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Abstract

We consider the model of modified gravity with dynamical torsion. This model was

previously found to have promising stability properties about various backgrounds.

Here we study the stability of linear perturbations about the self-accelerating solution.

We apply the (3 + 1)-decomposition and consider the scalar sector of perturbations.

We find that the number of degrees of freedom is equal to 2, which is the same as in

Minkowski background. However, there is at least one instability in the scalar sector, if

the value of background torsion is large enough. This does not rule out the possibility of

stable self-acceleration with torsion of the order of the effective cosmological constant.

1 Introduction

Cosmological observations show that the expansion of our Universe is accelerating. The

mechanism of acceleration is, however, not understood. One way of solving the acceleration

problem is the IR-modification of gravity.

Many IR-modified gravitational theories have been proposed, see reviews [1–6]. How-

ever, the self-accelerating solutions are often unstable because of the ghost and/or gradient

instabilities in the spectrum of the linearized perturbations.

We focus here on gravities with dynamical torsion, which are promising candidates for

the consistent infrared modified gravity. Gravity with dynamical torsion is a natural gen-

eralization of General Relativity which treats the connection and vierbein as independent

dynamical variables. The torsion is capable of propagating due to the terms in the La-

grangian quadratic in torsion and curvature. These theories are often considered in the

framework of Poincaré gauge gravities [7–10].

The spectrum of linearized perturbations in gravities with dynamical torsion contains

additional degrees of freedom as compared to General Relativity. Not all theories from this

class are stable about Minkowski background at the linearized level. The stability about

Minkowski background was thoroughly investigated in Refs. [11–14] where stable models

were identified.
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Self-accelerating solutions, without explicit cosmological constant term in the action,

were found in various gravities with dynamical torsion in Refs. [15–24]. The open question

is the stability of self-accelerating solutions in these theories, at least at the linearized level.

It is the question we address in the present paper.

Let us mention that there is another approach to make torsion propagating, so-called

f(T) gravities. These theories, as well as the cosmological solutions and perturbations about

the cosmological solutions in these theories, are widely investigated, for example, in [25–29]

and references therein.

We consider a particular model studied in Refs. [24, 30–32]. This model has nice stability

properties. Namely, it was shown that ghosts, gradient instabilities and tachyons are absent

in the Minkowski background, de Sitter and anti-de Sitter spaces and arbitrary torsionless

Einstein backgrounds of sufficiently small curvature [13, 31, 32]. The model also admits self-

accelerating solution, without explicit cosmological constant term in the action [24], with

self-acceleration due to the non-trivial connection.

In this paper we study linear perturbations about the self-accelerating solution found in

Ref. [24]. Known examples show that the most dangerous in this regard is the scalar sector

of perturbations. Therefore, we focus in this paper on the scalar sector.

The first issue to worry about is the possible existence of the Bouleware–Deser modes [33].

In other models it often happens that the Minkowski background is stable, but extra modes

appear in curved backgrounds. These modes usually have wrong sign kinetic terms. However,

this pathology is not necessary present: one famous counterexample is dRGT model [34–36].

Other dangerous features are the ghost and gradient instabilities.

This paper is organized as follows. In Section 2 we present the Lagrangian, write the

field equations and recall the earlier results. In Section 3 we derive the generalized Bianchi

identities. We introduce conformal time and perform conformal transformation in Section 4.

In Section 5 we make (3 + 1)-decomposition of perturbations. Section 6 contains our main

results. We study the scalar perturbations about the self-accelerating solution. We show

that there are no Bouleware–Deser mode in the scalar sector. The number of dynamical

degrees of freedom is the same as in Minkowski background and is equal to 2. However, we

show that at least one of these degrees of freedom is exponentially growing if the value of

background torsion is large enough. We conclude in Section 7.

2 The Model

We make use of the tetrad formalism and consider vierbein and connection as independent

fields. Following the notations of Refs. [24, 30–32], we denote the vierbein by eiµ and connec-

tion by Aijµ = −Ajiµ, where µ = (0, 1, 2, 3) is the space-time index, and i, j = (0, 1, 2, 3) are

the tangent space indices. In tangent space basis the indices are raised and lowered using
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the Minkowski metric ηij , so we do not distinguish upper and lower tangent space indices in

what follows, if this does not lead to an ambiguity. The signature of metric is (−,+,+,+).

The action of the model is

S =

∫

d4x eL , L =
3

2
(α̃F − αR) + c3F

ijFij + c4F
ijFji + c5F

2 + c6(ǫ · F )2 , (1)

where α, α̃, c3, c4, c5, c6 are coupling constants, e ≡ det(eiµ); Fijkl is the curvature tensor

constructed with the connection Aijµ,

Fijkl = eµke
ν
l (∂µAijν − ∂νAijµ + AimµAmjν − AjmµAmiν) ;

Fij = ηklFikjl , F = ηijFij , ǫ · F ≡ ǫijklFijkl ;

ǫijkl is the Levi-Civita symbol defined in such a way that ǫ0123 = −ǫ0123 = 1; Rijkl is the

Riemannian curvature tensor,

Rijkl = eµke
ν
l (∂µωijν − ∂νωijµ + ωimµωmjν − ωjmµωmiν) ;

Rij = ηklRikjl , R = ηijRij ,

where ωijµ is the Riemannian spin-connection. It is expressed in terms of the vierbein as

follows:

ωijµ ≡ ωijke
k
µ =

1

2
(Cijk − Cjik − Ckij)e

k
µ ,

where

Cijk = eµj e
ν
k(∂µeiν − ∂νeiµ) .

Its relation to Christoffel symbols is

ωijµ = −Γν
µλe

λ
i ejν − ejν∂µe

ν
i .

The connection Aijµ can be represented as a sum

Aijµ = ωijµ +Kijµ ,

where Kijµ is the contorsion tensor.

We impose the following conditions on the couplings:

c3 6= c4 , (2)

c3 + c4 = −3c5 , (3)

α < 0, α̃ > 0, c5 < 0, c6 > 0 . (4)

The reason for imposing the condition (2) will become clear in Sec. 6, while the conditions (3)

and (4) ensure that there are only healthy degrees of freedom in the Minkowski background

3



[11–14, 30, 31]. It was shown in Ref. [31] that the strength of the gravitational interaction

between the energy-momentum tensors is govered by the parameters α and α̃. We assume

that |α| ∼ α̃, and hence

|α| ∼ α̃ ∼ M2
P l . (5)

In Ref. [32] it was found that there are three propagating modes at the linearized level in

the Minkowski background: the massless spin-2 mode, the massive spin-2 mode with mass

m2 =
α̃(α̃− α)

2αc5
(6)

and the massive spin-0 mode with mass

m2
0 =

α̃

16c6
. (7)

There are no ghosts or tachyons in the Minkowski background. It was also shown that in the

theory equipped with the cosmological constant, the perturbations are healthy in maximally

symmetric backgrounds, as well as in torsionless Einstein backgrounds of sufficiently small

curvature.

There are two sets of field equations in our model. One consists of the gravitational field

equations obtained by varying the action with respect to vierbein,

Ĝij ≡
3

2
α̃

(

Fij −
1

2
ηijF

)

− 3

2
α

(

Rij −
1

2
ηijR

)

+ c3 (FkiFkj + FklFkilj)

+ c4 (FikFkj + FlkFkilj) + 2c5FFij

+ 2c6ǫklmiFklmj(ǫ · F )− 1

2
ηijL

(2) = 0 , (8)

where

L(2) = c3FijFij + c4FijFji + c5F
2 + c6(ǫ · F )2

is the part in the Lagrangian which is bilinear in Fijkl. Another set of equations is obtained

by varying the action with respect to the connection Aijµ,

T̂ijk ≡Hijk +

{[

ηik

(

DmPjm − 2

3
DjP

)

−DiPjk

]

−
[

ηjk

(

DmPim − 2

3
DiP

)

−DjPik

]}

+ 4c6ǫijkmDm(ǫ · F ) + Sijk = 0 , (9)

where Pij and P are defined as follows:

Pij = c3Fij + c4Fji ,

P = ηijPij ;
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the covariant derivative Di involves the connection Aijµ,

DiBj ≡ eµi DµBj = eµi (∂µBj − AljµBl) ;

Sijk is defined as follows:

Sijk =
2

3α̃
Hmnk

(

ηimPjn − ηjmPin −
2

3
ηimηjnP + 2c6ǫijmn(ǫ · F )

)

,

and Hijk is written in terms of contorsion:

2

3α̃
Hijk = Kikj −Kjki −Killηjk +Kjllηik . (10)

The emergence of this object is clarified in Appendix A.

Note that because of invariance of the action under space-time gauge transformations and

infinitesimal local Lorentz transformations, not all of the field equations are independent.

In Ref. [31] it was shown that the model (1) admits a self-accelerating cosmological

solution with spatially flat metric,

e0̃0 = 1 , eãb = eλtδãb , A0̃ãb̃ = fδãb̃ , Aãb̃c̃ = gεãb̃c̃ , (11)

with time-independent λ, f and g, where a, ã = (1, 2, 3), tilde denotes tangent space indices,

and space-time indices do not have tilde. The parameters λ, f , g and α, α̃, c5, c6 are related

as follows,

c6 =
α̃λ(α̃f + αλ)

16(λ2 − 4f 2)(α̃f 2 − α̃λf − 2αλ2)
,

c5 =
α̃[2α̃f 2 + λfα̃+ λ2(α̃− 2α)]

4λ(λ+ 2f)(f 2α̃− λfα̃− 2αλ2)
, (12)

g2 =
2αλ2 − α̃f 2 + α̃λf

α̃
.

In this paper we consider the case of small λ and large enough f ,

f ≫ λ log2A , (13)

where A is the initial amplitude of perturbation, see Sec. 6. In this case, the small value of

the effective cosmological constant λ is obtained provided that there is a hierarchy between

the dimensionless couplings: to the leading order in λ

c6 = −λ
α̃

64f 3
, c5 =

α̃

4λf
. (14)
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In the small-λ limit the parameters f , g and λ are related to the couplings as follows:

λ =

(

−c6α̃
2

c35

)1/4

,

f = − α̃1/2

4(−c5c6)1/4
,

g = ±f +O(λ) .

