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In this work we present the general differential geometry of a background in which the space-time
has both torsion and curvature with internal symmetries being described by gauge fields, and that is
equipped to couple spinorial matter fields having spin and energy as well as gauge currents: torsion
will turn out to be equivalent to an axial-vector massive Proca field and because the spinor can be
decomposed in its two chiral projections, torsion can be thought as the mediator that keeps spinors
in stable configurations; we will justify this claim by studying some limiting situations. In what will
look like a second introduction, we present in historical manner the way in which quantum principles
have come to be mathematically implemented in physical theories, with the aim of isolating the main
problems of the quantization protocols; we will do this with the goal of presenting possible solutions
and improvements that are based on the concept of spin, and therefore describable within the theory
that has been introduced in the first part. Further we present some of the most recent open problems
in physics, again with the idea of proposing solutions that are based on the interaction between the
spin and the torsion tensor. Finally we briefly sketch a discussion about the existence of some exact
solutions and a few of their possible consequences.
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I. INTRODUCTION

In fundamental theoretical physics, there are a number
of principles that are assumed, and among them, one of
the most important is the principle of covariance, stating
that the form of physical laws must be independent on the

http://arxiv.org/abs/1703.02287v1


coordinate system used to write them down; covariance is
mathematically translated into the instruction that such
physical laws have to be written by employing tensors.

On the other hand, because physical laws describe the
shape and evolution of fields, differential operators must
be used; but because of covariance, all derivatives in the
field equations have to be covariant too: and covariant
derivatives can be defined in general upon introducing an
object called connection. In their most general form, the
covariant derivative of, say, a vector, is given by

DαV
ν =∂αV

ν+V σΓν
σα

where the connection Γα
νσ has three indices: the upper

index and the lower index on the left are the indices in-
volved in the shuffling of the components of the vector,
whereas the lower index on the right is the index related
to the coordinate with respect to which the derivative is
calculated eventually. Hence, there appears to be a clear
distinction in the roles played by the left and the right of
the lower indices, and therefore the connection cannot be
taken to have any kind of symmetry property for indices
transposition involving the two lower indices at all.

The fact that in the most general case the connection
has no specific symmetry implies that the antisymmetric
part of the connection is not zero, and because it turns
out to be a tensor, then it is called torsion tensor.

The circumstance for which the torsion tensor is not
zero does not follow from arguments of generality alone,
but also from explicit examples: for instance, torsion does
describe some essential properties of Lie groups, as it was
discussed by Cartan. Cartan has been the first who pio-
neered into studying torsion [1–4], and this is the reason
why today torsion is also known as Cartan tensor.

When back at the ending of the XIX century Ricci-
Curbastro and Levi-Civita developed absolute differen-
tial calculus, or tensor calculus, they did it by assuming
zero torsion to simplify computations, and the geometry
they eventually obtained was entirely based on the exis-
tence of a Riemann metric, and so it was called Riemann
geometry; nothing of this geometry is spoiled by allowing
torsion to take its place in it, the only difference being
that now the metric would be accompanied by the tor-
sion, and the final setting is Riemann-Cartan geometry.

In the RC geometry, then, there are two fundamental
objects, that is metric and torsion, or equivalently, met-
ric and connection: the metric is employed to measure
distances and angles while the connection is used to com-
pute covariant derivatives. Again, there seems to be no
relation between metric and topological properties and
therefore metric and connection should be independent,
a requirement that is implemented by asking that the co-
variant derivative of the metric vanishes, and when this
happens we talk about metric-compatible connection.

There is another reason why this should be the case,
and in order to better see it we have to recall that the
metric is employed to measures distances and angles but
also raise and lower tensorial indices; as a matter of fact,

one may also reverse the argument, starting from the in-
troduction of a fundamental tensor used for raising and
lowering tensorial indices, and continuing by seeing how
the requirement that raising and then lowering the same
tensorial index leave the tensor unchanged implies the
fundamental tensor be symmetric and not-degenerate, so
being a Riemann metric, as we will have the opportunity
to discuss in a while. Furthermore, the requirement that
the raising and lowering of tensorial indices be possible
in any case, and that is even for tensors that are covari-
ant derivatives of some other tensor, does imply that the
covariant derivative of the metric is zero, thus leading to
the metric-compatibility of the connection itself.

Metric-compatible connections are decomposed into an
antisymmetric part, given by the torsion tensor, and a
symmetric part, which is given by a combination of tor-
sion tensors plus a symmetric connection entirely written
in terms of the metric and called Levi-Civita connection.

The fact that there exists a term built with torsion but
nevertheless symmetric implies that there is more than
one symmetric connection, and this is the source of some
issue: from the fact that, while the most general connec-
tion is metric-compatible, some of its symmetric parts
are not; to the fact that, among the different symmetric
connections, we cannot choose which encodes the gravita-
tional information according to the equivalence principle.

To better appreciate the above arguments, we have to
recall that the principle of equivalence states that it is
always possible to find a system of reference in which
locally the gravitational field can be neglected; this prin-
ciple has to be taken in parallel with a result know from
geometry as Weyl theorem, stating that it is always pos-
sible to find a system of coordinates where in a point the
symmetric part of the connection vanishes: putting both
principles beside each other makes it clear that on the ba-
sis of Weyl theorem the principle of equivalence becomes
a statement on the interpretation of gravity as what is
described by the symmetric part of the connection.

Now, in a theory in which there is more than one sym-
metric connection the interpretation of gravity as what
is contained in the symmetric connection is ambiguous.

Although quite in general, mathematically, the torsion
tensor is non-zero, nevertheless there may be reasons for
which, physically, it could be zero: as we just discussed,
the principle of equivalence may be that reason [5].

Except that this is not the case: the principle of equiv-
alence, by demanding that the unique gravitational field
be stored within a single symmetric connection, may sim-
ply be implemented by insisting that all symmetric parts
of the connection collapse down to a single one, a require-
ment that is mathematically translated into the fact that
metric-compatible connections with completely antisym-
metric torsion alone must be considered; incidentally, this
requirement would also imply that all of the connections
would have to be metric-compatible, and therefore the
problem that some symmetric connections be not metric-
compatible does not even arise. Or in alternative, one
may even avoid to implement the principle of equivalence
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mathematically allowing for all possible symmetric con-
nection and then declaring that the Levi-Civita symmet-
ric connection be the one describing gravity; granted that
this assumption may well look arbitrary, nevertheless one
may assume it just the same. The torsion tensor may be
completely antisymmetric or general, but whichever it is
between the two, the torsion tensor is non-zero.

Once again, the circumstance for which, also in phys-
ical space-times, the torsion tensor is not zero does fol-
lows from arguments of generality but also from a spe-
cific property of the torsion itself: in fact, by writing the
Riemann-Cartan geometry in anholonomic bases, the tor-
sion can be seen as the strength of the potential arising
from gauging the translation group, much in the same
way in which the curvature is the strength of the poten-
tial arising from gauging the rotation group, as shown by
Sciama and Kibble. What Sciama and Kibble proved was
that torsion is not just a tensor that could be added, but
a tensor that must be added, beside curvature, in order to
have the possibility to completely describe translations,
beside rotations, in a full Poincaré gauge theory [6, 7].

When at the beginning of the XX century Einstein de-
veloped his theory of gravity, he did it by assuming zero
torsion because when torsion vanishes the Ricci tensor is
symmetric and therefore it can be consistently coupled to
the symmetric energy tensor, realizing the identification
between the space-time curvature and its energy content
expressed by Einstein field equations, which is the basic
spirit of Einstein gravity; but now we know that gen-
erally in physics there is also another quantity of inter-
est called spin, and that in its presence the energy is no
longer symmetric: so nowadays having a non-symmetric
Ricci tensor, beside a Cartan tensor, would allow for a
more exhaustive coupling in gravity, where the curva-
ture would still be coupled to the energy but now torsion
would be coupled to the spin, realizing the identification
between the space-time curvature and its energy content
expressed by Einstein field equations and the identifi-
cation between space-time torsion and its spin content
expressed by the Sciama-Kibble field equations, in what
is known to be the Einstein–Sciama-Kibble gravity [8].

The ESK theory of gravity is thus the most complete
theory describing the dynamics of the space-time, and
because torsion is coupled to the spin in the same spirit
in which curvature is coupled to energy then it is the the-
ory of space-time in which the coupling to its matter con-
tent is achieved most exhaustively; the pivotal point of
the situation is therefore brought to the question asking
whether there actually exist something possessing both
spin and energy as a form of matter, which can profit
from the setting of the ESK gravity to a total extent.

As a matter of fact, such a theory not only exists, but
also it is very well known and established, and that is the
spinor field theory, thoroughly investigated by Dirac.

With so much of insight, it is an odd circumstance that
there be still such a controversy about the role of torsion
beside that of curvature in gravity, and there may actu-
ally be several reasons for it: the single most important

one may be that Einstein gravity was first published in
the year 1916 when no spin was known and, despite being
then insightful to set the torsion tensor to zero, when in
the year 1928 Dirac came with a theory of spinors com-
prising an intrinsic spin, the successes of Einstein theory
of gravity were already too good to make anyone wonder
about the possibility of modifying it even slightly.

Of course, this is no scientific reason to hinder research,
but sociologically it can be easy to understand why one
would not light-heartedly go to look beyond something
good, especially today that the successes of the Einstein
theory of gravitation have become enormous.

The behaviour of being extremely careful in going be-
yond the known is justified, but this is not the only cause
that keeps physicists from doing so and there are other
psychological barriers that push against it in a more ac-
tive manner: one such example is for instance what we
can read in Weinberg’s book of gravitation [9], in which
the author proves that torsion must be zero as a result
of the fact that in the manipulations of the equations of
motion for test particles he generalizes Newton’s law up
to what seems to be the most general of its form and in
that most general form no torsion is present whatsoever.

Of course Weinberg’s results are correct, but expected:
a first reason is that these results come from the fact
that in presence of torsion auto-parallel (straightest) and
geodesics (shortest) trajectories would fail to coincide,
but as we have discussed above there may be reasons
to consider torsion to be completely antisymmetric and
in this case auto-parallel and geodesic trajectories would
become identical. Yet another, important reason is that
Weinberg, demonstrating that Newton’s law in its most
general instance contemplates no torsion, has proven that
torsion cannot pertain to macroscopic domains, and this
is natural since torsion is coupled to spin, which is a mi-
croscopic quantity, and as torsion is correspondingly a
property of microscopic domains, it follows there is no
reason to expect it in macroscopic cases. Would we want
to investigate not the macroscopic situations but the mi-
croscopic situations, then we should not use Newton’s law
but Dirac equation: and then, even by following Wein-
berg’s argument, we would be able to find torsion as a
natural concept, as it has been explained very clearly by
Hehl in [10]. Over time, there have been other reasons
to oppose torsion in gravity even when spinors are taken
into account, and we do not want to insist on such a dis-
cussion, but interested readers may consult a list of these
arguments and their fallacies, for instance, in [11].

At the present state of our knowledge, there is not a
single argument against the presence of torsion in grav-
ity and when torsion is coupled to the spin in the same
spirit in which curvature is coupled to energy the ensuing
theory is the one for which the space-time is coupled to
its matter content most exhaustively. Thus the necessity
of having torsion beside curvature is reduced to the fact
that there is spin beside energy in the most general case
of matter distributions that we can find, and hence it is
further reduced to the existence of the spinor fields, like
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those that are defined in the case of the Dirac theory.
As such, it may be a loss failing to investigate torsion

gravity coupled to spinor fields, and in the following we
are going to present and review the most recent findings.

From an entirely different starting point, we will begin
a following part by reviewing the historical foundations of
quantum physics: clearly, compared to torsion, quantum
physics needs much less formal introduction, but still we
believe that the historical presentation is not well known
by all and that it is instructive to follow the original path
in order to best comprehend some conceptual issues, and
most importantly, where quantum principles are not nec-
essarily well mathematically implemented. After filtering
out all irrelevant details so to isolate the main issues, we
will critically analyze them in order to argue in favour of
spin as what could constitute the missing element for a
complete description of quantum effects and hence for a
way to improve their mathematical implementation.

Such a second introduction is not so independent after
all, since the solution we want to present is based on the
theory of torsion gravity and gauge potentials for spinor
matter fields, the one we presented in the first part.

Furthermore, we will continue to employ the presented
theory, with its intrinsic spin-torsion axial coupling, for
the assessment of six of the known open problems in the
standard models of cosmology and particle physics.

Finally, a discussion on exact solutions is done.

ONE: THEORIES

II. GENERAL GEOMETRY OF MATTER

FIELDS

In this first part we introduce the physical theory that
shall be our reference all throughout this entire work.

We will start with a most general introduction of the
kinematic quantities. And we will continue by establish-
ing their dynamical link in terms of the field equations
that will be the central point of this presentation.

A. Geometry and its matter content

In this first section, we build the kinematic background
by defining all fields in analogous ways based on the use
of symmetry principles, although we shall later see that
there shall naturally arise discriminations. Indeed we will
find that there will be fields describing the environment,
and which will be called geometric fields; and there will
be fields that will describe what in such an environment
can take place, and which will be called material fields.

1. Geometric fields: tensor and gauge fields

In this first subsection, we shall define the fundamental
geometry that will form the background for the ensuing

material theory, and we will present two different aspects
of this geometry: one will be the construction of the most
general absolute differential calculus, the other will be the
construction of the most general abelian gauge theory.

a. Tensor fields: from the most general coordinate in-

dices to Lorentz indices

In the following, we shall define from the most general
geometric perspective the concept of tensor field; in doing
so we will discriminate tensors according to whether their
indices will be coordinate indices or Lorentz indices.

As we have mentioned in the introduction, at the be-
ginning, the most fundamental definition we have to give
is that of tensor field: given any two systems of coordi-
nates as x and x′ related by the most general coordinate
transformation law x′ = x′(x) then a set of functions of
these coordinates written with respect to the first and
second system of coordinates as T (x) and T ′(x′) and such
that for a coordinate transformation they are related by

T ′α...σ
ρ...ζ =sign det

(

∂x′

∂x

)

∂xβ

∂x′ρ ...
∂xθ

∂x′ζ
∂x′α

∂xν ...
∂x′σ

∂xτ T
ν...τ
β...θ (1)

is called tensor or pseudo-tensor, according to whether
the sign of the determinant of the transformation is posi-
tive or negative respectively: for tensors with at least two
upper or two lower indices, we may switch the two indices
getting a tensor called transposition of the original tensor
in those two indices, which may happen to be equal to the
initial tensor up to the sign plus or minus, in which case
the tensor is called symmetric or antisymmetric in those
two indices respectively; given a tensor with at least one
upper and one lower index, we can consider one of the
upper and one of the lower indices forcing them to have
the same value and performing the sum over all possible
values of the indices, called contraction in those indices,
and this process can be repeated until we reach a tensor
whose contraction is zero, and said to be irreducible.

As it was again mentioned in the introduction, it is
necessary to introduce operations among tensors, which
have to be given by algebraic as well as differential oper-
ations, and they both have to respect the tensorial struc-
ture: algebraic operations can be assigned respecting the
tensorial structure, since the sum of two tensors with a
given indices disposition is a tensor with the same in-
dices disposition and the product of any two tensors is
another tensor; but also differential operations must be
introduced covariantly although in general the derivative
of a tensor is not a tensor, unless an additional structure
is also introduced. To construct an operation that is able
to generalize the usual derivative up to a derivative that
respects covariance, we begin by noticing that because a
tensor is a set of fields, in general it will have two types of
variations: the first is due to the fact that tensors fields
are fields, coordinate dependent, and so a local structure
must be present, which is the partial derivative

local∆T
α1...αj

β1...βi
= T

α1...αj

β1...βi
(x′)− T

α1...αj

β1...βi
(x) =

= ∂µT
α1...αj

β1...βi
(x)δxµ
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at the first order infinitesimal; the second is due to the
fact that tensors fields are tensors, so a system of compo-
nents, and thus a re-shuffling of the different components
must be allowed, and the most general form in which this
can be done while respecting the fact that the differential
structure requires the linearity and the Leibniz rule is to
employ a form given according to the expression

structure∆T
α1...αj

β1...βi
= T

′α1...αj

β1...βi
− T

α1...αj

β1...βi
=

= [(δΓα1

θ T
θ...αj

β1...βi
+...+δΓ

αj

θ Tα1...θ
β1...βi

)−
−(δΓθ

β1
T

α1...αj

θ...βi
+...+δΓθ

βi
T

α1...αj

β1...θ
)]

always at the first order of infinitesimal. In full we have

∆T
α1...αj

β1...βi
= local∆T

α1...αj

β1...βi
+ structure∆T

α1...αj

β1...βi
=

= ∂µT
α1...αj

β1...βi
(x)δxµ +

+[(δΓα1

θ T
θ...αj

β1...βi
+ ...+ δΓ

αj

θ Tα1...θ
β1...βi

)−
−(δΓθ

β1
T

α1...αj

θ...βi
+ ...+ δΓθ

βi
T

α1...αj

β1...θ
)]

at the first order infinitesimal, so defining δΓα
β =Γα

βµδx
µ

and dividing by δxµ we obtain that

DµT
α1...αj

β1...βi
=∂µT

α1...αj

β1...βi
+

+(Γα1

θµT
θ...αj

β1...βi
+ ...+ Γ

αj

θµT
α1...θ
β1...βi

)−
−(Γθ

β1µ
T

α1...αj

θ...βi
+ ...+ Γθ

βiµ
T

α1...αj

β1...θ
)

after taking the limit; this is the most general form of po-
tential covariant derivative. To see that this derivative is
indeed covariant we have to require that Γα

βµ transforms
with a specific non-tensorial transformation law such as
to compensate for the non-tensorial transformation law
of the partial derivative: for the simplest case of one ten-
sorial index, we have that the derivative is

DιV
α = ∂ιV

α + V βΓα
βι

whose transformation law is given by

∂xβ

∂x′β′
∂x′α′

∂xα (∂βV
α + V ρΓα

ρβ) =
∂xβ

∂x′β′
∂x′α′

∂xα DβV
α =

= (DβV
α)′=(∂βV

α+V ρΓα
ρβ)

′=∂β′V α′

+V ρ′

Γ′α′

ρ′β′ =

= ∂xθ

∂x′β′
∂

∂xθ

(

∂x′α′

∂xα V
α
)

+ ∂xβ

∂x′β′
∂x′ρ′

∂xρ V
ρΓ′α′

ρ′β′ =

= ∂xθ

∂x′β′
∂x′α′

∂xα
∂V α

∂xθ + ∂xθ

∂x′β′
∂

∂xθ
∂x′α′

∂xα V
α + ∂x′ρ′

∂xρ V
ρΓ′α′

ρ′β′

in which terms with the derivatives disappear, leaving

∂xβ

∂x′β′
∂x′α′

∂xα V
ρΓα

ρβ = ∂xθ

∂x′β′
∂

∂xθ
∂x′α′

∂xα V
α + ∂x′ρ′

∂xρ V
ρΓ′α′

ρ′β′

and since this has to hold for any tensor, then

∂xβ

∂x′β′
∂x′α′

∂xα Γα
ρβ = ∂xθ

∂x′β′
∂

∂xθ
∂x′α′

∂xρ + ∂x′ρ′

∂xρ Γ′α′

ρ′β′

which is the non-tensorial transformation law the set of
coefficients Γα

ρβ has to undergo in order to ensure the
tensoriality of the whole derivative, in this very specific

case of a vectorial field. But the very same non-tensorial
transformation law for Γα

ρβ can be used for all terms of the
most general form of derivative for generic tensors, and as
a consequence the result we have obtained is completely
general. We needed to do the entire derivation to show
that this covariant derivative is the most general that is
possible at all. When we talk about generality, we mean
both for the structure of the derivative and for the set of
coefficients Γα

ρβ which, thus, have no specific symmetry
properties in the lower indices: consequently, we have

Γα
µν ≡ 1

2 (Γ
α
µν+Γα

νµ)+
1
2 (Γ

α
µν−Γα

νµ)

where the transformation properties of the full object is
inherited by the first part, which is symmetric in the two
lower indices and it can be indicated as

Λα
µν=

1
2 (Γ

α
µν+Γα

νµ)

while the second part

Qα
µν = Γα

µν − Γα
νµ

transforms as a tensor such that Qα
µν = −Qα

νµ and that
is antisymmetric in its second pair of indices. With such
a definition, we have the decomposition

Γα
µν =Λα

µν+
1
2Q

α
µν

in the most general case. As in the covariant derivatives
the connection enters linearly, the splitting in symmetric
and antisymmetric parts sums up to a linear combination
of the tensor Qα

µν plus the terms linear in the symmetric
connection, which therefore forms yet another type of
covariant derivative that is defined according to

∇µT
α1...αj

β1...βi
=∂µT

α1...αj

β1...βi
+

+(Λα1

θµT
θ...αj

β1...βi
+ ...+ Λ

αj

θµT
α1...θ
β1...βi

)−
−(Λθ

β1µ
T

α1...αj

θ...βi
+ ...+ Λθ

βiµ
T

α1...αj

β1...θ
)

and in it the fact that the symmetric connection is indeed
symmetric allows for particularly simplified expressions
in some special cases: for instance taking the symmetric
covariant derivative of a tensor with all lower indices gives

∇µTβ1...βi
=∂µTβ1...βi

−Λθ
β1µ

Tθ...βi
− ...− Λθ

βiµ
Tβ1...θ

which is particularly interesting because we see that the
symmetric connection saturates always the same index in
the upper position; therefore, if we further specialize onto
the case in which the tensor is completely antisymmetric
we obtain that the correspondingly completely antisym-
metrized form of the covariant derivative eventually reads

∇[µTβ...ρ]=∇µTβ...ρ−∇βTµ...ρ+...−∇ρTβ...µ =

= ∂µTβ...ρ−Λσ
βµTσ...ρ − ...− Λσ

ρµTβ...σ −
−∂βTµ...ρ+Λσ

µβTσ...ρ + ...+ Λσ
ρβTµ...σ + ...

...− ∂ρTβ...µ+Λσ
βρTσ...µ + ...+ Λσ

µρTβ...σ =

= ∂µTβ...ρ−∂βTµ...ρ+...−∂ρTβ...µ=∂[µTβ...ρ]
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where all symmetric connections cancelled off leaving an
expression written only in terms of partial derivatives but
that is a completely antisymmetric covariant derivative
in the most general case. This is a very peculiar property
of tensors having all lower indices and being completely
antisymmetric in all of these indices, and there is an en-
tire domain related to this type of tensors and covariant
derivatives, in which tensors are known as forms and the
covariant derivatives are part of what is known as exterior
calculus; nevertheless, we will not discuss it here because
we do not want to introduce even further mathematical
concepts and after all forms and exterior derivatives are
nothing but a specific type of tensors. For our purposes,
the most general covariant derivatives are well enough.

So to summarize what we have been doing so far, we
have that the set of functions Γρ

αβ transforming as

Γ′ρ
στ =

(

Γα
µν− ∂xα

∂x′κ
∂2x′κ

∂xν∂xµ

)

∂x′ρ

∂xα
∂xµ

∂x′σ
∂xν

∂x′τ (2)

is called connection and it can be decomposed as

Γρ
αβ=Λρ

αβ+
1
2Q

ρ
αβ (3)

where Λρ
αβ is a set of functions transforming according to

the law of a connection but which are symmetric in the
two lower indices, called symmetric connection, and

Qρ
αβ = Γρ

αβ−Γρ
βα (4)

which is a tensor antisymmetric in the two lower indices,
and called torsion tensor. In terms of the connection we
may write the covariant derivatives, but since there are
two different connections we have to write two covariant
derivatives, starting with the covariant derivative of the
most general connection according to expression

DµT
α1...αj

β1...βi
=∂µT

α1...αj

β1...βi
+
∑k=j

k=1 Γ
αk
σµT

α1...σ...αj

β1...βi
−

−∑k=i
k=1 Γ

σ
βkµ

T
α1...αj

β1...σ...βi
(5)

decomposing as

DµT
α1...αj

β1...βi
=∇µT

α1...αj

β1...βi
+ 1

2

∑k=j
k=1Q

αk
σµT

α1...σ...αj

β1...βi
−

− 1
2

∑k=i
k=1Q

σ
βkµ

T
α1...αj

β1...σ...βi
(6)

with spurious terms that are linear in the torsion tensor
and the covariant derivative of the symmetric connection

∇µT
α1...αj

β1...βi
=∂µT

α1...αj

β1...βi
+
∑k=j

k=1 Λ
αk
σµT

α1...σ...αj

β1...βi
−

−∑k=i
k=1 Λ

σ
βkµ

T
α1...αj

β1...σ...βi
(7)

as it is clear: notice that if we apply such last definition
to the particular case of tensors with all lower indices and
having the property of being completely antisymmetric
and further if we take its completely antisymmetric part,
we obtain a form in which all occurrences of the symmet-
ric connection disappear leaving only the form

∇[νTα...σ]=∂[νTα...σ]≡(∂T )να...σ (8)

which is still a tensor and such that it is completely an-
tisymmetric, called covariant gradient of the tensor field.

We have introduced the concept of tensor, which was
characterized by having two types of indices, upper and
lower; they reflected the fact that tensors could trans-
form according to two type of transformations, direct and
inverse: because these two types of transformation are
two different forms of the same transformation law, the
two types of indices should be two different arrangements
of the same system of components. In particular, there
should not be any difference in the content of information
for any two different indices dispositions in any tensor.

What this implies is that it should be possible to move
indices up and down without losing or adding anything to
the information content: this can be done by considering
the Kronecker tensor δαν and postulating the existence of
two tensors gαν and gαν in general; then we can define
the operation of raising and lowering of tensorial indices
by considering that Aπgπν and Aπg

πν are tensors that
are related to the initial ones but with the index lowered
and raised respectively, and so we may define these two
tensors as Aπg

πν ≡ Aν and Aπgπν ≡ Aν as the same
tensors but with the index moved in a different position
with respect to the initial one. While it is certainly use-
ful to have the possibility to perform such an operation,
we have also to consider that such an operation has a
two-fold ambiguity concerning the fact beside the con-
tractions Aπg

πν ≡ Aν and Aπgπν ≡ Aν we may have
the contractions Aπg

νπ ≡ Aν and Aπgνπ ≡ Aν too; also
we may decide to raise the previously lowered index to
the initial position or lower the previously raise index to
the initial position, so that the above ambiguity becomes
four-fold with Aπg

πνgσν ≡ Aσ and Aπg
νπgσν ≡ Aσ as

well as Aπg
πνgνσ ≡ Aσ and Aπg

νπgνσ ≡ Aσ as equally
good possibilities that may be considered: on the other
hand, requiring that raising one index up and then low-
ering that index down give back the initial tensor in all of
the four possibilities leads to the following relationships

Aµ(g
µσgσκ − δµκ) = 0 Aµ(g

σµgσκ − δµκ) = 0

Aµ(g
µσgκσ − δµκ) = 0 Aµ(g

σµgκσ − δµκ) = 0

for any possible tensor Aµ, so that

(gµσgσκ − δµκ) = 0 (gσµgσκ − δµκ) = 0

(gµσgκσ − δµκ) = 0 (gσµgκσ − δµκ) = 0

identically, and taking the differences

gµσ(gσκ − gκσ) = 0 (gσµ − gµσ)gσκ = 0

gσµ(gσκ − gκσ) = 0 (gσµ − gµσ)gκσ = 0

we may work out that

gακ=gκα

gακ=gκα

together with the condition

gσµgκσ=δ
µ
κ
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meaning that, seen as matrices, they are symmetric and
one the inverse of the other, and so in particular they are
non-degenerate, as it has been demonstrated in [12]. This
implies is that what has been introduced to raise lower
or lower upper indices has all the features of a metric and
therefore these two tensors can also be identified with the
metric of the space-time; we remark that this is exactly
the opposite to the normal approach, where the metric is
postulated, and then it is realized it can be used to move
up and down indices of tensors. The equivalence of these
two a priori unrelated operations is something that looks
profound. In addition, there are other considerations to
do and which involve the metric determinant as we will
discuss now: to begin, we define the following quantity

δi1i2i3i4j1j2j3j4
= det

∣

∣

∣

∣

∣

∣

∣

∣

δi1j1 δi2j1 δi3j1 δi4j1
δi1j2 δi2j2 δi3j2 δi4j2
δi1j3 δi2j3 δi3j3 δi4j3
δi1j4 δi2j4 δi3j4 δi4j4

∣

∣

∣

∣

∣

∣

∣

∣

which is a tensor, antisymmetric in each of its pair of ten-
sorial indices; then by indicating the metric determinant
according to det(gµν)=g with sign g=−1 we see that

g′ = det
∣

∣

∂x
∂x′

∣

∣

2
g

which is not the transformation law for a tensor. But in
addition we may also define the non-tensorial quantity
that is given by ǫi1i2i3i4 such that it is equal to the unity
for an even permutation of (1234) and minus the unity
for an odd permutation of (1234) and zero for a sequence
that is not a permutation of (1234) at all: as this set of
coefficients is completely antisymmetric with a number
of indices that is equal to the dimension, we have that it
has only one independent component, transforming as

∂xi1

∂x′i′
1

∂xi2

∂x′i′
2

∂xi3

∂x′i′
3

∂xi4

∂x′i′
4

ǫi1i2i3i4 = ǫi′
1
i′
2
i′
3
i′
4
α

for a given α function to be determined, and because the
determinant of any generic matrix can always be written
in terms of these coefficients according to the expression
given by detM = Σij ǫi1i2i3i4M

1i1M2i2M3i3M4i4 then

det ∂x
∂x′ =

∂xi1

∂x′1
∂xi2

∂x′2
∂xi3

∂x′3
∂xi4

∂x′4 ǫi1i2i3i4 = ǫ1234α = α

furnishing the α function, so that we have

ǫi′
1
i′
2
i′
3
i′
4
= det∂x

′

∂x
∂xi1

∂x′i′
1

∂xi2

∂x′i′
2

∂xi3

∂x′i′
3

∂xi4

∂x′i′
4

ǫi1i2i3i4

which is non-tensorial, but its non-tensoriality perfectly
matches that of the determinant of the metric. Therefore,
we have that they compensate in the combined form

(g
1

2 ǫανστ )
′=sign det

∣

∣

∣

∂x′

∂x

∣

∣

∣

∂xβ

∂x′α
∂xµ

∂x′ν
∂xθ

∂x′σ
∂xρ

∂x′τ(g
1

2 ǫβµθρ)

which is in fact the transformation law that defines a
pseudo-tensorial field; notice however that if we were to
define the tensor with all lower indices as

εανστ = ǫανστ |g|
1

2

the correspondent tensor with all upper indices would be
given according to the following expression

εανστ = ǫανστ |g|− 1

2

in order for it to be consistently defined. This difference is
necessary, as it can be seen from the fact the relationship

εi1i2i3i4εj1j2j3j4 = −δi1i2i3i4j1j2j3j4

as it is very easy to check by performing a straightforward
substitution and making all the direct calculations.

