A;;, unchanged. Upon
the conformal transformation (21I), the background (II]) is written in terms of ei and A;j,
as follows::

ei = 5L o Agay = fa, A = e‘z’gadgc ) (23)

abc
Now, R;; and R transform under the conformal transformation (2I]) as follows:
Ri; =e™ (Rij — 2!’V V6 — 019"V .V ¢

+26’;6; “géa,,qb — 2mjg“”8“¢8,,¢) ,
R=c"%(R—6g"V,V,¢— 6¢",00,0) ,



i

I

i

where R;; is constructed with €,

while R;;, V,, and g,, = €],e;, are constructed with e,.

The original curvature Fj;p; is

A

—2
Fiji=e *Fyu

where Fj;i; is constructed using ei and A;j,.
The gravity equation (8) then reads,

3. _ 1 3 1
ij = 5ae 20 <Fij - §nijF) — 5ae 2¢ <RU - 577in>

+e ey (FyFrj + FaFray) + e *%cy (FiFrj + FirFraj) + 2e*%cs F

1
+ 267" Conimi Framy (€ - F) — e oy L + A =0, (24)
where
AG) = _ 362 [—2ee"V Vb — 139"V Vb + 28¢5 0,00, — 207i59" 0,0, b
ij 2 i€ VuVu Nij 9 Vv i €50uP0y Ni;9" OpPOy

—ij (=39""'V Vo — 3¢"0,00,0)] .

A simple way to obtain the new version of the torsion equation is to plug the vierbein (21])
into the action, and vary with respect to A;j,. Then the torsion equation is

2 2
+ 46_3¢066ijkmDm(6 . F) + e_3¢5ijk + e_¢Hijk + Az(;rk) =0 ’ (25)

where
AEJTk) = 3qe? (mke’jﬁuqﬁ — njkeﬁ‘ﬁugb) )

5 Perturbations about Self-accelerating Solution: 341
Decomposition

To study the linear perturbations about the self-accelerating background (23]), it is convenient
to make the 3-dimensional Fourier decomposition. We use the same notation for the Fourier-
transformed variables and replace spatial derivatives 0; = €40, with ik, where k is the
3-dimensional momentum. Since the background (23)) is invariant under spatial rotations,
it is natural to use (3 + 1)-decomposition of perturbations. As usual, this means that
we decompose any 3-dimensional tensor into its irreducible components with respect to the
small group SO(2) of rotations around the spatial momentum. These irreducible components
form sectors with particular helicities: scalar sector (helicity-0), vector sector (helicity-1) and



tensor sector (helicity-2). Since the field equations are linear, these sectors can be considered
separately.

After conformal transformation, the background vierbein in (23)) is trivial, so we do not
distinguish space-time and Lorentz indices in (3 + 1)-decomposition of perturbations. These
indices are raised and lowered with Minkowski metric, while spatial indices are contracted
with FEuclidean metric.

5.1 Perturbation of connection
The full contorsion tensor can be written as follows,
Kijr = Kiji ) + Kijre

where Kjji o) = € Kiju©0) = €, (Aiju0) — Wiju 0)) = €, Aiju (o) is the background quantity
constructed from (23) and k;jj is the first-order perturbation. Let us decompose the first
order contorsion tensor k;;; into its helicity components.

Tensor k;ji, = —kjir contains helicity 0, 1, 2 components only. The helicity-2 components
form the tensor sector:

kOab = _kaOb = Tab »
kabc - kaNbc - kbNac )
where 7,, and N,, are symmetric, transverse and traceless. All other components of k;j

vanish in the tensor sector.
The non-vanishing helicity-1 components of contorsion are

kOaO = _kaOO = Ca )
kOab - _kaOb = kayb + kbua )
kavo = kaky — kpka ,

kabc = kakcab - kbkcaa + nacLb - nbcLa .
All 3-vectors here are transverse. The helicity-0 components form the scalar sector:

koao = —kaoo = koS

koab = —kaop = kakpX + 0ab0 + €avckep

Koo = €avckct

kabe = €apakcka@ + (Ka€hed — kv€acd)katt + (kabbe — kpdac) M .
There are altogether 24 components of tensor k;;;. They break up into the 4 tensor com-
ponents (two components in each of 7., and N,), 12 components in the vector sector (two

components in each of the six transverse vectors (,, Va4, fa, Ka, Qq and L,) and 8 scalar
components (£, x, o, p, 0, Q, uw and M).



5.2 Perturbations of vierbein: gauge choice

After conformal transformation for the vierbein (2I]) we have
i osio i
€, =0,+¢€,,
where EL is the first-order quantity. Since the contraction of eL should give the Minkowski
metric,
eiueg = Mij >

one has the following expression for eé-‘ ,

e = — €00 (26)

It is worth noting that the local Lorentz invariance described in Sec. [3] can be used to make
€, symmetric: the local Lorentz transformation (I8]) adds to €;, an antisymmetric parameter
w;,. We use the gauge

e = €y
in what follows. This completely fixes the freedom under the Lorentz gauge transformations.

Then the expression (20) can be written as

B spo_ o p n
e; =0; —€; , where €

= V.
j =1 €y,

and the metric perturbation is
hyw = eiew — N = 26,
Furthermore, the space-time gauge invariance can be used to choose the gauge
€0q — 0

and conformal Newtonian gauge.
In this gauge, the vierbein perturbations are decomposed into helicity components as
follows:

€0 = =P,
€0a = 0 s
€ab = \I](Sab + i<kaWb + kaa) + Tab 5

where W, is a transverse vector (vector sector), m,, is a transverse traceless tensor (tensor
sector), while & and ¥ belong to the scalar sector.

After gauge fixing, there are altogether 6 components of tensor €;;: 2 tensor components
in transverse traceless 7y, 2 components in vector sector coming from the transverse vector
W, and 2 scalar components ¢ and W.
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6 Scalar Sector

Our purpose is to study whether the theory exhibits the Boulware-Deser phenomenon and/or
other instabilities in self-accelerating background. The known examples show that possible
problems occur in the scalar sector of perturbations. Therefore, in this paper we study the
scalar sector.

The expressions entering the linearized field equations and manipulations with these
equations are cumbersome. We have designed a computer code to check the analytical part
of the procedure and complete the manipulations. The code is available at [37].