Note that eq. (14) implies that the overall scale |α| enters the action (1) as a pre-factor.

This implies that the equations for perturbations, written in terms of f , g and λ, involve the

ratio α̃/α and not α̃ and α themselves. The same property holds for dispersion relations.

3 Generalized Bianchi Identities

Let us obtain the identities relating field equations with each other. The reasoning is similar

to that used for deriving the Bianchi identities in General Relativity.

The first identity follows from the invariance under space-time gauge transformations.

Making an infinitesimal gauge transformation, x′µ = xµ + ξµ, we find the variations of eiµ
and Aijµ:

δeiµ = −ξλ∂λe
i
µ − eiλ∂µξ

λ = −ξλ∇λe
i
µ − eiλ∇µξ

λ , (15)

δAijµ = −Aijλ∇µξ
λ − ξλ∇λAijµ , (16)

where ∇µ is the covariant derivative involving the Christoffel symbols,

∇µe
i
ν = ∂µe

i
ν − Γλ

·µνe
i
λ .

Varying the action with respect to eiµ and Aijµ of the form (15), (16) we find, after integrating

by parts, the following identity:

− 2Ĝikekν∇µe
iν − 2∇ν(Ĝikekµe

iν)− ekν∇µAijνT̂ijk +∇ν(e
kνAijµT̂ijk) ≡ 0 (17)

(see eqs. (8) and (9) for definition of Ĝij and T̂ijk). The left hand side of eq. (17) contains

one free index µ.

Another two identities come from the local Lorentz invariance. The model discussed is a

gauge theory with Lorentz group as a gauge group. The variations of eiµ and Aijµ under the

infinitesimal Lorentz transformation are

δeµi = ωije
µ
j , (18)

δAijµ = −∂µωij + ωipApjµ − ωjpApiµ , (19)
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where ωij = −ωji are the parameters of transformation. The invariance of the action under

this transformation gives another identity,

(Ĝij − Ĝji) +∇ν(T̂ijke
kν) + 2ekν(T̂ipkAjpν − T̂jpkAipν) ≡ 0 . (20)

The left hand side of eq. (20) contains two free indices, i and j, and is antisymmetric in

them.

As a result, we have two sets of generalized Bianchi identities, which relate the field

equations (8) and (9) with each other.

4 Extracting Conformal Factor from Vierbein

The purpose of this paper is to study small perturbations about self-accelerating background

(11). To this end, we define conformal time,

η =

∫

e−λtdt = −1

λ
e−λt .

We work with conformal time in what follows and denote by prime the derivative with respect

to it. At this point it is convenient to change the notation. We denote the vierbein of the

original theory by êiµ and then write,

êiµ = eφeiµ , êνj = e−φeνj , (21)

where

eφ = a(η) = − 1

λη
. (22)

Note that

φ′ = λeφ .

We do not make any scaling of connection, and keep the notation Aijµ unchanged. Upon

the conformal transformation (21), the background (11) is written in terms of eiµ and Aijµ

as follows::

eiµ = δiµ , A0̃ãb = eφfδãb , Aãb̃c = eφgεãb̃c . (23)

Now, Rij and R transform under the conformal transformation (21) as follows:

R̂ij =e−2φ
(

Rij − 2eµi e
ν
j∇µ∇νφ− ηijg

µν∇µ∇νφ

+2eµi e
ν
j∂µφ∂νφ− 2ηijg

µν∂µφ∂νφ
)

,

R̂ =e−2φ (R− 6gµν∇µ∇νφ− 6gµν∂µφ∂νφ) ,
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where R̂ij is constructed with êiµ, while Rij , ∇µ and gµν = eiµeiν are constructed with eiµ.

The original curvature F̂ijkl is

F̂ijkl = e−2φFijkl ,

where Fijkl is constructed using eiµ and Aijµ.

The gravity equation (8) then reads,

Gij ≡
3

2
α̃e−2φ

(

Fij −
1

2
ηijF

)

− 3

2
αe−2φ

(

Rij −
1

2
ηijR

)

+ e−4φc3 (FkiFkj + FklFkilj) + e−4φc4 (FikFkj + FlkFkilj) + 2e−4φc5FFij

+ 2e−4φc6ǫklmiFklmj(ǫ · F )− e−4φ 1

2
ηijL

(2) +∆
(G)
ij = 0 , (24)

where

∆
(G)
ij =− 3

2
αe−2φ

[

−2eµi e
ν
j∇µ∇νφ− ηijg

µν∇µ∇νφ+ 2eµi e
ν
j ∂µφ∂νφ− 2ηijg

µν∂µφ∂νφ

−ηij (−3gµν∇µ∇νφ− 3gµν∂µφ∂νφ)] .

A simple way to obtain the new version of the torsion equation is to plug the vierbein (21)

into the action, and vary with respect to Aijµ. Then the torsion equation is

Tijk ≡ e−3φ

{[

ηik

(

DmPjm − 2

3
DjP

)

−DiPjk

]

−
[

ηjk

(

DmPim − 2

3
DiP

)

−DjPik

]}

+ 4e−3φc6ǫijkmDm(ǫ · F ) + e−3φSijk + e−φHijk +∆
(T )
ijk = 0 , (25)

where

∆
(T )
ijk = 3α̃e−φ

(

ηike
µ
j ∂µφ− ηjke

µ
i ∂µφ

)

.

5 Perturbations about Self-accelerating Solution: 3+1

Decomposition

To study the linear perturbations about the self-accelerating background (23), it is convenient

to make the 3-dimensional Fourier decomposition. We use the same notation for the Fourier-

transformed variables and replace spatial derivatives ∂ã ≡ eµã∂µ with ikã, where k is the

3-dimensional momentum. Since the background (23) is invariant under spatial rotations,

it is natural to use (3 + 1)-decomposition of perturbations. As usual, this means that

we decompose any 3-dimensional tensor into its irreducible components with respect to the

small group SO(2) of rotations around the spatial momentum. These irreducible components

form sectors with particular helicities: scalar sector (helicity-0), vector sector (helicity-1) and
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tensor sector (helicity-2). Since the field equations are linear, these sectors can be considered

separately.

After conformal transformation, the background vierbein in (23) is trivial, so we do not

distinguish space-time and Lorentz indices in (3+1)-decomposition of perturbations. These

indices are raised and lowered with Minkowski metric, while spatial indices are contracted

with Euclidean metric.

5.1 Perturbation of connection

The full contorsion tensor can be written as follows,

Kijk = Kijk (0) + kijk ,

where Kijk (0) = eµkKijµ (0) = eµk(Aijµ (0) − ωijµ (0)) = eµkAijµ (0) is the background quantity

constructed from (23) and kijk is the first-order perturbation. Let us decompose the first

order contorsion tensor kijk into its helicity components.

Tensor kijk = −kjik contains helicity 0, 1, 2 components only. The helicity-2 components

form the tensor sector:

k0ab = −ka0b = τab ,

kabc = kaNbc − kbNac ,

where τab and Nab are symmetric, transverse and traceless. All other components of kijk
vanish in the tensor sector.

The non-vanishing helicity-1 components of contorsion are

k0a0 = −ka00 = ζa ,

k0ab = −ka0b = kaνb + kbµa ,

kab0 = kaκb − kbκa ,

kabc = kakcαb − kbkcαa + ηacLb − ηbcLa .

All 3-vectors here are transverse. The helicity-0 components form the scalar sector:

k0a0 = −ka00 = kaξ ,

k0ab = −ka0b = kakbχ+ δabσ + ǫabckcρ ,

kab0 = ǫabckcθ ,

kabc = ǫabdkckdQ + (kaǫbcd − kbǫacd)kdu+ (kaδbc − kbδac)M .

There are altogether 24 components of tensor kijk. They break up into the 4 tensor com-

ponents (two components in each of τab and Nab), 12 components in the vector sector (two

components in each of the six transverse vectors ζa, νa, µa, κa, αa and La) and 8 scalar

components (ξ, χ, σ, ρ, θ, Q, u and M).
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5.2 Perturbations of vierbein: gauge choice

After conformal transformation for the vierbein (21) we have

eiµ = δiµ + ǫiµ ,

where ǫiµ is the first-order quantity. Since the contraction of eiµ should give the Minkowski

metric,

eiµe
µ
j = ηij ,

one has the following expression for eµj ,

eµj = δµj − ǫiνδ
ν
j δ

iµ . (26)

It is worth noting that the local Lorentz invariance described in Sec. 3 can be used to make

ǫiν symmetric: the local Lorentz transformation (18) adds to ǫiν an antisymmetric parameter

ωiν . We use the gauge

eµν = eνµ

in what follows. This completely fixes the freedom under the Lorentz gauge transformations.

Then the expression (26) can be written as

eµj = δµj − ǫµj , where ǫµj ≡ ηµνǫjν ,

and the metric perturbation is

hµν = eiµeiν − ηµν = 2ǫµν

Furthermore, the space-time gauge invariance can be used to choose the gauge

e0a = 0

and conformal Newtonian gauge.

In this gauge, the vierbein perturbations are decomposed into helicity components as

follows:

ǫ00 = −Φ ,

ǫ0a = 0 ,

ǫab = Ψδab + i(kaWb + kbWa) + πab ,

where Wa is a transverse vector (vector sector), πab is a transverse traceless tensor (tensor

sector), while Φ and Ψ belong to the scalar sector.

After gauge fixing, there are altogether 6 components of tensor ǫij : 2 tensor components

in transverse traceless πab, 2 components in vector sector coming from the transverse vector

Wa and 2 scalar components Φ and Ψ.
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6 Scalar Sector

Our purpose is to study whether the theory exhibits the Boulware-Deser phenomenon and/or

other instabilities in self-accelerating background. The known examples show that possible

problems occur in the scalar sector of perturbations. Therefore, in this paper we study the

scalar sector.

The expressions entering the linearized field equations and manipulations with these

equations are cumbersome. We have designed a computer code to check the analytical part

of the procedure and complete the manipulations. The code is available at [37].