To summarize, the object δβα that it is unity or zero
according to whether the value of its indices is equal or
different is called unity tensor, and then we assume the
existence of two tensors gακ and gακ symmetric and seen
as matrices one the inverse of the other according to

gσµgκσ=δ
µ
κ (9)

called metric tensors: we may define

δi0i1i2i3j0j1j2j3
= det

∣

∣

∣

∣

∣

∣

∣

∣

δi0j0 δi1j0 δi2j0 δi3j0
δi0j1 δi1j1 δi2j1 δi3j1
δi0j2 δi1j2 δi2j2 δi3j2
δi0j3 δi1j3 δi2j3 δi3j3

∣

∣

∣

∣

∣

∣

∣

∣

(10)

as a completely antisymmetric unity tensor, and also the
quantity ǫi0i1i2i3 equal to the unity, minus unity, or zero
according to whether (i0i1i2i3) is an even, odd, or no
permutation of (0123) which can be taken, together with
the metric determinant det(gµν)=g in general, to define

εανστ = ǫανστ |g|− 1

2 (11)

and also

εανστ = ǫανστ |g|
1

2 (12)

which are completely antisymmetric and such that

εi0i1i2i3εj0j1j2j3 = −δi0i1i2i3j0j1j2j3
(13)

called completely antisymmetric pseudo-tensors. So if a
tensor with at least one index is multiplied by the metric
tensor and the index is contracted with one index of the
metric tensor, the result is a tensor in which the index
has been moved: in particular if a tensor that is com-
pletely antisymmetric in k indices is multiplied by the
completely antisymmetric pseudo-tensors and the k in-
dices of the tensor are contracted with k indices of the
completely antisymmetric pseudo-tensors, the result is a
pseudo-tensor antisymmetric in (4−k) of its indices.

An important point we may ask now concerns the fact
that if the indices disposition cannot change the informa-
tion content of a tensor then this must be true for any
tensor, in particular if the tensor is the covariant deriva-
tive of some other tensor: consequently we must have

that gαβDµT
ν...ζ
βρσ...θ=DµT

αν...ζ
ρσ...θ which therefore implies

DµT
αν...ζ
ρσ...θ =Dµ(g

αβT ν...ζ
βρσ...θ)=Dµg

αβT ν...ζ
βρσ...θ +

+gαβDµT
ν...ζ
βρσ...θ

7



so that we are left with the equation

Dµg
αβT ν...ζ

βρσ...θ = 0

for any tensor, implying Dµg
αβ = 0 as well; this means

that the metric tensor is covariantly constant. Conditions
of vanishing of the covariant derivative of the metric ten-
sor mean that the irrelevance of the indices disposition
must be valid regardless the differential order of the ten-
sor; if we were to follow the common approach defining
the metric first, these conditions would mean that the
metric structure and the topological structure are to be
independent. This is reasonable since if a vector is con-
stant, its norm should be constant too. It is interesting to
notice that since we have two types of covariant deriva-
tives and because the present arguments hold regardless
the specific covariant derivative then we have to assume
that both covariant derivatives of the metric tensor van-
ish as Dµgαβ = ∇µgαβ = 0 in general: in particular we
have that Dθεαβµν=∇θεαβµν=0 hold as well. When we
expand the connection-metric compatibility condition as

∂ρgαβ − gαµΓ
µ
βρ − gµβΓ

µ
αρ = 0

we may take the three different indices permutations
combined together with the definition of torsion to get

Γρ
αβ = 1

2Q
ρ
αβ + 1

2 (Q
ρ

αβ +Q ρ
βα ) +

+ 1
2g

ρµ (∂βgαµ + ∂αgµβ − ∂µgαβ)

in which Qρασ is the torsion tensor antisymmetric in the
two lower indices, while (Qαβρ+Qβαρ) is a tensor sym-
metric in those indices whereas the remaining coefficients
written in terms of the partial derivatives of the metric
tensor transform as a connection and they are symmet-
ric in those very indices: this expression shows that the
most general connection can be decomposed in terms of
the torsion plus a symmetric connection, as we already
knew from expression (3), but in addition it tells us the
explicit form of Λρ

αβ as given by a symmetric combina-
tion of two torsions plus a symmetric connection entirely
written in terms of the metric; it is essential to remark
that if we want all possible connections to give rise to co-
variant derivatives which, once applied onto the metric,
give zero, then we have to restrict the torsion to verify

Qαβρ = −Qβαρ

spelling its complete antisymmetry [13]. The condition of
metric-compatible connection extended to all connections
implies the torsion to be completely antisymmetric, once
again establishing a link between two structures that are
a priori unrelated; that such a link is more profound than
we may think can also be seen by considering what is the
meaning of the metric tensor in terms of metric concepts
and thus the meaning of metric-compatibility in terms of
those metric concepts. So let us step back to reconsider
the metric-compatibility condition above. It is

∂ρgαβ − gαµΓ
µ
βρ − gµβΓ

µ
αρ = 0

and whenever it holds then the metric tensor becomes
constant and that specific combination of connections can
be vanished in the same coordinate system; further, if the
metric tensor is constant it follows it can be diagonalized
and normalized as to be written it in its most trivial form,
the Minkowskian matrix: the Minkowskian matrix is the
form in which the symmetries of the space-time happen
to be manifest. Because this manifestation of space-time
symmetries takes place in a system of coordinates that is
unique, so the constancy of the metric tensor as well as
the vanishing of that specific combination of connections
must occur in a system of coordinates that is also unique
in its construction: as a consequence of the fact that that
specific combination of connections has unicity it follows
that torsion has complete antisymmetry. Therefore, that
the condition of metric-compatibility for the connection
require torsion to be completely antisymmetric looks as a
circumstance coming from the existence of a single sym-
metric part of the connection, itself coming from the fact
that this single symmetric part of the connection has to
vanish and the metric has to make the symmetries of the
space-time manifest in one system of coordinates that is
uniquely defined. That completely antisymmetric torsion
has a somewhat peculiar role has been discussed in some
works such as [14, 15] and [16, 17] and references therein.

So we summarize by saying that the connection

Λρ
αβ = 1

2g
ρµ (∂βgαµ + ∂αgµβ − ∂µgαβ) (14)

is symmetric and written entirely in terms of the partial
derivatives of the metric tensor, and it is called metric
connection, while the torsion tensor with all lower indices
is taken to be completely antisymmetric and therefore it
is possible to write it according to the following form

Qασν =
1
6W

µεµασν (15)

in terms of theWµ pseudo-vector, therefore called torsion
pseudo-vector, and with these two quantities we have

Γρ
αβ=

1
2g

ρµ
[

(∂βgαµ+∂αgµβ−∂µgαβ)+ 1
6W

νενµαβ
]

(16)

as the most general connection. Such a decomposition is
equivalent to the validity of the following conditions

(∂ε)θαβµν≡∇θεαβµν ≡Dθεαβµν=0 (17)

∇µgαβ≡Dµgαβ=0 (18)

called metric-compatibility conditions for the connection.
We may proceed on to calculate the commutator of

two derivatives, which in the particular case of vectors is

[Dα, Dβ ]T
σ = (Γρ

αβ − Γρ
βα)DρT

σ +

+(∂αΓ
σ
κβ − ∂βΓ

σ
κα + Γρ

κβΓ
σ
ρα − Γρ

καΓ
σ
ρβ)T

κ

with no second derivatives, the only derivative term left
is proportional to the torsion tensor Qρ

µα plus another

Gσ
καβ = ∂αΓ

σ
κβ − ∂βΓ

σ
κα + Γρ

κβΓ
σ
ρα − Γρ

καΓ
σ
ρβ
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which although written in terms of the connection alone
is a tensor; with these expressions we have

[Dα, Dβ ]T
σ = Qρ

αβDρT
σ +Gσ

καβT
κ

giving the commutator of vectors in particular: as it has
been done for the connection and the most general covari-
ant derivative, the interesting thing is that the definition
of tensor Gσ

καβ can be used in the most general case of
commutator of covariant derivatives. We also have that

(∂∂T )αβρ...µ=∂[α(∂T )βρ...µ]=∂[α∂[βTρ...µ]] =

= ∂[α∂βTρ...µ]=0

because partial derivatives always commute and therefore
their commutator is always zero; before we have had the
opportunity to briefly talk about external calculus, where
the external derivatives are used to calculate the border
of a manifold, and the above expression refers to the fact
that the border has a border that vanishes, or that there
is no border of a border. Once again, apart from curiosity,
there is no need to deepen these concepts in the following.

To summarize, from the connection we may calculate

Gσ
καβ = ∂αΓ

σ
κβ − ∂βΓ

σ
κα + Γσ

ραΓ
ρ
κβ − Γσ

ρβΓ
ρ
κα (19)

which is a tensor antisymmetric in the last two indices
and verifying the following cyclic permutation condition

DκQ
ρ
µν+DνQ

ρ
κµ+DµQ

ρ
νκ +

+Qπ
νκQ

ρ
µπ+Qπ

µνQ
ρ
κπ+Qπ

κµQ
ρ
νπ −

−Gρ
κνµ −Gρ

µκν −Gρ
νµκ ≡ 0 (20)

called Riemann curvature tensor, decomposable as

Gσ
καβ=R

σ
καβ+

1
2 (∇αQ

σ
κβ−∇βQ

σ
κα) +

+ 1
4 (Q

σ
ραQ

ρ
κβ−Qσ

ρβQ
ρ
κα) (21)

in which it is in terms of the symmetric connection that

Rσ
καβ = ∂αΛ

σ
κβ − ∂βΛ

σ
κα + Λσ

ραΛ
ρ
κβ − Λσ

ρβΛ
ρ
κα (22)

is a tensor antisymmetric in the last two indices such that
it verifies that cyclic permutation condition

Rρ
κνµ +Rρ

µκν +Rρ
νµκ ≡ 0 (23)

called Riemann symmetric curvature tensor and where
the torsion tensor is known. By employing torsion and
curvature it is possible to demonstrate that we have

[Dµ, Dν ]T
α1...αj

β1...βi
=Qη

µνDηT
α1...αj

β1...βi
+

+
∑k=j

k=1G
αk

σµνT
α1...σ...αj

β1...βi
−

−
∑k=i

k=1G
σ
βkµν

T
α1...αj

β1...σ...βi
(24)

as the expression for commutator of covariant derivatives
of the tensor field: in particular we have that

∂∂T = 0 (25)

which is valid in the most general circumstance.
Clearly, all these quantities can be written for the sym-

metric connection only, so that torsionful curvatures can
be written as torsionless curvatures plus torsion terms.

We have the validity of the following decomposition

Rκραµ=
1
2 (∂α∂ρgµκ−∂µ∂ρgκα +

+∂µ∂κgαρ−∂κ∂αgµρ) +
+ 1

4g
σν [(∂ρgαν+∂αgρν−∂νgρα)

(∂κgµσ+∂µgκσ−∂σgκµ)−
−(∂ρgµν+∂µgρν−∂νgρµ)
(∂κgασ+∂αgκσ−∂σgκα)] (26)

showing the antisymmetry also in the first two indices as
well as the symmetry involving all four indices

Rρκµν =Rµνρκ (27)

called Riemann metric curvature tensor, with one inde-
pendent contraction as Rµσ =R

ρ
µρσ which is symmetric

and it is called Ricci metric curvature tensor, and whose
contraction R=Rµσg

µσ is called Ricci metric curvature
scalar, and such that with torsion we can decompose

Gκραµ=
1
2 (∂α∂ρgµκ−∂µ∂ρgκα +

+∂µ∂κgαρ−∂κ∂αgµρ) +
+ 1

4g
σν [(∂ρgαν+∂αgρν−∂νgρα)

(∂κgµσ+∂µgκσ−∂σgκµ)−
−(∂ρgµν+∂µgρν−∂νgρµ)

(∂κgασ+∂αgκσ−∂σgκα)] +
+ 1

12∇ηW σ(gαηεσκρµ−gµηεσκρα) +
+ 1

144 [WσW
σ(gµρgακ−gµκgαρ) +

+(WαWρgµκ−WµWρgακ +

+WµWκgαρ−WαWκgµρ)] (28)

showing the antisymmetry in the first two indices, and as
a consequence it has one independent contraction chosen
according to Gµσ =Gρ

µρσ called Ricci curvature tensor,
whose contraction G=Gµσg

µσ is called Ricci curvature
scalar, thus extinguishing the curvature contractions.

And finally, we may consider the cyclic permutation of
commutator of commutators of covariant derivatives and
see that the results are geometric identities.

In general we have that we can write

DµG
ν
ικρ +DκG

ν
ιρµ +DρG

ν
ιµκ +

+Gν
ιβµQ

β
ρκ +Gν

ιβκQ
β
µρ +Gν

ιβρQ
β
κµ ≡ 0 (29)

for torsion and curvature valid as a geometric identity.
So far we have introduced the concept of tensor and the

way to move its indices, which we recall were coordinate
indices; coordinate indices are important since they are
the type of indices involved in differentiation, but on the
other hand, tensors in coordinate indices always feel the
specificity of the coordinate system: tensorial equations
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do remain formally the same in all coordinate system, but
the tensors themselves change in content while changing
the coordinate system. The only types of tensors which,
also in content, remain the same in all of the coordinate
systems are the tensors that are identically equal to zero
and the scalars; zero tensors offer little information, but
scalars can be used to build a formalism in which tensors
can be rendered, both in form and in content, completely
invariant. This formalism is known as Lorentz formalism.

In Lorentz formalism, the idea is that of introducing a
basis of vectors ξαa having two types of indices: one type
of indices (Greek) is the usual coordinate index referring
to the component of the vector, whereas the other type of
indices (Latin) is a new Lorentz index referring to which
vector of the basis we are considering; under the point of
view of coordinate transformations the coordinate index
ensures the transformation law of a vector, but clearly the
other index does not ensure any transformation much as
if it were a scalar. To better understand, consider as an
example the tensor given by Tασ and multiply it by two
of the vectors ξαa of the basis contracting the coordinate
indices together: the result Tασξ

α
a ξ

σ
s = Tas is an object

that according to a coordinate transformation law does
not transform at all, thus it is completely invariant, which
is exactly what we wanted. And the process of making it
is the basis of the Lorentz formalism. That tensors with
upper indices must be converted into this formalism as
well can be taken into account by introducing a dual ba-
sis of covectors ξaα as expected: converting a coordinate
index to a Lorentz index and then back to a coordinate
index requires that ξαb ξ

c
α = δcb and ξαk ξ

k
σ = δασ as a simple

consistency condition. Finally, the operation for moving
Lorentz indices is performed in terms of the metric tensor
in Lorentz form gασξ

α
a ξ

σ
s =gas but, because we can always

ortho-normalize the basis, the metric tensor in Lorentz
form is just the Minkowskian matrix gas=ηas as it is well
known indeed. Once the basis ξσa is assigned, we may pass
to another basis ξ′σa linked to the initial according to the
transformation ξ′σa =Λb

aξ
σ
b with Λb

a chosen as to preserve
the structure of the Minkowskian matrix and so such that
it has to give η=ΛηΛT known as Lorentz transformation
and justifying the name of this formalism: after that the
coordinate tensors are converted into the Lorentz tensors,
they are scalars under coordinate transformations, as we
have said above, but they are tensors under the Lorentz
transformations. In doing so it may seem that we did not
gain much, but having coordinate transformations fully
converted into Lorentz transformations is an advantage,
since Lorentz transformations have a very specific form,
which can be made explicit. We know from the theory of
Lie groups that any continuous transformation is writable
according to a perturbative expansion in products of the
infinitesimal parameters times their generators; writing
the infinitesimal form Λ= I + δG we get that δGη must
be antisymmetric, and we know that 4-dimensional anti-
symmetric matrices have 6 degrees of freedom: therefore

Λ = e
1

2
σabθab

in which θab=−θba and σab=−σba amount precisely to
6 parameters and 6 generators, themselves verifying

[σab, σcd] = ηadσbc − ηacσbd + ηbcσad − ηbdσac

and given according to

(σab)
i
j=δ

i
aηjb−δibηja

as the real representation. This form is the compact way
of writing the explicit expressions obtained by consider-
ing that ησab are 6 antisymmetric matrices, and thus

σ01=









0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0









σ02=











0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0











σ03=











0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0











are the generators of the boosts while

σ23=











0 0 0 0

0 0 0 0

0 0 0 −1

0 0 1 0











σ31=











0 0 0 0

0 0 0 1

0 0 0 0

0 −1 0 0











σ12=











0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0











are the generators of the rotations, verifying the commu-
tation relationships given by the explicit expressions

[σ01, σ02]=−σ12
[σ02, σ03]=−σ23
[σ03, σ01]=−σ31

among boosts and

[σ31, σ12] = σ23

[σ12, σ23] = σ31

[σ23, σ31] = σ12
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among rotations and

[σ31, σ01] = −σ03 [σ31, σ03] = σ01

[σ23, σ03] = −σ02 [σ12, σ01] = σ02

[σ12, σ02] = −σ01 [σ23, σ02] = σ03

among different boosts and rotations; as a consequence,
by calling θ01 = ϕ1, θ02 = ϕ2, θ03 = ϕ3 for the rapidities
and θ23 =−θ1, θ31 =−θ2, θ12 =−θ3 for the angles, it is
possible to compute the explicit transformations as

ΛB1=











coshϕ1 − sinhϕ1 0 0

− sinhϕ1 coshϕ1 0 0

0 0 1 0

0 0 0 1











ΛB2=











coshϕ2 0 − sinhϕ2 0

0 1 0 0

− sinhϕ2 0 coshϕ2 0

0 0 0 1











ΛB3=











coshϕ3 0 0 − sinhϕ3

0 1 0 0

0 0 1 0

− sinhϕ3 0 0 coshϕ3











for the boosts and

ΛR1=











1 0 0 0

0 1 0 0

0 0 cos θ1 sin θ1
0 0 − sin θ1 cos θ1











ΛR2=











1 0 0 0

0 cos θ2 0 − sin θ2
0 0 1 0

0 sin θ2 0 cos θ2











ΛR3=











1 0 0 0

0 cos θ3 sin θ3 0

0 − sin θ3 cos θ3 0

0 0 0 1











for the rotations, such that any product of these specific
Lorentz transformations gives the full form of the Lorentz
transformation. This Lorentz transformation in full form
is the Lorentz transformation that we will employ next.

We may condense everything into the following state-
ments, starting from the fact that given a Lorentz trans-
formation Λ the set of functions T a1...ai

r1...rj transforming as

T
′a′

1
...a′

m

r′
1
...r′n

=(Λ−1)r1r′
1

...(Λ−1)rnr′n(Λ)
a′
1

a1
...(Λ)

a′
m

amT
a1...am
r1...rn (30)

is called tensor in Lorentz (Latin) indices formalism, and
compared to the coordinate (Greek) indices formalism,
symmetry properties and contractions are given similarly.

Also algebraic operations hold analogously, but again
Lorentz transformations can be local and thus differential

operations must be defined by introducing a connection
to build Lorentz covariant differentiation: and as we have
done before, because this new structure cannot introduce
arbitrary concepts, we require Dµξ

α
a = 0 with the clear

consequence that also Dµηab=0 and these two conditions
will ensure that the coordinate formalism and the Lorentz
formalism will turn out to be completely equivalent.

Therefore once again we summarize by saying that the
set of functions Ωa

bµ such that under a general coordinate
transformation transforms as a lower Greek index vector
and under a Lorentz transformation transforms as

Ω′a′

b′ν = Λa′

a

[

Ωa
bν − (Λ−1)ak(∂νΛ)

k
b

]

(Λ−1)bb′ (31)

is called spin connection, and no decomposition nor in
particular any torsion can be defined as no transposition
of indices of different types is defined. In terms of it

DµT
a1...ai
r1...rj = ∂µT

a1...ai
r1...rj +

∑k=i
k=1 Ω

ak
pµT

a1...p...ai
r1...rj −

−∑k=j
k=1 Ω

p
rkµ

T a1...ai
r1...p...rj (32)

is covariant derivative of the tensor in Lorentz formalism.
This Lorentz formalism can be made equivalent to the

general coordinate formalism by the introduction of the
bases of vectors ξaσ and ξσa dual of one another

ξaµξ
µ
r = δar ξaµξ

ρ
a = δρµ (33)

and such that they verify the ortho-normality conditions

gαβξaαξ
b
β = ηab gαβξ

α
a ξ

β
b = ηab (34)

because the η matrices are diagonal and with unitary el-
ements such that the first is positive and the last three
are negative, that is they are the Minkowskian matrices,
which is the one that is preserved by the Lorentz trans-
formation, in this Lorentz formalism. Accordingly, with
this pair of dual bases, ortho-normal with respect to the
Minkowskian matrices, it is possible to consider a tensor
in general coordinate formalism with at least one Greek
index and multiply it by the basis contracting one Greek
index with the Greek index of the bases and obtaining
the tensor in Lorentz formalism with a Latin index.

Despite in this formalism we cannot define torsion, the
torsion defined in coordinate formalism is converted as

Qa
µν =−(∂µξ

a
ν−∂νξaµ+ξbνΩa

bµ−ξbµΩa
bν) (35)

as the spin connection is given by

Ωa
bµ = ξνb ξ

a
ρ

(

Γρ
νµ − ξρk∂µξ

k
ν

)

(36)

such that once the two Lorentz indices are brought in the
same upper or lower position this is antisymmetric in the
two Lorentz indices. The last expression and antisymme-
try condition are respectively equivalent to

Dµξ
r
α = 0 (37)

Dµηab = 0 (38)
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as general coordinate-Lorentz compatibility conditions.
In Lorentz formalism, from the spin connection we get

Ga
bαβ = ∂αΩ

a
bβ − ∂βΩ

a
bα +Ωa

kαΩ
k
bβ − Ωa

kβΩ
k
bα (39)

as the Riemann curvature tensor. Then we have that

[Dµ, Dν ]T
r1...rj =Qη

µνDηT
r1...rj +

+
∑k=j

k=1G
rk

pµνT
r1...p...rj (40)

is the general coordinate covariant commutator of covari-
ant derivatives of the tensor field in Lorentz formalism.

As it should be expected by now, we have that

Ga
bµν = ξaαξ

β
b G

α
βµν (41)

so the Riemann curvature tensor in Lorentz formalism
is antisymmetric not only in the two coordinate indices
but also in the Lorentz indices, and so as a consequence
the Riemann curvature also in this formalism has the
same independent contractions, which can therefore be
obtained according to Gbσ =Ga

bρσξ
ρ
a for the Ricci cur-

vature tensor, and G=Gaσξ
σ
p η

ap for the Ricci curvature
scalar, showing that they can be obtained by contracting
either the general coordinate Greek indices or the special
Lorentz Latin indices in equivalent manners.

After index renaming we get

DµG
a
jκρ +DκG

a
jρµ +DρG

a
jµκ +

+Ga
jβµQ

β
ρκ +Ga

jβκQ
β
µρ +Ga

jβρQ
β
κµ ≡ 0 (42)

with curvature in Lorentz form as a geometric identity.

b. Gauge fields: the most general abelian case

In the past section, we have defined general geometric
tensors, and now we are going to introduce, by following
a similar geometrical spirit, the concept of gauge fields.

Our main goal is going to be focusing on the fact that
fields may be complex, and so it makes sense to ask what
symmetries can be established for these fields: if a field is
complex there arises the issue of phase transformations
and correspondingly it is possible to construct a calculus
that is in all aspects analogous to the one we just built.

So given a real function α we have that a complex field
that transforms according to the transformation

φ′ = eiqαφ (43)

is called gauge field of q charge. The sum of gauge fields
of equal charges is a gauge field of the same charge and
the product of gauge fields of given charges is a gauge
field whose charge is the algebraic sum of those charges.

Let it be given a covector field Aν such that for a phase
transformation it transforms according to the law

A′
ν = Aν − ∂να (44)

then this vector is called gauge potential. With it

Dµφ = ∂µφ+ iqAµφ (45)

is said to be the gauge derivative of the gauge field.
For gauge fields we may introduce the operation of

complex conjugation without the necessity of introducing
any additional structure. For a gauge field of given charge
the complex conjugate gauge field has opposite charge.

There is no decomposition of the gauge potential into
more fundamental elements. In fact complex conjugation
is compatible with gauge derivatives automatically.

From the gauge connection we define

Fαβ = ∂αAβ − ∂βAα (46)

that is such that F = ∂A and so it is a tensor which is
antisymmetric and invariant by a gauge transformation
called Maxwell gauge curvature. With it we have that

[Dµ, Dν ]φ = iqFµνφ (47)

is the commutator of gauge derivatives of gauge fields.
Clearly, the gauge curvature cannot be decomposed in

terms of more fundamental underlying structures.
Further we have that

∂νFασ + ∂σFνα + ∂αFσν = 0 (48)

or equivalently ∂F = 0 as a gauge geometric identity.

2. Material fields: spinor fields

In this second subsection, we shall proceed to actually
erect the material theory we will employ in the following.

a. Spinor fields: a geometric combination of Lorentz

structure and gauge structure

In the previous parts we have introduced tensor fields
and the way to pass from coordinate into Lorentz indices,
specifying that with such a conversion we also had the
conversion of the most general coordinate transformation
into the specific Lorentz transformation: the advantage
of this specific Lorentz transformation is that despite it
had been introduced in real representation, nevertheless
its explicit form makes it possible to write it in other
representations like the complex representation, in which
the already-introduced complex fields can find place.

In order to find a Lorentz transformation in complex
representation, we specify that these transformations are
classified by semi-integer labels known as spin, and here
we consider the simplest 1

2 -spin case: so for the complex
generators we select those whose irreducible form is given
in terms of 2-dimensional matrices. General results from
the theory of Lie groups tell us that the Lorentz trans-
formation can be written according to the following form

Λ = e
1

2
σ

abθab

where θab =−θba and σab =−σba are 6 parameters and
the corresponding 6 generators, which verify the following

[σab,σcd] = ηadσbc − ηacσbd + ηbcσad − ηbdσac

12



as the commutation relationships that define the Lorentz
algebra and for which the generators σab have to be given
in terms of complex numbers: to actually find these com-
plex generators it is helpful to split these expressions in
terms of their time and space projections, respectively
labelled by σ0A = BA and σAB = RCεABC so that

[BA,BB] = −εABKRK

[RA,RB] = εABKRK

[RA,BB] = εABKBK

showing that BA represents a boost and RA represents
a rotation, and as known from the Lie theory we may
recombine them as 1

2 (RA±iBA)=A
±
A so that

[A+
A,A

+
B] = εABKA+K [A−

A,A
−
B] = εABKA−K

[A+
A,A

−
B] = 0

as two independent three-dimensional rotations which we
have stipulated to write in their irreducible form in terms
of some 2-dimensional matrices: these matrices are al-
ready known to be the Pauli σA matrices; we recall that
the Pauli matrices are given by the following matrices

σ1=

(

0 1

1 0

)

σ2=

(

0 −i
i 0

)

σ3=

(

1 0

0 −1

)

as it is well known: in their terms the 2-dimensional irre-
ducible forms that we can pick are either the one that is
given by A+

A=0 and A−
A=− i

2σA or the complementary

one given by A+
A=− i

2σA and A−
A=0 and with which we

have B±
A =± 1

2σA and RA=− i
2σA so that eventually we

obtain σ±
0A=± 1

2σA and σAB=− i
2εABCσ

C or explicitly

σ01
± =± 1

2

(

0 1

1 0

)

σ02
± =± 1

2

(

0 −i
i 0

)

σ03
± =± 1

2

(

1 0

0 −1

)

for boosts and

σ23=− i
2

(

0 1

1 0

)

σ31=− i
2

(

0 −i
i 0

)

σ12=− i
2

(

1 0

0 −1

)

for rotations as the complex generators: in terms of these
boosts and rotations as the complex generators, and by
still calling θ01=ϕ1, θ02=ϕ2, θ03=ϕ3 for the rapidities
and θ23 =−θ1, θ31 =−θ2, θ12 =−θ3 for the angles, it is
possible to compute the explicit complex transformations

Λ
±
B1 =

(

cosh ϕ1

2 ± sinh ϕ1

2

± sinh ϕ1

2 cosh ϕ1

2

)

Λ
±
B2 =

(

cosh ϕ2

2 ∓i sinh ϕ2

2

±i sinh ϕ2

2 cosh ϕ2

2

)

Λ
±
B3 =

(

e±
ϕ3

2 0

0 e∓
ϕ3

2

)

for boosts and

ΛR1 =

(

cos θ1
2 i sin θ1

2

i sin θ1
2 cos θ1

2

)

ΛR2 =

(

cos θ2
2 sin θ2

2

− sin θ2
2 cos θ2

2

)

ΛR3 =

(

ei
θ3
2 0

0 e−i
θ3
2

)

for rotations, and such that any product of these specific
Lorentz transformations gives the Lorentz transforma-
tion in its full form. In the passage from real to complex
representation a two-fold multiplicity has arisen since
two opposite expressions are possible for the full Lorentz
transformation: this is overcome with the 2-dimensional
matrices combined into the 4-dimensional matrices

Λ=

(

Λ
− 0

0 Λ
+

)

for the Lorentz transformation which can be written ac-
cording to the usual expansion in terms of the space-time
parameters ϕA=θ0A and θC=− 1

2εABCθ
AB and in terms

of the 4-dimensional generators that are given by

σ0A= 1
2

(

−σA 0

0 σA

)

σAB=− i
2εABC

(

σC 0

0 σC

)

as boosts and rotations; these can also be written accord-
ing to the form σab= 1

4

[

γa,γb
]

as the commutators of the
4-dimensional matrices that are given by

(

0 I

I 0

)

=γ0

(

0 σK

−σK 0

)

=γK

13



such that {γa,γb} = 2ηabI in terms of the Minkowskian
matrix, and so with a manifest (1+3)-dimensional space-
time form, showing that the 4-dimensional matricial form
is also the manifestly space-time form. Thus we introduce
the set of Clifford matrices implicitly defined by

{γa,γb} = 2ηabI

which allow the definition of the matrices

σab= 1
4

[

γa,γb
]

as the generators corresponding to the θab parameters in

the usual expansion Λ=e
1

2
σ

abθab as the Lorentz transfor-
mation in full space-time form. This Lorentz transforma-
tion considers operations on the space-time and thus it
has to be combined with the phase eiqα in order to even-

tually construct S=e(
1

2
σ

abθab+iqαI) as the Lorentz-phase
transformation in complete form. This form is known as
spinorial transformation. And it is this spinorial transfor-
mation what we employ in the following of the treatment.