6.1 Field equations

The explicit expressions for the quantities Fj;u, F;;, Sijk, etc., that enter the linearized field
equations (24]), [25) are given in Appendix B. They are used to derive the independent
linearized equations in the scalar sector. It is convenient to introduce the notation

B=ae®, [=ac*, f=fe, g=ge®, A=A, (27)

where ¢(n) is defined in (22)). We begin with eq. (24)). It has two free indices, i and j. The
general form of the scalar part of its left hand side is

G i=j=
ikag(aO) ) 1= a,j =
Gij =y . . . (28)
ikaGOY i=0,7=a
6abg(6) - kakbg(k@)k) + ieabckcg(Ek) ) 1= a?j =b
where G G are scalar functions. Their explicit forms are given in eqs. (cI)) - (B

of Appendix C, where the relation (B]) is used.
Equation (25]) has three free indices, i, j, k, and is antisymmetric in 4, j. It breaks up
into the components (0a0), (ab0), (0ab) and (abc). In terms of scalar functions one has

ik T000) i=0,j=ak=0
7;Gabckc7—(abo) ) 1= auj = b7 k=0

Tije = 5 k®k) o - k : : (29)
S TO — koky THOR) e ko T (k) i=0,j=ak="0

6abc7-(5) - 6abd]{;ckd7—(6k®k) + i((sackb - 6bcka)7-(6®k) ) 1= auj = b7 k =c

To write this decomposition, the following identity is instrumental,

k.k k
€abe = Eabdk—Qd + (kaEde - kbeaCd) k,_;l .
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Thus, eq. (25) leads to 8 linear equations, eqs. (7)) - (cI4). Their explicit form is given in
Appendix C.
In total we have 14 field equations: 6 of them are second order in time derivatives and 8

are first order, see Appendix C. The second order equations are eqs. (c3), (€9), (cI0), (cII),
(cI3) and (cI4)), while the first order equations are eqs. (cIl) - (c4)), (c@) - (c8) and (cI2)).

6.2 The use of generalized Bianchi identities

Due to the generalized Bianchi identities, not all of the field equations are independent. To
see which equations may be safely ignored, let us write the generalized Bianchi identities
n (3 4 1)-decomposition. The identity (I7) gives two non-trivial identities for 4 = 0 and
for y = a, the latter being proportional to k,. The identity (20) gives two other identities,
one for (7,7) = (0,a) and another for (i, j) = (a,b), which are proportional to k, and €gpcke,
respectively.

Recall that we have made the conformal transformation (2IJ), while Bianchi identities
(I7), (20) are written before the conformal transformation. In particular, .C’;ij and 7} in ([I7),
(20)) are the left hand sides of the general equations (§)) and (), while we are working with
equations (24)), (25) which we have derived after extracting the conformal factor.

After conformal transformation we get the identity (7)) with p = 0:

Qg(aO)k2 _ 2Ag(00) + 6Ag(5) + 2(g(00))/ o 2Ag(k®k)k2 + 6Af7—(5)
— 6AgT© — 2Afl{:27(k®k) + 2Agk2T(k®k) = | (30)
and with p = a (which is proportional to k,):

—2G®) 4 2(GOY 1 29T — 2T 4 2f(T 00y — og(T (@O
‘l’ 2g(k®k)k2 + ka,QT(k®k) _ 2gk2T(€k‘®k‘) _ 2Ag7‘(ab0) ‘l’ 2AfT(0a0) = 0 ) (31)

The identity (20) breaks up into 2 scalar identities: with i = a, j = 0 (which is proportional
to kg):

g(Oa) . g(aO) . T(k@k)k2 + 2fT(5®k) + QgT(ek) . (T(an))/ + 7—(5) =0 ’ (32)
and with ¢ = a, j = b (which is proportional to €gp.k.):
T(ek@k)k2 + QfT(Ek) . 297'(5®k) . 2g(ek) . T(e) + (T(abO))/ =0. (33)

Here G+ and T+ are the left hand sides of the field equations, as defined in (28) and (29),
and their explicit forms are given in eqs. (cI) - (cI4). We continue to use the notation (27]).

Thus, we have 4 scalar identities. The system (B0)-(B3) can be used to express G,
T kek) 7Ok and T (eqs. (cB), (€9), (cI3) and (cId), respectively) in terms of other
components. Therefore, eqs. (chl), (c9), (cI3) and (cI4) (which are second order) can be
ignored.

12



6.3 Number of propagating modes

In Minkowski background, the scalar sector has two propagating modes. One of them is the
Lorentz scalar of mass ([7), and another is helicity-0 part of the spin-2 excitation of mass
([6). The purpose of this Section is to show that the scalar sector about the self-accelerating
solution (III) also has two modes. Thus, the Bouleware-Deser phenomenon does not occur.
In this paper we do not consider a special case c3 = ¢4, i.e. we impose the condition (2J),

which implies
2¢3 # —3cs . (34)

We will see in due course that the case c3 = ¢4 = —305 is special and requires separate
treatment which we do not attempt in this paper.

Let us study the system of 10 equations: (cIl) - (c4), (@) - (€8), (cI0) - (cI2). Two of

these equations, (cI0) and (cIl), are second order. However, we can replace them by first
order equations. To this end, we combine 7, eq. (cI0) and 7(*) eq. (cII) with remaining
equations and their time derivatives in the following way:

L
2Af
_ k2g(a0) _ 2Ak‘2g(k®k) . (g(OO))/ + 3A2gT(ab0)

+2AgR> T 4 3Ag(T )] (35)

D(l) = 37’(5) _ [Ag(oo) o 3A(g(0a))/ . 3A2fT(0a0) B 3Af(7—(0a0))/

and

1
Afk?
— 3gA(GO)) — g(GI) — BgAP T — 3gAF(TOV)) — gh?G(«”
—2gAK2GHER) | gA2G2T(ab0) | o\ g2 2T (eh@R) 4 3Ag2(7-(ab0))/] ‘ (36)

D) = o7 (eh) _

[2Afk?2T(ab0) . 2f2Ak‘2T(Ek®k) . 2Afk?2(T(ek®k)), + gAg(OO)

These are first order equations. Their explicit forms are given in Appendix D, eqs. (dI),

(d2). Therefore, at this stage we have 10 first order equations, (cI) - (c4)), (<)) - (c8), (cI2),
(d1), (d2), for 10 variables describing scalar perturbations.

The variables in the resulting system of equations are of two types. The variables of the

first group,
o 7 @ ) 5 ) 9 Y (37)

enter these equations without time derivatives. The variables of the second group,

\I]7X7p7Q7u7M7 (38)

enter with first time derivatives.
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Remarkably, two linear combinations of the 10 equations are actually algebraic and in-
volve only the variables (38). One of these combinations is

A[2(3¢s + 2¢3) + 96¢6]g(A — 2§)2fcs
+ (=35 — 203>{ (%g“)m — T Agk? + GOINR? — gA) [4es (P — g° — Af) — 3]
ANk (GO — g<a°>)} ~0, (39)
where
A = AT | 3 (Tmam A+ %Q(OO) a0 p g 4 goa) A) ,

Note that due to the condition (B4]), the second term in eq. ([B9) does not vanish. The
combination (2c3 + 3c¢;) will appear repeatedly in formulas that follow. Thus, the case
C3 = C4 = —305 is special indeed.