6.1 Field equations

The explicit expressions for the quantities Fijkl, Pij , Sijk, etc., that enter the linearized field

equations (24), (25) are given in Appendix B. They are used to derive the independent

linearized equations in the scalar sector. It is convenient to introduce the notation

β = αe2φ , β̃ = α̃e2φ , f = feφ , g = geφ , Λ = λeφ , (27)

where φ(η) is defined in (22). We begin with eq. (24). It has two free indices, i and j. The

general form of the scalar part of its left hand side is

Gij =























G(00) , i = j = 0

ikaG(a0) , i = a, j = 0

ikaG(0a) , i = 0, j = a

δabG(δ) − kakbG(k⊗k) + iǫabckcG(ǫk) , i = a, j = b

(28)

where G(00), ..., G(ǫk) are scalar functions. Their explicit forms are given in eqs. (c1) - (c6)

of Appendix C, where the relation (3) is used.

Equation (25) has three free indices, i, j, k, and is antisymmetric in i, j. It breaks up

into the components (0a0), (ab0), (0ab) and (abc). In terms of scalar functions one has

Tijk =























ikaT (0a0) , i = 0, j = a, k = 0

iǫabckcT (ab0) , i = a, j = b, k = 0

δabT (δ) − kakbT (k⊗k) + iǫabckcT (ǫk) , i = 0, j = a, k = b

ǫabcT (ǫ) − ǫabdkckdT (ǫk⊗k) + i(δackb − δbcka)T (δ⊗k) , i = a, j = b, k = c

(29)

To write this decomposition, the following identity is instrumental,

ǫabc = ǫabd
kckd
k2

+ (kaǫbcd − kbǫacd)
kd
k2

.
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Thus, eq. (25) leads to 8 linear equations, eqs. (c7) - (c14). Their explicit form is given in

Appendix C.

In total we have 14 field equations: 6 of them are second order in time derivatives and 8

are first order, see Appendix C. The second order equations are eqs. (c5), (c9), (c10), (c11),

(c13) and (c14), while the first order equations are eqs. (c1) - (c4), (c6) - (c8) and (c12).

6.2 The use of generalized Bianchi identities

Due to the generalized Bianchi identities, not all of the field equations are independent. To

see which equations may be safely ignored, let us write the generalized Bianchi identities

in (3 + 1)-decomposition. The identity (17) gives two non-trivial identities for µ = 0 and

for µ = a, the latter being proportional to ka. The identity (20) gives two other identities,

one for (i, j) = (0, a) and another for (i, j) = (a, b), which are proportional to ka and ǫabckc,

respectively.

Recall that we have made the conformal transformation (21), while Bianchi identities

(17), (20) are written before the conformal transformation. In particular, Ĝij and T̂ij in (17),

(20) are the left hand sides of the general equations (8) and (9), while we are working with

equations (24), (25) which we have derived after extracting the conformal factor.

After conformal transformation we get the identity (17) with µ = 0:

2G(a0)k2 − 2ΛG(00) + 6ΛG(δ) + 2(G(00))′ − 2ΛG(k⊗k)k2 + 6ΛfT (δ)

− 6ΛgT (ǫ) − 2Λfk2T (k⊗k) + 2Λgk2T (ǫk⊗k) ≡ 0 , (30)

and with µ = a (which is proportional to ka):

− 2G(δ) + 2(G(0a))′ + 2gT (ǫ) − 2fT (δ) + 2f(T (0a0))′ − 2g(T (ab0))′

+ 2G(k⊗k)k2 + 2fk2T (k⊗k) − 2gk2T (ǫk⊗k) − 2ΛgT (ab0) + 2ΛfT (0a0) ≡ 0 . (31)

The identity (20) breaks up into 2 scalar identities: with i = a, j = 0 (which is proportional

to ka):

G(0a) − G(a0) − T (k⊗k)k2 + 2fT (δ⊗k) + 2gT (ǫk) − (T (0a0))′ + T (δ) ≡ 0 , (32)

and with i = a, j = b (which is proportional to ǫabckc):

T (ǫk⊗k)k2 + 2fT (ǫk) − 2gT (δ⊗k) − 2G(ǫk) − T (ǫ) + (T (ab0))′ ≡ 0 . (33)

Here G(...) and T (...) are the left hand sides of the field equations, as defined in (28) and (29),

and their explicit forms are given in eqs. (c1) - (c14). We continue to use the notation (27).

Thus, we have 4 scalar identities. The system (30)-(33) can be used to express G(δ),

T (k⊗k), T (δ⊗k) and T (ǫ) (eqs. (c5), (c9), (c13) and (c14), respectively) in terms of other

components. Therefore, eqs. (c5), (c9), (c13) and (c14) (which are second order) can be

ignored.

12



6.3 Number of propagating modes

In Minkowski background, the scalar sector has two propagating modes. One of them is the

Lorentz scalar of mass (7), and another is helicity-0 part of the spin-2 excitation of mass

(6). The purpose of this Section is to show that the scalar sector about the self-accelerating

solution (11) also has two modes. Thus, the Bouleware–Deser phenomenon does not occur.

In this paper we do not consider a special case c3 = c4, i.e. we impose the condition (2),

which implies

2c3 6= −3c5 . (34)

We will see in due course that the case c3 = c4 = −3
2
c5 is special and requires separate

treatment which we do not attempt in this paper.

Let us study the system of 10 equations: (c1) - (c4), (c6) - (c8), (c10) - (c12). Two of

these equations, (c10) and (c11), are second order. However, we can replace them by first

order equations. To this end, we combine T (δ), eq. (c10) and T (ǫk), eq. (c11) with remaining

equations and their time derivatives in the following way:

D(1) ≡ 3T (δ) − 1

2Λf

[

ΛG(00) − 3Λ(G(0a))′ − 3Λ2fT (0a0) − 3Λf(T (0a0))′

− k2G(a0) − 2Λk2G(k⊗k) − (G(00))′ + 3Λ2gT (ab0)

+2Λgk2T (ǫk⊗k) + 3Λg(T (ab0))′
]

(35)

and

D(2) ≡ 2T (ǫk) − 1

Λfk2

[

2Λfk2T (ab0) − 2f2Λk2T (ǫk⊗k) − 2Λfk2(T (ǫk⊗k))′ + gΛG(00)

− 3gΛ(G(0a))′ − g(G(00))′ − 3gΛ2fT (0a0) − 3gΛf(T (0a0))′ − gk2G(a0)

−2gΛk2G(k⊗k) + 3Λ2g2T (ab0) + 2Λg2k2T (ǫk⊗k) + 3Λg2(T (ab0))′
]

. (36)

These are first order equations. Their explicit forms are given in Appendix D, eqs. (d1),

(d2). Therefore, at this stage we have 10 first order equations, (c1) - (c4), (c6) - (c8), (c12),

(d1), (d2), for 10 variables describing scalar perturbations.

The variables in the resulting system of equations are of two types. The variables of the

first group,

σ , Φ , ξ , θ , (37)

enter these equations without time derivatives. The variables of the second group,

Ψ , χ , ρ , Q , u , M , (38)

enter with first time derivatives.
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Remarkably, two linear combinations of the 10 equations are actually algebraic and in-

volve only the variables (38). One of these combinations is

A[2(3c5 + 2c3) + 96c6]g(Λ− 2f)2fc3

+ (−3c5 − 2c3)
{

(

k2

3
G(00) − T (ab0)Λgk2 + G(0a)Λk2 − gA

)

[4c3(f
2 − g2 − Λf)− 3β̃]

− 4Λf2c3k
2(G(0a) − G(a0))

}

= 0 , (39)

where

A ≡ 2k2ΛfT (ǫk⊗k) + 3g

(

T (0a0)Λf+
1

3
G(00) − T (ab0)Λg+ G(0a)Λ

)

.

Note that due to the condition (34), the second term in eq. (39) does not vanish. The

combination (2c3 + 3c5) will appear repeatedly in formulas that follow. Thus, the case

c3 = c4 = −3
2
c5 is special indeed.

Another algebraic equation comes from the linear combination of eqs. (c1) - (c4), (c6) -

(c8), (c12), (d1):
{

4fc3

3β̃(3g2 − k2)
[(2c3 + 3c5)(6fg

2 − Λk2)− 144g2c6(Λ− 2f)]

−3β̃ − 4(f2 − g2)c3

3β̃
(2c3 + 3c5)

}

(D − BΩ)

+

{

Ω

[

−4c3k
2 +

12β̃(f2 − g2)c3
β

− (3c5 + 24c6)g
2c3

c6
−
(

6β̃

β
+

3c5 + 24c6
4c6

)

12c3f
2g2

(3g2 − k2)

]

+2(3c5 + 2c3)[24c5f− (96c6 + 4c3)(Λ− 2f)]

−12fc3[3β̃ + 6c5(f
2 + fΛ− g2)− 4c3(f

2 − fΛ− g2)]

3g2 − k2

}

Eg = 0 , (40)

where

Ω ≡ 24c5(3c3 + 2c5)(Λ + 2f)

576c6g2 − (3c5 + 24c6)2g2/(4c6) + 9β̃(β − β̃)/β
,

E ≡1

3

8fc3 + 12fc5 + 192fc6 − 4Λc3 − 6Λc5 − 96Λc6

β̃(3g2 − k2)

(

−gT (ǫk⊗k) +
2k2

3
T (0a0)

)

+
1

3

6g2c3 + 9g2c5 − 2k2c3 − 3k2c5

β̃(3g2 − k2)
(G(a0) − G(0a)) ,

D ≡−12f2gc3 + 18f2gc5 + 12fgΛc3 + 18fgΛc5 + 12g3c3 − 18g3c5 + 9gβ̃

3g2 − k2

(

T (0a0) − 3

2k2
gT (ǫk⊗k)

)

− 24g2c3 + 36g2c5 − 8k2c3 − 12k2c5
3g2 − k2

G(ǫk) ,
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B ≡ − 1

2fβ

(

+ 3βΛfT (0a0) − 3βΛgT (ab0) − 2βgk2T (ǫk⊗k)

−2βfD(1) − 6fβ̃G(0a)
)

+
3g

c6f
(fc5 + 8fc6 + 2Λc6)T (ab0)

+
1

4

6βf2gk2c5 + 48βf2gk2c6 − 12βg3k2c6 + 4βgk4c6 + 48f2gk2β̃c6
c6fβ(3g2 − k2)

T (ǫk⊗k)

+
1

4

9βfg2c5 + 72βfg2c6 + 18βg2Λc6 − 6βk2Λc6 + 72fg2β̃c6
c6β(3g2 − k2)

T (0a0) .