The role of the matrices γa is fundamental and hence
we are going to give a few more of their properties, start-
ing from the implicit definition of another matrix as

σab = − i
2εabcdπσ

cd

and noticing that with it, the set of matrices that is given
by the I, π, γa, γaπ, σab is a basis for the 16-dimensional
space of complex 4 × 4 matrices; the normalization con-
dition given by γ0γ

†
aγ0 =γa implies that the conditions

given by γ0σ
†
abγ0=−σab and π†=π hold: because it is

known that ε0123=1 then π= iγ0γ1γ2γ3 and so we have
that it is straightforward to prove also the properties

{π,γa} = 0

and

[π,σab] = 0

in general terms, the last property in particular telling
that any representation of the matrices will necessarily
be reducible; finally, by direct inspection one can easily
demonstrate that we also have the validity of

γaγb=ηabI+2σab

and perhaps a little longer but still mechanical is

γiγjγk = γiηjk − γjηik + γkηij + iεijkqπγ
q

from which more identities also follow, although we will
not prove them since they are straightforward. To define
a procedure of conjugation, we give the general form as

ψ=ψ†A

and we have to look for A such that the result is in fact
the conjugated, that is such that if

ψ′=Sψ

then

ψ
′
=ψS−1

in general; this is required so to have that the 16 linearly-
independent bi-linear spinorial quantities

2ψσabπψ=Σab

2iψσabψ=Sab

ψγaπψ=V a

ψγaψ=Ua

iψπψ=Θ

ψψ=Φ

lose all their spinorial transformation laws to remain with
the tensorial transformation laws solely: then we have

S†AS=A

or equivalently

e(
1

2
σ

†

ab
θab−iqαI)Ae(

1

2
σabθ

ab+iqαI)=A

therefore giving

σ
†
abA+Aσab=0

whose most general solution is given by the expression

A=

(

0 λI

ωI 0

)

with λ and ω being general complex numbers; however, it
is also possible to see that requiring the above 16 linearly-
independent bi-linear spinorial quantities be real yields
that we also have λ=ω=1 and eventually

A=γ0

fixing the relationship

ψ=ψ†γ0

to be the conjugation of spinors. Furthermore, it is also
important to be capable of computing ψψ and because it
is clear that such form is a 4 complex matrix then it can
be written as a linear combination of the following form

ψψ≡aI+baγa+cabσ
ab+dabσ

abπ+eaγ
aπ+fπ

as it is clear: by repeatedly multiplying it by all of the
matrices and taking their traces, it is possible to see that
one by one the coefficients are determined to be

ψψ≡ 1
4ΦI+

1
4Uaγ

a+ i
8Sabσ

ab −
− 1

8Σabσ
abπ− 1

4Vaγ
aπ− i

4Θπ

as one can also see by direct computation. From such an
expression it is also possible to get other identities like

−Vaγaπψ=Uaγ
aψ=(ΦI+iΘπ)ψ

−Uaγ
aπψ=Vaγ

aψ=(Φπ+iΘI)ψ

14



as well as other relationships such as

SabΦ−ΣabΘ=U jV kεjkab

SabΘ+ΣabΦ=U[aVb]

with

SikU
i = ΘVk

ΣikU
i=ΦVk

SikV
i = ΘUk

ΣikV
i=ΦUk

and

1
2SabS

ab=− 1
2ΣabΣ

ab=Φ2−Θ2

UaU
a=−VaV a=Θ2+Φ2

1
2SabΣ

ab=−2ΘΦ

UaV
a = 0

all obtained by employing the above re-arrangement and
using the properties of the matrices or by simply checking
the results with a direct substitution of the general form
of spinor and performing calculations straightforwardly.

Finally, it is quite obvious now that if the transforma-
tion law S is made local then we have to introduce the
spinorial connection transforming according to

Ω
′
ν = S

(

Ων − S−1∂νS
)

S−1

so that the spinorial covariant derivative will be

Dµψ= ∂µψ+Ωµψ

DµΞ=∂µΞ+[Ωµ,Ξ]

according to whether it is applied onto spinors or spino-
rial matrices, and for the latter we assume the condition
given by Dµγa=0 as above: if the spinorial matrix has
also a tensorial index the covariant derivative is

DµBa=∂µBa−BbΩ
b
aµ+[Ωµ,Ba]

which can be taken for the gamma matrix and hence im-
plementing the above condition, and recalling that these
matrices in Lorentz indices are constants, yields

−γbΩ
b
aµ+[Ωµ,γa]=0

as a relation among connections; by writing a general

Ωµ=aΩ
ij
µσij+Aµ

and plugging it into the above relation we obtain that

−γbΩ
b
kµ+aΩ

ij
µ[σij ,γk]+[Aµ,γk]=0

and with [σij ,γk] = ηkjγi−ηkiγj we get a=1/2 and

[Aµ,γs]=0

telling that Aµ must commute with all gamma matrices,
thus with all possible matrices, and this implies that it
is proportional to the identity matrix. By writing it as

Aµ=(p+ib)AµI

it is possible to see that for b=q it is possible to interpret
the vector Aµ as the gauge potential; because the other
term is related to conformal transformations, which are
not symmetries in our case, we set p=0 in general. Then
we have that all considered we may write the expression

Ωµ=
1
2Ω

ij
µσij+iqAµI

as the most general form of the spinorial connection.
We may now summarize by saying that given the most

general spinorial transformation S the column and row
of complex scalars ψ and ψ and the matrix of complex
scalars Ξ transforming according to the following law

ψ′ = Sψ ψ
′
= ψS−1

Ξ
′ = SΞS−1 (49)

are called 1
2 -spin spinorial fields. Operations of sum and

product respect spinor transformation laws, as expected.
The coefficients Ων transforming according to the law

Ω
′
ν = S

(

Ων − S−1∂νS
)

S−1 (50)

are the most general spinorial connection. Once the con-
nection is assigned, we have the following expressions

Dµψ= ∂µψ+Ωµψ Dµψ= ∂µψ−ψΩµ

DµΞ=∂µΞ+[Ωµ,Ξ] (51)

as the covariant derivatives of the spinorial fields.
Clifford matrices are indicated by γa and their implicit

definition is given with anticommutation relationships

{γa,γb} = 2ηabI (52)

so that we define the matrices σab given by

σab =
1
4 [γa,γb] (53)

implicitly defining the matrix π as

σab = − i
2εabcdπσ

cd (54)

and then we have that because of the normalization

γ0γ
†
aγ0=γa (55)

we also have that

γ0σ
†
abγ0=−σab (56)

with

π†=π (57)
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coming alongside to the square properties

γaγ
a=4I (58)

with

σabσ
ab=−3I (59)

and

π2=I (60)

together with the anticommutation properties

{π,γa} = 0 (61)

{γi,σjk} = iεijkqπγ
q (62)

and the commutation properties

[π,σab] = 0 (63)

[γa,σbc] = ηabγc−ηacγb (64)

[σab,σcd] = ηadσbc−ηacσbd+ηbcσad−ηbdσac (65)

and in particular we also define πL and πR such that

πL=
1
2 (I−π) (66)

πR= 1
2 (I+π) (67)

verifying

π
†
L=πL (68)

π
†
R=πR (69)

alongside to

π2
L=πL (70)

π2
R=πR (71)

together with

πLπR=πRπL=0 (72)

(73)

and such that

πL+πR=I (74)

called left and right projectors, and we have the identities

γaγb=ηabI+2σab (75)

γiγjγk = γiηjk − γjηik + γkηij + iεijkqπγ
q (76)

which are useful to bring any product of matrices down to
fewer matrices thus showing that the matrices we defined
are in fact all we need. Then we have that the temporal
gamma matrix γ0 is employed to define the conjugation

ψ=ψ†γ0 γ0ψ
†
=ψ (77)

and in particular πLand πR define the decomposition of
the spinor in its left and right projections

πLψ=ψL ψπR=ψL (78)

πRψ=ψR ψπL=ψR (79)

and such that

ψL+ψR=ψ ψL+ψR=ψ (80)

is the procedure with which from the chiral projections
we re-construct the spinor, and finally we have that with
the pair of conjugate spinors we may define 16 linearly-
independent bi-linear spinorial quantities according to

2ψσabπψ=Σab (81)

2iψσabψ=Sab (82)

ψγaπψ=V a (83)

ψγaψ=Ua (84)

iψπψ=Θ (85)

ψψ=Φ (86)

such that

ψψ≡ 1
4ΦI+

1
4Uaγ

a+ i
8Sabσ

ab −
− 1

8Σabσ
abπ− 1

4Vaγ
aπ− i

4Θπ (87)

from which we get the relationships

−Vaγaπψ=Uaγ
aψ=(ΦI+iΘπ)ψ (88)

−Uaγ
aπψ=Vaγ

aψ=(Φπ+iΘI)ψ (89)

as well as the relationships

SabΦ−ΣabΘ=U jV kεjkab (90)

SabΘ+ΣabΦ=U[aVb] (91)

together with

SikU
i = ΘVk (92)

ΣikU
i=ΦVk (93)

SikV
i = ΘUk (94)

ΣikV
i=ΦUk (95)

and

1
2SabS

ab=− 1
2ΣabΣ

ab=Φ2−Θ2 (96)

UaU
a=−VaV a=Θ2+Φ2 (97)
1
2SabΣ

ab=−2ΘΦ (98)

UaV
a = 0 (99)

showing how to re-arrange the components of the spinors.
The most general spinorial connection is

Ωµ = 1
2Ωabµσ

ab+iqAµI (100)

in terms of the generator-valued spin connection and the
gauge potential. This is equivalent to the fact that the
spinorial covariant derivatives of the gamma matrices is

Dµγa=0 (101)
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vanishing identically as it is quite straightforward to see.
We have that from the spinorial connection we define

Fαβ = ∂αΩβ − ∂βΩα + [Ωα,Ωβ ] (102)

as the spinorial curvature. With it

[Dµ,Dν ]ψ = Qα
µνDαψ + Fµνψ (103)

is the commutator of covariant derivatives of spinor fields.
Correspondingly, the curvature is decomposable as

Fµν = 1
2Gabµνσ

ab + iqFµνI (104)

with the Riemann curvature and Maxwell curvature.
For a final step, we have

DµFκρ +DκFρµ +DρFµκ +

+FβµQ
β
ρκ + FβκQ

β
µρ + FβρQ

β
κµ ≡ 0 (105)

as spinorial geometrical identities holding in general.
We conclude with some fundamental comments: a first

and most important one is about the fact that so far we
encountered three types of transformation laws: the first
type was the most general coordinate transformation; the
second type was the gauge transformation; the third type
was the specific Lorentz transformation, which was given
in real representation for tensors and complex representa-
tion for spinors. The coordinate transformation is known
as passive transformation; the Lorentz transformation in
real representation is known as active transformation and
similarly the Lorentz transformation in complex repre-
sentation merged with the gauge transformation together
into the spinorial transformation is known as active trans-
formation. Because the real Lorentz transformation and
the complex Lorentz transformation have the same local
parameters then they must be performed simultaneously
but it will be the spinorial transformation that will play
an important role, as we are going to see in what follows.

Another interesting comment is on the connections and
how they are built: the torsion tensor, when the metric
tensor is used, gives the connection (16); this connection,
when the dual bases of tetrad fields are employed, gives
the spin connection (36); this spin connection, when the
gamma matrices and their commutators are considered,
with the gauge potential, when multiplied by the identity
matrix, give the spinorial connection (100). Remarkably,
all fields fit within the most general spinorial connection,
with no room for anything else; this circumstance can be
seen as a sort of geometric unification of all the physical
fields that are involved. On the other hand however, in
order to see it that way, we have to wait until we interpret
these geometric quantities as the actual physical fields.

A final comment regards the structure of the covariant
commutator (103), in which by interpreting the covariant
derivative as the covariant generators of translations one
sees that the completely antisymmetric torsion plays the
role that in Lie group theory is played by the completely
antisymmetric structure coefficients; we also recall to the

reader that in the curvature there appear sigma matrices
which are the generators of the Lorentz transformations
and therefore of the space-time rotations. An additional
interpretation that can be assigned to the covariant com-
mutator is that when a field is moved around it would
fail to go back to the starting point and have the initial
orientation, the positional mismatch measured by torsion
and the directional mismatch measured by curvature, and
this is why torsion is also said to describe the dislocations
while curvature is also said to describe the disclinations
of a round trip. This shows intuitively that both torsion
and curvature have to be accounted for the most general
description of the properties of the space-time since both
the translational and the rotational symmetry is present.

For some introduction to the general theory of spinors
and their classifications we refer readers to [18] and [19].

We have now completed the definition in terms of sym-
metry arguments of the fundamental geometric quantities
of the kinematic background, and next we will have them
coupled to one another so to assign their dynamics.

B. Geometry and matter in interaction

In this second section, we establish the field dynamics
by having all fields linked according to the principle that
their coupling would be the most extensive possible.

1. Geometric-material coupling: covariant-field equations

In this first subsection, we shall present in what way
the geometry and its matter content can be dynamically
liked proceeding in the order of increasing exhaustiveness
of their coupling, and not surprisingly this presentation
coincides with the historical development of the theory.

It is important to specify that it is our main goal that of
following Einstein spirit of geometrization, and in order
to do so we are going to obtain the field equations for the
theory in a genuinely geometric way by finding the most
general form of the field equations that is compatible with
the constraints given by geometric identities.

a. History: gravity, torsion gravity, independent tor-

sion gravity, propagating torsion gravity

When in 1916 Einstein wanted to construct the theory
of gravitation, the idea he wished to follow was inspired
geometrically, based on the principle of equivalence.

The principle of equivalence states the equivalence at
a local level between inertia and gravitation, in the sense
that locally inertial and gravitational forces can simulate
one another so well that, when both present, their effects
can be made to cancel: it can be stated by saying that one
can always find a system of coordinates in which locally
the accelerations due to gravitation are negligible.

On the other hand, in absolute differential calculus it
is not at all difficult to demonstrate a theorem originally
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due to Weyl whose statement sounds analogous: it states
that one can always find a system of coordinates in which
in a point the symmetric part of the connection vanishes.

In the previous sections we have discussed in what way
the condition of complete antisymmetry of torsion gives
rise to a unique symmetric part of the connection, thus
removing any possible ambiguity in the implementation
of Weyl theorem: hence for a completely antisymmetric
torsion, Weyl theorem is the mathematical implementa-
tion of the principle of equivalence insofar as the acceler-
ation due to gravitation is encoded within the symmetric
connection; a unique symmetric connection corresponds
to a uniquely defined gravitational field as our physical
intuition would suggest. Further, that single symmetric
connection is entirely written in terms of the derivatives
of the metric, and therefore if the gravitational field is
encoded within the symmetric connection then the grav-
itational potential is encoded within the metric tensor.

The metric tensor is a tensor but it cannot vanish nor
any of its derived scalar is non-trivial and the connection
is not a tensor, so they will always depend on the choice
of coordinates: hence, the information about gravity will
always be intertwined with inertial information, which is
not a surprise since after all we know that they are locally
indistinguishable; on the other hand, we wish to have a
way to tell gravity apart from inertial information, and
to do that it is necessary to take a less local level, then
considering the Riemann curvature tensor: if gravity is
contained in the metric tensor as well as in the connec-
tion, then it is contained in the Riemann curvature tensor
too, but the Riemann curvature tensor is a tensor from
which non-trivial scalars can be derived or which can be
vanished, and this is what makes it able to discriminate
gravity from inertial forces. If the metric is Minkowskian
and the connection is zero we cannot know whether this
is because gravity is absent or compensated by inertial
forces, and similarly if the metric is not Minkowskian and
the connection is not zero we cannot know whether this is
because gravity is present or simulated by inertial forces
as above; but if the Riemann curvature tensor is zero we
know it is because gravity is absent, and if the Riemann
curvature tensor is not zero we know gravity is present in
general terms. This has to be so, as there can not be any
compensation due to inertial forces since there can be no
inertial forces, within the Riemann curvature tensor.

Therefore the principle of equivalence is the manifesta-
tion of the interpretative principle telling that gravitation
is geometrized, and this is so as a consequence of the fact
gravity is contained within the Riemann curvature.

This statement has to be taken into account together
with the parallel fact that in Einstein relativity the mass
is a form of energy, as it is very well known indeed.

Putting the two things together, it becomes clear that
the gravitational field equations that were given in terms
of a second-order differential operator of the gravitational
potential proportional to the mass density have to be con-
sidered as an approximated form of a more general set of
gravitational field equations given by a certain (contrac-

tion of the) curvature proportional to the energy density.
The energy density is a tensor having two indices and

therefore the curvature we are looking for must have two
indices as well, which tells that we need the contraction
of the Riemann curvature given by the Ricci curvature.

In 1916 all matter forms that were known consisted in
macroscopic fluids, scalars and electro-dynamic fields, all
of which having an energy density symmetric in the two
indices; this might have been a problem as in general the
Ricci curvature is not symmetric in its two indices.

And this is where Einstein assumption of the vanishing
torsion came about: assuming torsion to be equal to zero
meant that the Ricci curvature tensor is symmetric and
thus it can be taken proportional to the energy density.

Moreover, the energy density is divergenceless and thus
we need to find a specific combination of Ricci curvatures
in order to make the geometric side divergenceless too.

To see which, we may consider identity (29) in the case
in which torsion vanishes, therefore obtaining identity

∇µR
ν
ικρ+∇κR

ν
ιρµ+∇ρR

ν
ιµκ=0

whose contraction gives

∇µR
µ
ικρ−∇κRιρ+∇ρRικ=0

and then

∇µR
µ
κ− 1

2∇κR=0

or more in general

∇µ(R
µν− 1

2g
µνR−gµνΛ)=0

which is symmetric and divergenceless as desired, and so
it can be taken to be proportional to the energy density.

Therefore, Einstein geometrical insight is expressed in
the form of the gravitational field equations

Rµν− 1
2g

µνR−gµνΛ= 1
2kT

µν

which are then called Einstein field equations.
In summary, Einstein gravitational field equations

Rµν− 1
2g

µνR−gµνΛ= 1
2kT

µν

are the field equations of the theory: from them it follows
that the energy density is symmetric and divergenceless

T [µν]=0

∇µT
µν=0

as the conservation laws that have to be verified by the
matter field in the most general of the possible cases.

At least in the most general case without torsion.
Then, one may wonder that what happens if torsion

were not neglected in the scheme of Einstein gravity.
Einstein gravitational theory is based on the spirit that

geometry gives us a curvature tensor while matter fields
have an energy density, and so matter fields filling geome-
try must have their energy density sourcing the curvature
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field equations; but then again, one may wonder whether
we can keep embracing this spirit also when the torsion
tensor is present beside curvature in the geometry.

So the first point to be retained is that a geometry filled
with matter fields has to be described by field equations
in which geometrical quantities are sourced by material
fields in the most general of cases; and the second point
to be retained is that in such a most general of the cases
geometry gives us curvature and torsion: therefore, if the
curvature field equations are sourced by energy density
the torsion field equations are sourced by spin density.

In 1928 Dirac has been the first to describe a system of
matter fields, named spinors, which possessed an energy
density together with a spin density; more important still
was the fact that their energy density was described by a
tensor that was not symmetric, and to add complications
that energy density did not even verify the standard law
of conservation as we have accounted just above.

Indeed it is something of the most general validity the
result that quantum matter is to be described in terms of
irreducible representations of the Poincaré group labelled
by quantum numbers of mass and spin [20], and therefore
the corresponding matter field has energy density and
spin density; general procedures of quantum field theory
can be used to assess that spin and energy conservation
laws are given according to the following expressions

DρS
ρµν+ 1

2T
[µν]=0

and

DµT
µν+TρβQ

ρβν−SµρβG
µρβν =0

reducing to the above case of divergenceless and sym-
metric energy density whenever the spin density vanishes,
but which are nevertheless valid in the most general cases.

Correspondingly, in the most general case in which the
torsion is allowed to be present beside the curvature we
have that identities (29, 20) can be fully contracted as

DρQ
ρµν−G[µν]=0

and

DµG
µ
ρ− 1

2DρG−GµσQσµρ− 1
2GµκσρQ

σκµ=0

or equivalently

DρQ
ρµν−(G[µν]− 1

2g
[µν]G−g[µν]Λ)=0

and

Dµ(G
µν− 1

2g
µνG−gµνΛ)−

−(Gµσ− 1
2gµσG−gµσΛ)Qσµν− 1

2G
µκσνQσκµ=0

being closely resemblant to the conservation laws above.
Then, Einstein field equations can be generalized up

to gravitational field equations linking a non-symmetric
curvature to a non-symmetric energy density and we have
the appearance of a new torsional field equation linking

the completely antisymmetric torsion to the completely
antisymmetric spin density according to expressions

Qρµν =−kSρµν

and

Gµν− 1
2g

µνG−gµνΛ= 1
2kT

µν

reducing to the above case linking a symmetric curvature
to a symmetric energy density whenever the torsion and
the spin density vanish, but nevertheless they are valid
in the most general case in which torsion is not equal to
zero and it is coupled to the spin density, and hence they
are called Einstein–Sciama-Kibble field equations [21].

In summary, ESK torsion gravitational field equations

Qρµν =−kSρµν

and

Gµν− 1
2g

µνG−gµνΛ= 1
2kT

µν

are the pair of field equations of the theory: therefore the
energy density and spin density verify the relationships

DρS
ρµν+ 1

2T
[µν]=0

and

DµT
µν+TσµQ

σµν−SµκσG
µκσν =0

as the conservation laws satisfied by the matter field.
To show that such a non-symmetric energy density and

a completely antisymmetric spin density actually exist it
is enough to present those pertaining to the spinor field

Sρµν = i
4ψ{γρ,σµν}ψ

and

T ρσ= i
2 (ψγ

ρDσψ−Dσψγρψ)

as conserved quantities, which are accompanied by

iγµDµψ−mψ=0

as the general spinorial field equations: that these are in
fact conserved quantities is clear since when the spinorial
field equations are valid then the relationships

DρS
ρµν+ 1

2T
[µν]=0

and

DµT
µν+TσµQ

σµν−SµκσG
µκσν =0

are conservation laws that are satisfied in general cases.
As general introduction the interested reader may look

at references [22, 23], where all this is presented for the
Einstein–Sciama-Kibble torsion gravity with Dirac spinor
matter fields according to the usual wisdom; but contrary
to what is normally believed in this domain, these field
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equations are actually not the most general either, and
for two reasons, the first being that the new torsional field
equations, linking a completely antisymmetric torsion to
a complete antisymmetric spin density, can only be valid
if the spin is completely antisymmetric, although since
this is indeed what happens for the Dirac field, and as
this is the only matter field we know, we will not pursue
any attempt of generalization in this particular direction.

However, there is another reason to have ESK torsion
gravity generalized, and this is related to the fact that
while the torsion and gravitational fields are independent,
nevertheless their field equations appear to have the same
coupling constant, which is a strong restriction.

If we want to make reason of the fact that in general in-
dependent fields must have independent coupling to their
independent sources, then we must find a way to obtain
the ESK field equations generalized as to be given so that
the two coupling constants are different [24, 25].

It is tedious but quite straightforward to prove that the
generalized system of field equations with two different
coupling constants is given by the following expressions

Qρµν =−aSρµν

and

b
2a

(

DρQ
ρµν− 1

2Q
µασQν

ασ+
1
4g

µνQ2
)

+

+Gµν− 1
2g

µνG−gµνΛ= 1
2 (a+b)T

µν

as the field equations of the theory: then the energy den-
sity and spin density verify the relationships

DρS
ρµν+ 1

2T
[µν]=0

and

DµT
µν+TσµQ

σµν−SµκσG
µκσν =0

as the conservation laws satisfied by the matter field.
The spirit of geometrization is thus realized by having

both torsion and curvature coupled to the spin density
and energy density in terms of independent couplings.

Although this construction clearly extinguishes the use
of space-time fields, also gauge fields must be taken into
account, and we already know what is the consequence
for the system of field equations if we require geometrical
quantities to be sourced by the material fields in the most
general of cases: if we have torsion-spin field equations
as well as curvature-energy field equations, then we must
also have gauge-current field equations for completion.

The commutator of covariant derivatives (24) applied
to the case of the gauge curvature (46) gives an identity
that in its fully contracted form is given by

Dρ

(

DσF
σρ+ 1

2FαµQ
αµρ
)

=0

which looks like the conservation law of the current.
What this suggests is that the previous field equations

must be improved with contributions of gauge fields as

Qρµν =−aSρµν

and

b
2a

(

DρQ
ρµν− 1

2Q
µασQν

ασ+
1
4g

µνQ2
)

+

+ 1
2 (a+b)

(

FµρF ν
ρ− 1

4g
µνF 2

)

+

+(Gµν− 1
2g

µνG−gµνΛ)= 1
2 (a+b)T

µν

and additionally they have to be accompanied by the field
equations for the gauge fields given according to

1
2FαµQ

αµρ+DσF
σρ=Jρ

yielding the full system of field equations: so the energy
density and spin density still verify the relationships

DρS
ρµν+ 1

2T
[µν]=0

and

DµT
µν+TσµQ

σµν−SµκσG
µκσν+JρF

ρν =0

but now there is also the current density verifying

DρJ
ρ=0

as the additional conservation law included in the full set
of conservation laws satisfied by the matter field.

The non-symmetric energy density and the completely
antisymmetric spin density are given according to

Sρµν = i
4ψ{γρ,σµν}ψ

and

T ρσ= i
2 (ψγ

ρDσψ−Dσψγρψ)

exactly as above and now there is also the current density

Jρ=qψγρψ

to complete the conserved quantities, together with the
general form of spinorial field equations given by

iγµDµψ−mψ=0

as above: then we have that relationships

DρS
ρµν+ 1

2T
[µν]=0

and

DµT
µν+TσµQ

σµν−SµκσG
µκσν+JρF

ρν =0

alongside to

DρJ
ρ=0

are the full conservation laws that are satisfied in general.
All in all, the full system of field equations is given by

the torsion-spin and the curvature-energy field equations

Qρµν =− ia
4 ψ{γρ,σµν}ψ
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and

b
2a

(

DρQ
ρµν− 1

2Q
µασQν

ασ+
1
4g

µνQ2
)

+

+ (a+b)
2

(

FµρF ν
ρ− 1

4g
µνF 2

)

+

+(Gµν− 1
2g

µνG−gµνΛ)= i(a+b)
4 (ψγµDνψ−Dνψγµψ)

as the pair of field equations describing the space-time
structure and with the gauge-current field equations

1
2FµνQ

µνρ+DσF
σρ=qψγρψ

as the field equations describing the gauge structure and
thus completing the set of field equations describing the
geometrical structure, together with field equations

iγµDµψ−mψ=0

as the general form of the spinor field equations and being
the field equations that describe the material structure.

These results have been discussed in reference [26] and
we invite the reader to have a look there for more details.

But then again, this is not the most general system of
field equations either, because the torsion tensor enters
algebraically in its coupling to the spin density.

As mentioned, the above system of field equations has
the feature that torsion and spin are algebraically related,
and this constitutes a conceptual problem because in the
case in which the spin density were to vanish then torsion
would vanish too, with no possibility of doing otherwise.

That the torsion-spin coupling is algebraic may not
be seen as a problem because also the curvature-energy
coupling is algebraic, but there are reasons for this situa-
tion not be to entirely analogous: the most important is
that the torsion that enters in the field equations is the
general Cartan torsion, with the consequence that if the
spin density were to be equal to zero then the Cartan
torsion would be equal to zero, but the curvature that
enters the field equations is the Ricci curvature and not
the Riemann curvature, with the consequence that even
if the energy density were to be equal to zero then the
Ricci curvature would be equal to zero, but this would
not imply that the Riemann curvature would be equal to
zero and some gravitational field may still be present.

Also, the curvature has an internal structure given in
terms of first-order derivatives of the connection and thus
in terms of second-order derivatives of the metric tensor,
so that there exists a dynamics for the gravitational field,
but there is no similar dynamics for the torsion field.

If we desire that the torsion dynamics be implemented
in the theory, then we have to look for dynamical terms
in the torsion-spin field equations, and also for torsional
contribution in all of the other field equations as well.

The process is similar to what we have done just above,
although very long, so for the moment we will show quite
straightforwardly the result, in terms of which we have

D[ρD
σQµν]σ+Qη[µνGρ]σg

ση−Gσ[ρQµν]ηg
ση +

+M2Qρµν =
1
12Sρµν

and

Gρσ− 1
2Gg

ρσ−18k[ 13DαD
[αDπQ

ρσ]π −
− 1

3DαDηQ
ηπ[αQρσ]νgνπ −

− 1
3Q

ρηϕD[σDπQ
ηϕ]π − 1

3Q
σηϕD[ρDπQ

ηϕ]π +

+ 1
2D

πDτQ
τµνQπµνg

ρσ +

+ 1
4DπQ

πµνDτQτµνg
ρσ−DπQ

πµρDτQ σ
τµ +

+ 1
3 (Q

ρηϕDτQ
τπσ+QσηϕDτQ

τπρ)Qηϕ
π −

− 1
3DηQ

ηπαDαQ
ρσ

π]−
− 1

2k(
1
4F

2gρσ−F ραF σ
α)−

−(12kM2+1)(12DαQ
αρσ −

− 1
4Q

ραπQσ
απ+

1
8Q

2gρσ)−Λgρσ= 1
2kT

ρσ

alongside to

DσF
σµ+ 1

2FανQ
ανµ=Jµ

as the full system of field equations: they imply that

DρS
ρµν+ 1

2T
[µν]=0

and

DµT
µν+TσµQ

σµν−SµκσG
µκσν+JρF

ρν =0

alongside to

DρJ
ρ=0

be the full set of conservation laws that have to be satis-
fied when the general matter field equations are assigned.