Another algebraic equation comes from the linear combination of eqs. (cIl) - (c4)), (@) -

), (c12), (dI):

4f03 c 2 AN 2 .
{2+ s 617 — AR — L4 — 2)

(203 + 305)} (D — BQ)

36— 4 — gY)es

33
* {Q —Adesk® 4 3 - Co 2 deg (392 — k?)
+2(3c5 + 2¢3)[24esf — (96¢6 + 4es) (A — 2f)]

_12fes[38 + 6es (2 + FA — %) — 4es(* — A — 0)] |
392 — k2

125(7 — g%)es (3¢5 + 24ce)g’cs (@ L et 24c6> 126522 ]

g=0, (40)

where
24¢5(3e3 + 2¢5) (A + 2f)
576c6g2 — (3¢5 1 24c6)2g2/ (4cs) + 98B — B)/B
P 1 8fcy + 12fcs + 192feq — 4Acs — 6Acs — 96Acg (—gT(Ek@’k) N 2k* T<°“°>)
3 B(3g? — k?) 3
16g2cs + 9g%cs — 2k%cs — 3k3cs

Q

(a0) _ ~(0a)
3 B(3g> — k?) g
- —12§2ges + 18f2gcs + 12fgAcy +2 18ngc5 + 12g°c3 — 18g%¢cs + 993 <T(0a0) B 12 gT<Ek®k))
3g° — k 2k
24g%cs + 36g°cs — 8k2cy — 12k2c5g(6k)
392 — k2 ’
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B + 33 Aﬂ—(oao) — 38AgT ) _ 98k T (kER)

1
“ 73 (
—24fDW) — 6fBQ(°“)> + i’—i(m + 8fcs + 2Acq) T
6
L1 66f2gk2cs + 48652gk2cs — 128g°k2cs + 4Bgkc + 48F2gk2 feg -
4 c6fB(3g* — k?)
N 1 98fg%cs + 7287g%cs + 188g°Acs — 68k*Acs + T2fg° Bes T0a0)
4 c6B(3g% — k2)

So, we have 2 algebraic equations (39), ([#0) involving the variables ([B8]) only, and 8 first
order equations in which the variables (37)) enter without time derivatives. Therefore, one
can make use of egs. (B9), (@0) to express 2 variables from the set (88) (M and p) in terms of
four remaining variables from this set (U, x, @, u); importantly, these expressions for M and
p are algebraic, i.e. they do not involve their derivatives. 4 of these remaining 8 equations
are used to express o, ®, £, 6 (the variables that enter the whole set of equations without
time derivatives) in terms of W, y, @, u and their first time derivatives. There remain 4
first order equations for the 4 variables (¥, x, @, u). Thus, we have 2 degrees of freedom,
the same number as in the Minkowski background. We conclude that the self-accelerating
background does not exhibit the Boulware-Deser phenomenon.

In practice, it is convenient to express o, &, ®, 0 from egs. (), (cd)), () and (§),
respectively, and substitute these into equations

eV =@, £¥=WD, (41)
and the following linear combinations of the field equations:

£®) E%zf(@) _ (5/”;\7%%2@) + Qf(]aj) ,

—2(—4k*§b — 6k*f + 3AF%b — 6Ak%b — 9AK?

— 2f(20 + 3)(d1) + (2[)173)/%2(@2[) , (42)

where
=2 ,
Cs
(c2) denotes the left hand side of eq. (c2l), etc. After that we express M, p, M’ and p'
from the algebraic equations (B89), (40) and their time derivatives, and substitute these in
equations E1), €@ £6) €@ Thus, our linearized system reduces to the four first order

equations EW, €2 £B) €M@ written in terms of variables ¥, v, @, U.
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6.4 Limit of small A

Let us now consider the limit of small A\ and not so small f, eq. (I3). In this case the
parameters c; and cg scale with A as given by (I4]). We also assume that |c3| ~ |c4| ~ |cs5],
see ().
The relations between g, cs5, ¢g and A, §, 3, B have the same form as in eq. (I2), with the
substitution
f—1, a— [, etc

In what follows we make use of these relations, and write equations in terms of (time-
dependent) parameters are A, f, 3, (. Tt is worth noting that we will encounter cancellations,
so the leading order expressions (I4)) are not always sufficient. The higher order expressions
are obtained by making use of the code [37].

Now, consider the limit in which A is the smallest parameter of the problem. For small
A, parameters §, g, A, 3, 3 have slow dependence on time. We seek for solutions in the WKB
form F ~ e/« where F is any of the variables U, y, Q, u, and

WA, k= kok, > A% (43)
Then the time derivative is replaced by
O = iw .

In this way we obtain the system of 4 linear homogeneous algebraic equations (41l), (42))
for ¥, x, @, u, which determine the dispersion relations w; = w;(k),7 = 1,...,4. Equating
the determinant of the system to zero we get a fourth order equation for w. To see that
there are exponentially growing modes, we consider two ranges of momenta,

k2 < Af (44)

and

5
PA < k' < fK : (45)
Note that k is conformal momentum, while A and f are conformally related to the physical
parameters of the solution. Equation (44]), written in physical terms, is

k 2
— | K< Af,
(atm) <
and similarly for (45).

We are going to see that in the range ([44]) there are instabilities
i A3f

w~—iK and w~ —\/—,

k2

16



while in range ([43]) there are instabilities

2
w~—if—.

A
We first consider the case ([@H). The fourth order equation for w (obtained by equating

the determinant to zero), to the leading order in A, is:

— (108§D + 72'0* + 45°k* + 18f*0°k* + 51§°bk* — 2bk" — 3K™)(6§° + k*)w'A?

— i(=3k" + 277k — 20" + 3370k + 360 + 14720°k? + 24§'0%) (6 + K*)f*w’A

— 2§%(6§% + k%) (20 + 3) (120 + bk* + 3k*)w? + 8i(12% + bk* + 3Kk*)(2b + 3)K*FPwA

— 87 (18* — k) (20 + 3)(12f°b + bk* + 3k*)A* = 0 . (46)
This expression is obtained by making use of the code [37] and accounts for cancellations
between dominant terms in A. Equation (46)) is fourth order in w, so there are formally 4
roots. Some of these roots may not obey w > A, which is our original assumption, see (43]).
Our approach is to find all 4 roots of eq. (46]) and then figure out the roots obeying w > A.

In this way we gain confidence that no relevant solutions to eq. (@@l are lost. To this end,
we consider limiting cases.

e w < A. Then all the terms containing w are small and eq. (46]) is simply:
— 8f%(18§* — k?)(2b + 3)(12°b + bk* + 3k*)A? = 0 (47)
Equation (7)) does not involve w, so there are no roots.
e w~ A. In this case eq. (46]) becomes quadratic,

— 296§ + k*) (20 + 3)(12%b + bk? + 3k*)w?
+ 8i(12§%b + bk* + 3k?)(2b + 3)k*Fo'wA
— 8F9(18% — k%)(2b + 3)(12*b + bk* + 3K*)A* = 0 ,

and has two roots:

k2 4+ 2/27F% + 32k2
W12 = 7 f i f K A
’ 672 + k2
These roots, however, do not obey w > A and thus are irrelevant.

o A< w< I Then wA < 2 and
WA < W, WwA? < W
In eq. (6]), only the third term survives, and we have simply
— 2§9(6§* + k%) (20 + 3)(12f°b + bk* + 3k*)w?* =0 .