So, we have 2 algebraic equations (39), (40) involving the variables (38) only, and 8 first

order equations in which the variables (37) enter without time derivatives. Therefore, one

can make use of eqs. (39), (40) to express 2 variables from the set (38) (M and ρ) in terms of

four remaining variables from this set (Ψ, χ, Q, u); importantly, these expressions for M and

ρ are algebraic, i.e. they do not involve their derivatives. 4 of these remaining 8 equations

are used to express σ, Φ, ξ, θ (the variables that enter the whole set of equations without

time derivatives) in terms of Ψ, χ, Q, u and their first time derivatives. There remain 4

first order equations for the 4 variables (Ψ, χ, Q, u). Thus, we have 2 degrees of freedom,

the same number as in the Minkowski background. We conclude that the self-accelerating

background does not exhibit the Boulware–Deser phenomenon.

In practice, it is convenient to express σ, ξ, Φ, θ from eqs. (c3), (c4), (c7) and (c8),

respectively, and substitute these into equations

E (1) ≡ (c6) , E (2) ≡ (d1) , (41)

and the following linear combinations of the field equations:

E (3) ≡−k2f

Λ
(c2)− (5Λ + 2f)k2

Λ
(c6) + 2f(d1) ,

E (4) ≡−2(−4k2fb− 6k2f+ 3Λf2b− 6Λk2b− 9Λk2)

Λ
(c6)

− 2f(2b+ 3)(d1) +
(2b+ 3)k2

Λ
(d2) , (42)

where

b ≡ c3
c5

,

(c2) denotes the left hand side of eq. (c2), etc. After that we express M , ρ, M ′ and ρ′

from the algebraic equations (39), (40) and their time derivatives, and substitute these in

equations E (1), E (2), E (3), E (4). Thus, our linearized system reduces to the four first order

equations E (1), E (2), E (3), E (4) written in terms of variables Ψ, χ, Q, U .
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6.4 Limit of small Λ

Let us now consider the limit of small λ and not so small f , eq. (13). In this case the

parameters c5 and c6 scale with λ as given by (14). We also assume that |c3| ∼ |c4| ∼ |c5|,
see (4).

The relations between g, c5, c6 and Λ, f, β, β̃ have the same form as in eq. (12), with the

substitution

f −→ f , α −→ β , etc.

In what follows we make use of these relations, and write equations in terms of (time-

dependent) parameters are Λ, f, β, β̃. It is worth noting that we will encounter cancellations,

so the leading order expressions (14) are not always sufficient. The higher order expressions

are obtained by making use of the code [37].

Now, consider the limit in which Λ is the smallest parameter of the problem. For small

Λ, parameters f, g, Λ, β, β̃ have slow dependence on time. We seek for solutions in the WKB

form F ∼ ei
∫
ωdη, where F is any of the variables Ψ, χ, Q, u, and

ω ≫ Λ, k2 ≡ kaka ≫ Λ2 . (43)

Then the time derivative is replaced by

∂0 ≡ iω .

In this way we obtain the system of 4 linear homogeneous algebraic equations (41), (42)

for Ψ, χ, Q, u, which determine the dispersion relations ωi = ωi(k), i = 1, . . . , 4. Equating

the determinant of the system to zero we get a fourth order equation for ω. To see that

there are exponentially growing modes, we consider two ranges of momenta,

k2 ≪ Λf (44)

and

f3Λ ≪ k4 ≪ f5

Λ
. (45)

Note that k is conformal momentum, while Λ and f are conformally related to the physical

parameters of the solution. Equation (44), written in physical terms, is

(

k

a(η)

)2

≪ λf ,

and similarly for (45).

We are going to see that in the range (44) there are instabilities

ω ∼ −i
f2

Λ
and ω ∼ −i

√

Λ3f

k2
,
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while in range (45) there are instabilities

ω ∼ −i
f2

Λ
.

We first consider the case (45). The fourth order equation for ω (obtained by equating

the determinant to zero), to the leading order in Λ, is:

− (108f4b+ 72f4b2 + 45f2k2 + 18f2b2k2 + 51f2bk2 − 2bk4 − 3k4)(6f2 + k2)ω4Λ2

− i(−3k4 + 27f2k2 − 2bk4 + 33f2bk2 + 36f4b+ 14f2b2k2 + 24f4b2)(6f2 + k2)f2ω3Λ

− 2f6(6f2 + k2)(2b+ 3)(12f2b+ bk2 + 3k2)ω2 + 8i(12f2b+ bk2 + 3k2)(2b+ 3)k2f6ωΛ

− 8f6(18f2 − k2)(2b+ 3)(12f2b+ bk2 + 3k2)Λ2 = 0 . (46)

This expression is obtained by making use of the code [37] and accounts for cancellations

between dominant terms in Λ. Equation (46) is fourth order in ω, so there are formally 4

roots. Some of these roots may not obey ω ≫ Λ, which is our original assumption, see (43).

Our approach is to find all 4 roots of eq. (46) and then figure out the roots obeying ω ≫ Λ.

In this way we gain confidence that no relevant solutions to eq. (46) are lost. To this end,

we consider limiting cases.

• ω ≪ Λ. Then all the terms containing ω are small and eq. (46) is simply:

− 8f6(18f2 − k2)(2b+ 3)(12f2b+ bk2 + 3k2)Λ2 = 0 (47)

Equation (47) does not involve ω, so there are no roots.

• ω ∼ Λ. In this case eq. (46) becomes quadratic,

− 2f6(6f2 + k2)(2b+ 3)(12f2b+ bk2 + 3k2)ω2

+ 8i(12f2b+ bk2 + 3k2)(2b+ 3)k2f6ωΛ

− 8f6(18f2 − k2)(2b+ 3)(12f2b+ bk2 + 3k2)Λ2 = 0 ,

and has two roots:

ω1,2 = 2i
k2 ± 2

√
27f4 + 3f2k2

6f2 + k2
Λ .

These roots, however, do not obey ω ≫ Λ and thus are irrelevant.

• Λ ≪ ω ≪ f2

Λ
. Then ωΛ ≪ f2 and

ω3Λ ≪ ω2f2 , ω4Λ2 ≪ ω2f4 .

In eq. (46), only the third term survives, and we have simply

− 2f6(6f2 + k2)(2b+ 3)(12f2b+ bk2 + 3k2)ω2 = 0 .

There are no roots.
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• ω ∼ f2

Λ
. In this case terms proportional to ωΛ and Λ2 are much smaller than others,

and eq. (46) has the following form:

− (108f4b+ 72f4b2 + 45f2k2 + 18f2b2k2 + 51f2bk2 − 2bk4 − 3k4)(6f2 + k2)ω4Λ2

− i(−3k4 + 27f2k2 − 2bk4 + 33f2bk2 + 36f4b+ 14f2b2k2 + 24f4b2)(6f2 + k2)f2ω3Λ

− 2f6(6f2 + k2)(2b+ 3)(12f2b+ bk2 + 3k2)ω2 = 0 . (48)

Equation (48) has two roots:

ω3 = −i
f2

Λ
, (49)

ω4 = 2i
(12f2b+ bk2 + 3k2)(2b+ 3)f4

Λ(108f4b+ 72f4b2 + 45f2k2 + 18f2b2k2 + 51f2bk2 − 2bk4 − 3k4)
. (50)

• ω ≫ f2

Λ
. In this case terms with ω are much larger than others. Eq. (46) is:

−(108f4b+ 72f4b2 + 45f2k2 + 18f2b2k2 + 51f2bk2 − 2bk4 − 3k4)(6f2 + k2)ω4Λ2 = 0 .

It has no roots.

We see that ”frequency” (49), and also (50) in a certain range of k2, are of order

ω3,4 ∼ −i
f2

Λ
.

They are pure imaginary and correspond to instabilities.

Now let us consider the case k2 ≪ Λf, eq. (44). To the leading order in Λ, the fourth

order equation for the determinant is as follows,

6bβk2ω4Λ2 + (5bβk4 + 3βk4)Λ2ω3 + 24bβk2ω2f4

+ 8Λf3β̃k4ω + 864bβ̃Λ3f5 = 0 . (51)

Let us again consider limiting cases.

• ω . Λ. In this case the term of zeroth order in ω is the largest, and eq. (51) is simply

864bβ̃Λ3f5 = 0 .

So, there are no roots.

• Λ ≪ ω ≪ f2

Λ
. In this case terms with ω2 and ω0 are much larger than others, and

eq. (51) is:

24bβk2ω2f4 + 864bβ̃Λ3f5 = 0 .

There are two roots,

ω5 = −6

√

β̃fΛ

βk2
iΛ , ω6 = 6

√

β̃fΛ

βk2
iΛ . (52)
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• ω ∼ f2

Λ
. Then only the first and third terms in eq. (51) survive, and we have

6bβk2ω4Λ2 + 24bβk2ω2f4 = 0 .

This equation has 2 roots:

ω7 = −2if2

Λ
, ω8 =

2if2

Λ
.

• ω ≫ f2

Λ
. Then the first term in eq. (51) is the largest, and we have

6bβk2ω4Λ2 = 0 .

There are no roots.

The frequencies ω5 and ω7 correspond to the instabilities. This completes our analysis of

momenta (44), (45).

The instabilities ω3, ω4 and ω7 do not necessarily kill the model. They can be sent beyond

a UV cutoff necessarily present in the model by imposing the condition

ω ∼ f2

Λ
& MUV ,

where MUV is the cutoff scale.

On the other hand, one cannot get rid of the instability ω5. Indeed, we study background

(23), thus we have to assume that f ≪ MUV . This means, taking into account the second

inequality of (43), that

ω =
Λ

k

√

Λf ≪ MUV .