Then we have that the following expressions

Sρµν =−8X i
4ψ{γρ,σµν}ψ

and

T ρσ= i
2 (ψγ

ρDσψ−Dσψγρψ) +

+ (8X+1)Dα(
i
4ψ{γα,σρσ}ψ) +

+ 1
2 (8X+1)Qρµν i

4ψ{γσ,σµν}ψ −
− (8X+1)Qσµν i

4ψ{γρ,σµν}ψ

alongside to

Jµ=qψγµψ

are the conserved quantities, which are accompanied by

iγµDµψ−i(X+ 1
8 )Qνταγ

νγτγαψ−mψ=0

as the most general spinorial field equations: and finally
we have that these imply the relationships given by

DρS
ρµν+ 1

2T
[µν] ≡ 0

and

DµT
µν+TρβQ

ρβν−SµρβG
µρβν+JρF

ρν ≡ 0

21



alongside to

DρJ
ρ = 0

as the full set of conservation laws which are satisfied in
the most general of the circumstances that are possible.

And all in all, the system of field equations has form

D[ρDσQ
µν]σ−G[σρ]Qµν

σ−G[σν]Qρµ
σ−G[σµ]Qνρ

σ+

+M2Qρµν =− 2
3X

i
4ψ{γρ,σµν}ψ

and

Gρσ− 1
2Gg

ρσ−18k[ 13DαD
[αDπQ

ρσ]π −
− 1

3DαDηQ
ηπ[αQρσ]νgνπ −

− 1
3Q

ρηϕD[σDπQ
ηϕ]π − 1

3Q
σηϕD[ρDπQ

ηϕ]π +

+ 1
2D

πDτQ
τµνQπµνg

ρσ +

+ 1
4DπQ

πµνDτQτµνg
ρσ−DπQ

πµρDτQ σ
τµ +

+ 1
3 (Q

ρηϕDτQ
τπσ+QσηϕDτQ

τπρ)Qηϕ
π −

− 1
3DηQ

ηπαDαQ
ρσ

π]−
− 1

2k(
1
4F

2gρσ−F ραF σ
α)−

−(12kM2+1)(12DαQ
αρσ −

− 1
4Q

ραπQσ
απ+

1
8Q

2gρσ)−
−Λgρσ= 1

2k[
i
2 (ψγ

ρDσψ−Dσψγρψ) +

+ (8X+1)Dα(
i
4ψ{γα,σρσ}ψ) +

+ 1
2 (8X+1)Qρµν i

4ψ{γσ,σµν}ψ −
− (8X+1)Qσµν i

4ψ{γρ,σµν}ψ]

alongside to

DσF
σµ+ 1

2FανQ
ανµ=qψγµψ

as the geometric field equations, together with

iγµDµψ−i(X+ 1
8 )Qνταγ

νγτγαψ−mψ=0

as the general form of matter field equations of the theory.
That this is the most general system of field equations

is something we told the reader because we wanted to get
to the point without being diverted by technicalities, but
we have not proved it and so the presentation, despite his-
torically detailed, is mathematically not demonstrated.

In what will be next we are going to re-consider all this
the other way around, in order to fully demonstrate that
what we presented is the most general case indeed.

b. Mathematics: the most general theory of propagat-

ing torsion gravity

Before we have told the reader what are the most gen-
eral field equations without proving it was the case, and
now we will demonstrate it by direct construction of the
most general system of field equations that is possible.

In order to construct the most general system of field
equations, we are going to start by distinguishing them in

two different types: the field equations for the geometry-
matter coupling, which will be written in the form of
second-order derivatives of the metric and torsion and
also gauge potentials equal to sources given by the en-
ergy and spin and also the current of fields; and the mat-
ter field equations, which will be written in the form of
a first-order differential operator containing metric and
torsion and gauge potentials acting on the spinor field
and equalling the spinor field itself. This discrimination
comes from the fact that, on the one hand, it is possible
to employ spinors to construct sources for the tensor and
gauge field equations, but on the other hand, it is not pos-
sible to use tensor and gauge fields to build sources of the
spinorial field equations; in the spinorial field equations
the derivatives of the spinor field must be proportional
to the spinor field itself. This discrimination between the
form of geometric and matter field equations is therefore
intrinsic to the structure of the fields we are employing.

We start by considering the fact that field equations
for the metric have to be in the form of some derivative
of the metric equal to some source: because the covari-
ant derivative of the metric tensor vanishes identically,
then any dynamics of the metric can only be described
in terms of the partial derivatives of the metric, or equiv-
alently by the metric connection (14); again the metric
connection is not a tensor, and the only way we have from
the symmetric connection to form a tensor is to take an-
other partial derivative, therefore forming the metric cur-
vature tensor as given by (22). As equation (26) shows,
the metric curvature tensor is one peculiar combination of
second-order partial derivatives of the metric, that is ar-
guments of symmetry under the most general coordinate
transformations force at least second-order derivatives of
the metric in the differential field equations; then argu-
ments of simplicity would require that we do not take any
further differential structure. In the following we will see
that second-order derivatives in the metric field equations
endow them with a character that no other field equation
will have, rendering them somewhat peculiar.

For the moment, what we have established is that the
metric field equations will have to be given in the form of
some combination of the metric curvature tensor, and to
see what combination, we start from considering that if
the leading term were to be given by the Riemann met-
ric curvature tensor Rατσν then the vacuum equations
would reduce to the condition of vanishing of Riemann
metric curvature tensor, so that they would imply that
there be only the trivial metric; hence if we want non-
trivial metrics to be possible in vacuum, then the Rie-
mann metric curvature tensor must appear contracted as
the Ricci metric curvature tensor Rαµ for leading term,
and of course we may have contractions such as the Ricci
metric curvature scalar Rgαµ or even Λgαµ as sub-leading
terms in general: so for the moment we will establish the
most general form of field equations to be given by

Rαµ−ARgαµ−Λgαµ= 1
2kE

αµ

where Eαµ will have to be fixed on general grounds, as
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we are going to do a little later in this treatment.
For now, a first thing to notice is what happens without

extra contributions: the vacuum metric field equations
are reduced according to the following relationship

Rµν−ARgµν−Λgµν=0

and in absence of torsion identities (29) are given by

∇µR
ν
ικρ +∇κR

ν
ιρµ +∇ρR

ν
ιµκ ≡ 0

whose contracted form is

∇µR
µ
ικρ −∇κRιρ +∇ρRικ ≡ 0

and whose fully-contracted form is given by

∇µ(R
µν− 1

2Rg
µν) ≡ 0

implying that

(1−2A)∇νR=0

which is not true unless 2A=1 holds. So the metric field
equations in vacuum are given by the expression

Rµν− 1
2Rg

µν−Λgµν=0

and such a structure must of course be also valid in the
case in which extra contributions will be present.

By placing this constraint we obtain field equations

Rαµ− 1
2Rg

αµ−Λgαµ= 1
2kE

αµ

in which the only constant Λ is still undetermined and
it will remain undetermined since there is no way to fix
it on geometrical grounds, so that we may think of it as
an integration constant, which can always be added and
whose value cannot be fixed, unless empirically.

So much for the metric field equations, we next turn
our attention to the other field equations, for which the
covariant derivatives of the fields will not be identically
zero and thus a different path has to be followed.

The field equations for the torsion have to be in the
form of covariant derivatives of the torsion axial-vector
equal to some source: taking covariant derivatives of the
torsion axial-vector implies that we will have to write
the field equation in the form of the covariant divergence
of the torsion axial-vector equal to a source constituted
by a pseudo-scalar field, but the temporal derivative will
be specified for the temporal component of the torsion
axial-vector solely; therefore we must take two covariant
derivatives of the torsion axial-vector as leading term.

To assess what are the most general field equations
for the torsion axial-vector we consider that the leading
term given in the form of two covariant derivatives of the
torsion axial-vector ∇σ∇αWρ is to be such that one of the
indices of the derivatives has to be contracted yielding the
two forms ∇σ∇σWρ and ∇ρ∇σW

σ as leading terms: sub-
leading terms may be added eventually and so we may
establish the most general form of field equations as

2Π∇σ∇σW η−2H∇η∇ρW
ρ −

−V∇αWνWρε
ανρη−UWαWαW

η −
−2LRηρWρ+2NRW η+PW η=κSη

where Sα will have to be fixed on general grounds.
This general field equation can be restricted with the

Velo-Zwanziger method [27, 28], so taking its divergence

2(Π−H)∇η∇η∇ρW
ρ +

+V∇η∇αWνWρε
ηανρ +

+V∇αWν∇ηWρε
ηανρ −

−2[UW ρW η+(L−Π)Rηρ]∇ηWρ +

+(2N−L+Π)∇ηRW
η −

−(UWαWα−2NR−P )∇ηW
η=κ∇ηS

η

it becomes possible to see that there appears a third-
order time derivative for the temporal component of the
torsion axial-vector implying that the constraint obtained
from the field equations would actually determine the
time evolution of some components of the torsion axial-
vector field, and since this would spoil the balance be-
tween the number of independent field equations and the
amount of degrees of freedom of a given field, then no
higher-order derivative terms must be produced in the
constraints and so we set Π=H identically; once this is
done, there is no higher-order derivative nor second-order
derivative in time for any components of the field in the
constraint, which is thus a true constraint, and when it
is substituted back into the field equations, we obtain

2H∇σ∇σW η−2H(UWαWα−2NR−P )−1 ·
·∇η[V∇τ∇αWνWρε

τανρ +

+V∇αWν∇τWρε
τανρ −

−2[UW ρW τ+(L−H)Rτρ]∇τWρ +

+(2N−L+H)∇τRW
τ−κ∇τS

τ ] +

+2H∇η(UWαWα−2NR) ·
·(UWαWα−2NR−P )−2 ·
·[V∇τ∇αWνWρε

τανρ +

+V∇αWν∇τWρε
τανρ −

−2[UW ρW τ+(L−H)Rτρ]∇τWρ +

+(2N−L+H)∇τRW
τ−κ∇τS

τ ]−
−V∇αWνWρε

ανρη−UWαWαW
η −

−2LRηρWρ+2NRW η+PW η=κSη

which contains second-order time derivatives of all com-
ponents of the torsion axial-vector, and therefore this is
a true field equation. To check the propagation of the
field, we have to consider its characteristic equation

(UWαWα−2NR−P )gνηn2 −
−V ετραν(∂W )τρnαn

η +

+2[UW τW ν+(L−H)Rτν]nτn
η=0

giving rise to a characteristic determinant of the form

(UWαWα−2NR−P )n2 +

+2[UW τW ν+(L−H)Rτν]nτnν =0

which has to be discussed: because we have no infor-
mation about Rτν or R then acausality may be possible
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unless we have that L=H and N=0 hold, but even then

(UW 2−P )n2 + 2U |W · n|2=0

tells that again acausality may occur unless additionally
we impose U=0 identically, in which case

n2=0

spelling that acausality cannot happen. Notice that there
is no constraints on V which remains a free parameter.

Placing all constraints together gives field equations

4∇ρ(∂W )ρη−VWρ(∂W )ανε
ρανη +

+2PW η=2κSη

because without loss of generality constant H can be re-
absorbed within a redefinition of all the other constants.

To proceed, we notice that the metric field equations
the source contribution from the torsion axial-vector field
has to be built with no quartic torsion term, because they
would correspond to what in the torsion field equations
are cubic torsion term, which are absent, and no sec-
ond derivatives of torsion, because they would give rise
to curvatures, which cannot be present since they are al-
ready addressed, and so it is possible to come to the most
general form of this contribution as the one given by

Eµν =aWµW ν+bW 2gµν +

+z(W νWρ(∂W )ασε
ρασµ +

+WµWρ(∂W )ασε
ρασν) +

+y(∇σW
µ(∂W )σν +

+∇σW
ν(∂W )σµ) +

+x∇µWσ∇νW σ +

+w∇σW
µ∇σW ν +

+v∇αWσ∇αW σgµν +

+u(∂W )νσ(∂W )µσ +

+t(∂W )2gµν

in terms of ten constants: then the metric field equations
with such contribution from torsion are given by

Rµν− 1
2Rg

µν−Λgµν= 1
2k[aW

µW ν+bW 2gµν +

+z(W νWρ(∂W )ασε
ρασµ+WµWρ(∂W )ασε

ρασν) +

+y(∇σW
µ(∂W )σν+∇σW

ν(∂W )σµ) +

+x∇µWσ∇νW σ+w∇σW
µ∇σW ν +

+v∇αWσ∇αW σgµν +

+u(∂W )νσ(∂W )µσ +

+t(∂W )2gµν ]

which have to be taken with the torsion field equations

4∇ρ(∂W )ρη−VWρ(∂W )ανε
ρανη+2PW η=0

in the vacuum; because for the metric field equations
the demonstrated divergencelessness of the left-hand side

implies the divergencelessness of the right-hand side, then
we must have the divergencelessness of the contribution
that comes from the torsion field and which is given by

0=(a∇·W− z
2 (∂W )µρ(∂W )ασε

µρασ)W ν +

+(y∇σ∇µWσ−u∇σ(∂W )σµ −
−2bWµ−x∇2Wµ)(∂W )µν +

+(aWµ−y∇σ(∂W )σµ+w∇σ∇µW
σ +

+zW ρ(∂W )ασερασµ+2bWµ+x∇2Wµ)∇µW ν −
−[(y+u+4t)(∂W )µσ+(x−y)∇µWσ]∇µ(∂W )σν +

+[(y+w)(∂W )σµ+(x+w)∇µWσ]∇µ∇σW ν +

+2v∇µWσ∇ν∇µW σ +

+zWµ∇µWρ(∂W )ασε
ρασν +

+zWµWρ∇µ(∂W )ασε
ρασν +

+z∇·WWρ(∂W )ασε
ρασν

in which the first term has the structure of the divergence
of the field equations for the torsion field given by

4P∇·W+V (∂W )ηρ(∂W )ανε
ηραν = 0

while the last term is not related to any other term and
therefore these two contributions disappear only if we
require that V =z=0 hold, so that the above becomes

[ 12 (uP+xP−4b)Wµ +

+(y−x)RσµW
σ](∂W )µν +

+[ 12 (2a+yP+4b−xP )Wµ +

+(w+x)RσµW
σ]∇µW ν −

−[(y+u+4t)(∂W )µσ +

+(x−y)∇µWσ]∇µ(∂W )σν +

+[(y+w)(∂W )σµ +

+(x+w)∇µWσ]∇µ∇σW ν +

+2v∇µWσ∇ν∇µW σ=0

implying v = 0 with x = y = −w and x+u = −4t and
together with a=−2b=2tP which must hold identically.

As a consequence the metric field equations in presence
of the contribution of torsion are writable according to

Rµν− 1
2Rg

µν−Λgµν− 1
2k4t[

1
4 (∂W )2gµν −

−(∂W )νσ(∂W )µσ +

+ 1
2P (W

µW ν− 1
2W

2gµν)]= 1
2kE

µν

with torsion field equations that are given by

∇ρ(∂W )ρη+ 1
2PW

η= 1
2κS

η

which must also be valid in presence of the gauge field.
The field equations for the gauge field are also in the

form of covariant derivatives of the gauge potential equal
to some source: nevertheless by taking derivatives of the
gauge potential means that that we have to consider the
gauge strength because this is the only term that is differ-
ential in the potential and which is still gauge invariant,
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but since this is irreducible, any contraction of the gauge
strength vanishes and therefore these terms alone cannot
be not enough; hence we have to take one more covariant
derivative of the gauge strength as leading term.

The most general field equations for the gauge fields
have a leading term in the form ∇σFαρ and after con-
traction we get ∇σF

σρ as the leading term: then we get

∇σF
ση− 1

12BFανWρε
ανρη=qJη

in which the source Jα will have to be fixed as well.
The contribution from the gauge field is similarly built

in terms of squares of the gauge curvature strength, since
any other term would violate gauge symmetry, and thus

Eµν =αFµρF ν
ρ+βF

απFαπg
µν

in terms of two constants: the metric field equations with
contributions of torsion and gauge fields are

Rµν− 1
2Rg

µν−Λgµν− 1
2k4t[

1
4 (∂W )2gµν −

−(∂W )νσ(∂W )µσ+
1
2P (W

µW ν −
− 1

2W
2gµν)]= 1

2k(αF
µρF ν

ρ +

+βFαπFαπg
µν)

with torsion field equations

∇ρ(∂W )ρη+ 1
2PW

η=0

in vacuum and with the gauge field equations

∇σF
ση− 1

12BFανWρε
ανρη=0

in vacuum; again the divergencelessness of the left-hand
side implies the divergencelessness right-hand side

0=∇µ(αF
µρF ν

ρ+βF
απFαπg

µν) =

= α∇µF
µρF ν

ρ+αF
µρ∇µF

ν
ρ +

+2β∇νFαπFαπ =

=− 1
12αBετπσρF

τπW σF ρν +

+αFµρ∇µF νρ+2β∇νFαπFαπ =

=− 1
12αBετπσρF

τπW σF ρν +

+ 1
2 (α+4β)Fµρ∇νFµρ =

=− 1
12αBετπσρF

τπW σF ρν +

+ 1
4 (α+4β)∇νF 2

which implies that B=0 and α=−4β hold identically.
Placing all constraints together, the metric field equa-

tions with contributions of torsion and gauge fields are

Rµν− 1
2Rg

µν−Λgµν− 1
2k4t[

1
2P (W

µW ν −
− 1

2W
2gµν) + 1

4 (∂W )2gµν −
−(∂W )νσ(∂W )µσ]− 1

2k4β(
1
4F

2gµν −
−FµρF ν

ρ)=
1
2kE

µν

with torsion field equations that are given by

∇ρ(∂W )ρµ+ 1
2PW

µ= 1
2κS

µ

and with the gauge field equations as

∇σF
σµ=qJµ

in which we have moved all contributions to the left-hand
side in order to stress that these equations will have to
be valid in this form even when matter is present.

In the metric field equation the contributions due to
torsion and gauge fields are analogous, and torsion and
gauge fields are independent, so we may normalize torsion
and gauge fields with no loss of generality so to have the
two constants t and β with the same value, and it is still
without losing generality that they can be reabsorbed in
the k constant, and therefore the metric field equations
with torsion and gauge fields are given by

Rµν− 1
2Rg

µν−Λgµν− 1
2k[M

2(WµW ν− 1
2W

2gµν) +

+ 1
4 (∂W )2gµν−(∂W )νσ(∂W )µσ]−
− 1

2k(
1
4F

2gµν−FµρF ν
ρ)=

1
2kE

µν

with torsion field equations in form

∇ρ(∂W )ρµ+M2Wµ= 1
2κS

µ

and gauge field equations

∇σF
σµ=qJµ

where we set P =2M2 because this is just the mass term
of the torsion axial-vector field as it is well known.

We notice that in reabsorbing within a renaming of the
constant k the values of the constants t and β we did not
lose any generality in their absolute value, but in order
not to lose any generality also for the sign all constants
would have to be positive, and this is general may not be
the case: the reason why we did it anyway is that those
constants are in front of torsion and gauge fields’ energy
contributions and energies are positive defined; although
we might have assumed those constants to have a generic
sign, in the final form of the field equations we would have
discovered that the signs were all positive, and thus with
no loss of generality we can assume it from the beginning.

We also notice that in torsion and gauge field equations
there is no extra contribution: this is because the metric
cannot produce extra contributions for torsion and gauge
fields, and torsion and gauge fields cannot interact with
one another without violating the gauge invariance.

To proceed with the inclusion of matter fields, it is fun-
damental to notice that spinor fields are defined in terms
of gamma matrices that can also be used in building fun-
damental quantities, whose employment allows to lower
the order of derivatives in all such quantities because ev-
ery time covariance demands for a single covariant index
to be present one gamma matrix can be used instead of
one spinorial derivatives of the spinor field: to include the
matter fields, we have to write the general form of their
contribution in the metric field equations, and this can
be constructed by employing no more than one spinorial
derivative of the spinor field, since gamma matrices can
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be used to saturate indices, and eventually we have that
the most general expression is given according to

Eρσ=ζ[∇ρ(ψγσψ)+∇
σ(ψγρψ)] +

+iξ(ψγρ
∇

σψ−∇
σψγρψ +

+ψγσ
∇

ρψ−∇
ρψγσψ) +

+χ∇α(ψγ
αψ)gρσ +

+λi(ψγα
∇αψ−∇αψγ

αψ)gρσ +

+τ(W σψγρπψ+W ρψγσπψ) +

+υWαψγ
απψgσρ+µψψgρσ

in general; the contribution as source of the torsion field
equations is the spin density of the material field and
it can be taken with no spinorial derivative at all when
gamma matrices are considered, therefore obtaining that

Sµ=ωψγµπψ

also in general; the contribution as source of the gauge
field equations is the current density of the material field
and similarly it is given according to

Jρ=pψγρψ

again in the most general case: the full set of geometry-
matter coupling field equations is for the metric field

Rρσ− 1
2Rg

ρσ− k
2 [

1
4 (∂W )2gρσ−(∂W )σα(∂W )ρα]−

−k
2 (

1
4F

2gρσ−F ραF σ
α)−

−k
2M

2(W ρW σ− 1
2W

2gρσ)−
−Λgρσ= 1

2k[ζ[∇
ρ(ψγσψ)+∇

σ(ψγρψ)] +

+iξ(ψγρ
∇

σψ−∇
σψγρψ +

+ψγσ
∇

ρψ−∇
ρψγσψ) +

+χ∇α(ψγ
αψ)gρσ +

+λi(ψγα
∇αψ−∇αψγ

αψ)gρσ +

+τ(W σψγρπψ+W ρψγσπψ) +

+υWαψγ
απψgσρ+µψψgρσ]

for the torsion field

∇ρ(∂W )ρµ+M2Wµ=2κωψγµπψ

and for the gauge field

∇σF
σµ=qpψγµψ

with nine constants, some of which to be removed.
The most general field equations for the spinor field

have a leading term containing ∇µψ so that after mul-
tiplying by the matrix γν it is possible to contract the
indices getting γµ

∇µψ as leading term: therefore we may
establish the most general form of field equations as

iγµ
∇µψ−XWσγ

σπψ−mψ=0

where the imaginary unit has been placed because in free
cases iγµ

∇µψ−mψ=0 so that taking the square of the

derivative gives ∇2ψ+m2ψ=0 and m can be interpreted
as the mass term, which is what is expected in general.

By considering the fact that the metric field equations
are divergenceless on the left-hand side then they must
be divergenceless on their right-hand side, so that

0=M2(∂W )σρWσ+M
2W ρ∇·W −

−∇σ(∂W )σα(∂W )ρα−F ρα∇σF
σ
α +

+ζ[−Rσρψγσψ+∇2(ψγρψ)] +

+2ξ∇σ[ψσ
ρσ(iγα

∇αψ)+(i∇αψγ
α)σρσψ]−

−ξ∇α∇ν(iψ{γρ,σαν}ψ) +
+2ξ[(i∇σψγ

σ)∇ρψ−∇
ρψ(iγσ

∇σψ)] +

+2ξ[ψ∇ρ(iγσ
∇σψ)−∇

ρ(i∇σψγ
σ)ψ] +

+iξRabσρψ{γσ,σab}ψ−4qξF σρψγσψ +

+τ∇·Wψγρπψ+τW ρ∇σ(ψγ
σπψ) +

+[τ∇σW ρ+(υ+2λX)∇ρW σ]ψγσπψ +

+Wσ[(υ+2λX)∇ρ(ψγσπψ)+τ∇σ(ψγρπψ)] +

+(µ+2λm)∇ρ(ψψ)=(τ+2ξX)∇·Wψγρπψ +

+(2κω+τ−2ξX)∇µ(ψγ
µπψ)W ρ +

+(τ+υ+2λX+2ξX)ψγσπψ∇σW ρ +

+(τ+υ+2λX+2ξX)Wσ∇σ(ψγρπψ)−
−(υ+2λX+4ξX−2κω)ψγσπψ(∂W )σρ −

−(υ+2λX)Wσ∂
[σ(ψγρ]πψ) +

+q(p−4ξ)ψγσψF
σρ−ζRσρψγσψ +

+ζ∇2(ψγρψ)+(µ+2λm)∇ρ(ψψ)

in which the only second-order derivative is the squared
derivative and therefore there is no further curvature that
can arise, so that those that are already present do not
cancel unless ζ=0 hold, and with similar arguments we
get that µ=−2λm and p=4ξ as well as the constraining
forms τ = −2ξX and υ = −2λX with κω = 2ξX which
have to hold in order for the fields in interaction to have
a total energy that is divergenceless. The full system of
field equations is given for the metric field equations as

Rρσ− 1
2Rg

ρσ− k
2 [

1
4 (∂W )2gρσ−(∂W )σα(∂W )ρα]−

−k
2 (

1
4F

2gρσ−F ραF σ
α)− k

2M
2(W ρW σ− 1

2W
2gρσ)−

−Λgρσ= 1
2k4ξ[

i
4 (ψγ

ρ
∇

σψ−∇
σψγρψ +

+ψγσ
∇

ρψ−∇
ρψγσψ)−

− 1
2X(W σψγρπψ+W ρψγσπψ)]

and torsion field equations

∇ρ(∂W )ρµ+M2Wµ=4ξXψγµπψ

with gauge field equations as

∇σF
σµ=4ξqψγµψ

and matter field equations given by

iγµ
∇µψ−XWσγ

σπψ−mψ=0
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which are valid in the most general case possible.
Finally we notice that without affecting the metric nor

the torsion or the gauge fields, the spinor field may be
renormalized in such a way that without losing general-
ity we can always set 4ξ = 1 and as a consequence it is
possible to see that the full system of field equations has
been completely determined, and it is constituted by the
metric field equations given according to the expression

Rρσ− 1
2Rg

ρσ− k
2 [

1
4 (∂W )2gρσ−(∂W )σα(∂W )ρα]−

−k
2 (

1
4F

2gρσ−F ραF σ
α)− k

2M
2(W ρW σ− 1

2W
2gρσ)−

−Λgρσ= 1
2k[

i
4 (ψγ

ρ
∇

σψ−∇
σψγρψ +

+ψγσ
∇

ρψ−∇
ρψγσψ)−

− 1
2X(W σψγρπψ+W ρψγσπψ)]

and the torsion field equations given according to

∇ρ(∂W )ρµ+M2Wµ=Xψγµπψ

with gauge field equations given as

∇σF
σµ=qψγµψ

and matter field equations as

iγµ
∇µψ−XWσγ

σπψ−mψ=0

with parameters Λ and M and also m describing intrinsic
properties of metric and torsion and also spinor fields,
while parameters k and X and q are the constants that
measure the strength with which metric and torsion and
gauge fields couple to the energy and spin and current.