There are no roots.
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o W~ % In this case terms proportional to wA and A% are much smaller than others,
and eq. (46) has the following form:

— (108§*b + T2§*b? + 45§%k? + 18§2b*k* + 51F2bk* — 20k* — 3k*)(6§% + k*)w*A?
—i(—3k* + 271%k? — 20k* + 33§2bk* + 36§*b + 14§2b°k? 4 24§'6%) (6% + k)W A

— 2§9(6% + k) (20 + 3)(12§%b + bk* + 3K*)w® = 0 . (48)
Equation (8] has two roots:
f2
= i 4
W3 ’LA y ( 9)

o (12§20 + bk* + 3k*)(2b + 3)f*
1T TUA(108§4b + 727402 + 45§2k2 + 18f262k2 + 5112bk> — 2bk* — 3k4)

(50)

°*w> f—A2 In this case terms with w are much larger than others. Eq. (46) is:
—(108§*b + 72§*b* + 45§ k* + 18§2b*k* + 51§20k — 20k* — 3K*) (6% + kH)w?A? =0 .
It has no roots.

We see that ”frequency” ([@9), and also (B0) in a certain range of k%, are of order

2
W34 ~ —1— .

A
They are pure imaginary and correspond to instabilities.
Now let us consider the case k* < Af, eq. (@4]). To the leading order in A, the fourth
order equation for the determinant is as follows,

6bBK°w A + (5bBK" + 38kY)A2W® + 24bBK*Wf!
+ 8AF Bk w + 864bBA%° = 0 . (51)
Let us again consider limiting cases.
e w < A. In this case the term of zeroth order in w is the largest, and eq. (51) is simply
864b3A%° =0 .
So, there are no roots.

e AN K w % In this case terms with w? and w® are much larger than others, and

eq. (BI)) is:
24b[k*w*f* 4 864bBA%° = 0 .

| BFA | BFA
Wy = —6 %ZA , Wg = 6 %ZA . (52)
18
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° W~ % Then only the first and third terms in eq. (5I)) survive, and we have
608k w* A% 4 24bBK*W** = 0 .
This equation has 2 roots:
2 2 i£2
P
A A

Wy =

°w> %2 Then the first term in eq. (BI)) is the largest, and we have
6bk*WwiA2 =0 .
There are no roots.

The frequencies ws and w7 correspond to the instabilities. This completes our analysis of
momenta ([44]), ([45).

The instabilities w3, wy and w; do not necessarily kill the model. They can be sent beyond
a UV cutoff necessarily present in the model by imposing the condition

2

S
~L >
w A~ Uv

where My is the cutoff scale.
On the other hand, one cannot get rid of the instability ws. Indeed, we study background

([23), thus we have to assume that f < Myy. This means, taking into account the second
inequality of (43)), that

A
W = E\/Af<< MUV .

Thus, we cannot push it beyond the UV-cutoff. Furthermore, for low enough & (but still
k> A), the time scale of instability is short. Indeed, the case we consider in this paper is

f> Aog® A, (53)

where A is the initial amplitude of perturbation. In this case, the exponential growth of
perturbation makes it large (and non-linear) in the Hubble time.

The analysis given in this Section shows that the self-accelerating solution (23)), under
assumption (53), is unstable because of the exponentially growing mode (52]).

7 Discussion

Let us summarize the results. We studied the stability of the self-accelerating solution (1))
of the model () at the linearized level under assumptions ([2) - (). We made (3 + 1)-
decomposition of small perturbations and considered the scalar sector. We found that the
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number of degrees of freedom in the scalar sector is the same as in Minkowski background,
i.e. there are no Bouleware-Deser modes. We further studied the spectrum of perturbations
under assumptions (B and (I3]) and found the exponentially growing modes

2 [ A3
ws3,4,7 ™~ —ZfK and Wy —1 k—zf . (54)

The first instability can be pushed beyond the UV cutoff and thus is not fatal, whereas the
second one cannot be sent beyond the UV cutoff and makes this solution unstable. There
remains a possibility that the self-accelerating solution is healthy for small f ~ . Indeed,
taken at face value, the results (54]) suggest that in that case all instabilities may be slow,

2 2
W5N?<<Aa w3,4,7NKNA-

We emphasize, however, that our analysis is not valid for f ~ A, so this case needs a separate
study. Note that in this case one has g ~ A, according to the third of eq. (I2]), so the entire
background torsion is small. The small-f regime can be achieved provided that couplings
cs, cg are of order

s~ cg ~ O(N?).

We plan to turn to this case in future.
Finally, in this paper we considered the case c3 # ¢4, see ([2)). As can be seen from eq. (39)
and subsequent equations, our analysis does not apply if the condition (2) is violated, i.e.
3 3

C3=C4 = —505 or, in other words, b= —5-

In that case the dynamics of small perturbations can be significantly different.
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Appendix A

The object H;j;, emerges as follows. When varying the action with respect to A;;, one makes

use of the expression
6Ejkl = 6’,;6;/ (D,u,(SAiju — ,DI,(SAZ']‘“) s

where one can understand D,, as “total” covariant derivative,
D,uéAiju - 8H5Aij,, + Aiku(SAkju + Ajk,uéAiku - Ff;yAij)\ 5

and I'}, is Riemannian connection (Christoffel symbol). One integrates the variation of the
action by parts and encounters the expression

Dy (exer) — Dy (exer) -

One recalls that
oue; + FZAe? + wijue]”- =0,

where w;;,, is Riemannian spin connection. Now, D, involves
Aijp = wijp + Kijy
and therefore

er [P (£6}) = D, (616)] = = i

with the definition of H;j; given in (I0). So, one has
4 4 2 ku
0 d*x el | = d*x e 3—&H,~jke 0Aiju

) </ d*z €FijFij) = / d'z e [— (D;Fj, — D;jFy) + (nix D1 Fjy — nji.D; Fy)

2
+£ (HapFji — HyupFy) | €0 Ay,

etc. In this way one obtains Eq. (@).
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Appendix B
Linearized Riemannian connection for symmetric ¢;; reads (after conformal transformation):
Wijk = 5j€ik - @fjk
and therefore we have in the scalar sector
woao = —thka® ,  wWoas = —V0uy, wWao =0, wape = —i(kaOpe — kpdae) ¥ .
The linearized Ricci tensor reads
Ry = =3V — k2® , Ry, = —2ik, V', Ry = (V' + k*U) o + kaky (U + @) |

and the Ricci scalar is
R = 6V" + 4k>T + 2k*® .

The additional term in eq. (24 that emerges due to conformal transformation, to the linear

order in perturbations, breaks up into three components,

Al = _%e—w (—6¢"2® + 60'V') |

3o _ ,
AL = A =~ (2ik,¢'®) |
3
AS = —ge_%’ (— AV + 48" D + 2¢/°®) 6, -
Similarly, we have additional terms in eq. (25):

NN RNy

abc

Al — ¢=93a¢/ Db, .