Thus, we cannot push it beyond the UV-cutoff. Furthermore, for low enough k (but still

k ≫ Λ), the time scale of instability is short. Indeed, the case we consider in this paper is

f ≫ λ log2A , (53)

where A is the initial amplitude of perturbation. In this case, the exponential growth of

perturbation makes it large (and non-linear) in the Hubble time.

The analysis given in this Section shows that the self-accelerating solution (23), under

assumption (53), is unstable because of the exponentially growing mode (52).

7 Discussion

Let us summarize the results. We studied the stability of the self-accelerating solution (11)

of the model (1) at the linearized level under assumptions (2) - (4). We made (3 + 1)-

decomposition of small perturbations and considered the scalar sector. We found that the
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number of degrees of freedom in the scalar sector is the same as in Minkowski background,

i.e. there are no Bouleware–Deser modes. We further studied the spectrum of perturbations

under assumptions (5) and (13) and found the exponentially growing modes

ω3,4,7 ∼ −i
f2

Λ
and ω5 ∼ −i

√

Λ3f

k2
. (54)

The first instability can be pushed beyond the UV cutoff and thus is not fatal, whereas the

second one cannot be sent beyond the UV cutoff and makes this solution unstable. There

remains a possibility that the self-accelerating solution is healthy for small f ∼ λ. Indeed,

taken at face value, the results (54) suggest that in that case all instabilities may be slow,

ω5 ∼
Λ2

k
≪ Λ , ω3,4,7 ∼

f2

Λ
∼ Λ .

We emphasize, however, that our analysis is not valid for f ∼ λ, so this case needs a separate

study. Note that in this case one has g ∼ λ, according to the third of eq. (12), so the entire

background torsion is small. The small–f regime can be achieved provided that couplings

c5, c6 are of order

c5 ∼ c6 ∼ O(λ−2) .

We plan to turn to this case in future.

Finally, in this paper we considered the case c3 6= c4, see (2). As can be seen from eq. (39)

and subsequent equations, our analysis does not apply if the condition (2) is violated, i.e.

c3 = c4 = −3

2
c5 or, in other words, b = −3

2
.

In that case the dynamics of small perturbations can be significantly different.
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Appendix A

The object Hijk emerges as follows. When varying the action with respect to Aijµ one makes

use of the expression

δFijkl = eµke
ν
l (DµδAijν −DνδAijµ) ,

where one can understand Dµ as “total” covariant derivative,

DµδAijν = ∂µδAijν + AikµδAkjν + AjkµδAikν − Γλ
µνAijλ ,

and Γν
µλ is Riemannian connection (Christoffel symbol). One integrates the variation of the

action by parts and encounters the expression

Dµ (e
µ
ke

ν
l )−Dµ (e

ν
ke

µ
l ) .

One recalls that

∂µe
ν
i + Γν

µΛe
λ
i + ωijµe

ν
j = 0 ,

where ωijµ is Riemannian spin connection. Now, Dµ involves

Aijµ = ωijµ +Kijµ ,

and therefore

ekν
[

Dµ

(

eµi e
ν
j

)

−Dµ

(

eνi e
µ
j

)]

= − 2

3α̃
Hijk

with the definition of Hijk given in (10). So, one has

δ

(
∫

d4x eF

)

=

∫

d4x e
2

3α̃
Hijke

kµδAijµ ,

δ

(
∫

d4x eFijFij

)

=

∫

d4x e [− (DiFjk −DjFik) + (ηikDlFjl − ηjkDjFil)

+
2

3α̃
(HilkFjl −HjlkFil)

]

ekµδAijµ ,

etc. In this way one obtains Eq. (9).
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Appendix B

Linearized Riemannian connection for symmetric ǫij reads (after conformal transformation):

ωijk = ∂jǫik − ∂iǫjk

and therefore we have in the scalar sector

ω0a0 = −ikaΦ , ω0ab = −Ψ′δab , ωab0 = 0 , ωabc = −i(kaδbc − kbδac)Ψ .

The linearized Ricci tensor reads

R00 = −3Ψ′′ − k2Φ , R0a = −2ikaΨ
′ , Rab = (Ψ′′ + k2Ψ)δab + kakb(Ψ + Φ) ,

and the Ricci scalar is

R = 6Ψ′′ + 4k2Ψ+ 2k2Φ .

The additional term in eq. (24) that emerges due to conformal transformation, to the linear

order in perturbations, breaks up into three components,

∆
(G)
00 = −3α

2
e−2φ

(

−6φ′ 2Φ + 6φ′Ψ′
)

,

∆
(G)
0a = ∆

(G)
a0 = −3α

2
e−2φ (2ikaφ

′Φ) ,

∆
(G)
ab = −3α

2
e−2φ

(

−4φ′Ψ′ + 4φ′′Φ+ 2φ′ 2Φ
)

δab .

Similarly, we have additional terms in eq. (25):

∆
(T )
0a0 = ∆

(T )
ab0 = ∆

(T )
abc = 0 ,

∆
(T )
0ab = e−φ3α̃φ′Φδab .

Since the field equations involve terms quadratic in Fijkl, we keep both background parts

and terms linear in perturbations. We proceed with Fijkl. The explicit calculation gives:

F0a0b =δab[e
2φλf −Ψ′′ − e2φλf(Ψ + Φ) + σ′] + kakb[−Φ + χ′ − iξ]

+ ǫabckc[−ieφgΦ+ ρ′ + eφ(gξ + fθ)] ,

F0abc =ǫabc[−2fge2φ + 4e2φfgΨ+ 2eφgΨ′ − 2gσeφ]

+ eφkaǫbcdkd[−2fu]

+ (kbδac − kcδab)[−iΨ′ − ieφfΨ+ iσ + eφfM − gρeφ]

+ (ǫabdkckd − ǫacdkbkd)[−iρ+ eφ(−fQ− fu− gχ)] ,
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Faboc =ǫabcλge
2φ(1− Φ−Ψ) + ǫabdkckd(Q

′ − iθ)

+ (kaδbc − kbδac)(−iΨ′ − ieφfΦ+M ′ + eφ(fξ − gθ))

+ (kaǫbcd − kbǫacd)kdu
′ ,

Fabcd =(δacδbd − δadδbc)[e
2φ(f 2 − g2)

− 2Ψe2φ(f 2 − g2)− 2eφfΨ′ + eφ(2fσ − 2k2gu)]

+ (kckaδbd − kckbδad − kdkaδbc + kdkbδac)[Ψ + iM + eφ(fχ− gQ+ gu)]

+ (ǫacdkb − ǫbcdka)[−ieφgΨ+ (fρ+ gM)eφ]− ik2u(ǫabckd − ǫabdkc) .

The linearized Fij reads:

F00 =3[e2φλf −Ψ′′ − e2φλf(Ψ + Φ) + σ′] + k2(−Φ + χ′ − iξ) ,

Fa0 =2ka(−iΨ′ − ieφfΦ+M ′ + eφ(ξ − gθ)) ,

F0a =2ka(−iΨ′ − ieφfΨ+ iσ + eφfM − gρeφ) ,

Fab =δab[−e2φλf +Ψ′′ + e2φλf(Ψ + Φ)− σ′ + 2e2φ(f 2 − g2)− 4Ψe2φ(f 2 − g2)

− 4eφfΨ′ + 2eφ(2fσ − 2k2gu) + k2Ψ+ ik2M + eφk2(fχ− gQ+ gu)]

+ kakb[Φ− χ′ + iξ +Ψ+ iM + eφ(fχ− gQ+ gu)]

− ǫabckc[−ieφgΦ+ ρ′ + eφ(gξ + fθ) + ieφgΨ− (fρ+ gM)eφ − ik2u] .

This expressions determine also the tensor Pij = c3Fij + c4Fji. The scalars F and ǫ · F are

F = − 6[e2φλf −Ψ′′ − e2φλf(Ψ + Φ) + σ′]− 2k2(−Φ + χ′ − iξ)

+ 3[2e2φ(f 2 − g2)− 4Ψe2φ(f 2 − g2)− 4eφfΨ′ + 2eφ(2fσ − 2k2gu)]

+ 4[k2Ψ+ ik2M + eφk2(fχ− gQ+ gu)] ,

ǫ · F = 12[−2fge2φ + 4e2φfgΨ+ 2eφgΨ′ − 2gσeφ + λge2φ(1− Φ−Ψ)]

+ 4k2[2u′ +Q′ − iθ − 2iρ+ 2eφ(−fQ− fu− gχ)] .

The scalar P is simply P = −3c5F .

The linearized covariant derivatives DiPik read

D0P00 =(c3 + c4)[6λ
2fe3φ(1−Ψ− 2Φ)− 3Ψ′′′ − 3e2φλf(Ψ′ + Φ′)

+ 3σ′′ − k2Φ′ + k2χ′′ − k2iξ′] ,

DaP00 =ika(c3 + c4){3e2φλf(−Ψ− Φ)− 3Ψ′′ + 3σ′ + k2χ′

− k2Φ− k2iξ − 3Ψe2φfλ− 4Ψ′eφf + 2eφf [−eφfΨ+ σ

− ieφ(fM − gρ+ fξ − gθ)− eφfΦ− iM ′]} ,
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D0P0a =ka(c3 + c4)[−2Ψ′′i− 2e2φ(iΦ− ξ)(λf + f 2 − g2)]

+ 2kac3[−ifΨ′eφ − ifΨλe2φ + iσ′ + λe2φ(fM − gρ) + eφ(fM ′ − gρ′)]

+ 2kac4[−ieφfΦ′ − ifΦλe2φ +M ′′ + λe2φ(fξ − gθ) + eφ(fξ′ − gθ′)] ,

D0Pa0 =ka(c3 + c4)[−2Ψ′′i− 2e2φ(iΦ− ξ)(λf + f 2 − g2)]

+ 2kac4[−ifΨ′eφ − ifΨλe2φ + iσ′ + λe2φ(fM − gρ) + eφ(fM ′ − gρ′)]