To write the above system of coupled field equations
into the system of coupled field equations with respect
to which all the torsionless derivatives and curvatures
are the torsionful derivatives and curvatures we start by
considering precisely the torsion field equations which, af-
ter multiplying by the completely antisymmetric pseudo-
tensor, are equivalently written for the completely anti-
symmetric torsion field according to the expression

M2(∂Q)αρµν =− 2
3X∂[α(

i
4ψ{γρ,σµν]}ψ)

as the constraint coming from the covariant gradient of
the completely antisymmetric torsion field equations

∇[ρ∇σQ
µν]σ+M2Qρµν =− 2

3X
i
4ψ{γρ,σµν}ψ

which will be useful next: by writing the torsionless co-
variant derivatives and curvatures in terms of the torsion-
ful covariant derivatives and curvatures we obtain that
the completely antisymmetric torsion field equation are
given according to the following simple expression

D[ρDσQ
µν]σ−DαQ

ασ[ρQµν]πgπσ +

+M2Qρµν =− 2
3X

i
4ψ{γρ,σµν}ψ

or if torsionful curvatures are considered they can equiv-
alently be written in the more complicated form

D[ρDσQ
µν]σ−G[σρ]Qµν

σ−G[σν]Qρµ
σ−G[σµ]Qνρ

σ +

+M2Qρµν =− 2
3X

i
4ψ{γρ,σµν}ψ

in terms of the completely antisymmetric spin density of
the matter field; the metric field equations are field equa-
tions for the symmetric curvature equivalently written as
field equations of the torsionful curvature in the form

Gρσ− 1
2Gg

ρσ−18k[ 14DπQ
πµνDτQτµνg

ρσ −
−DπQ

πµρDτQ σ
τµ +

+ 1
2M

2(QρηπQσ
ηπ− 1

6Q
2gρσ)] +

+4XkDα(
i
4ψ{γα,σρσ}ψ)−

− 1
2k(

1
4F

2gρσ−F ραF σ
α)−

−(12DαQ
αρσ− 1

4Q
ραπQσ

απ+
1
8Q

2gρσ) +

+4Xk(12Q
απτ i

4ψ{γα,σπτ}ψgρσ −
−Qρπτ i

4ψ{γσ,σπτ}ψ−Qσπτ i
4ψ{γρ,σπτ}ψ)−

−Λgρσ= 1
2k[

i
2 (ψγ

ρDσψ−Dσψγρψ) +

+ (8X+1)Dα(
i
4ψ{γα,σρσ}ψ) +

+ 1
2 (8X+1)Qρµν i

4ψ{γσ,σµν}ψ −
− (8X+1)Qσµν i

4ψ{γρ,σµν}ψ]

or by considering the completely antisymmetric torsion
field equations again these curvature field equations can
be written as non-symmetric curvature field equations

Gρσ− 1
2Gg

ρσ−18k[ 13Dα(D
[αDπQ

ρσ]π −
−DηQ

ηπ[αQρσ]νgνπ)+
1
2D

πDτQ
τµνQπµνg

ρσ −
− 1

3Q
ρηϕD[σDπQ

ηϕ]π − 1
3Q

σηϕD[ρDπQ
ηϕ]π +

+ 1
4DπQ

πµνDτQτµνg
ρσ−DπQ

πµρDτQ σ
τµ +

+ 1
3 (Q

ρηϕDτQ
τπσ+QσηϕDτQ

τπρ)Qηϕ
π]−

− 1
2k(

1
4F

2gρσ−F ραF σ
α)−

−(12kM2+1)(12DαQ
αρσ− 1

4Q
ραπQσ

απ+
1
8Q

2gρσ)−
−Λgρσ= 1

2k[
i
2 (ψγ

ρDσψ−Dσψγρψ) +

+ (8X+1)Dα(
i
4ψ{γα,σρσ}ψ) +

+ 1
2 (8X+1)Qρµν i

4ψ{γσ,σµν}ψ −
− (8X+1)Qσµν i

4ψ{γρ,σµν}ψ]

which are given in terms of the non-symmetric energy
density of the matter field. The gauge field equations are

DσF
σµ+ 1

2FανQ
ανµ=qψγµψ

given in terms of the current density of the material field.
Finally the material field equations are given by

iγµDµψ−i(X+ 1
8 )Qνταγ

νγτγαψ−mψ=0

as a condition on the matter field equal to zero.
This condition is a spinor equation and therefore it is

possible to multiply it by the γρ matrix and then by the
adjoint spinor ψ getting the scalar complex expression

iψγργµDµψ−i(X+ 1
8 )Qνταψγ

ργνγτγαψ−mψγρψ=0
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and which can be added to its complex conjugate in order
to obtain the scalar real expression as in the following

iψγργµDµψ−iDµψγ
µγρψ −

−i(X+ 1
8 )Qνταψ(γ

ργνγτγα+γνγτγαγρ)ψ −
−2mψγρψ=0

which is an expression we will work out in terms of the
identity properties of (75, 76) of the gamma matrices: so

iψDρψ−iDρψψ+2iψσρµDµψ+2iDµψσ
ρµψ +

+(X+ 1
8 )Q

νταεντασ4ψσ
σρπψ −

−2mψγρψ=0

or in terms of the bi-linear spinorial quantities

i(ψDρψ−Dρψψ)−DµS
µρ +

+(2X+ 1
4 )εντασQ

νταΣσρ−2mUρ=0

as it is easy to check; from the scalar complex expression

iψγργµDµψ−i(X+ 1
8 )Qνταψγ

ργνγτγαψ−mψγρψ=0

we could have subtracted its complex conjugate but also
in this case we would have gotten a scalar real expression
which could be worked out with gamma matrices, giving

DαΦ−2(ψσµαD
µψ−Dµψσµαψ) +

+(2X+ 1
4 )ΘQ

πτηεπτηα=0

and it is left to the reader. If the spinorial field equation

iγµDµψ−i(X+ 1
8 )Qνταγ

νγτγαψ−mψ=0

is multiplied by all of the remaining linearly independent
matrices and then by the adjoint and the above procedure
of splitting real and imaginary parts is followed, then one
would have obtained the validity of all the expressions

i
2 (ψγ

µDµψ−Dµψγ
µψ)−

−(X+ 1
8 )Q

πτηV σεπτησ−mΦ=0

DµU
µ=0

i
2 (ψγ

µπDµψ−Dµψγ
µπψ)−

−(X+ 1
8 )Q

πτηUσεπτησ=0

DµV
µ−2mΘ=0

DνΘ−2i(ψσµνπD
µψ−Dµψσµνπψ)−

−(2X+ 1
4 )ΦQ

πτηεπτην+2mVν=0

(Dαψπψ−ψπDαψ)+D
µΣµα +

+(2X+ 1
4 )ε

πτηµQπτηSµα=0

DµV ρεµραν+i(ψγ[αDν]ψ−D[νψγα]ψ) +

+(2X+ 1
4 )Q

πτηεπτη[αVν]=0

D[αUν]−iεανµρ(Dµψγρπψ−ψγρπDµψ)−
−(12X+ 3

2 )Q
ανρUρ−2mSαν=0

again as it is easy to check and we leave this to the reader.
All in all, the full system of field equations is given by

the torsion-spin and the curvature energy-field equations

D[ρDσQ
µν]σ−G[σρ]Qµν

σ−G[σν]Qρµ
σ−G[σµ]Qνρ

σ+

+M2Qρµν =− 2
3X

i
4ψ{γρ,σµν}ψ (106)

and

Gρσ− 1
2Gg

ρσ−18k[ 13DαD
[αDπQ

ρσ]π −
− 1

3DαDηQ
ηπ[αQρσ]νgνπ −

− 1
3Q

ρηϕD[σDπQ
ηϕ]π − 1

3Q
σηϕD[ρDπQ

ηϕ]π +

+ 1
2D

πDτQ
τµνQπµνg

ρσ +

+ 1
4DπQ

πµνDτQτµνg
ρσ−DπQ

πµρDτQ σ
τµ +

+ 1
3 (Q

ρηϕDτQ
τπσ+QσηϕDτQ

τπρ)Qηϕ
π −

− 1
3DηQ

ηπαDαQ
ρσ

π]−
− 1

2k(
1
4F

2gρσ−F ραF σ
α)−

−(12kM2+1)(12DαQ
αρσ −

− 1
4Q

ραπQσ
απ+

1
8Q

2gρσ)−
−Λgρσ= 1

2k[
i
2 (ψγ

ρDσψ−Dσψγρψ) +

+ (8X+1)Dα(
i
4ψ{γα,σρσ}ψ) +

+ 1
2 (8X+1)Qρµν i

4ψ{γσ,σµν}ψ −
− (8X+1)Qσµν i

4ψ{γρ,σµν}ψ] (107)

as the pair of field equations describing the space-time
structure, coming with the gauge-current field equations

DσF
σµ+ 1

2FανQ
ανµ=qψγµψ (108)

as the field equations describing the gauge structure, and
thus completing the set of field equations describing the
geometrical structure; they come with

iγµDµψ−i(X+ 1
8 )Qνταγ

νγτγαψ−mψ=0 (109)

which is the general form of the spinorial field equations
and they can be decomposed according to

i
2 (ψγ

µDµψ−Dµψγ
µψ)−

−(X+ 1
8 )Q

πτηV σεπτησ−mΦ=0 (110)

DµU
µ=0 (111)

i
2 (ψγ

µπDµψ−Dµψγ
µπψ)−

−(X+ 1
8 )Q

πτηUσεπτησ=0 (112)
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DµV
µ−2mΘ=0 (113)

i(ψDαψ−Dαψψ)−DµS
µα +

+(2X+ 1
4 )επτησQ

πτηΣσα−2mUα=0 (114)

DαΦ−2(ψσµαD
µψ−Dµψσµαψ) +

+(2X+ 1
4 )ΘQ

πτηεπτηα=0 (115)

DνΘ−2i(ψσµνπD
µψ−Dµψσµνπψ)−

−(2X+ 1
4 )ΦQ

πτηεπτην+2mVν=0 (116)

(Dαψπψ−ψπDαψ)+D
µΣµα +

+(2X+ 1
4 )ε

πτηµQπτηSµα=0 (117)

DµV ρεµραν+i(ψγ[αDν]ψ−D[νψγα]ψ) +

+(2X+ 1
4 )Q

πτηεπτη[αVν]=0 (118)

D[αUν]−iεανµρ(Dµψγρπψ−ψγρπDµψ)−
−(12X+ 3

2 )Q
ανρUρ−2mSαν=0 (119)

which taken altogether are equivalent to the spinor field
equations we have written above, and for this reason they
are the field equations describing the material structure.

Now it is possible to write the geometric field equations
as field equations given by derivatives of the geometrical
fields equal to some source according to expressions

D[ρD
σQµν]σ+Qη[µνGρ]σg

ση−Gσ[ρQµν]ηg
ση +

+M2Qρµν =
1
12Sρµν (120)

and

Gρσ− 1
2Gg

ρσ−18k[ 13DαD
[αDπQ

ρσ]π −
− 1

3DαDηQ
ηπ[αQρσ]νgνπ −

− 1
3Q

ρηϕD[σDπQ
ηϕ]π − 1

3Q
σηϕD[ρDπQ

ηϕ]π +

+ 1
2D

πDτQ
τµνQπµνg

ρσ +

+ 1
4DπQ

πµνDτQτµνg
ρσ−DπQ

πµρDτQ σ
τµ +

+ 1
3 (Q

ρηϕDτQ
τπσ+QσηϕDτQ

τπρ)Qηϕ
π −

− 1
3DηQ

ηπαDαQ
ρσ

π]−
− 1

2k(
1
4F

2gρσ−F ραF σ
α)−

−(12kM2+1)(12DαQ
αρσ −

− 1
4Q

ραπQσ
απ+

1
8Q

2gρσ)−Λgρσ= 1
2kT

ρσ (121)

alongside to

DσF
σµ+ 1

2FανQ
ανµ=Jµ (122)

in general, where the sources are given by

Sρµν =−8X i
4ψ{γρ,σµν}ψ (123)

and

T ρσ= i
2 (ψγ

ρDσψ−Dσψγρψ) +

+ (8X+1)Dα(
i
4ψ{γα,σρσ}ψ) +

+ 1
2 (8X+1)Qρµν i

4ψ{γσ,σµν}ψ −
− (8X+1)Qσµν i

4ψ{γρ,σµν}ψ (124)

alongside to

Jµ=qψγµψ (125)

all given in terms of the matter field; and thus the matter
field equations are written according to expressions

iγµDµψ−i(X+ 1
8 )Qνταγ

νγτγαψ−mψ=0 (126)

in the most general case: as a consequence we have that

DρS
ρµν+ 1

2T
[µν] ≡ 0 (127)

and

DµT
µν+TρβQ

ρβν−SµρβG
µρβν+JρF

ρν ≡ 0 (128)

alongside to

DρJ
ρ = 0 (129)

are constraints that are satisfied in the most general case.
Intriguingly, we notice that in the spinor field equations

the mass appears linearly and thus it may be positive as
well as negative, and therefore it is possible to have two
different types of spinor field equations; such a possibility
is clear because ifm→−m is accompanied by the discrete
transformation ψ→πψ then the system of field equations
is invariant, and consequently any solutions of the first is
also a solution of the second. Therefore, the fact that we
may have two different types of spinor field equations is
translated into the fact that we may have two different
solutions linked by ψ→πψ as it is discussed in [29, 30].

The full system of field equations is invariant under the
transformation of parity reflection [31] and it is the most
general under the restriction of being at the least-order
differential form [32]; the requirement of having all fields
coupled in terms of field equations having derivative or-
der at their minimum does imply that if we write the field
equations in their most general form, then we do end up
with the above result: what in fact this means is that we
might have ignored all previous steps, and in particular it
also means that we could have ignored all considerations
on the equivalence principle. The principle of equivalence
may be a guide in writing Einstein field equations but in
order to constitute the structure of the dynamics of the
metric tensor it is not necessary, its role being simply that
of allowing us to interpret that metric as what encrypts
the gravitational information; moreover, it is instructive
to recall that once Einstein field equations are given, then
linearized and taken in the static case for small velocities,
they reduce to Newton equations, in which the metric is
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the gravitational potential. The principle of equivalence
can not only be reduced to nothing more than a mean to
interpret the metric as gravitational potential but in ad-
dition it can also be dispensed altogether. The principle
of equivalence gives important insights but we can drop
it if we only want to interpret the gravitational potential
as the metric tensor and write the metric field equations
in the most general complete system of field equations.

III. TORSION-SPIN INTERACTIONS

In the first part we have obtained, under the restriction
of staying at the least-order derivative, the most general
system of differential field equations which determine the
dynamical properties of all fields, and in this second part
we shall study the system of field equations. Eventually,
we will study the effects of the presence of torsion for the
chiral dynamics of the single spinorial field in general.

A. Torsion and spinor covariant decomposition

In this first section we will simplify the system of field
equations above. This requires two things: one is to have
the torsion field separated from all other fields; the other
is to have the spinor field split in its two chiral parts.

1. Torsional decomposition: torsion

as an axial-vector massive field

Among all geometric fields, torsion has a special prop-
erty indeed: the gauge potential is a gauge field for phase
transformations and the metric tensor can be considered
a gauge field for coordinate transformations, so both are
always depending on the phase or the coordinate system,
while torsion is a tensor that does not have any relation
with gauge properties. So torsion can be split from gauge
and metric connections, with all the covariant derivatives
and curvatures being written as covariant derivatives and
curvatures with no torsion but with all the torsion terms
appearing in the form of separate contributions.

To have the most general connection decomposed into
the simplest symmetric connection plus torsion terms we
substitute (16) in (36) and this in (100) too.

Thus done the system of field equations reduces to

∇ρ(∂W )ρµ+M2Wµ=Xψγµπψ (130)

and

Rρσ− 1
2Rg

ρσ−Λgρσ= k
2 [

1
4F

2gρσ−F ραF σ
α +

+ 1
4 (∂W )2gρσ−(∂W )σα(∂W )ρα +

+M2(W ρW σ− 1
2W

2gρσ) +

+ i
4 (ψγ

ρ
∇

σψ−∇
σψγρψ+ψγσ

∇
ρψ−∇

ρψγσψ)−
− 1

2X(W σψγρπψ+W ρψγσπψ)] (131)

for the torsion-spin and curvature-energy coupling, and

∇σF
σµ=qψγµψ (132)

for the gauge-current coupling; and finally

iγµ
∇µψ−XWσγ

σπψ−mψ=0 (133)

for the spinor field equations which again can be split as

i
2 (ψγ

µ
∇µψ−∇µψγ

µψ)−XWσV
σ−mΦ=0 (134)

∇µU
µ=0 (135)

i
2 (ψγ

µπ∇µψ−∇µψγ
µπψ)−XWσU

σ=0 (136)

∇µV
µ−2mΘ=0 (137)

i(ψ∇αψ−∇
αψψ)−∇µS

µα +

+2XWσΣ
σα−2mUα=0 (138)

∇αΦ−2(ψσµα∇
µψ−∇µψσµαψ)+2XΘWα=0(139)

∇νΘ−2i(ψσµνπ∇
µψ−∇

µψσµνπψ)−
−2XΦWν+2mVν=0 (140)

(∇αψπψ−ψπ∇αψ)+∇µΣµα+2XWµSµα=0 (141)

∇µV ρεµραν+i(ψγ[α∇ν]ψ−∇[νψγα]ψ) +

+2XW[αVν]=0 (142)

∇[αUν]+iεανµρ(ψγρπ∇µψ−∇µψγρπψ)−
−2XWσUρε

ανσρ−2mSαν=0 (143)

together equivalent to the spinor field equations above.
It is now possible to interpret torsion: just a quick look

at the torsion-spin and curvature-energy field equations
reveals that torsion can be seen as an axial-vector massive
field verifying Proca field equations with corresponding
energy and torsion-spin coupling in the gravitational field
equations [33]. With this insight, one might now wonder
if there really was the necessity to go through the trouble
of insisting on the presence of torsion if all comes to the
presence of an axial-vector massive field, asking why we
could not simply impose torsion equal to zero and then
allowing an axial-vector massive field to be included into
the theory: the answer is that although mathematically it
is equivalent to follow both approaches, conceptually the
former approach is the most straightforward construction
in which all quantities are defined and all relationships
are built in the most general manner, while on the other
hand the latter approach would be afflicted by a number
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of arbitrary assumptions. If this latter approach were the
one to be followed, we would have to justify why torsion
albeit in general present should be removed, why among
all fields that could be included we pick precisely a vector
field with pseudo-tensorial properties and why it would
have to be massive, making a list of assumptions of which
none can be justified, and thus resulting into an approach
having three unjustified assumptions in alternative to the
other approach in which assumptions are either justified
or not assumed at all. In order to avoid this high degree
of arbitrariness we prefer to follow the approach that we
actually followed here: this leads after all to the presence
of an axial-vector massive field, and hence it can justify
the presence of such a field. And that is, if in the theory
there were to appear new physics that could somehow be
reconducted to the presence an axial-vector massive field
then we would know that these effects would come from
the presence of torsion. We shall argue that these effects
might be something we have already observed even if we
ignored they could come from the torsion tensor itself.

Notice also that there is no torsion modifying the gauge
field equations, as expected: in fact, if there were a cou-
pling between torsion and gauge fields then in particular
the torsion-spin field equations would have to be sourced
by a spin density containing also gauge contributions, but
it is not possible to build such an object without violating
gauge invariance. Gauge fields do not couple to torsion.

And finally, the torsional contributions in the spinorial
field equations will be discussed in the following.

2. Spinorial reduction: spinors

as a combination of chiral parts

Analogously to the covariant decomposition of torsion,
there is also a perfectly covariant split of the spinor field
into its two chiral parts according to (78, 79) and there-
fore in the following we will proceed to perform it.

It is quite easily, although long, to see that the system
of field equations reduces to the one for which we have

∇ρ(∂W )ρµ+M2Wµ=X(ψRγ
µψR−ψLγ

µψL)(144)

and

Rρσ− 1
2Rg

ρσ−Λgρσ= k
2 [

1
4F

2gρσ−F ραF σ
α +

+ 1
4 (∂W )2gρσ−(∂W )σα(∂W )ρα +

+M2(W ρW σ− 1
2W

2gρσ) +

+ i
4 (ψLγ

ρ
∇

σψL−∇
σψLγ

ρψL +

+ψLγ
σ
∇

ρψL−∇
ρψLγ

σψL +

+ψRγ
ρ
∇

σψR−∇
σψRγ

ρψR +

+ψRγ
σ
∇

ρψR−∇
ρψRγ

σψR)−
− 1

2X(W σψRγ
ρψR+W

ρψRγ
σψR −

−W σψLγ
ρψL−W ρψLγ

σψL)] (145)

for the torsion-spin and curvature-energy coupling, and

∇σF
σµ=q(ψRγ

µψR+ψLγ
µψL) (146)

for the gauge-current coupling; and finally

iγµ
∇µψL+XWσγ

σψL−mψR=0 (147)

iγµ
∇µψR−XWσγ

σψR−mψL=0 (148)

for the spinor field equations which are also split as

i
2 (ψRγ

µ
∇µψR−∇µψRγ

µψR +

+ψLγ
µ
∇µψL−∇µψLγ

µψL)−XWσV
σ−mΦ=0 (149)

∇µU
µ=0 (150)

i
2 (ψRγ

µ
∇µψR−∇µψRγ

µψR −
−ψLγ

µ
∇µψL+∇µψLγ

µψL)−XWσU
σ=0 (151)

∇µV
µ−2mΘ=0 (152)

i(ψL∇
αψR−∇αψRψL+ψR∇

αψL−∇αψLψR)−
−∇µS

µα+2XWσΣ
σα−2mUα=0 (153)

∇αΦ−2(ψRσµα∇
µψL−∇

µψLσµαψR +

+ψLσµα∇
µψR−∇

µψRσµαψL)+2XΘWα=0 (154)

∇νΘ−2i(ψLσµν∇
µψR+∇

µψRσµνψL −
−ψRσµν∇

µψL−∇
µψLσµνψR)−

−2XΦWν+2mVν=0 (155)

(∇αψLψR+ψR∇αψL−∇αψRψL−ψL∇αψR) +

+∇µΣµα+2XWµSµα=0 (156)

∇µV ρεµραν+i(ψLγ[α∇ν]ψL−∇[νψLγα]ψL +

+ψRγ[α∇ν]ψR−∇[νψRγα]ψR) +

+2XW[αVν]=0 (157)

∇[αUν]+iεανµρ(∇µψLγρψL−ψLγρ∇µψL −
−∇µψRγρψR+ψRγρ∇µψR)−
−2XWσUρε

ανσρ−2mSαν=0 (158)

together equivalent to the spinorial field equations above.
As it is quite clear we may interpret the spinors in this

manner: albeit spinors may be considered fundamental,
nevertheless they are reducible as they are constituted by
two parts which are the left-handed and the right-handed
chiral semi-spinor projections; these two chiral parts are
independent from one another and when they are taken
individually each is irreducible. The two chiral parts are
the truly fundamental independent degrees of freedom of
the spinor field; and because they are two then the spinor
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possesses an internal structure. Consequently we have to
expect that also an internal dynamics will be displayed.

Each of the chiral semi-spinors can be further split into
its two components; however each of these components
cannot be taken independently from the other. Hence, if
we want to further split each semi-spinor down to its most
elementary parts, we must accept that a decomposition
will be a completely frame-dependent decomposition.

In this case we will see that there will be much more
information that we can extract from the spinor field.

B. Torsion spinor coupling in a special frame

In this second section we will look for a specific frame
in which the splitting can reach the single components.

1. Spinorial reduction: spinors

as bound states of chiral parts

In the previous subsection in which we had defined the
spinor fields, we had also introduced a list of 16 linearly-
independent bi-linear spinorial quantities given according
to the (81, 82, 83, 84, 85, 86) and these definitions have
been given with the intent of having some symmetry be-
tween all such bi-linear spinorial quantities: nevertheless,
because of the definition (54) we have that it is clearly

Σab=− 1
2ε

abijSij

showing that only one of the two antisymmetric tensors
is really necessary, so that the (87) reduces to the form

ψψ≡ 1
4ΦI+

1
4Uaγ

a+ i
4Sabσ

ab− 1
4Vaγ

aπ− i
4Θπ

and making it manifest that indeed there are 16 linearly-
independent bi-linear spinor quantities since they have to
span the entire space of 4×4 matrices; on the other hand
these 16 bi-linear spinor quantities, although independent
for linear combinations, are not independent in general
as it can be seen from (90, 91) combined as to give

Sab(Φ
2+Θ2)=ΦU jV kεjkab+ΘU[aVb]

and showing that also the other antisymmetric tensor is
not necessary, since it can be written in terms of the two
vectors and the two scalars, and so (97, 99) given by

UaU
a=−VaV a= |Θ|2+|Φ|2

UaV
a = 0

remain the only identities. They show that also the norm
of the two vectors are not necessary once we have the two
scalars: therefore we may define the two directions

V a=(Θ2+Φ2)
1

2 va

Ua=(Θ2+Φ2)
1

2 ua

together with the re-parametrization

Θ=2φ2 sinβ

Φ=2φ2 cosβ

in such a way that all relevant information is encoded
with the two directions ua and va verifying

uau
a=−vava=1

uav
a = 0

and the two fields φ and β in general. The fact that there
remains little information may be surprising because the
spinor field is defined with 8 real components, but spinors
are defined by transformation laws with 6 parameters, so
that of the 8 components 6 can be seen as an information
related to the reference system, with the consequence for
which the true degrees of freedom are 2 and no more.

To properly see this point let us consider the fact that
spinors are defined in terms of their transformation law
and as such we may employ this law to transfer some of
their components away from the spinor field: notice that
in the case the spinor has Φ=Θ=0 then the spinor would
lose two degrees of freedom becoming singular, and while
being extensively studied [34–40] we will not investigate
them here in the following of this work; we therefore turn
our full attention to the case in which at least one of the
two scalars does not vanish. In this case all of the above
relationships among bi-linear spinor quantities happens
to be non-degenerate, and so we know that the vector has
to be time-like while the axial-vector has to be space-like
in general: because Ua is time like we can perform up to
three boosts bringing all spatial components to vanish so
that by calling ψ=(R†, L†) these constraints give

(

R† L†
)

(

0 σK

−σK 0

)(

L

R

)

=0

and therefore

R†σKR=L†σKL

showing in particular that the spinor has velocity equal
to zero because the two semi-spinor chiral parts have two
velocities that are opposite although both different from
zero in general; by calling R†=(ae−iα, be−iβ) as well as
the complementary L†=(ce−iγ , de−iδ) we obtain that

(

ae−iα be−iβ
)

(

0 1

1 0

)(

aeiα

beiβ

)

−

−
(

ce−iγ de−iδ
)

(

0 1

1 0

)(

ceiγ

deiδ

)

=0

(

ae−iα be−iβ
)

(

0 −1

1 0

)(

aeiα

beiβ

)

−

−
(

ce−iγ de−iδ
)

(

0 −1

1 0

)(

ceiγ

deiδ

)

=0
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(

ae−iα be−iβ
)

(

1 0

0 −1

)(

aeiα

beiβ

)

−

−
(

ce−iγ de−iδ
)

(

1 0

0 −1

)(

ceiγ

deiδ

)

=0

and therefore

ab cos (β−α)=cd cos (δ−γ)

ab sin (β−α)=cd sin (δ−γ)

a2+d2=b2+c2

showing that the two chiral parts have velocities different
from zero indeed; by re-parametrizing fields according to
the definitions a=φ cosλ and d=φ sinλ alongside to the
definitions b=χ sinω and c=χ cosω we obtain that

cosλ sinω cos (β−α)=cosω sinλ cos (δ−γ)

cosλ sinω sin (β−α)=cosω sinλ sin (δ−γ)

φ2=χ2

from which χ=±φ and combining the first two gives

λ=(−1)nω

β−α=δ−γ+nπ

with n integer but having no other constraint. All things
together give the final spinor according to the structure

ψ=











± cosωeiγ

(−1)n sinωeiδ

cosωeiα

±(−1)n sinωeiαeiδe−iγ











φ

with some sign ambiguities which can be re-collected as

ψ=











± cosωeiγ

± sinωeiδ

cosωeiα

sinωeiαeiδe−iγ











φ

up to the sign of the ω function; equivalently as

ψ=











± cosωe
i
2
ζe−

i
2
ς

± sinωe
i
2
ζe

i
2
ς

cosωe−
i
2
ζe−

i
2
ς

sinωe−
i
2
ζe

i
2
ς











eiϕφ

after re-naming the phases α, γ and δ and which is given
with five independent fields. We notice that in the ratios
of first/second components and third/fourth components
the results are the same and this is what makes it possible

to employ one single spinorial rotation in order to vanish
two components, one for each of the two chiral parts of
the spinor. In fact, we still have the freedom to perform
the three rotations, and by using only two of them given
by the rotation around the first and second axis, we can
bring the axial-vector to have its space part aligned with
the third axis: then we have the two constraints that can
be combined with the previous results giving

R†σ1R=L†σ1L=0

R†σ2R=L†σ2L=0

and consequently

ω=nπ
2

in general. Therefore the form of the spinor is either

ψ=











±e i
2
ζ

0

e−
i
2
ζ

0











eiϕφ or ψ=











0

±e i
2
ζ

0

e−
i
2
ζ











eiϕφ

as according to whether the axial-vector is either aligned
or anti-aligned with the third axis respectively and with
three independent fields. This form is an eigen-state for
the rotation around the third axis. This can be worked
out by using the last rotation, since it is precisely the one
around the third axis, to have the phase shifted away, so
that finally the form of the spinor is either given by

ψ=











±e i
2
β

0

e−
i
2
β

0











φ or by ψ=











0

±e i
2
β

0

e−
i
2
β











φ

up to the re-naming of the two independent fields made
to recover the notation for the fields φ and β as we have
defined above. These are the truly independent fields.

When any such form is hence plugged into decomposi-
tions (134, 135, 136, 137, 138, 139, 140 141, 142, 143) we
get ten decompositions of the spinor field equations from
which we can extract in particular the following two

−XWµ− 1
4gµνε

νρσα∂ρξ
k
σξ

j
αηjk+qA

ιu[ιvµ] +

+vµm cosβ+ 1
2∇µβ=0

vµm sinβ+qAρuνvαεµρνα +

+ 1
2 |ξ|−1ξkµ∂α(|ξ|ξαk )+∇µ lnφ=0

which are very special since we can show that these two
expressions imply the spinor field equations (133): in fact
by evaluating the spinorial covariant derivative of any of
the forms of the above spinors and plugging the two field
equations here above, we have that the left-hand side of
the spinor field equation (133) can be written as

iγµ
∇µψ−XWσγ

σπψ−mψ =

= −(iqγµAρuνvαεµρνα+qA
ιu[ιvµ]γ

µπ+qAµγ
µ +

+ivµγ
µm sinβ+vµγ

µπm cosβ+mI)ψ

33



in which both torsion and the spin connection straight-
forwardly simplified away; the gauge field is trickier and
to simplify it we have to recall identities (75, 76) together
with the re-arrangements (88, 89) from which we have

iγµψUνV αεµρνα+U[ρVµ]γ
µπψ+U2γρψ = 0

and therefore giving

iγµ
∇µψ−XWσγ

σπψ−mψ =

−m(ivµγ
µ sinβ+vµγ

µπ cosβ+I)ψ

which is almost done. By employing (88, 89) we also get

iVµγ
µψΘ+Vµγ

µπψΦ+U2ψ = 0

which gives

iγµ
∇µψ−XWσγ

σπψ−mψ=0

and therefore (133) is valid. In this way we have proven
that the two equations above are together equivalent to
the spinor field equations; notice that these 8 spinor field
equations are in the form of two 4-dimensional vectorial
field equations determining all coordinate derivatives of
the two independent fields, and so the balance of degrees
of freedom and their equations checks. Finally, we remark
that the derivation is general and it can always be done.

To summarize, we define the two directions given by

V a=2φ2va (159)

Ua=2φ2ua (160)

together with the re-parametrization

Θ=2φ2 sinβ (161)

Φ=2φ2 cosβ (162)

so that uau
a=−vava=1 and uav

a=0 and where the two
fields φ and β are the module and the Takabayashi angle
respectively: we can always write the spinor either as

ψ=











±e i
2
β

0

e−
i
2
β

0











φ or as ψ=











0

±e i
2
β

0

e−
i
2
β











φ (163)

in which the first is a spin-up eigen-state form while the
second is a spin-down eigen-state form whereas the plus
and minus signs can be absorbed into the re-definition of
the spinors given by ψ↔πψ as a discrete transformation.