Since the field equations involve terms quadratic in Fj;j;, we keep both background parts
and terms linear in perturbations. We proceed with Fj;;. The explicit calculation gives:

Foaop =0ap[€*?Nf — U — A f (U + @) + 0] + kokp[—P + X' — i¢]
+ €apcke[—ie?g® + o + e?(g€ + f0)]

Foabe =€abe[—2fg€*” + 4€*° fgU + 2e?gV' — 2g0¢”]
+ ekg€peakal—2fu]
+ (kpOae — kebap)[—1V — i fU +io + e® fM — gpe?
+ (€apakeka — €acakvka)[—ip + e (—fQ — fu—gx)],
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Faboc :eabckge%(l — (I) — \If) + Eabdkckd(Q/ — 7,9)
+ (ka(sbc - kbéac)(_z.\pl - ie¢f(1) + M, + e¢(f§ - 99))
+ (kaebcd - kb6a0d>kdul )

Fuped =(6ac0ba — 8aadpe) € (f* — ¢°)
—2We?(f2 — g?) — 2e? fU + e?(2f0 — 2k*gu)]
+ (kekaGha — kekodaa — Kakadbe + KakyGac) ¥ + M + e?(fx = 9Q + gu)]
+ (€acaky — €peaka)[—ie?gV + (fp + gM)e?] — ik*u(eapeka — €apake) -

The linearized Fj; reads:

Foo =3[’ Af — U — 2 Af(V + @) + 0'] + K*(—® + }' — i€) ,

Foo =2ko(—iV —ie f® + M' + (€ — b)) ,

Foo =2k (=1 —ie? fU +io + e® fM — gpe?) ,

Fupy =0a[—€*MNf + 0" + 2Af (U + @) — 0’ +26*(f2 — g%) — 4V (f? — ¢?)
— 4e? fU' 4 2e?(2f0 — 2k*gu) + KU 4+ ik* M + e?k*(fx — gQ + gu)]
+ kokp[® — X' + i€+ U +iM + e?(fx — gQ + gu)]
— €apeke[—ie?g® + o + e? (g€ + f0) +ic®gV — (fp+ gM)e? — ik u] .

This expressions determine also the tensor Pj; = c3fj; + c4F;. The scalars F' and € - I are

F = —6[e®\f — U — 2 Af(V + ®) + 0'] — 2k*(— + X' —i€)
+3[2e*?(f2 — g?) — 4We?(f? — g?) — 4e? fU + 2e?(2f0 — 2k gu)]
+ 4[R2+ ik2M + e®K* (fx — 9Q + gu)]
€ F =12[-2fge® + 4e* fqU + 2¢?gV’ — 2goe? + A\ge?*(1 — & — U)]
+ 4k 2u + Q' —i0 — 2ip + 2e?(— fQ — fu— gxX)] .

The scalar P is simply P = —3c¢5F.
The linearized covariant derivatives D;P;. read

DoPoo =(c3 + ¢4)[6A2fe*?(1 — U — 20) — 30" — 3\ f (V' + @)
+ 30" — k2O + k2 — k%¢

Do Py =iky(cs + c){3e*’Af(=U — ®) — 30" + 30’ + k%Y
— K20 — E%E — 3V N — AVl f 4+ 2e0 f[—e? U + o
—ie®(fM — gp+ f€—gb) — e” fO —iM']},
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Do Py =kq(cs 4 cg)[—20"i — 2*?(i® — E)(Af + f2 — ¢*)]
+ 2kqes[—ifW'e? — if U +io’ 4+ Ne® (fM — gp) + e (fM' — gp')]
+ 2kgcy[—ie? fO — i fDN?? + M" + Ne*(f€ — gf) + e (f€ — gb')],
Do Py =ky(cs 4 cg)[—20"i — 2*?(i® — E)(Af + 2 — ¢*)]
+ 2kgcs[—ifV'e? — if U + o’ 4+ Ne® (fM — gp) + e (fM' — gp')]
+ 2kqcs[—ie? fO — i fDN?? + M" + Ne*(f€ — gf) + e (f€ — gb)],

Do Py =0ap(c3 + c4)[=A2f2e3? + U 4 20%e*? f (U 4 @) + 2N f (V' + @)
— 0"+ AN (f2 — g7) — AV (f? — g%) — 8W(f? — g*)Ae*
— 223D (2f? — 297 — \f) — 4e? fU" — 4T N
+2e?(2f0’ — 2k gu’) + 20 (2f 0 — 2Kk*gu) + K2V’ + ik* M’
+ AR (fx — 9Q + gu) + ek (fX — 9@ + gu')]
+ koky(cs 4 ca)[® — X" 4+ + W +iM' + Ne*(fx — gQ + gu)
+e?(fx' — 9Q' + gu')] + €apcke(ca — c3)[—ie? g — igPAe*”
+ 0"+ e?(g€ + fO) + Xe* (g€ + fO) + ie®gV’ + ire*P gV
— (fp' + gM")e? = (fp+ gM)Ae* —ik*u']

Dy Pag =kaky, {2(c3 + ca) V' + 2icy[—ie? fU +io + e?(fM — gp)]
+ 2ics[—ie? f® + M+ e?(f€ — gf)] + 3x(c3 + cq)e® N f
+e?fles+cg)[® — X +i&+ U +iM + e (fx — gQ + gu)]
+x(cs 4 ca)e®®(2f* — 29 — Af) } + S5 + ca) {€”f(3e**Af — 30"
—3eNf(U + @) + 30" + k2 — k*® — i¢k?)
+ 3 Nf(—=V' + 0 — fe?U) + e? f[—e®Nf + 0" + 2 \f(U + D)
— o' 4+ 2e*(f* — g%) — 4V (2 — g?) — 4e? fU + 2e%(2f0 — 2k gu)
+ B2 4 ik2M 4 e®k2 (fx — 9Q + gu)]
F(—U 40— fePW)R(2f? — 27 — Af) — W[f23eMN + €2 (217 — 267 — Af)]}
+ €avcke {3p(cs + ca)e®*Af + ge?2(c3 + c4)il’
— ge?2cy[—ie? fU +io + e (fM — gp)] — ge®2cs|—ie? f® + M' 4 e?(f€ — gb)]
+ (c4 — c3)[—ie?g® + p' + e?(g€ + fO) +ie®gV — (fp + gM)e® — ik*ue? f
+p(es + ca)e®(2f% = 2g° = Af)}
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Dy Poy =kakp{2(cs + c4) V' + 2ics[—ie? fU +io + e?(fM — gp)]
+ 2icy[—ie? f® + M+ e?(f€ — g0)] + 3x(cs + cqg)e®* \f
+e?f(es+ea)[® — X +i&+ U +iM +e?(fx — gQ + gu)]
+x(cs + ca)e® (212 = 29 = Af)}
+ Sap(cs + ) {e? f[3e* N f — 3U" — 3™ Nf(U + D)
+ 30" + k2X — K*® — ilk*] + 3N f[—V + 0 — fe?V]
+ e[ Nf + U + 2 Nf (U + D) — o’ + 2e*(f? — ¢?)
— 40 (2 — g%) — 4e? [V 4 2e?(2f 0 — 2k gu)
+ k2 4 ikEM + e?k2 (fx — gQ + gu)]
+ (= + 0 — fe?U)e*(2f* — 2¢° — \f)
— W[f*3e* A+ f(2f* = 29" — A[)]}
+ €apcke{3p(cs + ca)e®* N f + ge?2(cs + c4)iV’
— ge?2cs[—ie? fU +io + e (fM — gp)]
— ge?2cy[—ie? fO + M’ + e?(f€ — gb)]
+ (c3 — ca)[—ie?g® + p' + e”(g€ + [0)
+ie?gW — (fp+ gM)e? — ik*ule? f
+ples + ca)e® (2f% = 29° = Af)}