+ 2kac3[−ieφfΦ′ − ifΦλe2φ +M ′′ + λe2φ(fξ − gθ) + eφ(fξ′ − gθ′)] ,

D0Pab =δab(c3 + c4)[−λ2f2e3φ +Ψ′′′ + 2λ2e3φf(Ψ + Φ) + e2φλf(Ψ′ + Φ′)

− σ′′ + 4λe3φ(f 2 − g2)− 4Ψ′e2φ(f 2 − g2)− 8Ψ(f 2 − g2)λe3φ

− 2λe3φΦ(2f 2 − 2g2 − λf)− 4eφfΨ′′ − 4fΨ′λe2φ

+ 2eφ(2fσ′ − 2k2gu′) + 2λe2φ(2fσ − 2k2gu) + k2Ψ′ + ik2M ′

+ λe2φk2(fχ− gQ+ gu) + eφk2(fχ′ − gQ′ + gu′)]

+ kakb(c3 + c4)[Φ
′ − χ′′ + iξ′ +Ψ′ + iM ′ + λe2φ(fχ− gQ+ gu)

+ eφ(fχ′ − gQ′ + gu′)] + ǫabckc(c4 − c3)[−ieφgΦ′ − igΦλe2φ

+ ρ′′ + eφ(gξ′ + fθ′) + λe2φ(gξ + fθ) + ieφgΨ′ + iλe2φgΨ

− (fρ′ + gM ′)eφ − (fρ+ gM)λe2φ − ik2u′] ,

DbPa0 =kakb
{

2(c3 + c4)Ψ
′ + 2ic4[−ieφfΨ+ iσ + eφ(fM − gρ)]

+ 2ic3[−ieφfΦ+M ′ + eφ(fξ − gθ)] + 3χ(c3 + c4)e
2φλf

+ eφf(c3 + c4)[Φ− χ′ + iξ +Ψ+ iM + eφ(fχ− gQ+ gu)]

+χ(c3 + c4)e
2φ(2f 2 − 2g2 − λf)

}

+ δab(c3 + c4)
{

eφf(3e2φλf − 3Ψ′′

− 3e2φλf(Ψ + Φ) + 3σ′ + k2χ′ − k2Φ− iξk2)

+ 3e2φλf(−Ψ′ + σ − feφΨ) + eφf [−e2φλf +Ψ′′ + e2φλf(Ψ + Φ)

− σ′ + 2e2φ(f 2 − g2)− 4Ψe2φ(f 2 − g2)− 4eφfΨ′ + 2eφ(2fσ − 2k2gu)

+ k2Ψ+ ik2M + eφk2(fχ− gQ+ gu)]

+(−Ψ′ + σ − feφΨ)e2φ(2f 2 − 2g2 − λf)−Ψ[f 23e3φλ+ e3φf(2f 2 − 2g2 − λf)]
}

+ ǫabckc
{

3ρ(c3 + c4)e
2φλf + geφ2(c3 + c4)iΨ

′

− geφ2c4[−ieφfΨ+ iσ + eφ(fM − gρ)]− geφ2c3[−ieφfΦ+M ′ + eφ(fξ − gθ)]

+ (c4 − c3)[−ieφgΦ+ ρ′ + eφ(gξ + fθ) + ieφgΨ− (fρ+ gM)eφ − ik2u]eφf

+ρ(c3 + c4)e
2φ(2f 2 − 2g2 − λf)

}

,
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DbP0a =kakb{2(c3 + c4)Ψ
′ + 2ic3[−ieφfΨ+ iσ + eφ(fM − gρ)]

+ 2ic4[−ieφfΦ +M ′ + eφ(fξ − gθ)] + 3χ(c3 + c4)e
2φλf

+ eφf(c3 + c4)[Φ− χ′ + iξ +Ψ+ iM + eφ(fχ− gQ+ gu)]

+ χ(c3 + c4)e
2φ(2f 2 − 2g2 − λf)}

+ δab(c3 + c4){eφf [3e2φλf − 3Ψ′′ − 3e2φλf(Ψ + Φ)

+ 3σ′ + k2χ′ − k2Φ− iξk2] + 3e2φλf [−Ψ′ + σ − feφΨ]

+ eφf [−e2φλf +Ψ′′ + e2φλf(Ψ + Φ)− σ′ + 2e2φ(f 2 − g2)

− 4Ψe2φ(f 2 − g2)− 4eφfΨ′ + 2eφ(2fσ − 2k2gu)

+ k2Ψ+ ik2M + eφk2(fχ− gQ+ gu)]

+ (−Ψ′ + σ − feφΨ)e2φ(2f 2 − 2g2 − λf)

−Ψ[f 23e3φλ+ e3φf(2f 2 − 2g2 − λf)]}
+ ǫabckc{3ρ(c3 + c4)e

2φλf + geφ2(c3 + c4)iΨ
′

− geφ2c3[−ieφfΨ+ iσ + eφ(fM − gρ)]

− geφ2c4[−ieφfΦ +M ′ + eφ(fξ − gθ)]

+ (c3 − c4)[−ieφgΦ+ ρ′ + eφ(gξ + fθ)

+ ieφgΨ− (fρ+ gM)eφ − ik2u]eφf

+ ρ(c3 + c4)e
2φ(2f 2 − 2g2 − λf)} ,

DcPab =ikcδab(c3 + c4)[Ψ
′′ + e2φλf(Ψ + Φ)− σ′

− 4Ψe2Φ(f 2 − g2)− 4eφfΨ′ + 2eφ(2fσ − 2k2gu) + k2Ψ

+ ik2M + eφk2(fχ− gQ+ gu) + Ψe2φλf − 2Ψe2φ(f 2 − g2)]

+ ikakbkc(c3 + c4)[Φ− χ′ + iξ +Ψ+ iM + eφ(fχ− gQ+ gu)]

+ ikckdǫabd(c4 − c3)[−ieφgΦ+ ρ′ + eφ(gξ + fθ) + ieφgΨ− (fρ+ gM)eφ − ik2u]

− (c3 + c4)e
φg(ǫdackbkd + ǫdbckakd)[Φ− χ′ + iξ +Ψ+ iM + eφ(fχ− gQ+ gu)]

+ δackb{eφf [−2(c3 + c4)iΨ
′] + 2c3e

φf [−ieφfΨ+ iσ

+ eφ(fM − gρ)] + 2c4e
φf [−ieφfΦ +M ′ + eφ(fξ − gθ)]

− (c4 − c3)e
φg[−ieφgΦ+ ρ′ + eφ(gξ + fθ) + ieφgΨ− (fρ+ gM)eφ − ik2u]}

+ δbcka{eφf [−2(c3 + c4)iΨ
′] + 2c4e

φf [−ieφfΨ

+ iσ + eφ(fM − gρ)] + 2c3e
φf [−ieφfΦ+M ′

+ eφ(fξ − gθ)] + (c4 − c3)e
φg[−ieφgΦ+ ρ′ + eφ(gξ + fθ)

+ ieφgΨ− (fρ+ gM)eφ − ik2u]} .
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Finally we write down the object Sijk:

Sa00 =kae
2φ[−4M(c3 + c4)(f

2 − g2) + 96c6ρg(λ− 2f)] ,

Sab0 =e2φǫabckc[−96c6g(λ− 2f)M − 4ρ(c3 + c4)λf ] ,

S0ab =δab{−
2

3
feφk2(c3 + c4)[−Φ + χ′ − iξ]

+ 2feφ(c3 + c4)[2e
2φ(f 2 − g2)− 4Ψe2φ(f 2 − g2)− 4eφfΨ′ + 2eφ(2fσ − 2k2gu)]

+
10

3
feφ(c3 + c4)[k

2Ψ+ ik2M + eφk2(fχ− gQ+ gu)]

+ 2(c3 + c4)e
2φ(f 2 − g2)[k2χ+ 2σ − 2eφfΨ]− 96c6ge

3φ(λ− 2f)gΨ

+ 96c6ge
φ[−2fge2φ + 4e2φfgΨ+ 2eφgΨ′ − 2gσeφ + λge2φ(1− Φ−Ψ)]

+ 32c6ge
φk2[2u′ +Q′ − iθ − 2iρ+ 2eφ(−fQ− gu− gχ)]

+ 48c6ge
2φ(λ− 2f)(Q+ u)k2}

+ kakb{−2feφ(c3 + c4)[Φ− χ′ + iξ +Ψ+ iM + eφ(fχ− gQ+ gu)]

− 2(c3 + c4)e
2φ(f 2 − g2)χ+ 96c6ge

2φ(λ− 2f)u− 48c6ge
2φ(λ− 2f)(Q+ u)}

+ ǫabdkd{−2feφ(c4 − c3)[−ieφgΦ+ ρ′ + eφ(gξ + fθ)

+ ieφgΨ− (fρ+ gM)eφ − ik2u]

+ 2(c3 + c4)e
2φ(f 2 − g2)(ρ+ θ)} ,

Sabc =ǫabc[−96c6fge
3φ(λ− 2f) + 12ge3φc5λf − 12geφc5(Ψ

′′ + e2φλf(Ψ + Φ)− σ′)

− 96c6fe
2φg2Ψ′ +Ψ{−96c6f

2e3φ6g + 96c6fe
3φλ2g − 12c5e

3φλfg − 4geφc5k
2}

− {ik2M + eφk2(fχ− gQ+ gu)}4geφc5 + 96c6fe
φ{2gσeφ + λge2φΦ}

− 32c6fe
φk2{2u′ +Q′ − iθ − 2iρ+ 2eφ(−fQ− fu− gχ)}

− 48c6ge
2φ(λ− 2f)(k2χ+ 2σ) + 8geφk2c5{−Φ + χ′ − iξ}]

+ [δackb − δbcka][4fe
φ(c3 + c4)iΨ

′ − 4feφc4{−ieφfΨ+ iσ + eφ(fM − gρ)}
− 4feφc3{−ieφfΦ +M ′ + eφ(fξ − gθ)}
+ 2(c3 + c4)e

2φλf(ξ +M)− 48c6ge
2φ(λ− 2f)(ρ+ θ)

− 2geφ(c4 − c3){−ieφgΦ+ ρ′ + eφ(gξ + fθ) + ieφgΨ− (fρ+ gM)eφ − ik2u}]
+ ǫabdkckd[48c6ge

2φ(λ− 2f)χ− 4(c3 + c4)e
2φλfu]

+ [ǫbfckakf − ǫafckbkf ][2(c3 + c4)e
2φλf(Q+ u)

+ 2geφ(c3 + c4){Φ− χ′ + iξ +Ψ+ iM + eφ(fχ− gQ+ gu)}] .