When these are plugged into the spinor field equations
the latter are equivalent to a pair of field equations that
can be written in terms of the vector and axial-vector

Kµ=2XWµ+
1
2gµνε

νρσα∂ρξ
k
σξ

j
αηjk−2qAιu[ιvµ] (164)

Gµ=−|ξ|−1ξkµ∂α(|ξ|ξαk )−2qAρuνvαεµρνα (165)

according to the following expressions

∇µβ−Kµ+vµ2m cosβ=0 (166)

∇µ lnφ
2−Gµ+vµ2m sinβ=0 (167)

as the most general forms of spinorial field equations.
There is a very important point to be clarified regard-

ing the spinorial active transformations acting on spino-
rial fields: consider the rotation around the third axis

Λ =











e
i
2
θ 0 0 0

0 e−
i
2
θ 0 0

0 0 e
i
2
θ 0

0 0 0 e−
i
2
θ











and the spinors (163) either as
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φ or as ψ=
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e−
i
2
β











φ

in general: despite the fact that these spinors are aligned
along the axis around which the above rotation operates,
that rotation does not leave them unchanged (as we have
for vectors); this might already sound problematic, but
in addition we also have that when such a rotation is
given for an angle θ=2π then Λ=−I implying that the
spinor does not go back to the initial configuration (as we
have when we perform some passive rotations) but it does
that only up to a sign, and it is only when an additional
rotation of angle θ=2π is performed that total symmetry
is recovered; this too is a situation that sounds peculiar,
but we wish now to present an intuitive circumstance in
which common objects behave similarly. First of all, we
have to take into account the fact that the rotation is an
active rotation, and therefore an operation that, keeping
fixed the space-time structure, moves the spinor; further,
we have to consider the fact that a spinor aligned along
a given axis is changed by a rotation around that axis, a
situation that forces us to picture the spinor as an object
that in addition to a direction also has some structures
that feel the rotations around that direction, as if we had
a pole to which we had attached a flag or a perch or yet
a non-circular pedestal; one of my favourite images for a
spinor is that of a book with a pen that is kept orthogonal
to the cover and placed on it; to complete the metaphor
I can imagine a spinor in the space-time as the book-pen
orthogonal system placed in the hand of my wife; then I
ask my wife to perform a rotation of the book. As she is
going to rotate the book keeping it parallel to the ground
with the pen pointing up, she might bring the book under
her armpit and then, passing to the exterior, she would
manage to complete the full rotation with the book come
to the initial position only by having her arm twisted or,
if she wants to put her arm back to normal, by flipping
the book up-side down so that now the pen would point
downwards; and it will only be with yet another full turn
that she would be able to have the book-pen orthogonal
system back to the initial configuration with no twist in
her arm, that is it will only be with a 4π total turn that
both space-time and spinor will be back to their original
configuration. This example shows that there is nothing
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really strange that happens when spinors are thought as
objects firmly fixed to the space-time where they live [41].

We can now infer the meaning of the various elements
of the spinor field: the vector ua has spatial part that
can always be removed by means of a Lorentz boost and
so it has to be identified with the velocity vector, and on
the other hand the axial-vector va has a spatial part that
rotates similarly to what a spatial vector would rotate
and therefore it has to be identified with the spin vector,
while the scalar field φ squared is the density, and on
the other hand the pseudo-scalar field β is the relative
phase between the two non-vanishing components of the
spinor fields; the first and the third components and the
second and the fourth components are called spin-up and
spin-down respectively, whereas the first and the second
components and the third and the fourth components are
the well known left-handed and right-handed components
respectively. We have also shown that there is a further
duplicity for the spinorial structure, made clear from the
fact that spinors were defined up to the ψ→πψ discrete
transformation; on the other hand, we have already seen
that the ψ→πψ and m→−m discrete transformation is
a symmetry for the field equations. This feature intrinsic
to the spinor structure is not related to the specific form
of the spinor field equations, as these results are obtained
in a pure kinematic way without employing the dynamics.

In the rest frame and for fixed spin alignment, the two
chiral parts are complex conjugate of one another, their
phase difference is the Takabayashi angle, describing the
internal structure [42]; equations (166, 167) manifest that
torsion determines the dynamics of the Takabayashi an-
gle and the Takabayashi angle determines the dynamics
of the module [43]. Because the two chiral parts are each
single-handed, then it follows that for each of them only
the vectorial type of bi-linear semi-spinor quantities can
be formed, and as a consequence they can only couple to
vectorial potentials to give scalar interactions; moreover,
the two chiral parts have opposite velocities, so they can
only couple to pseudo-tensorial potentials to give parity-
conserving interactions. In this work, axial-vector poten-
tials can only be the torsion surrounding spinor fields.

Therefore, spinors are made of two chiral parts inter-
acting through torsion: consequently, we have to expect a
spinor to display an internal dynamics with torsion play-
ing the role of the mediator of the binding interaction.

Such an internal dynamics would have to be described
in terms of chiral interactions that will have to be taken
as mediated by a Proca axial-vector massive field.

On the other hand, it would be desirable to have these
general arguments more deeply analyzed, and this is pre-
cisely what we will do in the following part.

IV. LIMITING CASES

In the previous parts we have ended by claiming that
spinors should display an internal dynamics with torsion
being an axial-vector massive field working as mediator

of the binding force, and now we will exploit the fact that
torsion is a massive axial-vector to find special situations
in which the above claims can be better justified.

A. Massive approximations

In the previous part we have been applying a geometric
approach leaving out the variational method, and in what
follows we will resort to it for a more compact notation.

The above system of field equations, which consists in
expressions (130, 131, 132, 133), can entirely be derived
by employing the variational formalism from a dynamical
action, whose Lagrangian function is given according to

L =− 1
4 (∂W )2+ 1

2M
2W 2− 1

kR− 2
kΛ− 1

4F
2 +

+iψγµ
∇µψ−XψγµπψWµ−mψψ (168)

where torsion is already decomposed, or equivalently

L =− 1
4 (∂W )2+ 1

2M
2W 2− 1

kR− 2
kΛ− 1

4F
2 +

+iψLγ
µ
∇µψL+iψRγ

µ
∇µψR +

+XψLγ
µψLWµ−XψRγ

µψRWµ −
−mψRψL−mψLψR (169)

in which the chiral split is already done: we might write
the Lagrangian after the non-covariant split, but as in
general varying the Lagrangian does not commute with
breaking a symmetry we prefer not to deal with this form.

To begin our investigation, we remark that torsion had
a first property that was unlike any other space-time or
gauge fields had, and that is it comes as a general feature
of the geometry and not from a symmetry principle, with
the consequence that it can be massive: so we have that
the torsion field equations (130) are such that, in presence
of a massive field, they can be taken in the approximation
in which the dynamical term is negligible compared to the
mass term, with the result that we may approximate

M2Wµ≈Xψγµπψ (170)

yielding an algebraic equation that can be used to have
torsion substituted in all other field equations in terms of
the spin of the spinor, so that all torsional contributions
can effectively be converted into spin-spin interactions.

When this is done in the Lagrangian (168) we can work
out with the help of the geometric identity (97) that

Leffective=− 1
kR− 2

kΛ− 1
4F

2 +

+iψγµ
∇µψ+

1
2
X2

M2ψγ
µψψγµψ−mψψ (171)

or equivalently

Leffective=− 1
kR− 2

kΛ− 1
4F

2 +

+iψLγ
µ
∇µψL+iψRγ

µ
∇µψR +

+X2

M2ψLγ
µψLψRγµψR −

−mψRψL−mψLψR (172)
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which is exactly the spinor Lagrangian we would have had
in the Nambu–Jona-Lasinio model [44, 45]: thus torsion
has the effect of creating a field that, within the effective
approximation, reduces to the NJL model; consequently,
we may use the general results of the NJL model stating
that such a contact force is an attractive interaction.

Notice that as (97) shows it is precisely the axial-vector
nature of the field what produces the inversion of the sign
of the potential turning attractive the interaction.

This confirms that between two chiral parts torsion has
the role of mediator of the attractive interaction binding
the two chiral parts of the spinor field together.

We recall that the role of the Higgs boson is analogous.
This is not surprising since the torsion-spin coupling is

the axial-vector analog of the scalar Yukawa coupling.
In fact, if the effective Lagrangian (171) is further re-

arranged in terms of (97), it can be put in the form

L
spinor
effective= iψγ

µ
∇µψ +

+ 1
2
X2

M2 (|ψψ|2+|iψπψ|2)−mψψ (173)

as the Lagrangian of the spinor field complemented with
the torsionally-induced spin-contact interactions.

On the other hand, in the standard model of particle
physics [46], we might take into account the Lagrangian
for the electron in presence of the Higgs interaction alone
together with the Higgs field equations in presence of the
electron source solely: if the latter are taken in the case
in which the Higgs mass M is very large, then it becomes
possible to make the same effective approximation

M2H≈−Y
2 ee (174)

which is analogous to (170) but it is a scalar relationship.
Plugging it into the standard model Lagrangian gives

L electron
effective = ieγ

µ
∇µe+

Y 2

4M2 |ee|2−mee (175)

as the part regarding the electronic field complemented
with the Higgs-induced effective interactions.

The comparison between (173) and (175) shows that

V
spinor
effective=− 1

2
X2

M2 (|ψψ|2+|iψπψ|2) (176)

V electron
effective =− Y 2

4M2 |ee|2 (177)

spelling that torsion gives rise to a chiral self-interaction
characterized by both a scalar part and a pseudo-scalar
part while the Higgs gives rise to a scalar self-interaction
and nothing more: when the Takabayashi angle does not
vanish, there is an additional coupling which cannot be
codified by the Higgs boson. Thus as a consequence of the
presence of the Takabayashi angle, the torsional effective
force cannot be reduced to the Higgs effective force.

If in some approximation the Takabayashi angle were
to vanish so that the two effective interactions acquired
the very same structure, there would still be differences
concerning the strengths of those interactions: according
to the NJL model, the interaction does not only have to

be attractive but also strong enough as to allow formation
of bound states, implying that the mediator mass cannot
be too large in order not to suppress the interaction.

At the scale at which we perform our experiments, the
Higgs mass is too large to ensure bound states, while the
torsion mass might still be small enough as to render the
effective coupling sufficiently strong for bound states.

So far as we can tell, the two effective forces should in
fact have properties quite different from one another.

From the Lagrangian (173) we extract the potential

V =− X2

2M2

(

|ψψ|2+|iψπψ|2
)

(178)

which is negative, as expected for attractive interactions,
and so the energy is the kinetic energy plus the potential
energy, given by the general expression according to

E =K − X2

2M2

(

|ψψ|2+|iψπψ|2
)

(179)

where we recall all quantities are densities: hence, in the
case in which we consider the same approximation above
in terms of which the internal structure is neglected, so
that the Takabayashi angle may be set to zero, we get

E=K− X2

2M2

1
V (180)

having interpreted the module ψψ=V −1 as inverse vol-
ume, which is reasonable at least on dimensional grounds.

On the other hand, it is possible to compute what turns
out to be the expression for the internal energy of a van
der Waals gas with negative pressure, given by

U=T− X2

2M2

1
V (181)

as it is known from general thermodynamic arguments.
Because thermodynamically the kinetic energy can be

interpreted as the temperature, and of course the energy
is the internal energy, then the formal similarities of these
two apparently unrelated expressions are striking.

In this thermodynamic analogy we have that the single
spinor field can be seen as a matter distribution behaving
in the same way in which a van der Waals attractive gas
with attractive intermolecular forces would [47].

Summarizing, in the effective approximation, torsional
interactions give rise to a contact force much in the same
way in which the Higgs field would, with these two forces
being similarly attractive but with torsion displaying the
dependence on the spin that the Higgs lacks; and we have
seen that if the Takabayashi angle where to vanish, their
common potential would be also analogous to the internal
energy of an attractive type of van der Waals gas.

Consequently, insofar as this effective approximation
holds there is a clear indication that torsion is a sort of
internal binding force, a tension, localizing the spinor.

These considerations are valid for effective approxima-
tions obtained when the torsion energy is small compared
to its mass and thus in the case of slow torsion.

Similar arguments can also be invoked for spinor fields
in the case they are slow since they are massive and there-
fore it is always possible to boost into the rest frame, but
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in the case of spinor fields one needs more than rendering
small the spatial part of the velocity vector and in order
to see what more there is to it we have to employ another
form of argument, as the one we will discussed next.

In the space-time the spinorial transformation law has
a total of 6 parameters while spinor fields defined in terms
of this transformation have a total of 8 real components,
and we have seen how to remove 6 components from the
spinor field leaving it with just the 2 physical degrees of
freedom; if we were to keep out time considering only the
space variability, the spinorial transformation law would
be the complex representation of the rotation group de-
fined with 3 parameters and spinor fields defined in terms
of this transformation would have 4 real components, so
that when the above treatment is applied the result would
be that we can remove 3 components from the spinor thus
leaving it with just 1 physical degree of freedom: because
keeping time frozen off merely means that we are taking
the non-relativistic approximation, then we have that in
the non-relativistic approximation the spinor field would
have to lose 1 degree of freedom. The degree of freedom
it has to lose can only be the Takabayashi angle: thus in
the non-relativistic approximation the spatial part of the
vector ua and the Takabayashi angle β vanish. And since
the vector is the velocity then the Takabayashi angle can
only be related to the internal motions of the matter.

Taking (135, 137) for (159, 160) and (161, 162) gives

∇µ(φ
2uµ)=0 (182)

∇µ(φ
2vµ)−2mφ2 sinβ=0 (183)

and we see that the density of velocity verifies a continu-
ity equation while the density of spin verifies a continuity
equation that is only partially exact because it is sourced
by a product of the mass density times the Takabayashi
angle and where we do observe that the module describes
the density distribution; this last expression tells that for
matter distributions that are massive with Takabayashi
angle that is non-zero and specifically negative, the axial-
vector spin density has a divergence that is also negative,
with the consequence that the matter distribution tends
to be localized in the coordinates that correspond to the
components of the axial-vector spin vµ that are different
from zero. For instance, if matter distributions in spheric
coordinates have to be localized in the radial direction,
then it is necessary that the axial-vector spin possesses a
radial component that is non-zero and that there exists
a Takabayashi angle that is non-zero and also negative.

From such a connection between the Takabayashi angle
and the axial-vector spin density, and knowing that spin
density is a signature of internal structures, we may infer
a link between the Takabayashi angle and the presence
of internal dynamics, confirming what we have suggested
above about some relationship between the Takabayashi
angle and Zitterbewegung effects of internal motions.

It may be useful to introduce the possibility to switch
the representation from chiral to standard, that is chang-
ing the representation in such a way that the Takabayashi

angle is no longer expressed in terms of imaginary expo-
nentials but real circular functions, a change that is made
in terms of a rotation performed by the unitary matrix

U = 1√
2

(

I I

−I I

)

on gamma matrices and spinors: for the gamma matrices
we have that in the standard representation they are

γ0=

(

I 0

0 −I

)

γK =

(

0 σK

−σK 0

)

so that

σ0A= 1
2

(

0 σA

σA 0

)

σAB=− i
2εABC

(

σC 0

0 σC

)

and

π=

(

0 I

I 0

)

while the spinors are given according to either the forms

ψ=
√
2











cos β
2

0

−i sin β
2

0











φ or ψ=
√
2











0

cos β
2

0

−i sin β
2











φ (184)

or the forms

ψ=
√
2











−i sin β
2

0

cos β
2

0











φ or ψ=
√
2











0

−i sin β
2

0

cos β
2











φ (185)

the forms on the left being the third axis rotation of the
forms on the right and the two upper forms being linked
to the two lower forms by ψ→πψ with π also taken in
standard representation as it is obvious; if the dynamics
of the Takabayashi angle makes it evolve then the upper
and lower components keep rotating into one another.

Above we have established that in the non-relativistic
approximation the Takabayashi angle vanishes, and now
we can see why for the non-relativistic approximation the
standard representation is so useful in the fact that when
the Takabayashi angle vanishes then also one of the two
components vanishes: for this reason sin (β/2) is said to
be the small part whereas cos (β/2) is the large part.

Summarizing, either between left-hand and right-hand
components (in chiral representation) or between small
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and large parts (in standard representation), there arise
internal dynamics that can be tied to the presence of the
Takabayashi angle, therefore linking this angle to internal
motions that could give rise to Zitterbewegung effects, in
terms of which quantum effects can be described [48, 49].

As a consequence, there may be profound relationships
between the effects usually attributed to the quantization
and Zitterbewegung motion within a particle.

B. Masslessness

In the previous section we have studied what happens
in the cases in which some approximation can be done by
exploiting the fact that fields can be massive, and next
we will be interested in studying the complementary case
in which masslessness for all the fields is granted.

In situations of torsion masslessness, the torsional field
equations (130) would approximate down to the form

∇ρ(∂W )ρµ=Xψγµπψ (186)

which are analogous to the electro-dynamic field equa-
tions apart from the fact that these are parity-odd while
the electro-dynamic field equations are parity-even.

This aside, both are vector field equations in massless
case, and as such we should expect some symmetry to be
present: the full Lagrangian in the case of masslessness
also for the spinor field is give by the following

Lmassless=− 1
4 (∂W )2− 1

kR− 2
kΛ− 1

4F
2 +

+iψLγ
µ
∇µψL+iψRγ

µ
∇µψR +

+XψLγ
µψLWµ−XψRγ

µψRWµ (187)

which is invariant for a transformation of the type

W ′
ν =Wν − ∂νω (188)

with

ψ′
L = e−iXωψL ψ′

R = eiXωψR (189)

as clear by comparing with (44) and (43) as the transfor-
mation laws of the gauge theory of electro-dynamics.

It is possible to see that the above transformation laws
for the two chiral components can be written in compact
form for the full spinor according to

ψ′ = eiXωπψ (190)

known as chiral gauge transformation in full analogy with
the gauge symmetry proper to the electro-dynamic field.

Additionally, expressions (163) can also be written as

ψ=e−
i
2
βπ











±φ
0

φ

0











or as ψ=e−
i
2
βπ











0

±φ
0

φ











(191)

where the Takabayashi angle is written in matrix form.
It is quite clear by combining the last two relationships

that regardless the structure of the spinor field it is always
possible to perform a chiral gauge transformation taking
the local parameter to be β=2Xω and leaving

ψ′=











±φ
0

φ

0











or ψ′=











0

±φ
0

φ











(192)

in terms of the module solely: this has to be expected,
as symmetries come with redundant information that can
be remove by reducing the fields, and because in this case
the chiral symmetry is an additional symmetry with one
parameter, we have to expect that one degree of freedom
be removed. It is clear that the only degree of freedom
to remain is the one that cannot be removed in any way
whatsoever, that is the module of the field distribution.

Because in the massless approximation the two chiral
Lagrangians become separable, the two chiral parts are
independent, and since in such a regime the Takabayashi
angle can be vanished, it carries no information, with the
consequence that the Takabayashi angle may encode the
information on the two chiral parts relative dynamics.

This is yet another fact that supports the evidence for
which the Takabayashi angle can be connected to internal
dynamics, giving rise to some Zitterbewegung effect.

The relationships between quantum properties of fields
and Takabayashi angle will be discussed shortly.

V. SUMMARY

In this first part, we started from the most general ge-
ometric background in which both torsion and curvature,
as well as gauge fields, were present; we have analogously
defined spinors: we have written, under the constraint of
being at the least-order derivative, what is the most gen-
eral system of field equations. We proceeded by achieving
in the field equations the decomposition of all covariant
derivatives and curvatures with torsion into correspond-
ing quantities without torsion plus torsional terms, thus
having torsion isolated in a way that showed how torsion
is equivalent to an axial-vector massive field; further we
accomplished the usual spinor decomposition in its two
chiral parts: we argued that the torsion field could be the
mediator of an attractive interaction for which a spinor
may be a bound-state of its two chiral components where
the binding mechanism would be dynamical. We showed
that this is indeed the case when effective approximations
are taken by indicating how the present theory with these
approximations reduces to the NJL theory, therefore we
showed that the non-relativistic approximation turns out
to be implemented by small spatial part of the velocity as
well as small Takabayashi angle and arguing that for this
reason the Takabayashi angle encodes information about
internal dynamics: we have seen that also in masslessness
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cases where the two chiral parts no longer have relative
dynamics the Takabayashi angle vanishes showing once
more that this angle is where information about internal
dynamics is stored. With this summary we conclude the
first part and in the following we are going to address a
topic that at the beginning will look totally unrelated.

TWO: EFFECTS

VI. QUANTA AND SPIN

In the first part, we have presented the general theory
of torsion gravity with electro-dynamics for spinor fields,
and passing through a discussion on the role of torsion as
axial-vector massive mediator of an attractive interaction
forming spinor bound-states of the chiral components, we
have concluded by speculating on relationships between
the Takabayashi angle and internal dynamics; because in
literature it is already discussed of a possible link between
internal dynamics and quantum effects [49], it may also
be instructive to pursue a treatment of quantum physics
in this perspective. In this part, we will discuss this.

A. Quantization

The history of the theories of quantization may be sep-
arated in three moments: a first involving the gathering
of the experimental evidence and the struggle to have it
condensed into mathematical concepts; a second involv-
ing the endeavour of systematizing these concepts into a
rigorous scheme; a third involving such a mathematical
scheme valid for mechanics replicated also for fields.

1. Prelude to quantization

The first indication that nature might have a quantum
character came at the beginning of the twentieth century
when Planck was tackling the problem of describing the
spectrum of emission for the black-body radiation.

The black-body radiation could be described in terms
of the energy density u emitting radiation with frequency
given by ν as a function of its temperature T measured in
Kelvin: the energy density in the low-frequency regime
is described by the Rayleigh-Jeans law given in terms of
the light-speed and the Boltzmann constant as

u(ν, T )=8πν2kT/c3

but as frequencies tend to increase this law no longer
fits data and additionally it loses sense because when the
energy density is integrated over the whole spectrum the
total energy becomes infinite; today we would dismiss the
problem by assuming that some new physics would enter
in the game for those high-frequency regimes at which the

infinities would arise, but in those times physicists actu-
ally went on to find such new physics, which is expressed
by the Wien law given in in terms of two parameters as

u(ν, T )=Cν3e−νβ/T

although this formula does no fit data at low frequencies.
Because Wien formula does not work at low frequen-

cies while Rayleigh-Jeans formula is non-sensical at high
frequencies, Planck started to think about a way in which
the Rayleigh-Jeans and Wien laws could be seen as the
low-frequency and high-frequency approximations of a
single more universal law: the formula was given by

u(ν, T )=
8πh

c3
ν3

ehν/kT −1

in terms of a new constant h and additionally, one could
integrate this formula over the spectrum of frequencies

U(T )=

∫ ∞

0

u(ν, T )dν=
8πh

c3

∫ ∞

0

ν3

ehν/kT −1
dν =

=
8πk4

h3c3
T 4

∫ ∞

0

x3

ex−1
dx=

8πk4

h3c3
T 4π

4

15
=

8π5k4

15h3c3
T 4

which give the Stefan-Boltzmann expression of the total
energy as a quartic function of the absolute temperature.

The success of this formula convinced Planck that it
must have been possible to derive it from fundamental
principles: the Planck law can be re-written as

u(ν, T )=
8πν2kT

c3
hν/kT

ehν/kT −1

as the Rayleigh-Jeans formula multiplied by a factor, the
former giving the number of modes and the latter giving
the average energy per mode; in this form the interest
is focused onto the expression of the average energy per
mode, which Planck obtained by employing the known
Boltzmann probability distribution for the energy modes
and a new hypothesis for which these energy modes were
multiples of some elementary quantity resulting into

〈u〉(ν, T )=
∑

n nEe
−nE/kT

∑

n e
−nE/kT

=
E

eE/kT −1

coinciding with the above so long as E=hν is imposed.
Therefore, the spectrum of emission for the black-body

radiation can consistently be described whenever the in-
ternal modes follow Boltzmann distribution and each of
them has an energy given by E=nhν and that is, when
they come in discrete amounts of an elementary quantity

E=hν

that had to be valid in general circumstances; Planck did
not know how the discretization of the spectrum could be
obtained nor in what way the energy relationship could
be inferred. But its validity had yet another application.

The photoelectric effect is the effect for which a given
metal when irradiated emits electrons in such a way that
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the number of electrons depends on the intensity of the
light source while the energy of each electron depends on
the frequency of the light source: by assuming that light
was made of individual entities behaving like particles
called photons each with energy E=hν Einstein proved
that the photoelectric effect could be explained as the fact
that the number of electrons depended on the number of
photons while the energy of a single electron depended
on the energy of a single photon, quite simply indeed.

If the photoelectric effect consists in the scattering of
an electron after total absorption of the incident photon,
then one may wonder what would happen if the electron
were scattered after having been transferred only a par-
tial amount of the energy of the incident photon, which is
an effect first studied by Compton and thus called Comp-
ton effect: like Einstein, Compton assumed that photons
were responsible for the scattering of individual electrons
and that in the process energy and momentum of photons
were given by the above E=hν and by the relationship
given as P =hλ−1 since for photons E2−P 2c2=0 due to
their masslessness: calling θ the angle between the direc-
tions of the incoming and outgoing photon then the shift
in its wave-length is given according to the formula

∆λ= h
mc (1−cosθ)

where m is the mass of the electron scattered away.
The black-body radiation, photoelectric and Compton

effects are all well established facts, and they all have the
same underlying idea that light consists of individual bits
called photons and being such that

E=hν

P = h
λ

since they are relativistic massless particles.
Some year later, it was de Broglie who brought up

the argument that if photons behaved as particle then
it might as well be true that electrons behaved as waves
with associated wave-length given by

λ= h
P

implying interesting consequences: if this were true then
electrons of a given wave-length scattered of comparable
spacing had undergo to the phenomenon of diffraction.

And quite astonishingly, diffracted they were.
A system in which corpuscular photons and wave elec-

trons are both present is the description of light emission
from atoms, the process that occurs when we have atoms
with an external electrons in an excited state falling down
to more stable states thus emitting a photon of a given
wave-length: in this model of atom, Bohr assumed that
electrons in orbits had to have a wave-length as an integer
multiple of the orbit length according to

2πr= nh
mv

and where these electrons could go from one orbit to a
smaller orbit emitting photons with wave-length

1
λ =

1
hc |En−Ek|

where En and Ek are the energies of the electron in the
orbits that respectively are n and k times the wave-length
of the electron: in this model the condition of discretiza-
tion of the system comes from the requirement of consis-
tency with the periodicity; then the condition of equilib-
rium between centrifugal and electrostatic force

Ze2

r2
=
mv2

r

combined with

2πr=
nh

mv

convert into the conditions

v=
2πe2Z

nh

and

r=
n2h2

4π2e2Zm

eventually yielding the total energy

En=−2π2e4Z2m

h2
1

n2

and thus

1

λ
=
2π2e4Z2m

h3c

∣

∣

∣

∣

1

n2
− 1

k2

∣

∣

∣

∣

in which n and k are the integer numbers associated with
the first and second orbits. This is the Rydberg formula.

And it fits all observations for hydrogen atoms.
We notice that the condition of discretization as related

to the periodicity of a system is not new because it takes
place also in the classical physics of oscillating objects.

The Bohr model is the first instance in which matter is
thought as tiny strings and although nowadays nobody
would seriously think this is what the electron really is,
nevertheless it gave the exact form of the energy levels of
electrons in atoms and the frequency of emitted photons
precisely, so precisely in fact that despite its intrinsic
incorrectness, it cannot have been too far from the truth
either: so how can matter behave as a wave and radiation
cluster into corpuscular objects similar to particles?

The wave-particle duality of matter and radiation is
probably the most intriguing trait of quantum mechan-
ics, possibly even more than quantization itself because
as we already mentioned the appearance of discrete spec-
tra is not something new at all. Even more surprisingly,
both radiation and matter display such complementary
between particles and waves in the very same experiment.

When either matter or radiations is considered in ex-
periments such as the two-slit experiment or in the Mach-
Zehnder apparatus, we observe interference patterns that
are those proper of waves although we can only detect
single individual particles: it is as if particles are waves
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and behaves as wave but at the moment of interaction
only their corpuscular character becomes manifest.

This problem is still an open issue for quantum me-
chanics, and therefore we are not going to deepen its
implications in this pre-historical summary.

2. Forward the quantization

In the pre-history of quantum mechanics, we have dis-
cussed the photoelectric and Compton effects together
with the black-body radiation formula, the diffraction of
electrons on a lattice, and the Bohr atom, as indications
that light might have a corpuscular character while mat-
ter may have an oscillatory character, and that both re-
spect some discretization conditions: we have discussed
how quantization may have an origin in some periodicity
conditions there were not new, but that the particle-wave
dual features of radiation and matter were new indeed.

To continue the history of quantum mechanics, we fo-
cus on the fact that matter and radiation seem to be
waves appearing as particles when interacting: then is it
possible to interpret the particles as localized waves?

Let us assume that the particle is smeared into a local-
ized packet of waves: its mathematical description can be
achieved in terms of the superposition of specific waves
of specific amplitudes, and so if we decide to describe the
profile of the wave-packet as |ψ(x)|2 then

ψ(x)=
1√
2π

∫

φ(k)eikxdk

where φ(k) is what describes the distribution of the am-
plitudes in terms of what is called wave number; essen-
tially this is the Fourier transform of the initial function,
and in fact we can write the complementary relation

φ(k)=
1√
2π

∫

ψ(x)e−ikxdx

which is valid in general. Also in general is the fact that
∫

|ψ(x)|2dx=
∫

|φ(k)|2dk

known Parseval relationships: they show that the wave-
packet representation and its associated Fourier trans-
form distribution have interesting relationships.

In order to obtain an additional relationship we call
∫

|ψ(x)|2dx=
∫

|φ(k)|2dk = N2

and we define the following averages

〈x〉= 1

N2

∫

ψ(x)†xψ(x)dx

and

〈k〉= 1

N2

∫

φ(k)†kφ(k)dk

together with their standard deviations

|∆x|2=〈(x−〈x〉)2〉

and

|∆k|2=〈(k−〈k〉)2〉

and to try see what happens to their product we split the
problem in two sub-problems: one would be to see what
specific relationship x and k actually have; the other is to
see what relationships hold in general among operators.

Let us start from the latter: considering two Hermitian
operators A and B and a generic function f we have

0 6

∫

[(A+iλB)f ]†[(A+iλB)f ]dx =

=

∫

f †(A†−iλB†)(A+iλB)fdx =

=

∫

f †(A2+iλ[A,B]+λ2B2)fdx =

= N2(〈A2〉+iλ〈[A,B]〉+λ2〈B2〉)

where the normalization factor can be neglected leaving
an expression in terms of a real parameter λ in a rela-
tionship that is valid for any admissible value of this real
parameter; in particular the relationship

〈A2〉+λi〈[A,B]〉+λ2〈B2〉> 0

is valid for the value of the parameter that minimizes the
expression and given by i〈[A,B]〉=−2λ〈B2〉 and so that

4〈A2〉 〈B2〉−|i〈[A,B]〉|2> 0

and thus

〈A2〉 〈B2〉>
∣

∣

i
2 〈[A,B]〉

∣

∣

2

in very general circumstances. If now we call the Hermi-
tian operators as A=a−〈a〉 and B=b−〈b〉 then

∆a ∆b>
∣

∣

i
2 〈[a, b]〉

∣

∣

since the average is a number and therefore the commu-
tator of two operators shifted by numbers is the commu-
tator of the operators themselves; notice that this result
has been found without employing any concept of Fourier
analysis. But we still have another problem to address.