DoPoy, =ikcSap(cs + cg) [V + A f (¥ + ) — o’
— 40 (2 — ¢%) — 4e? fU' 4 2e?(2f 0 — 2k gu) + k2T
+ik*M + ek (fx = gQ + gu) + WA f — 20e(f2 — )]
+ikgkpke(cs + ca)[® — X' 4+ 36+ U +iM + e?(fx — gQ + gu)]
+ikokgeqpa(cs — c3)[—ie®g® + p + e?(gé + f0) +ie®gV — (fp+ gM)e® — ik*u]
— (cs + ca)e®g(qackvka + €apckaka) [P — X' + i€ + U +iM + e(fx — 9@ + gu)]
+ Sackp{e? F1—2(cs + c1)iV'] + 2c3e? f[—ie? fU + i
+e?(fM = gp)] + 2cae? f[—ie? fO + M’ + e*(f€ — g0)]
— (ca — c3)e®g[—ie®g® + o' + e®(g€ + f0) +ie® gV — (fp+ gM)e® — ik u]}
+ Spckal{e? F=2(cs + ca)iV] 4 2c4e? f[—ie? fU
+io + e?(fM — gp)] + 2c3e? f[—ie? f& + M’
+e?(f€ = g0)] + (ca — c3)e®g[—ie?g® + p' + (g€ + f6)
+ie?gV — (fp+ gM)e® — ik*u]} .
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Finally we write down the object S;;p:

Sa00 =ka€®*[—4M (c5 + 1) (f* — ¢°) + 96cepg(A — 2f)]
Sapo =€* €apekc[—96c6g(\ — 2f )M — 4p(cs + ca) M f]
Stas =0l 3 FeR e + ) -0 + X — ]
+2fe?(c5 4 c4)[2e* (2 — ¢%) — 4V (f? — %) — 4e® fU' 4 2e?(2f 0 — 2k*gu)]
S e el + IRM + R 9Q + gu)
+ 2(es 4 ¢1)e* (f% — g*)[k*x + 20 — 2e? fU] — 96csge>® (N — 2f) gV
+ 96cege?[—2f ge®? + 4e*® fgU + 2e? gV’ — 2goe® + A\ge** (1 — & — V)]
+ 32¢69e®k*[2u + Q' — i — 2ip + 2e?(—fQ — gu — gx)]
+ 48c6ge** (A — 2)(Q + u)k*}
+ kokp{—=2fe?(cs + ca)[® — X +i& + U +iM + e (fx — gQ + gu)]
—2(eg 4 ¢1)e® (% — g*)x + 96c6ge®? (N — 2f)u — 48cge®? (A — 2£)(Q +u)}
+ eapaka{—2fe?(cs — c3)[—ie?g® + p' + (g€ + f0)
+iegU — (fp+ gM)e® — ik*u]
+2(es + ) (f* = g*)(p+0)}

Sabe =€ape[—96¢6 fge>? (N — 2f) 4+ 12ge*Pcs A f — 12gePcs (V" + e’ Af (¥ + @) — o)
— 966 fe*? 20" + W{—96¢ f2e*?6g + 96c6fe3PN2g — 12¢5¢3 N\ fg — 4gecsk?}
— {ik®M + e®K*(fx — gQ + gu)Y4ge®cs + 96¢s fe?{2goe? + Age?* D}
— 32c6fe?k*{2u + Q' —i0 — 2ip 4+ 2e?(—fQ — fu—gx)}
— 48c69€** (N — 2f)(k*x + 20) + 8ge®kPes {—® + X' — if}]
+ [Oacks — Opcka][4fe?(c3 + ca)iV — dfePcy{—ie? fU +io + e (fM — gp)}
—4fePes{—ie? fO + M' 4 e?(f€ — g0)}
+ 2(cg 4 c4)e®Nf (€ + M) — 48cg9e** (N — 2f)(p + 6)
—2ge®(cq — c3){—ie?g® + p' + e?(gé + f0) +ie®gV — (fp+ gM)e® — ik*u}]
+ €apikcka[48csge®® (N — 2f)x — 4(cs + c4)e*? A ful
+ [evpekak s — €apehnkys][2(cs + ca)e®’ A f(Q + u)
+2ge?(c3 + c){® — X +i& + U +iM +e(fx — gQ + gu)}] .
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Appendix C

Here we write the 14 scalar field equations. We use the notations (27), (28) and (29) and
recall the relation (). Equations obtained from (24]) are as follows.
(00)-component:

G = — 96¢k? Agu’ — 48¢sk*AgQ’ + (—95F — 98A — 576¢g%) W’
+ (576¢6g°f + 95f)0 + (144ceg® A% + 98N D
+ [K(30 = 38) — 98(F* — ¢%) + 144ceg”(A* — &%) W
- 1 - -
+ (—6k*Bg + 384k cefg)u + 5(—61«259 + 384k%csf?9)Q + 3ik*BM
+ (3K2Bf + 192k2c6g%) x + 192ik>cefgp + 48ik>cgAgh = 0 (c1)

a()-component:
(

Gl = — i(353 + 4Afes) M — i[2Ag(cq — c3) — 96csa(A — 2)]p + (38 — 3B)V
+ [~6g%Acs + 4Acs(f — ¢°)]¥ — i[6g%Acs — 4A(F* — g*)cs| M
+ [=38A — 36f + 96¢6g>(A — 2f) + 4A (g% — §2)cs + 6AgPcs] @
— 4Afeso — i(8Afges + 6Afges)p + (6Aghk®cs + 4Aghk?cs)u
— i[AA(* — g%)es — 6g2Acs — 96c6A(A — 2f) + 3/3f)¢
— i[~8Afges — 6Afges — 96¢sfg(A — 2f) — 3Bg]0 =0 (c2)