26



Appendix C

Here we write the 14 scalar field equations. We use the notations (27), (28) and (29) and

recall the relation (4). Equations obtained from (24) are as follows.

(00)-component:

G(00) ≡− 96c6k
2Λgu′ − 48c6k

2ΛgQ′ + (−9β̃f− 9βΛ− 576c6g
2f)Ψ′

+ (576c6g
2f+ 9β̃f)σ + (144c6g

2Λ2 + 9βΛ2)Φ

+ [k2(3β̃ − 3β)− 9β̃(f2 − g2) + 144c6g
2(Λ2 − 8f2)]Ψ

+ (−6k2β̃g+ 384k2c6f
2g)u+

1

2
(−6k2β̃g + 384k2c6f

2g)Q+ 3ik2β̃M

+ (3k2β̃f+ 192k2c6g
2f)χ+ 192ik2c6fgρ+ 48ik2c6Λgθ = 0 (c1)

(a0)-component:

G(a0) ≡− i(3β̃ + 4Λfc3)M
′ − i[2Λg(c4 − c3)− 96c6g(Λ− 2f)]ρ′ + (3β − 3β̃)Ψ′

+ [−6g2Λc5 + 4Λc3(f
2 − g2)]Ψ− i[6g2Λc5 − 4Λ(f2 − g2)c3]M

+ [−3βΛ− 3β̃f+ 96c6g
2(Λ− 2f) + 4Λ(g2 − f2)c3 + 6Λg2c5]Φ

− 4Λfc3σ − i(8Λfgc3 + 6Λfgc5)ρ+ (6Λgk2c5 + 4Λgk2c3)u

− i[4Λ(f2 − g2)c3 − 6g2Λc5 − 96c6Λ(Λ− 2f) + 3β̃f]ξ

− i[−8Λfgc3 − 6Λfgc5 − 96c6fg(Λ− 2f)− 3β̃g]θ = 0 (c2)

(0a)-component:

G(0a) ≡(3β − 3β̃)Ψ′ − 4ic3(f
2 − g2)M ′ − 4i(c4 − c3)fgρ

′

+ i(12c3g
2f+ 12g2fc5 − 4c3f

3)ξ − i(−12c3gf
2 − 12c5gf

2 + 4c3g
3)θ

− i[3β̃f− 96c6g
2(Λ− 2f) + 12c3g

2f+ 12c5g
2f− 4c3f

3]M

− i[−3β̃g− 96c6gf(Λ− 2f) + 12c3gf
2 + 12c5gf

2 − 4c3g
3]ρ

+ [−96c6k
2g(Λ− 2f)− 4(c4 − c3)gfk

2]u+ [3β̃ − 4c3(f
2 − g2)]σ

+ [−3β̃f+ 96c6g
2(Λ− 2f)− 12c3g

2f− 12c5g
2f+ 4c3f

3]Ψ

+ [−3βΛ− 4c3f(f
2 − g2)− 4g2f(c4 − c3)]Φ = 0 (c3)
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(ab)-component, kãkb:

G(k⊗k) ≡− (48c6Λg− 96c6fg)Q
′ − [−3c5Λf−

3

2
β̃ − 3c5(f

2 − g2)]χ′

− (96c6fg− 48c6Λg)u
′ − [−3

2
β +

3

2
β̃ + 3c5(g

2 − f2 − Λf)]Ψ

− [3c5Λf+
3

2
β̃ − 3

2
β + 3c5(f

2 − g2)]Φ− (−48ic6Λg+ 96ic6fg)θ

− (−48ic6Λg+ 96ic6fg)ρ− [3ic5(f
2 − g2 + Λf) +

3

2
iβ̃]ξ

− (−3c5f
3 − 3c5Λf

2 − 48c6g
2Λ + 96c6g

2f+ 3c5g
2f+

3

2
fβ̃)χ

− (3c5f
2g+ 3c5Λfg− 3c5g

3 − 48c6Λfg+ 96c6f
2g− 3

2
gβ̃)Q

− [−3ic5(f
2 − g2 + Λf) +

3

2
iβ̃]M

− u(−96c6gf
2 − 3c5f

2g+ 3c5g
3 + 48c6Λfg− 3c5Λfg+

3

2
gβ̃) = 0 (c4)

(ab)-component, δab:

G(δ) ≡(−3β̃ + 3β)Ψ′′ + (−16c6Λgk
2 − 32k2c6fg)u

′ + (−32c6Λgk
2 + 32k2c6fg)Q

′

+ (−192c6fg
2 + 6βΛ + 3fβ̃)Ψ′ + (c5k

2Λf+
3

2
k2β̃ − c5k

2g2 + c5k
2f2)χ′ + 3β̃σ′

+ [−ic5k
2(f2 − g2 + Λf)− 3

2
ik2β̃]ξ + (32ik2c6fg+ 16ik2c6Λg)ρ+ (32ik2c6Λg

+ [−c5k
2(f2 − g2 + Λf) + 48c6Λ

2g2 − 3β̃Λf− 9βΛ2 − 3

2
k2β̃ +

3

2
k2β]Φ

+ [−3β̃Λf+ 48c6Λ
2g2 + c5k

2(f2 − g2 + Λf)− 384c6f
2g2 +

3

2
k2β

+ 3β̃f2 − 3

2
k2β̃ − 3β̃g2]Ψ− 32ik2c6fg)θ + (−3β̃f+ 192c6g

2f)σ

+ (c5k
2Λf2 − c5k

2g2f− 3

2
k2fβ̃ + c5k

2f3 + 32k2c6fg
2 + 16k2c6Λg

2)χ

+ (−c5k
2g3 + 160k2c6f

2g + c5k
2f2g + c5k

2Λfg− 16k2c6Λgf+
3

2
k2gβ̃)u

+ [32k2c6f
2g + 16k2c6Λgf− c5k

2Λfg+ c5k
2g3 +

3

2
k2gβ̃ − c5k

2f2g]Q

+ [ic5k
2(f2 − g2 + Λf)− 3

2
ik2β̃]M = 0 (c5)
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(ab)-component, ǫabckc:

G(ǫk) ≡− i(−3c5f
2 − 3c5Λf− 2c3Λf− 2c3g

2 − 3

2
β̃ + 2c3f

2 + 3c5g
2)ρ′

− i(4c3fg+ 12c5fg+ 96c6fg− 48c6Λg− 2c3Λg)M
′

+ (−12c5fg− 6c5Λg)Ψ
′

− i(−3

2
gβ̃ + 3c5g

3 + 9c5f
2g− 2c3g

3 + 6c3f
2g

− 3c5Λfg− 48c6Λfg+ 96c6gf
2 − 4c3Λfg)ξ

+ (
3

2
k2β̃ + 2k2c3Λf+ 3k2c5g

2 + 2k2c3g
2 − 3k2c5f

2 − 3k2c5Λf− 2k2c3f
2)u

+ (−96c6fg+ 2c3Λg+ 48c6Λg+ 6c5Λg− 4c3fg)σ

− i(−3c5f
3 + 48c6g

2Λ+ 2c3f
3 − 6c3g

2f− 3c5Λf
2 − 9c5g

2f− 2c3Λf
2

− 3

2
fβ̃ + 2c3g

2Λ− 96c6fg
2)θ

+ (−2c3f
2g+ 3c5f

2g− 96c6gf
2 + 3c5fgΛ+

3

2
gβ + 2c3Λfg− 4c3f

2g

+ 48c6Λfg+ 2c3Λfg− 12c5f
2g− 3c5g

3 + 2c3g
3)Φ

+ (−3c5Λfg+ 3c5f
2g− 3c5g

3 − 2c3g
3 − 3

2
gβ̃

+ 96c6gf
2 + 6c3f

2g− 4c3Λfg− 48c6Λfg)Ψ

− i(−6c3f
2g+ 48c6Λfg+

3

2
gβ̃ − 3c5f

2g+ 3c5Λfg

− 96c6gf
2 + 4c3Λfg+ 3c5g

3 + 2c3g
3)M

− i(−6c5g
2Λ+ 3c5g

2f+ 2c3Λf
2 − 3c5Λf

2 − 48c6g
2Λ + 96c6fg

2

+ 6c3g
2f− 2c3g

2Λ +
3

2
β̃f− 3c5f

3 − 2c3f
3)ρ = 0 (c6)

Equations obtained from (25) are as follows.