The other problem consists in finding the relationship
between x and k or alternatively, finding in what way we
can express k in the space of x coordinates, and for this
problem Fourier analysis is fundamental: to do that, just
start from the expression of the 〈k〉 given in the space of
the k coordinates, which we know how to calculate very
trivially, and then counter-transform it back to the space
of the x coordinates, which is an operation given by the
reverse Fourier transformation and we also know it very
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well: all in all we end up by having that

1

N2

∫

φ(k)†kφ(k)dk =

=
1

2πN2

∫ ∫ ∫

ψ(x′)†kψ(x)e−ikxeikx
′

dx′dxdk =

=
1

2πN2

∫ ∫ ∫

ψ(x′)†ψ(x)i
d

dx
e−ikxeikx

′

dx′dxdk =

=
1

2πN2

∫ ∫ ∫

iψ(x′)†
d

dx
(ψ(x)e−ikx)eikx

′

dx′dxdk −

− 1

2πN2

∫ ∫ ∫

iψ(x′)†
d

dx
ψ(x)e−ikxeikx

′

dx′dxdk

where in the last equality the first integral can be easily
evaluated and, for functions that vanish on the boundary
of integration, such an integral vanishes, leaving

1

2πN2

∫ ∫ ∫

iψ(x′)†
d

dx
(ψ(x)e−ikx)eikx

′

dx′dxdk −

− 1

2πN2

∫ ∫ ∫

iψ(x′)†
d

dx
ψ(x)e−ikxeikx

′

dx′dxdk =

= − 1

2πN2

∫ ∫ ∫

iψ(x′)†
d

dx
ψ(x)e−ikxeikx

′

dx′dxdk =

= − 1

2πN2

∫ ∫ ∫

iψ(x′)†
d

dx
ψ(x)e−ik(x−x′)dx′dxdk =

= − 1

N2

∫ ∫

iψ(x′)†
d

dx
ψ(x)δ(x′ − x)dx′dx =

=
1

N2

∫

ψ(x)†
(

−i d
dx

)

ψ(x)dx

where we only used identities of Fourier analysis; thus

∫

φ(k)†kφ(k)dk=

∫

ψ(x)†
(

−i d
dx

)

ψ(x)dx

showing that what in the space of the k coordinates the
wave-number becomes in the space of x coordinate space
the operator given by minus the imaginary unit times the
derivative with respect to the position. What this means
is that it becomes possible to calculate the operator form

[x, k]ψ(x)=−ix d
dxψ(x) + i d

dx(xψ(x))= iψ(x)

in which we also remark that the result will have to be
independent on the function we have used: consequently

[x, k]= i

holding as a general relationship between position and
wave-number operators. And again we recall that so far
we have used only arguments of Fourier analysis.

So far we have demonstrated that for two Hermitian
operators we have the validity of the inequality

∆a ∆b>
∣

∣

i
2 〈[a, b]〉

∣

∣

holding in general; and that

[x, k]= i

valid in Fourier analysis: to put the two results together
we only need to prove that x and k are Hermitian.

The conjugate of the k operator can be calculated and
recalling that conjugated operators act back-ward we get

∫

ψ(x)†
(

−i d
dx

)†
ψ(x)dx ≡

≡
∫ (

i
d

dx
ψ(x)†

)

ψ(x)dx =

=

∫

ψ(x)†
(

−i d
dx
ψ(x)

)

dx ≡

≡
∫

ψ(x)†
(

−i d
dx

)

ψ(x)dx

showing that this operator is Hermitian, in the same way
in which the position operator is Hermitian since it is the
multiplication by the position: therefore we can apply the
theorem above in the case of these two operators.

So we have that the theorem above reads

∆x ∆k>
∣

∣

i
2 〈[x, k]〉

∣

∣

to be combined with the commutation relationship

[x, k]= i

and therefore

∆x ∆k>
∣

∣

i
2 〈[x, k]〉

∣

∣=
∣

∣

i
2 〈i〉

∣

∣=
∣

∣− 1
2

∣

∣= 1
2

furnishing the final

∆x ∆k> 1
2

and thus expressing the impossibility to render both stan-
dard deviations as small as one would want.

This result is valid for any wave: in particular, it is
valid for de Broglie waves, that is for waves for which we
have relationships λk=2π and P =~k giving

[x, P ]= i~

as commutation relationship and so

∆x ∆P >
~

2

expressing the impossibility to make both the standard
deviations vanish under any circumstance whatsoever.

This result is due to Kennard and it is the mathemat-
ical proof of Heisenberg uncertainty relationships.

Heisenberg uncertainty principle tells that when deal-
ing with a quantum object its position and momentum
cannot both be know exactly because they come together
with associated standard deviations ∆x and ∆P which
cannot both be vanished since their product is given by

∆x∆P >
~

2

and similar considerations may be assumed for time and
energy standard deviations ∆t and ∆E according to

∆t∆E>
~

2
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by exploiting arguments of analogy based on principles of
relativity; this principle is the result of the condensation
of several observed behaviours of nature finally raised to
the status of principle by Heisenberg, and mathematized
by Kennard’s theorem whenever de Broglie relations

P =~k

E=~ω

happen to hold for a system of waves.
In this sense then, systems of waves always entail un-

certainty, and systems of waves verifying the de Broglie
relationshipsE=~ω and P =~k always entail uncertainty
in the form that is give as the Heisenberg principle.

3. Quantization

In the previous two sections we have seen that all of the
experiments and theoretical constructions fit well into a
scheme in which the particles are thought as wave packets

verifying E = ~ω and ~P = ~~k in general; wave functions
of this sort are mathematically expressed according to

ψ(~x, t)=
1

(2π~)2

∫

φ(~P ,E)e
i
~
(~P ·~x−Et)d3PdE

again valid in general situations: this is the starting point
from which to derive everything else from now on.

To begin we can calculate the derivatives

i~
∂

∂t
ψ=Eψ

i~
∂

∂~x
ψ=− ~Pψ

and because in them the form of the wave function is
not specified then these relationships have a more general
status of generality in the description of quantum matter.

We notice that so far all of conditions of quantization
whether they are given in terms of commutators

[x, P ]= i~

[t, E]= i~

or in terms of the differential conditions

i~
∂

∂t
ψ=Eψ

i~
∂

∂~x
ψ=− ~Pψ

are all relying on the fact that we are working in Galileian
coordinates; we notice that the conditions of quantization
given in terms of the commutators are themselves given
in terms of the position x which is not covariant for coor-
dinate transformations that involve a change to curvilin-
ear coordinates while the conditions of quantization given
in terms of differential operators are themselves given in

terms of derivatives ∂/∂~x which are covariant for coordi-
nate transformations that involve a change to curvilinear
coordinates: in view of giving a covariant formulation we
drop the condition of quantization given in terms of com-
mutators and we keep only the condition of quantization
given in terms of the differential operators, and for these

we drop the notation ∂/∂~x in favour of ~∇ valid in general.
Therefore our conditions of quantization are given by

i~~∇ψ=− ~Pψ

i~
∂

∂t
ψ=Eψ

leaving the discussion about what happens when time is
a variable to the following section. For now, we still keep
space and time separated in studying quantum systems.

The dynamics is encoded by the energy condition

E=
1

2m
P 2+V

where V is an external potential taken real.
From this relationship and substituting the quantum

operators above we obtain the quantum energy condition

i~
∂

∂t
ψ=− ~

2

2m
~∇·~∇ψ+V ψ

which is called Schrödinger equation and it describes the
dynamics of waves in quantum mechanics under the hy-
pothesis of non-relativistic speed due to the fact that the
energy condition is clearly non-relativistic. However, it is
manifestly covariant for general 3-dimensional coordinate
transformations with time kept as absolute and therefore
it is possible to write it also in other coordinate systems.

The most important coordinates are the spherical co-
ordinates (r, θ, ϕ) where r is the radial coordinate while
the θ and ϕ are the elevation and azimuthal angles: these
coordinates give the Laplacian of the wave function as

~∇·~∇ψ=
1

r2
∂r
(

r2∂rψ
)

+

+
1

r2

[

1

sin θ
∂θ (sin θ∂θψ)+

1

| sin θ|2 ∂ϕ∂ϕψ
]

where the square brackets contain all information about
angular dependences; the Schrödinger equation is then
given by the above with the potential written in spherical
coordinates and the Laplacian we have written here as

i~
∂

∂t
ψ=V (r, θ, ϕ)ψ− ~

2

2m

1

r2
∂r
(

r2∂rψ
)

−

− ~
2

2m

1

r2

[

1

sin θ
∂θ (sin θ∂θψ)+

1

| sin θ|2 ∂ϕ∂ϕψ
]

in which the polar axis is an axis of singularity. This form
will be important when treating the Coulomb potential.

Whether in the Galileian coordinates or spherical coor-
dinates, or any other system of coordinates, the explicit
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structure of the Laplacian is sensitive to the specific co-
ordinates, but formally they are all writable according to
the most general covariant expression that is given by

i~
∂

∂t
ψ=− ~

2

2m
~∇·~∇ψ+V ψ

which will be the form we will use to deal in general cases.
It is possible to write it in a compact form by recogniz-

ing that the energy written in terms of the momentum is
the Hamiltonian and so we may indicate it as

i~
∂

∂t
ψ=Hψ

which is the Schrödinger equation in compact form de-
scribing the dynamics of waves in quantum mechanics
for non-relativistic speed; the energy condition is hidden
within the Hamiltonian but there is still the privileged
role of time to tell us that this is a non-relativistic form.

It is also convenient in some circumstances to define
the following conserved quantities

ρ=ψ†ψ

and

~j=−i ~

2m

(

ψ†~∇ψ− ~∇ψ†ψ
)

in general: with the Schrödinger equation one proves that

∂ρ

∂t
+ ~∇·~j=0

is a conservation law that is satisfied in general.
Let us now employ the Schrödinger equation in specific

cases, in order to solve some elementary systems.
As an application of the Schrödinger equation we might

first consider one of the most important cases given when
the potential is that of the harmonic oscillator

i~
∂

∂t
ψ+

~
2

2m
~∇·~∇ψ− 1

2
κx2ψ=0

with κ constant: stationary states of energy E are ob-
tained for wave functions ψ(~x, t) = e−iEt/~u(~x) and be-
cause the potential can be written as the sum of three
independent potentials it will be enough to study the uni-
dimensional case for which the above equation reduces to

Eu(x)+
~
2

2m

d

dx

d

dx
u(x)− 1

2
κx2u(x)=0

for u(x) that vanishes at infinity; as we already remarked
the requirement of the vanishing at infinity allowed us to
prove some important formulas and relationships, but in
this example such a vanishing at infinity does much more
because it provides the condition for the discretization of
the energy spectrum, which is found to be given by

En=~

√

κ

m

(

1

2
+n

)

as it can be checked in standard textbooks.
What is important to notice here are two facts about

the energy: the first is that if we call the frequency of the
harmonic oscillator as κ = mω2 then

En=~ω
(

1
2+n

)

which can be split as En=E0+∆En into

E0=
1
2~ω

and

∆En=n~ω

from which additional information can be inferred: first,
the ground-state does not have zero energy but a minimal

E0=
1
2~ω

which can be interpreted as the magnitude of the uncer-
tainty with which energies are defined and since also the
period is defined up to an uncertainty ∆t−1=ω then

∆E∆t= 1
2~ωω

−1= 1
2~

as the special limiting case of Heisenberg uncertainty re-
lationships; second, the energy difference is

∆En=n~ω

which is exactly the Planck assumption we discussed at
the beginning when presenting the black-body radiation
theory. The second fact about the energy is that its spec-
trum is discrete and such a quantized character is a direct
consequence of the requirement that the wave function
tend to vanish at the infinity, as already remarked.

This phenomenon of quantization, now understood as
discretization of some quantities, is general and it occurs
not only for wave functions that vanish at the infinity, but
also when the wave function it is required to be equal to
zero at a finite boundary, or when junction conditions are
imposed for periodic symmetry: in the previous sections
we already remarked that discretization is not something
that demands for new principles, and indeed here we have
witnessed that the discrete character is connected to spe-
cific boundary conditions, more than to the conditions of
quantization given by the differential operators above.

Another important application is the one given by the
Coulomb potential for which the Schrödinger equation is

i~
∂

∂t
ψ+

~
2

2m
~∇·~∇ψ+Ze2

r
ψ=0

with Z atomic number: stationary states of energy E can
be obtained and as the potential has spherical symmetry
the wave function factorizes according to the form

ψ(t, r, θ, ϕ)=Ke−iEt/~R(r)Θ(θ)Φ(ϕ)
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for which the Schrödinger equation splits into

ER(r)=− ~
2

2m

1

r2
∂r
(

r2∂rR(r)
)

+

+
~
2l(l+1)

2mr2
R(r)−Ze2

r
R(r)

together with

sin θ∂θ (sin θ∂θΘ(θ))+l(l+1)| sinθ|2Θ(θ)=µ2Θ(θ)

and

i∂ϕΦ(ϕ)=±µΦ(ϕ)

where R(r) must vanish at infinity while Θ(θ) and Φ(ϕ)
must be periodic; once again the vanishing at infinity and
the periodicity provide the condition for the discretiza-
tion of the energy spectrum found to be given by

En=−1

2

e4Z2m

~2

1

n2

in which we have that n is a positive integer, l is a non-
negative integer such that l6n−1 and µ is also an integer
and such that −l6µ6 l hold as constraints among these
quantum numbers, as discussed in standard textbooks.

For an assigned n there are n values for l and for each of
these l there are 2l+1 values for µ so that we conclude that
there should be a total of n2 electrons; however, what is
observed is that there are 2n2 electrons in the outermost
layer of the atomic shell: this means that despite all effort
of being complete something is still missing, and what is
missing is a principle telling us that we must double the
occupancy for each level. This is the Pauli principle, but
because its implementation would require the concept of
spin, we have to accept it for the moment, postponing its
mathematical justification to following sections.

Notice the interesting fact that the energy is precisely
the one obtained for the Bohr atom by means of entirely
different considerations: this does teach us something im-
portant about our way of doing physics, because the Bohr
atom was built on the assumption that the electrons were
strings circling the nucleus, a hypothesis today known to
be false, but which nevertheless furnishes the exact for-
mula for the energy levels of the atom, and reminding to
us that also from assumptions that are essentially wrong
we can obtain results that are numerically correct.

Once again we have found that the energy spectrum is
discrete and that such a discrete character is one more
time a consequence of asking that the wave function must
vanish at infinity or respect some periodicity conditions.

A final important thing to notice can be seen in terms
of solutions of the Schrödinger equation in the free case
given by the so-called plane waves given according to

ψ(~x, t)=K exp

(

i

~

~P · (~x− 1

2m
~Pt)

)

in terms of a generic constant K unspecified; we have

~j=K2 1

m
~P

and

ρ=K2

and from m~j=ρ~P we obtain the interpretation for which
if ρ represents a density of matter then ~j represents a
density of velocity of the motion of the matter itself.

Notice that the conditions of quantization given by the
differential operators are equivalent to the requirement of
having plane waves which do not vanish at infinity while
the statement that quantum mechanics be determined by
the Schrödinger equation is unaffected by such a type of
problem: thus we may drop the condition of quantization
given in terms of differential operators keeping only the
validity of the Schrödinger equation as fundamental.

To conclude, we define the average of an operator

〈Q〉= 1

N2

∫

ψ(x)†Qψ(x)dx

in terms of which the Schrödinger equation gives

d

dt
〈Q〉=

〈

∂Q

∂t

〉

+
i

~
〈[H,Q]〉

and this is valid in general: in particular for the position

d

dt
〈x〉= i

2m~

〈[

P 2, x
]〉

=
i

2m~
〈−2i~P 〉= 1

m
〈P 〉

while for the momentum we have

d

dt
〈P 〉= i

~
〈[V (x), P ]〉

and plugging one into the other gives

m
d2

dt2
〈x〉= d

dt
〈P 〉=−

〈

dV (x)

dx

〉

in a form that is similar to Newton’s equation of motion.
Expanding the derivative of the potential in a series

dV (x)

dx
≈ dV (〈x〉)

d〈x〉 +(x−〈x〉)d
2V (〈x〉)
d2〈x〉 +

+
1

2
(x−〈x〉)2 d

3V (〈x〉)
d3〈x〉

and therefore
〈

dV (x)

dx

〉

≈ dV (〈x〉)
d〈x〉 +

1

2
∆x2

d3V (〈x〉)
d3〈x〉

showing that if the uncertainty on the position is small

〈

dV (x)

dx

〉

≈ dV (〈x〉)
d〈x〉

and the above would coincide with Newton’s law for the
motion of the peak of the localized matter distribution.

What this means is that whenever the wave function
is such that the packet is extremely localized around the
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average of the position, which can thus be taken as the
position of the point-like particle, we have the classical
macroscopic limit as it was first discussed by Ehrenfest.

In this macroscopic limit ~ is no longer present, which
is consistent with the fact that the presence of this con-
stant is what gives the presence of quantum effects.

Because we will no longer consider this approximation
we will normalize the constant ~=1 from now on.

4. Quantization and relativity

In the previous sections we have seen that conditions
of quantization were given by the differential operators

i~∇ψ=− ~Pψ

i
∂

∂t
ψ=Eψ

which are covariant for 3-dimensional space transforma-
tions and they display some symmetry between space co-
ordinates and the temporal variable; before we have not
discussed the analogies between space and time any fur-
ther but now it is time to discuss it thoroughly since we
want to raise the time to the status of the fourth coordi-
nate, to form the (3+1)-dimensional space-time in which
to implement the principles of relativity: by calling the
time as the zeroth coordinate of the (3+1)-dimensional
space-time and the energy as the zeroth component of an
energy-momentum given by the definition

Pµ=(E,− ~P )

we may write

i∇αψ=Pαψ

as the (3+1)-dimensional relativistically covariant condi-
tion of quantization for the waves of matter.

However, there was another way in terms of which the
quantum system could not be relativistic and that was
the fact that the dynamics was expresses in terms of

E=
1

2m
P 2

which is an energy condition that is clearly not relativistic
in itself: the relativistic energy condition is known to be

E2−P 2−m2=0

or by using Pµ=(E,− ~P ) as

PαPα−m2=0

and this the condition that has to be considered.
By employing this relativistic energy condition and the

covariant conditions of quantization we obtain

∇α∇αψ+m2ψ=0 (193)

which is the Klein-Gordon equation and it describes the
dynamics of waves in quantum mechanics for relativistic
cases and therefore in the most general covariant form.

As a consequence of this generality we no longer need
specify we are studying waves relativistically in quantum
mechanics, and we will talk simply about quantum fields.

It is also convenient to define the conserved quantity

mJµ=
i
2

(

ψ†∇µψ−∇µψ
†ψ
)

in general: with the Klein-Gordon equation we prove that

∇µJ
µ=0

is a conservation law that is satisfied in general.
Plane waves are given according to the form

ψ(xµ)=K exp (−iPαx
α)

in terms of a generic constant K unspecified; then

Jµ=
1

m
K2Pµ

and from mJµ = ψ†ψPµ we obtain the interpretation
for which if ψ†ψ is the density of matter then Jµ is the
density of the velocity of the motion of the matter itself.

Again plane waves do not vanish at the infinity.
Despite the Klein-Gordon equation is a good quantum

field equation nevertheless it contains not one but two
time derivatives and so one might ask if it is possible to
obtain a quantum field equation with one order derivative
alone: the problem is purely theoretical and it stems from
the fact that the lower is the derivative order of a differ-
ential equation, the fewer are the integrations needed to
obtain its solutions and the stronger is the solution itself.

It was Dirac who thought about this circumstance, and
thus to the occurrence of having relativistic waves with
first-order derivative equations, and he noticed that if it
were possible to find objects γµ verifying the relation-
ships {γµ,γν}=2Iηµν then it would be possible to write

∇
2ψ+m2ψ ≡ (iγµ

∇µ+m)(−iγµ
∇µ+m)ψ

as a general operatorial identity; it is possible to see that
the Klein-Gordon equation would be satisfied if either

iγµ
∇µψ−mψ=0

or

iγµ
∇µψ+mψ=0

were to be satisfied as well, but these two Dirac equations
are first-order derivative equations: each Dirac equation
is stronger than the original Klein-Gordon equation since
the validity of a single one of them implies the validity of
the original equation but the converse is not true.

Given γµ matrices with {γµ,γν}=2Iηµν the equations

iγµ
∇µψ∓mψ=0 (194)
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are the Dirac equations describing the dynamics of quan-
tum fields at the least-order derivative possible.

The constraint of being at the least-order of derivatives
imposed the introduction of additional objects given by
the gamma matrices that were already known to mathe-
maticians under the name of Clifford matrices, and which
describe further internal structures for the quantum field.

With the zeroth gamma matrix γ0 from the Dirac field
we define the adjoint Dirac field ψ=ψ†γ0 with which

Jµ=ψγµψ

in general: from the Dirac equations we obtain

∇µJ
µ=0

as a conservation law that is valid in general.
Then plane waves are given according to

ψ(xµ)=exp (−iPαx
α)u

and where (Pµγ
µ ±mI)u=0 hold; it is easy to acknowl-

edge that muγµu=uuPµ and therefore we have that

Jµ=
1

m
ψψPµ

showing that if ψψ is the density of matter then Jµ is the
density of the velocity of the motion of the matter itself.

But once again plane waves do not vanish at infinity.
An explicit expression of the gamma matrices is what

is called standard representation and it is given by

γ0=

(

I 0

0 −I

)

~γ=

(

0 ~σ

−~σ 0

)

in terms of which writing the Dirac field as

ψ=

(

φ−

φ+

)

allows us to write the Dirac equations as

(E ∓m)φ−+ ~P ·~σφ+=0

(E ±m)φ++ ~P ·~σφ−=0

which can be recombined to give

(E+m)(E−m)φ+=(~P ·~σ)2φ+

and

(E+m)(E−m)φ−=(~P ·~σ)2φ−

as the general Dirac equations in momentum space; if we

consider the limit in which the momentum ~P→0 then we
have that E→m and in the Dirac equation for negative

sign in front of the mass term we get φ+ ≈ 0 while for
positive sign in front of the mass term we get φ−≈0 and

2m(E−m)φ−=P 2φ−

2m(E−m)φ+=P 2φ+

both in the free case: for the non-relativistic approxima-
tion, according to whether the mass term has a negative
or a positive sign there remains the upper or the lower of
the components, and in both cases the remaining of the
components verifies the equation of the form

i
∂

∂t
φ=− 1

2m
~∇·~∇φ+mφ

which can be recognized to be the Schrödinger equation
with a potential V =m recovering the expected result.

The Klein-Gordon theory can be obtained by varia-
tional methods from the Klein-Gordon Lagrangian

L = 1
2

(

∇αψ
†∇αψ−m2ψ†ψ

)

as it is straightforward to check and as very well known.
In this formalism the fact that fields are generally com-

plex and thus displaying a subsequent complex phase
symmetry is what through Noether theorem yields the
conservation law ∇µJ

µ=0 as it has been given above.
The corresponding Hamiltonian is calculated to be

H =
1

2

(

∂

∂t
ψ† ∂

∂t
ψ+ ~∇ψ† ·~∇ψ+m2ψ†ψ

)

in which time has become once again privileged, but this
expected since the Hamiltonian is an energy density.

And the Dirac theory can be obtained by employing
the usual variational methods from the Dirac Lagrangian

L = i
2

(

ψγµ
∇µψ−∇µψγ

µψ
)

±mψψ

as it is one more time very straightforward to check.
And once again in this formalism the fields are complex

and therefore their subsequent complex phase symmetry
is what through Noether theorem yields the conservation
law in the form ∇µJ

µ=0 as it is shown above.
The corresponding Hamiltonian has form

H =
i

2

(

ψ† ∂

∂t
ψ− ∂

∂t
ψ†ψ

)

again with time playing a privileged role.
Having settled the foundations of the Klein-Gordon

and the Dirac theories we will now proceed to recall some
of the most important concepts of theoretical physics.

5. Second quantization

In the previous two sections, we gave the canonical def-
inition of quantum fields whose dynamics is described by
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field equations, and for them also a variational formalism
was discussed: for Klein-Gordon and Dirac cases

L = 1
2

(

∇αψ
†∇αψ−m2ψ†ψ

)

(195)

L = i
2

(

ψγµ
∇µψ−∇µψγ

µψ
)

±mψψ (196)

as it is easy to check by applying the Lagrange equations.
The corresponding Hamiltonians were calculated as

H =
1

2

(

∂

∂t
ψ† ∂

∂t
ψ+ ~∇ψ† ·~∇ψ+m2ψ†ψ

)

(197)

H =
i

2

(

ψ† ∂

∂t
ψ− ∂

∂t
ψ†ψ

)

(198)

in which the role of time was seen to be privileged.
Now we continue the discussion around them by notic-

ing a first important fact, and that is the Hamiltonian for
the Klein-Gordon field is always positive defined while
the Hamiltonian for the Dirac field is not; Hamiltonians
should represent an energy density and as energies should
be positive defined this situation may pose problems.

Another theoretical problem we met was the introduc-
tion of the Pauli principle, and therefore an appropriate
systematization should be in order at this point.

So, there are two issues that seem to have quite a high
urgency: there appears to be a problem for the presence
of negative energies; and there is the problem of defining
the spin and a way to implement the Pauli principle.

The way in which these two issues can be altogether
overcome is based on what is usually referred to as second
quantization, the argument being due to Dirac, as based
on the fact that quantization worked so well in quantizing
particles that repeating it a second time may work just
as well in quantizing relativistic particles and thus fields.

In order to have quantization repeated a second time
we just need to restate the condition of quantization given
in terms of commutators in the case of fields, and that is
we have to re-interpret the fields and their derivatives as
operators verifying specific commutation relationships of
some sort: the exact sort of these depends case by case.

As a first guess one may think that by considering the
field ψ and its conjugate momentum ψ̇† we could write

[ψi(x), ψ̇j
†
(y)]= iδijδ(x−y) (199)

where the lower index designates the component of the
Dirac field and they are called equal-time commutation
relations given in terms of the Dirac delta; although this
guess would work for the Klein-Gordon fields nevertheless
it does not work for the Dirac field, for which we have
that given the field ψ its conjugate momentum is ψ† and

{ψi(x), ψ
†
j (y)}=δijδ(x−y) (200)

where the lower index designates the component of the
Dirac field and they are called equal-time anticommuta-
tion relations given in terms of the Dirac delta.

To see what second quantization actually is, let us con-
sider solutions of the Dirac equations: in the following we

will assume, as it is done in the common treatment, that
of the Dirac equations (194) only that with negative sign
of the mass term will be considered; for this, and in case
of plane waves, solutions are given in terms of the coeffi-
cients u verifying (Pµγ

µ ±mI)u=0 and, in the standard
representation of the gamma matrices, they are

ψ+=e−i(Et−Px)
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and

ψ−=e+i(Et−Px)
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√
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with momentum aligned along the third axis. Each form
accounts for the two polar projections that are given by
the values θ=0 and θ=π and which in the following will
be labelled as s=1 and s=2 respectively; because of the
energy condition E2−P 2=m2 of energy and momentum
only one is independent, and thus the expansion

ψ(t, x)=
1√
2π

∫

φ(P ) e−i(Et−Px)dP

can be written in terms of explicit coefficients as

ψ(t, x)=
1√
2π

∫ s=2
∑

s=1

(e−i(Et−Px)u+s +

+e+i(Et−Px)u−s )dP (201)

or after introducing a normalization factor and more gen-
eral coefficients of expansion it can also be written as

ψ(t, x)=
1√
2π

∫ s=2
∑

s=1

(e−i(Et−Px)u+s as +

+e+i(Et−Px)u−s bs)
dP√
2E

(202)

which gives the Hamiltonian with both positive and neg-
ative contributions. Now with the implementation of the
conditions of second quantization (200) we may see that

{ai(p), a†j(q)}=δijδ(p−q) (203)

{bi(p), b†j(q)}=δijδ(p−q) (204)

and therefore the Hamiltonian becomes

H =

∫ s=2
∑

s=1

(a†sas−b†sbs)EdP =

=

∫ s=2
∑

s=1

(a†sas+bsb
†
s)EdP−

∫

2δ(0)EdP (205)
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which has only positive energy levels if we forget about
the negative infinite contribution of the term on the right.

If we forget about it, renaming b†s=zs yields

H =

∫ s=2
∑

s=1

(a†sas+z
†
szs)EdP (206)

interpreted by saying that a†s annihilates and as creates
particles while z†s annihilates and zs creates antiparticles
and all of them have positive defined energies [50].

The creation/annihilation operators are therefore such
that a|0〉= |1〉 and a†|1〉= |0〉 but if we add the additional
requirement that we cannot annihilate anything if noth-
ing is present encoded by a†|0〉=0 then we additionally
get a|1〉=aa|0〉=−a†a†|0〉=−a†0=0 or a|1〉=0 spelling
that we cannot create something if something is present
entailing the physics of the Pauli exclusion principle [50].

It is quite a general argument that one fields have been
quantized according to what we have discussed above the
exclusion principle is automatically implemented [51].

In this way the effects of the exclusion principle and
ensuring the positivity of the energy have been achieved
by means of the principle of second quantization accom-
plished by lifting the fields up to operators verifying spe-
cific commutation or anticommutation relations.

6. Quantization’s boundaries

In the previous sections we have seen that experimen-
tal evidence could be condensed in a theoretical frame
built on the principles of quantization encoded by insist-
ing that position and conjugate momentum are operators
verifying some commutation relationships, or that there
exist fields satisfying certain differential conditions that
involved momenta, and that this was also equivalent to
having these fields as solutions of a specific field equation,
the Schrödinger equation; we have seen that relativistic
generalizations yielded the Klein-Gordon and Dirac field
equations, and that these fields undergo to a subsequent
process of second quantization where the fields and their
conjugate momenta are re-interpreted as operators veri-
fying commutation and anticommutation relations: thus
we could demonstrate that positive energies were ensured
and the Pauli principle was entailed in general [50, 51].

Second quantization gives rise to the consequence that
a system constituted by many particles is not to be seen
as a system of many fields but as a system of a single field
describing many states, each of which being a particle.

Next we will see what more we can actually do in quan-
tum field theory, and specifically about scattering.