Oa)-component:
( p

GO =(35 — 3/)W' — dicy(§ — g*) M’ — di(cs — c3)fgp’
+ i(1239%f + 12g%fes — desf®)E — i(—12¢39f° — 12¢50f” + 4esg®)d
— i[35F — 96607 (A — 2f) + 12¢50°F + 12¢59%f — desf| M
— i[—38g — 96¢5af(A — 2f) + 12¢50> + 12¢5gf% — 4es0°]p
+ [~96c6k>g(A — 2f) — 4(cs — c3)gfkJu + [38 — des (52 — ¢%)]o
+[— 3@]“ + 96¢6g7 (A — 2f) — 12¢39°F — 12c59%f + 4esf’| W
+ [-38A — 4esf(§° — 0%) — 40%f(cs — ¢3)]2 = 0 (c3)
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(ab)-component, kgky:

GO = — (48csAg — 96¢4fg)Q — [—3csAf — gB —3es(f* — o)X/
— (96¢sfg — 48csAg)u’ — [—%5 + gB + 3cs(g> — 12 — Af)|¥
— [3esAf + gﬁ — gﬁ + 3cs5(f2 — g)]® — (—48icgAg + 96icsfg)d
~ (~4icgAg + 96icsTo)o — [Bics( — o + Af) + Sile
— (=35> — 3csAf* — 48ceg* A + 96¢6g?f + 3csg%f + gfﬁ)x
— (3esf?g + 3esAfg — 3esg” — 48csAfg + 96c6f7g — gQB)Q
— [=3ics(f — g® + Af) + gz'B]M
— u(—96¢c6gf* — 3csf2g + 3c59° + 48csAfg — 3csAfg + ggﬁ) =0 (c4)
(ab)-component, du:
GO =(=35 +38)0" + (—16csAgh? — 32k2csfg)u’ + (—32csAgk® + 32k3csfg) Q'
+ (—192¢6§g” + 66A + 3§5) U + (csk>Af + g/ﬁB — esk?g? + sk P\ + 30607
+ [—icsk*(§* — g + Af) — gikQB]ﬁ + (32ik%csfg + 16ikceAg)p + (32ik>csAg
+ [—esk? (52 — g + Af) + 48¢6A%g® — 3GAf — 98A% — gkﬁﬁ - gk%]cb
+ [—3BAf + 48cA\ g% + csk*(F2 — g + Af) — 384c6f2g® + gk%
+ 35f% — gm — 3Bg%)V — 32ikcefg)0 + (—35F + 192¢60°f)0
+ (csk®Af? — csk?g?f — gszﬁN + csk*F 4 32k2cefg® + 16k csAg?)x
+ (—esk?g® 4 160k cef’g + csk?2g + csk*Afg — 16k*cgAgf + gk2gé)u
+ [32Kk%csf?g + 16k*csAgf — csk*Afg + csk*g® + nggB — csk*%g]Q

Flicsh (P — g+ AF) — Sik2BIM = 0 (c5)
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(ab)-component, €.pcke:

G = — i(=3csf — 3esAf — 2c3Af — 2c39” — gﬁ + 2¢3f* + 3cs9%) 0
— i(4esfg + 12¢5fg + 96c6fg — 48csAg — 2c3Ag) M’
+ (—12c5fg — 6c5Ag) V'’
- z’(—ggﬁ + 3¢50° + 9es§2g — 2¢39° + Gesf’g
— 3csAfg — 48ceAfg + 96cegf” — 4csAfg)é
+ (gkz@ + 2k%cs Af + 3k csg® + 2kPcag? — 3k csf? — 3k%csAf — 2k csf?)u
+ (—96¢c6fg + 2c3Ag + 48csAg + 6csAg — 4desfg)o
— i(—3csf® 4 48c6g* A + 2c3f® — 6c3g°f — 3esAf? — Iesg’f — 2c3AF
— 255+ 20,6°A — o)
+ (—2c3f’g + 3es5f°g — 96¢6gf” + 3csfaA + ;gﬁ + 2c3Afg — 4esf’g
+ 48cs A fg + 2c3Afg — 12¢552g — 3csg” + 2c3g°) P
+ (=3csAfg + 3csf%g — 3c59° — 2c3g° — ;gﬁ
+ 96¢6gf> + 6csf’g — 4esAfg — 48csAfg) W
— i(—6csf?g + 48csAfg + ggB — 3csf2g + 3esAfg

— 96¢6af* + desAfg + 3esg® + 239’ ) M
— i(—6c5g° A + 3c59°F 4 2c3AF? — 3es A2 — 48cg? A + 96¢6fg?

3.
+ 6c39°f — 2c397A + iﬁf — 3cs5§ — 263 )p =0 (c6)

Equations obtained from (25]) are as follows.
(0a0)-component:

T = — 2e: K2\ + i(4eag + 6c59)p + desif M 4 2c5k%gQ
+i(6c59% + 2k%cs 4 desf? + 4eag®)€ + (16cs5k>g + dgesk®)u
+ desfo + 1(8cagf + 18¢59f)0 — i(96Acsg — 192¢6fg + 8cagf + 6¢50f)p
+ (4esf? + degg? + 2k%cs + 6e5g°) D — 2k csfy
+ (—2c5k? — degg® — desf? — 18c5g*) W
— i(4csf? + 18¢59% — 38 + degg? + 2¢5k*)M = 0 (c7)
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(ab0)-component:

T = _ 32caku’ — 16¢6k2Q" — (96¢6g + 12¢59) W — i(6csf + 4cuf)p
+ dicsgM' + 32c6k*Q + (96 Aceg + 6csgf — 192¢6fg + Scagf) M
+ (48cAg + Scagf — 192¢6fg + 6e59f) ¥ + 32¢6k>gy
— i(8cagf + 18c5g§)E — (—64ck™f + 4fk*cy + 6fk*cs)u
+ (96¢6g — 4cag)o + i(16ck® — degf* — desg® — 6e512)0
+i(32¢6k? + deaf? + 38 + 18¢5f2 + 4esg?)p
— (8cagf + 18cs9f — 48¢sAg)P =0 (c8)

(Oab)-component, kqky:
TEER) =3cv" + 3e59Q" — 3¢5’ — 3esgu’ — (2icy + 3ics) M — 3icsE’ + 3¢50
— (—3esAf + 3esf* + gé)x — (Bicsf 4 2icaf)E
3esf + 2¢4f)P — (2¢4 + 6¢5)0 + 2icsgp

—
— (305Ag — 960(#9 + 3c5fg + 4806Ag)u — (—3C5f — 204f)‘1’ + 2’&0499
— (—2icqsf — 3iesf)M — (—48Aceg + 96¢6fg — 3esAg — 3csfg)Q = 0 (c9)

(Oab)-component, dqp:

TO =csk?x" + (5k%csg + 32k%c69) Q' — csk*® + (c5k* + 192¢4g%) U’
—ik?cs€ 4 (=bik*cs — 2ik*c,) M’ + (64k*ceg + Tk*csg)u/
+ (5ik?csf + 2ik*caf) M + (—160k*cegf + Sk*csAg + 48k*cgAg + k*csfg)Q
+ (—32ik?ceg + 2ik*cag)0 + (48k*csAg — k*csfg — 224k cefg + Th*csAg)u
(=5ik?esf — 2ik2csf)E + (2k%cs — 38 — 192¢6g%)0
(2k2cy4f + 5k csf + 5T6ceg?f + 35 — 24csAg® — 192¢5Ag?) W
(—=96c6Ag% — 5k%csf — 2k2caf — 12¢5 A 4 3A5)D
(—64ik>ceg + 2ik*c3g)p
(_

+ o+ o+ o+ o+

k*csf? — gkzﬁ + k2csAf — 64k2ceg?)x = 0 (c10)
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(Oab)-component, €,pck.:

TR =i(2c4 + 3¢5)p" — BicsgM’ — 16k%c6Q" + i(2¢4f + 3¢5§)0"
+ (3k2cs + 2k%cy — 32K%ce)u’ + (3csg + 2¢49) P
+i(2c49 + 3c59)E + (—2c49 — 9esg — 96¢6g) P’
— i(—3cs0f — 48csAg — 4cygf + 96¢69f — 2¢4Ag — 3c5Ag)E
+ (2fk?cy + 64k%cef + 3k*fcs)u + (96¢sg + Gesg + 2c49)0

3~
—i(=9c5f% — 2c4Af + 6c5g” — 2¢4§ — 16¢6k* — §B — 3csAf + 2c497)0

3~
—i(—2c49% — 32¢6k* + s Af — 6esg® — §ﬁ + 2¢4Af + 2c4% + 3es2)p
+ (305/\9 + 204fg + 204/\9 + 204gf + 4806/\9 + 3c5fg)(1>
+ (—4ca0f — 2¢4Ag — 192¢6fg + 48c6Ag — 9csfg — 3csAg) W
+ 32c6k?gx — i(4cagf + 2c4Ag + 3csAg + 9esgf + 96¢fg — 48csAg) M
+ 32k%c6fQ = 0 (c11)

(abc)-component, €gpqkckq:

TROR) = _ (Bics + 2icy)p’ + 3csgX’ + 2icsgé + 2¢49V + 2ic,gM

— (
— (3csg” — g B + 3k%cs + 2k%cy + 6esAf)u
— (2icqf + 3icsf)0 + (2icaf + 3icsf)p + 2¢c39P
— (48csAg — 96¢6fg + 3cs0f) X — (gB — 6esAf — 3e57)Q = 0 (c12)
(abc)-component, d,.kp — dgpke:
TOEK) =9jca M" — 2¢5§U + 2¢3§0" + 3icsgp’ — 2icsgf’ + 2icsfe’ + 2c30” — klesy’
— i(—2csf* + gé — k?cs — 2e3Af — 2c49% — 9c597)€ + (2gc4k” + 2gcsk?u
+ 2c3fo — i(2c3Ag — 3esfg + 96¢6fg — 48¢csAg — deagf)0
— i(—48csAg + 4cagf + 9esgf + 2c4Ag + 96¢6fg) p

+ (2e3Af + 2¢3f% — 2c39® + 3csg” + c5k?) @
+ (—203Af — 20492 — 203f2 — 30592 — ]{72C5>\I/ — C5]€2fx

3~
—i(k%cs + 56 + 2¢49% + 2¢3f% + 3esg? + 2e3Af)M + csk*gQ = 0 (c13)
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(abc)-component, €gp.:

T = — 32¢6k%u" — 16c6k2Q" + (—96¢6g — 12¢59) 0" + (5k%csg + 32k2ceg) X/
+ (32icek® — 2ik*cy — 3ik*cs)p’ + (—48csAg — 384cqfg) W + 48csAgd’
+ 16ik?ced + (12c59 + 96¢6g) 0’ + (—8ik?csg — 2ik*cag)é
+ (32ik*cef — 3ik?csf — 2ik*csf)0 + (160k%cegf — k*csfg — 16k*Ages)x

3k'cs — 2k*cy + 64k%cg A — g/ﬁ[& — K?csg® + 6k*cs AT + 128K%csf*)u
2k*c,g — 3k*csg + 96c6A*g — 12c5Afg — 5k2c59 + 96¢c5Afg) @

2k%csg — 192¢6Afg + 395 — 576¢6f%g + 9606/\2 + 2k%cag — 24c5Afg)\If

+ (=
+ (=
+ (32k%cAf + 64K%csf? + k*csg® + 6kPcs Af — kzﬁ)Q + 384cefgo
+
+ (2ik*cag + 2ik*csg) M + (3ikPesf + 64ik*cef + 2ik*caf)p = (c14)

Note that eqgs. (cil), (c9), (cI0), (cIT), (cI3) and (cI4) are second order, while egs. (cIl)-
(cd)), (ct)-(c8) and (cI2) are first order.

Appendix D
Here we give explicit forms of egs. (B5) and (30):

DW = dicsk® M’ + (12¢5gk? + 96¢6gk?)Q’ + 576¢6g° V' + 2(12¢5gk + 96¢5gk?)u’
+ (4esk? — 9B — 5T6¢6g% )0 + dik2esf + (—192ik%ceg + 4ik>csg)p
+ (12k%csAg + 96¢csk*Ag — 384csk?gf)Q + 2(12k*csAg
— 4ik*csfM 4 96c6k*Ag — 384csk?gf)u
+ (—=96¢gik>g + 4ik2cs9)0 + (—3K* 5 — 192k2c6g%) x
+ (4k%csf — 36¢5AF? — 288¢c6Ag® + 9BA)D
+ [=72¢5Ag% — 4k%csf + 9B(F + A) — 576¢6g>(A — 3f)|¥ =0 , (d1)
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D = [36 — 12¢5Aflu’ + [<36 + 12¢5Af]Q" + [6¢sAg — 96¢6g(A — 2)] X
+ 8(cy — 3)igM’ + 4(cy — c3)ifp’ + [3i6 — Sics(f? — g°) — 4(cq — ¢3)ig?]0
+ 8(cy — ¢3)go + [96iceg(A — 2f) — 6icsAg + 12(cy — c3)ifg]é
+ [—96¢gi (A — 2f) — 6icsAg — 12i(cqy — c3)fg] M
+ [=3iff — 12icsAf + 16ics(F — g2) + 4(cq — c3)if?]p
+ [—12(cs — c3)fg — 6c5Ag)V + [12(cq — c3)fg — 6c5Ag] P
+ [38g — 18c5Afg + 192¢6f2g — 192¢6A%g + 288¢sAfg] X
+ [96¢5g% (A — 2f) + 6A5 + 313 + 4(cqy — c3)fk? — 6esAg? — 125 AF2 — 24e5A%u
+ [=3f3 — 6A5 — 96c6g? (A — 2f) + 6c5Ag? + 12¢5AF2 + 24¢;A%]Q = 0 . (d2)

These equations are obviously first order.
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