(0a0)-component:

T (0a0) ≡− 2c5k
2χ′ + i(4c4g+ 6c5g)ρ

′ + 4c3ifM
′ + 2c5k

2gQ

+ i(6c5g
2 + 2k2c5 + 4c3f

2 + 4c4g
2)ξ + (16c5k

2g+ 4gc4k
2)u

+ 4c3fσ + i(8c4gf+ 18c5gf)θ − i(96Λc6g− 192c6fg+ 8c4gf+ 6c5gf)ρ

+ (4c3f
2 + 4c4g

2 + 2k2c5 + 6c5g
2)Φ− 2ik2c5fχ

+ (−2c5k
2 − 4c4g

2 − 4c3f
2 − 18c5g

2)Ψ

− i(4c3f
2 + 18c5g

2 − 3β̃ + 4c4g
2 + 2c5k

2)M = 0 (c7)
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(ab0)-component:

T (ab0) ≡− 32c6k
2u′ − 16c6k

2Q′ − (96c6g+ 12c5g)Ψ
′ − i(6c5f+ 4c4f)ρ

′

+ 4ic3gM
′ + 32c6k

2fQ+ i(96Λc6g+ 6c5gf− 192c6fg+ 8c4gf)M

+ (48c6Λg+ 8c4gf− 192c6fg+ 6c5gf)Ψ + 32c6k
2gχ

− i(8c4gf+ 18c5gf)ξ − (−64c6k
2f+ 4fk2c4 + 6fk2c5)u

+ (96c6g− 4c4g)σ + i(16c6k
2 − 4c4f

2 − 4c3g
2 − 6c5f

2)θ

+ i(32c6k
2 + 4c4f

2 + 3β̃ + 18c5f
2 + 4c3g

2)ρ

− (8c4gf+ 18c5gf− 48c6Λg)Φ = 0 (c8)

(0ab)-component, kakb:

T (k⊗k) ≡3c5χ
′′ + 3c5gQ

′ − 3c5Φ
′ − 3c5gu

′ − (2ic4 + 3ic5)M
′ − 3ic5ξ

′ + 3c5Ψ
′

− (−3c5Λf+ 3c5f
2 +

3

2
β̃)χ− (3ic5f+ 2ic4f)ξ

− (3c5f+ 2c4f)Φ− (2c4 + 6c5)σ + 2ic3gρ

− (3c5Λg− 96c6fg+ 3c5fg+ 48c6Λg)u− (−3c5f− 2c4f)Ψ + 2ic4gθ

− (−2ic4f− 3ic5f)M − (−48Λc6g + 96c6fg− 3c5Λg− 3c5fg)Q = 0 (c9)

(0ab)-component, δab:

T (δ) ≡c5k
2χ′′ + (5k2c5g+ 32k2c6g)Q

′ − c5k
2Φ′ + (c5k

2 + 192c6g
2)Ψ′

− ik2c5ξ
′ + (−5ik2c5 − 2ik2c4)M

′ + (64k2c6g + 7k2c5g)u
′

+ (5ik2c5f+ 2ik2c4f)M + (−160k2c6gf+ 5k2c5Λg+ 48k2c6Λg+ k2c5fg)Q

+ (−32ik2c6g + 2ik2c4g)θ + (48k2c6Λg− k2c5fg− 224k2c6fg+ 7k2c5Λg)u

+ (−5ik2c5f− 2ik2c4f)ξ + (2k2c3 − 3β̃ − 192c6g
2)σ

+ (2k2c4f+ 5k2c5f+ 576c6g
2f+ 3fβ̃ − 24c5Λg

2 − 192c6Λg
2)Ψ

+ (−96c6Λg
2 − 5k2c5f− 2k2c4f− 12c5Λf

2 + 3Λβ̃)Φ

+ (−64ik2c6g + 2ik2c3g)ρ

+ (−k2c5f
2 − 3

2
k2β̃ + k2c5Λf− 64k2c6g

2)χ = 0 (c10)
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(0ab)-component, ǫabckc:

T (ǫk) ≡i(2c4 + 3c5)ρ
′′ − 3ic5gM

′ − 16k2c6Q
′ + i(2c4f+ 3c5f)θ

′

+ (3k2c5 + 2k2c4 − 32k2c6)u
′ + (3c5g+ 2c4g)Φ

′

+ i(2c4g+ 3c5g)ξ
′ + (−2c4g− 9c5g− 96c6g)Ψ

′

− i(−3c5gf− 48c6Λg− 4c4gf+ 96c6gf− 2c4Λg− 3c5Λg)ξ

+ (2fk2c4 + 64k2c6f+ 3k2fc5)u+ (96c6g+ 6c5g+ 2c4g)σ

− i(−9c5f
2 − 2c4Λf+ 6c5g

2 − 2c4f
2 − 16c6k

2 − 3

2
β̃ − 3c5Λf+ 2c4g

2)θ

− i(−2c4g
2 − 32c6k

2 + 9c5Λf− 6c5g
2 − 3

2
β̃ + 2c4Λf+ 2c4f

2 + 3c5f
2)ρ

+ (3c5Λg + 2c4fg+ 2c4Λg+ 2c4gf+ 48c6Λg+ 3c5fg)Φ

+ (−4c4gf− 2c4Λg− 192c6fg+ 48c6Λg− 9c5fg− 3c5Λg)Ψ

+ 32c6k
2gχ− i(4c4gf+ 2c4Λg+ 3c5Λg+ 9c5gf+ 96c6fg− 48c6Λg)M

+ 32k2c6fQ = 0 (c11)

(abc)-component, ǫabdkckd:

T (ǫk⊗k) ≡− (3ic5 + 2ic4)ρ
′ + 3c5gχ

′ + 2ic3gξ + 2c4gΨ+ 2ic4gM

− (3c5g
2 − 3

2
β̃ + 3k2c5 + 2k2c4 + 6c5Λf)u

− (2ic4f+ 3ic5f)θ + (2ic4f+ 3ic5f)ρ+ 2c3gΦ

− (48c6Λg− 96c6fg+ 3c5gf)χ− (
3

2
β̃ − 6c5Λf− 3c5g

2)Q = 0 (c12)

(abc)-component, δackb − δabkc:

T (δ⊗k) ≡2ic3M
′′ − 2c3fΨ

′ + 2c3fΦ
′ + 3ic5gρ

′ − 2ic3gθ
′ + 2ic3fξ

′ + 2c3σ
′ − k2c5χ

′

− i(−2c3f
2 +

3

2
β̃ − k2c5 − 2c3Λf− 2c4g

2 − 9c5g
2)ξ + (2gc4k

2 + 2gc5k
2)u

+ 2c3fσ − i(2c3Λg− 3c5fg+ 96c6fg− 48c6Λg− 4c4gf)θ

− i(−48c6Λg+ 4c4gf+ 9c5gf+ 2c4Λg+ 96c6fg)ρ

+ (2c3Λf+ 2c3f
2 − 2c3g

2 + 3c5g
2 + c5k

2)Φ

+ (−2c3Λf− 2c4g
2 − 2c3f

2 − 3c5g
2 − k2c5)Ψ− c5k

2fχ

− i(k2c5 +
3

2
β̃ + 2c4g

2 + 2c3f
2 + 3c5g

2 + 2c3Λf)M + c5k
2gQ = 0 (c13)

31



(abc)-component, ǫabc:

T (ǫ) ≡− 32c6k
2u′′ − 16c6k

2Q′′ + (−96c6g− 12c5g)Ψ
′′ + (5k2c5g+ 32k2c6g)χ

′

+ (32ic6k
2 − 2ik2c4 − 3ik2c5)ρ

′ + (−48c6Λg− 384c6fg)Ψ
′ + 48c6ΛgΦ

′

+ 16ik2c6θ
′ + (12c5g + 96c6g)σ

′ + (−8ik2c5g− 2ik2c4g)ξ

+ (32ik2c6f− 3ik2c5f− 2ik2c4f)θ + (160k2c6gf− k2c5fg− 16k2Λgc6)χ

+ (−3k4c5 − 2k4c4 + 64k2c6Λf−
3

2
k2β̃ − k2c5g

2 + 6k2c5Λf+ 128k2c6f
2)u

+ (−2k2c4g− 3k2c5g+ 96c6Λ
2g− 12c5Λfg− 5k2c5g+ 96c6Λfg)Φ

+ (32k2c6Λf+ 64k2c6f
2 + k2c5g

2 + 6k2c5Λf−
3

2
k2β̃)Q+ 384c6fgσ

+ (2k2c5g− 192c6Λfg+ 3gβ̃ − 576c6f
2g+ 96c6Λ

2g + 2k2c4g− 24c5Λfg)Ψ

+ (2ik2c4g+ 2ik2c5g)M + (3ik2c5f+ 64ik2c6f+ 2ik2c4f)ρ = 0 (c14)

Note that eqs. (c5), (c9), (c10), (c11), (c13) and (c14) are second order, while eqs. (c1)-

(c4), (c6)-(c8) and (c12) are first order.

Appendix D

Here we give explicit forms of eqs. (35) and (36):

D(1) ≡ 4ic3k
2M ′ + (12c5gk

2 + 96c6gk
2)Q′ + 576c6g

2Ψ′ + 2(12c5gk
2 + 96c6gk

2)u′

+ (4c3k
2 − 9β̃ − 576c6g

2)σ + 4ik2c3fξ + (−192ik2c6g + 4ik2c3g)ρ

+ (12k2c5Λg+ 96c6k
2Λg− 384c6k

2gf)Q+ 2(12k2c5Λg

− 4ik2c3fM + 96c6k
2Λg− 384c6k

2gf)u

+ (−96c6ik
2g + 4ik2c4g)θ + (−3k2β̃ − 192k2c6g

2)χ

+ (4k2c3f− 36c5Λf
2 − 288c6Λg

2 + 9β̃Λ)Φ

+ [−72c5Λg
2 − 4k2c3f+ 9β̃(f+ Λ)− 576c6g

2(Λ− 3f)]Ψ = 0 , (d1)
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D(2) ≡ [3β̃ − 12c5Λf]u
′ + [−3β̃ + 12c5Λf]Q

′ + [6c5Λg− 96c6g(Λ− 2f)]χ′

+ 8(c4 − c3)igM
′ + 4(c4 − c3)ifρ

′ + [3iβ̃ − 8ic3(f
2 − g2)− 4(c4 − c3)ig

2]θ

+ 8(c4 − c3)gσ + [96ic6g(Λ− 2f)− 6ic5Λg+ 12(c4 − c3)ifg]ξ

+ [−96c6gi(Λ− 2f)− 6ic5Λg− 12i(c4 − c3)fg]M

+ [−3iβ̃ − 12ic5Λf+ 16ic3(f
2 − g2) + 4(c4 − c3)if

2]ρ

+ [−12(c4 − c3)fg− 6c5Λg]Ψ + [12(c4 − c3)fg− 6c5Λg]Φ

+ [3β̃g− 18c5Λfg+ 192c6f
2g− 192c6Λ

2g+ 288c6Λfg]χ

+ [96c6g
2(Λ− 2f) + 6Λβ̃ + 3fβ̃ + 4(c4 − c3)fk

2 − 6c5Λg
2 − 12c5Λf

2 − 24c5Λ
2f]u

+ [−3fβ̃ − 6Λβ̃ − 96c6g
2(Λ− 2f) + 6c5Λg

2 + 12c5Λf
2 + 24c5Λ

2f]Q = 0 . (d2)

These equations are obviously first order.
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