In studying interactions the important quantity is the
scattering amplitude, that is the probability that a cer-
tain process occurs due to the assigned interaction, math-
ematically given by a specific form which, under certain
conditions, can perturbatively be expanded in series, and
where each term accounts for the process involving a def-
inite number of those particles that are the excited states

of the field describing the interaction; so the interaction
of a system of particles can sometimes be written as if
all the information about the interaction were actually
encoded inside contact vertices while all the rest of the
process consisted in particles freely propagating.

In the following we will focus on the interaction of elec-
trons with electro-dynamics, the theory based on the La-
grangian of Dirac fields in interaction with Maxwell fields
and for which subsequently conditions of second quanti-
zation are imposed, called quantum electro-dynamics.

It is not the place here to dig for the details since the
interested reader could simply take advantage of common
textbooks, but if we were to write scattering amplitudes
perturbatively, in the expansion each term can be inter-
preted as electrons which absorb/emit photons: external
photons are real, but those photons emitted/absorbed
by the electron do not verify Maxwell equations and thus
they are said to be virtual; the processes for which the
electron emits/absorbs virtual photons are electronic self-
interactions called photonic loops. All these processes are
called radiative corrections, which give rise to a quantum
electro-dynamical effect that is entirely new in physics.

More precisely, the electro-dynamic interaction of elec-
trons is described by Maxwell-Dirac Lagrangian

L = 1
4F

2+qAµψγ
µψ− i

2 (ψγ
µ
∇µψ−∇µψγ

µψ)+mψψ

where Fαν = ∂αAν−∂νAα and writable as the Maxwell
and Dirac Lagrangians supplemented by the interaction

∆L =qAµψγ
µψ

containing all information needed to compute scattering
amplitudes; if we could calculate all terms of the pertur-
bative expansion we would get the entire analytic expres-
sion and despite we do not know it explicitly nevertheless
we do know that it has the general structure given by

qAµψγ
µψ=qF1(k

2)Aext
µ uγµu+

+
q

2m
F2(k

2)
1

2
F ext
µν 2iuσµνu (207)

in which F1(k
2) and F2(k

2) are what contains all the
information about the scattering in terms of the squared-
momentum transfer, called form factors: deviations from
the conditions F1(k

2)=1 and F2(k
2)=0 tell that some of

the loops, or radiative correction, has taken place, and so
quantum contributions to electro-dynamical must arise.

It is to be noticed that despite the perturbative series
cannot be calculated exactly, we have calculated the first
three terms and the results have a remarkable fit with ob-
servations in the case of the anomalous magnetic moment
of electrons and hyper-fine splittings of spectral lines.

There is however a problem, that is when we said that
the scattering amplitudes could be expanded in a pertur-
bative series, each term being a sum of all contributions
involving integrals over momentum space, we assumed all
this could be done, but the situation is not so straightfor-
ward as we have presented: there are general indications
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that the series may not converge, and this might be a first
fatal flaw; additionally, among the various contributions
there may be some for which the integral diverges for the
large momenta, unless an upper bound to the integration
is eventually placed. This upper bound to integration is
called cut-off, and it signals the limit beyond which all of
our calculations become worthless since we ignore what
physical effect might become relevant beyond this point.

Of course it could well happen that the physics beyond
the cut-off is such that it renders the dynamic trivial and
therefore the integral from the cut-off to infinity is really
irrelevant: we did already encounter such an example for
the black-body radiation, where the Rayleigh-Jeans law
seemed to diverge but it actually did not because of the
new physical behaviour given by the Wien law. Therefore
beyond the cut-off it may be that physics changes enough
to make the integral irrelevant, so that we can get rid of
it without too much of a trouble. When we can actually
do this, the theory is said to be a renormalizable theory.

We are not going to deepen the systematics of renor-
malization since it is a task that would bring us too far.

The point that needs to be retained is that these pro-
cedures are aimed at restoring the reliability of a theory
that is spoiled if infinities cannot be kept under control.

Admittedly, it is preferable to have a theory that does
not need to be renormalized, for which infinities appear
but they can be removed so to give finite results, and it
would be best to have a theory that gives finite results im-
mediately; for the moment such a theory still transcends
our means, so having a theory that is renormalizable is
the most we can ask: although renormalizability can be
discussed only within a heavy formalism, fortunately the
final results are easily implementable, as we will see.

A first step is assigning a mass-dimension to quanti-
ties, and because we chose ~= 1 and c= 1 as units, all
lengths are dimensionally inverse masses; quantities with-
out an a priori defined dimension of mass are assigned one
for which their kinetic term in the Lagrangian has mass-
dimension 4 in general: once all quantities have their own
mass-dimension, we get the mass-dimension of all terms
that can be included in the Lagrangian, and if in the total
Lagrangian all the kinetic terms have a mass-dimension
of 4 and all of the interactions a have mass-dimension not
higher than 4 then the Lagrangian is renormalizable.

To justify this argument intuitively, Wilson came up
with the idea that when a mass-dimension, or a length-
dimension, is assigned to a field, after a scaling distances,
there will be a corresponding scale transformation for the
field, and thus a scale transformation for its terms in the
Lagrangian: because the action is given in terms of the
Lagrangian multiplied by a 4-dimensional volume, then
the action is dimensionless, and therefore renormalizabil-
ity simply means that in the total action all kinetic terms
are scale invariant and all interactions are scale invariant
or they become negligible at smaller and smaller scales.

For example, taking the electro-dynamic Lagrangian

L = 1
4F

2+qAµψγ
µψ− i

2 (ψγ
µ
∇µψ−∇µψγ

µψ)+mψψ

we assign to the electrodynamic field Aα mass-dimension
1 and to the Dirac field ψ mass-dimension 3

2 so that both
kinetic terms have mass-dimension 4 while the interac-
tion has mass-dimension 4 and the mass term has mass
dimension 3 and thus, the Lagrangian is renormalizable.

As it is clear, the requirement of renormalizability also
puts an upper bound to the mass-dimension of the terms
that can enter in the Lagrangian, consequently limiting
the number of possible terms in the Lagrangian itself.

Therefore, renormalizability is not only useful to justify
that we can neglect some integrations in the interactions
since they would be irrelevant anyway, but it is also utile
in justifying why actions cannot have infinite terms.

7. Quantization and gravity

In the previous section, we have discussed that sec-
ond quantized field in interaction can be studied in terms
of scattering amplitudes, we have briefly described how
calculations are done in general, and as some prototype
interaction we have considered what happens for electro-
dynamics. We discussed the problem of renormalization,
showing the renormalizability of electro-dynamics itself.

The second interaction one might think to add beside
electro-dynamics, and possibly even more important than
that, is gravity: in fact, despite there exist fields that are
neutral and therefore transparent to electro-dynamics, all
fields have energy and therefore nothing is transparent to
gravity; gravity is described by Einstein field equations

Rρσ− 1
2Rgρσ−Λgρσ=

k
2Tρσ (208)

where k is the Newton gravitational constant.
These field equations have a kinetic term for gravity

that can be derived from the Lagrangian

L =2Λ+R (209)

varying with respect to the metric field.
In a theory of gravity in which this field is to be quan-

tized, that is in which the metric of the space-time is to be
raised to the status of operator of annihilation/creation
of virtual particles called gravitons, there is a tension that
comes from the fact that gravity couples to anything with
an energy and gravitons have energy: therefore, gravitons
would be self-interacting, and their dynamics would have
non-linear contributions. Gravitons can never be totally
free as the propagator of virtual gravitons should be.

Another problem of gravity is that its kinetic term is
a curvature, and curvatures have the dimension of an in-
verse area: so the kinetic term has mass-dimension 2 and
this means that Einstein gravity is not renormalizable.

Renormalizability may be obtained for the Lagrangian

L =2Λ+R+A
2 R

2+B
2 RρσR

ρσ (210)

where A and B are constants still undefined [52].
However, despite such a gravitational Lagrangian is

renormalizable, nevertheless there remains the fact that
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gravity is intrinsically non-linear while quantization in-
volves free propagators, and so although there may be a
manner to write the gravitational field equations coupling
energy to curvature in a renormalizable way, the fact that
gravity is encoded as the curvature of the space-time still
makes rather problematic its second quantization.

B. Spin

In all previous sections, we have established two con-
secutive quantizations, a first based on the assumption
that dynamical variables were operators undergoing com-
mutation relations, or that there exist fields satisfying
differential conditions, or that these fields were solutions
of field equations; and a second based on the assumption
that these fields are operators undergoing either commu-
tation or anticommutation relations: additionally, second
quantization also requires further concepts such as that of
renormalizability of interactions. We have discussed how
the first quantization stemmed from a certain number of
empirical evidences all condensed together into theoret-
ical statements; while second quantization insisted more
on the theoretical fact that with it it could be possible to
justify at once both the positivity of the energy and the
effects of the exclusion principle. A second quantization
is very successful in terms of its experimental confirma-
tion despite that theoretically problems are present.

We will discuss how these problems appeared and we
will further consider from where the mentioned problems
come as a point of departure for possible solutions.

1. Spin and relativity

So to begin our critical treatment of quantization, we
start by re-summarizing what has been done before fil-
tering out all irrelevant details and focusing on the most
fundamental concepts: as a first step, we implemented a
condition of quantization given by either

[x, P ]= i~

[t, E]= i~

or

i~
∂

∂t
ψ=Eψ

i~
∂

∂~x
ψ=− ~Pψ

but we also discussed that only the latter written as

i~~∇ψ=− ~Pψ

i~
∂

∂t
ψ=Eψ

are meaningful to eventually give a full covariant formu-
lation and we have seen that by calling the time as zeroth

coordinate these could be collected together as

i∇αψ=Pαψ (211)

in a complete relativistic covariant formulation; we have
seen that based on an argument of analogy, it is possi-
ble to have this quantization formally repeated a second
time by considering that fields could be re-interpreted as
operators verifying specific commutation relations

[ψi(x), ψ̇j
†
(y)]= iδijδ(x−y) (212)

for the Klein-Gordon field and anticommutation relations

{ψi(x), ψ
†
j (y)}=δijδ(x−y) (213)

for the Dirac field: by assuming that of the two possible
Dirac equations (194) only that with negative sign of the
mass term be allowed, it has been possible to demonstrate
that, for plane waves, the Hamiltonian had only positive
energy excitations and that the Pauli principle held.

And by computing scattering amplitudes, after having
introduced the property of renormalizability, it became a
mere technical computation that of calculating the effects
of radiative corrections for some elementary processes.

The success of the protocols of second quantization in
field theory are so remarkable that it is difficult to believe
some problems may arise, but this is what happens as we
are going to discuss: a first problem, and clearly the most
fundamental one, is that second quantization seems to be
genuinely incompatible with gravity; the usual behaviour
is that of assuming that gravity is the source of problems,
but the fact is that the theory of gravitation as we have
presented it in the previous part is a theory that is essen-
tially based on no hypothesis other than those that are
also considered in quantum field theory. As we developed
it above, we have only required to have the most general
system of the least-order derivative field equations, which
was enough to let us obtain Einstein equations as those
that can be obtained form (209), and from the Einstein
equations in weak field approximations it is possible to
obtain the known limits by interpreting gravity as what
is contained in the metric of the space-time; of course, it
is possible to argue that least-order derivative field equa-
tions are too restrictive, but even dropping this restric-
tion we would get higher-order derivative field equations
as those coming from (210), and from which in the weak
field approximations we would obtain the same limits and
so we could still interpret gravity as encoded within the
metric of the space-time. The problem of incompatibility
between gravity and second quantization comes from the
fact that we ignore how to second quantize fields that are
intrinsically non-linear, like those coupled to themselves
due to the fact that they have and are sourced by energy.

The fact that Einstein gravity (or any of its extensions
obtained by dropping the constraint of being at the least-
order derivative in the field equations) are virtually based
on no hypothesis makes it difficult to see how it may be
Einstein gravity (or any of its extensions) that has to be
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modified, and indeed all attempts known at the moment
involve a complete re-considerations of all the concepts
related to the space-time structure. Because for now all
such attempts are unsuccessful, it may not be unwise to
try a more humble approach in which second quantization
is the key element that has to be changed. After all it is
obvious that the procedure of second quantization has a
number of arbitrary assumptions that can be modified.

The most important is the fact that albeit renormal-
ization seem to work very well, still it would be desirable
to have a theory in which infinities are not removed after
showing up but in which they do not show up in the first
place: this may mean to get rid of a formalism in which
particles are represented as states and fields as operators.

Another assumption that is almost never noticed but
which is quite ubiquitous is that solutions are always
taken in plane waves, which do not exist: either because
every particle has an energy, so it curves the space-time
around itself and rectilinear coordinates would simply be
non-sensical; or because plane waves as we have already
remarked are not square integrable. A way out could be
to try a superposition of plane waves that does vanish at
infinity; but because matter fields enter non-linearly in
the expression of their conserved quantities, we cannot
be sure the superposition is still a solution. In any case,
these are solutions of the free matter field equation, and
once again clearly free matter fields do not really exist.

A hypothesis that also looked quite arbitrary was that
of the two Dirac equations (194) only that with negative
sign of the mass term was allowed, although we have seen
above that both signs of the mass term are allowed, and
which correspond to the two types of solutions linked by
the discrete transformation ψ→πψ in general, so that it
is clearly too restrictive to cut off half space of solutions.

As for the commutators, it is to be stressed that as it is
clear from (205) the presence of the infinite contribution
is quite up-setting, and although in quantum field theory
such a contribution is usually neglected because gravity
is never considered, nevertheless there is nothing we can
do when the coupling to gravitation is taken: getting rid
of this term would simply mean that the commutation
and anticommutation relationships reduce to

[ψi(x), ψ̇j
†
(y)]=0

and

{ψi(x), ψ
†
j (y)}=0

implying there are no commutation and anticommutation
relationships at all. Additionally, we have seen that such
commutation relationships have been assumed based on
an analogy with the commutation relationships that give
the conditions of quantization for a particle in quantum
mechanics, but it is not clear that this could make sense,
because we cannot be sure that analogy arguments work
and, for that matter, we have already remarked that even
in quantum mechanics, among all the conditions of quan-
tization, the one given in terms of commutation relation-

ships was abandoned in favour of the one given with dif-
ferential operators as the only one to be meaningful in a
complete relativistic covariant formulation of the theory.

As commutation relationships make no sense [51] nor
we have any definition of field operators [53, 54] it might
be wise to dispense with the idea of replicating a second
time the condition of quantization: in the following, the
condition of quantization will be a condition imposed on
mechanics solely. To be fair, we have to insist that even
quantization in mechanics is not needed, as we will argue.

Several times we have recalled that in mechanics, the
conditions of quantization can be implemented by either
re-interpreting position and momentum as operators ver-
ifying commutation relationships, or by having fields ver-
ifying some differential condition, or yet by assigning the
matter field equations: we have already recalled how the
commutators should be abandoned in favour of the dif-
ferential conditions given by the expressions

i∇αψ=Pαψ (214)

if we want to write everything in a relativistic covariant
form, but we may also abandon the differential conditions

i∇αψ=Pαψ (215)

in favour of the matter field equations

iγµ
∇µψ±mψ=0 (216)

which are more general and they are the only concept we
need after all; if we start from energy conditions defining
the dynamics of particles then we need quantization to
obtain the matter field equations giving the dynamics of
quantum particles, but we may just as well start directly
from the matter field equations in the form

iγµ
∇µψ±mψ=0 (217)

giving the dynamics of quantum particles immediately.
So, there is no need for quantization if we do not start

from particles but directly from quantum particles, given
as solutions of matter field equations that can be assigned
as a part of the full system of field equations, constructed
in terms of general arguments, as it was discussed in the
first part, and the field equations are all that is necessary
in order to obtain the phenomenology that is so success-
fully observed; nor could we employ second quantization,
since it is not a properly defined concept. Then how can
we recover the phenomenology we observed after all?

The starting point is to settle the problems of negative
energies and Pauli principle. Others will be treated later.

We begin with the issue of the energies and their being
positive as well as negative, and immediately we have to
state that we believe this might not be a problem in the
first place: there are two reasons for this, and the first is
that when dealing with energies it is impossible to neglect
what is sourced by energy, and that is the gravitational
field; when the gravitational field equations are taken into
account, we have a relationship linking the energy tensor
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to a non-linear expression involving the derivatives of the
metric tensor, and therefore two opposite energy tensors
give rise to two different structures of the metric and thus
to two different gravitational responses implying that in
general the negative energy field will not be a solution if
the positive energy field is a solution of the entire system
of field equations. The second reason is that there is no
real problem if energies are negative and in fact this is to
be expected for spinors; spinors like any other field have
contributions due to overall displacements, which must
be positive, but unlike any other field have contributions
due to the internal dynamics of the two chiral parts, and
if bound-states are to exist, these have to be negative, so
the total energy, where both contributions are entangled,
is a sum, whose sign cannot be defined in any way at all.

Because either there is no real problem with negative
energies or there is nothing to claim until also the gravi-
tational field equations are considered, the problem with
positive energy may not be a true problem after all [55].

The other problem that needs to be considered is about
the implementation of the Pauli exclusion principle: this
principle, as discussed at the beginning, starts from the
fact that, in the construction of electronic levels, obtained
by solving the non-relativistic matter field equations in a
Coulomb potential, the solutions are given in terms of a
quantum number n giving the energy level of the external
shell, accounting for a total of n2 electrons; because the
number of electrons we observe is 2n2 then there must be
a two-fold degeneracy, and that is solutions of the matter
field equation come in pair of two so that every electronic
shell can be filled twice by the same state. The exclusion
principle presented thusly is the original one due to Pauli.

Pauli’s initial idea to assign a two-fold degeneracy was
most straightforwardly that of introducing the concept
of spin: the connection is very simple, based on the fact
that irreducible representations of particles of spin s have
exactly d=2s+1 independent components; for particles
of spin s=1/2 this means d=2/2+1=2 components, so
that it is possible to think that these two components be
precisely the two states that account for the double state
of multiplicity. Explicitly, recalling (163) we have that

ψ=











±φ∗
0

φ

0











or ψ=











0

±φ∗
0

φ











(218)

where that on the left is a spin 1/2 eigen-state while that
on the right is a spin −1/2 eigen-state: that is for either
form and in it, for either of the two chiral parts, we have
that upper and lower components have an opposite value
of the helicity label. For the superposition of two spinors
having two opposite helicities we have for example that

ψup+ψdown=











±φ∗
±φ∗
φ

φ











(219)

which is no longer a spin eigen-state but still in an allowed
form, while for the superposition of two spinors that are
identical in every respect the sum of two solutions cannot
be solution, due to the non-linearity of the sources of the
geometrical field equations within the entire system.

This seems a dynamical form of Pauli principle.
Another problem that must be addressed by employing

alternative methods is the hyper-fine splitting of spectral
lines in atomic emission: this phenomenon, which is also
known as Lamb shift, is about the fact that in atoms the
electronic levels display an energy shift that is observed
but which has otherwise no explanation. Nevertheless it
was immediately after Lamb discussed this phenomenon
that Welton provided an explanation in terms of the fact
that electrons may have a finite size [56]. The idea is that
electrons with finite size can never be at the very bottom
of the Coulomb potential, and the surplus of energy gives
the energy shift of the hyper-fine splittings we observe.

The problem of the anomalous magnetic moments also
received immediate and close attention, but all attempts
made to explain it without quantum fields were affected
by alternative arbitrary assumptions, and it was not until
recently that a purely classical field theoretical method
of calculation has been used [57]: to recall the main idea
we have to consider that electro-dynamics is encoded by
exact solutions of the inhomogeneous Maxwell equations

Aν=
q

4π

∫

U ′
ν

|~r−~r ′|d
3r′ (220)

with ψ′=ψ′(t−|~r−~r ′|, ~r ′) retarded potentials, and assum-
ing that i∇µψ=Pµψ the decomposition (153) becomes

PνΦ−α
∫

ΦU ′
ν

|~r−~r ′|d
3r′ −

−1

2
∇µSµν+XW

σΣσν−mUν=0 (221)

with 4πα=q2 as fine-structure constant; we assume that
both gravity and torsion will be neglected, and in case of
non-relativistic approximation the spinor has small space
part of the velocity and small Takabayashi angle. A small
space part of the velocity means that the two chiral parts
indicated as ψL=ψ and ψR=ψ′ are such that they verify

expressions Φ′=Φ and ~U ′=−~U telling that two opposite
chiralities have equal module but opposite velocity for a
given spin state, and a small Takabayashi angle tells that
in standard representation the spinor loses the small part
and thus we may set ψ=(φ†, 0) in general; the two chiral
parts will be assumed at a distance |~r−~r ′|=λ in average
equal to the Compton wave-length. This assumption will
imply that the above expression in its space part become

~∇×
(

φ†
~σ

2
φ

)

+ ~PΦ−m~U
(

1− α

2π

)

=0 (222)

as it can be checked in a rather straightforward manner.
As a consequence of this expression, and for the general

definition of the magnetic moment, we obtain that

~µ=

(〈

~σ

2

〉

+
1

2
〈~r× ~P 〉

)

q

2m
2
(

1− α

2π

)−1

(223)
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in which we recognize the average of the angular momen-
tum of the quantum particle and the average of the spin
operator, times the Bohr magneton q

2m times the factor

g=2
(

1− α

2π

)−1

≈2
(

1+
α

2π

)

(224)

to first order in the α parameter: this formula allows for
a direct interpretation of the factor 2 as due to the double
multiplicity of the chiral structure, while the factor given
by the term (1+ α

2π ) can be read as the unity contribution
coming from the mechanical momentum plus a correction
given by α

2π at first-order perturbative and due to the fact
that the two chiral parts have electro-dynamic interaction
with average distance of Compton length. However, there
is no reason why such a distance should be the Compton
length and we regard this as the last missing element [57].

This picture is merely the application to leptons of the
picture that is very successful in the case of hadrons, and
that is we exploit chiral internal structure to fit anomalies
of the magnetic moment of leptons much in the same way
in which the quark internal structure gives the anomalies
of the magnetic moment of hadrons as known [58].

To an attentive analysis, it is clear that the theoretical
and phenomenological problems of field theory commonly
solved using field quantization can also be treated with-
out it in a purely classical field theory: it is essential to
notice that whether we discussed about issues related to
the energy or the Pauli principle, or computations of the
Lamb shift or the anomalous magnetic moment, we have
systematically used the fact that the spinor is a particle
with finite size having internal structure given in terms
of two chiral parts in mutual interaction. Or equivalently
that the spinor be allowed to display its spin structure.

In the common paradigm of field quantization the spin
structure albeit present does not play a full role, as clear
from the fact that in this context the Takabayashi angle
is always equal to zero since only solutions in plane waves
are considered; no internal structure is considered nor an
extension, since particles are always taken point-like.

In the theory of quantum fields, electrons are point-like
with quantum effects giving an electronic self-interaction
in terms of radiative processes involving loops, while here
the self-interaction of the spinor should be regarded as a
mutual interaction of its two chiral parts giving internal
dynamics for extended fields, and consequently allowing
the Zitterbewegung to actually influence the particles.

The Zitterbewegung of classical fields and quantum ef-
fects for structureless particles might coincide [59].

Such a parallel has also been discussed in [60].

VII. SPECIAL SITUATIONS

In the previous section we have seen that, in quantum
field theory, the approach is that of considering the par-
ticle as a point-like object without internal structure by
taking into account only plane-wave solutions since these
have no Takabayashi angle and then quantize it, while

in the approach followed here, we considered no quanti-
zation and we allowed the Takabayashi angle to describe
internal dynamics: we have shown or discussed that such
an internal dynamics between the two chiral parts of the
spinor might give rise to effects that recover those due to
field quantization. We recalled that the link between the
field quantization and Zitterbewegung effects is not new
as idea, although admittedly it is very little explored.

Aside from the analogies, there are also distinctive dif-
ferences, for instance, phenomenologically, quantum field
theory is very successful while all of the alternatives still
find themselves at the state of the art in which quantum
field theory was few years after being conceived; however,
theoretically, it is not at all clear if quantum field theory
makes any sense while Zitterbewegung is the result of spin
for spinor fields and therefore it is perfectly defined.

Additionally, although the presence of spin for a spinor
field is always considered to have a marginal role, in this
work we have the possibility to fully take it into account
because such a most general theory of spinors is exactly
what we have built in the first part of this work.

A. Macroscopic approximations

In the first part we showed how by exploiting the trans-
formation of the spinor we can boost into the rest frame
so to have the most general spinor written in the form
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with still three rotations free to achieve; by employing at
most two of these we can rotate the spin along the third
axis giving the spinor in its most general form as either
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according to whether the axial-vector is either aligned or
anti-aligned with the third axis respectively, and so either
way they are eigen-states of the rotation around the third
axis, with still one rotation to accomplish. Before we had
proceeded in actually performing the last rotation but as
of now we will no longer do it, stopping where we are.

The spinor with the structure that is given by either
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can be differentiated with respect to the coordinates and

i∂µψ=(12∂µβπ+i∂µ lnφ−∂µα)ψ
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and given the spinor connection it is possible to build the
most general spinorial covariant derivative; when spinor
covariant derivatives are substituted into the spinor dif-
ferential field equations, we obtain that by defining

Kµ=2XWµ+
1
2gµνε

νρσα∂ρξ
k
σξ

j
αηjk −

−2(qAρ+∇ρα)u[ρvµ]

Gµ=−|ξ|−1ξkµ∂α(|ξ|ξαk )−
−2(qAρ+∇ρα)uνvαεµρνα

they are given by the following expressions

∇µβ−Kµ+vµ2m cosβ=0

∇µ lnφ
2−Gµ+vµ2m sinβ=0

which are the most general form of spinor field equations
as it can be seen by re-following the same passages above.

The structure of the field equations has not changed.
But the structure of the external potentials did change

and now there is the extra term ∇µα in both: the reason
for writing this form is that now, if the gravitational field
can be neglected, we may find a global system of Galileian
coordinates in which we may set α=−Pkx

k so that either
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φ (225)

with spinorial covariant derivatives that are given by

i∇µψ=(12∇µβπ+i∇µ lnφ+Pµ−qAµ)ψ (226)

in which we see the condition of quantization with differ-
ential operators; plugged into the field equations it gives

∇µβ−2XWµ+2(qAρ−P ρ)u[ρvµ]+vµ2m cosβ=0 (227)

∇µ lnφ
2+2(qAρ−P ρ)uνvαεµρνα+vµ2m sinβ=0 (228)

in terms of the remaining external torsion and gauge po-
tentials and with the dependence on the Pρ constants.

Therefore we see now that, in absence of gravitational
fields, we can write the spinor with its spinorial covariant
derivatives and spinor differential field equations with the
structure of plane waves, with the condition of quantiza-
tion in terms of differential operators (211) as above.

But here this condition is more general because it does
contain also gauge potentials and torsion fields.

From the last two equations we may derive expression

P ν=m cosβuν+qAν+v[νuµ](12∇µβ−XWµ) +

+ 1
2ε

νρσµvρuσ∇µ lnφ
2 (229)

giving the explicit form of the momentum and which can
also be derived as a combination of specific decomposi-
tions of the spinor field equations; other important ones
are expression (137) for the axial-vector spin and known
as partially-conserved axial-vector current with (135) for

the vector velocity called conserved vector current along-
side to (142) for the tensor of spin called conserved tensor
current: these last two relationships are the conservation
laws for the gauge current and the spin but we also have

∇ρ[
1
4F

2gρσ−F ραF σ
α +

+ 1
4 (∂W )2gρσ−(∂W )σα(∂W )ρα +

+M2(W ρW σ− 1
2W

2gρσ) +

+ i
4 (ψγ

ρ
∇

σψ−∇
σψγρψ+ψγσ

∇
ρψ−∇

ρψγσψ)−
− 1

2X(W σψγρπψ+W ρψγσπψ)]=0

for the tensor of energy and which does not appear among
the decompositions of the spinor field equations.

With the above expressions of the momentum this gets

∇ρ[
1
4F

2gρσ−F ραF σ
α +

+ 1
4 (∂W )2gρσ−(∂W )σα(∂W )ρα +

+M2(W ρW σ− 1
2W

2gρσ)−
−XWµ(v

[σuµ]uρ+v[ρuµ]uσ+gµσvρ+gµρvσ)φ2 +

+ 1
2∇µβ(v

[σuµ]uρ+v[ρuµ]uσ+gµσvρ+gµρvσ)φ2 +

+ 1
2 (ε

σηαµvηuαu
ρ+ερηαµvηuαu

σ)∇µφ
2 +

+2φ2m cosβuσuρ]=0

quite straightforwardly; it can also be written defining

Eσρ= 1
2∇µβ(v

[σuµ]uρ+v[ρuµ]uσ+gµσvρ+gµρvσ)φ2 +

+ 1
2 (ε

σηαµvηuαu
ρ+ερηαµvηuαu

σ)∇µφ
2 +

+2φ2m cosβuσuρ (230)

according to

∇ρ[
1
4F

2gρσ−F ραF σ
α +

+ 1
4 (∂W )2gρσ−(∂W )σα(∂W )ρα +

+M2(W ρW σ− 1
2W

2gρσ)−
−XWµ(v

[σuµ]uρ+v[ρuµ]uσ +

+gµσvρ+gµρvσ)φ2+Eσρ]=0

where Eσρ is the energy tensor of the pure matter field.
If torsion-matter interactions and torsion dynamics are

neglected in the conservation law for the energy while the
Takabayashi angle dynamics is neglected in the definition
of the energy, we may approximate all to the form

Eσρ= 1
2 (ε

σηαµvηuαu
ρ+ερηαµvηuαu

σ)∇µφ
2 +

+2φ2muσuρ

with

∇ρ(
1
4F

2gρσ−F ραF σ
α+E

σρ)=0

which hold in the situation where internal dynamics are
concealed inside the spinor matter field distribution.

We notice that the time-time component of the energy
is given by Ett=2φ2m which is positive and also

∇ρ(
1
4F

2gρσ−F ραF σ
α+2φ2muσuρ +

+ 1
2 (ε

σηαµvηuαu
ρ+ερηαµvηuαu

σ)∇µφ
2)=0
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which can be worked out: by employing the gauge field
equations and the identity ∇ρ(2φ

2uρ)=0 we obtain

2φ2muρ∇ρu
σ+ 1

2∇ρ[∇µφ
2(εσηαµvηuαu

ρ +

+ερηαµvηuαu
σ)]=2φ2qF σαuα

which is the equation of motion for the matter distribu-
tion having a non-trivial contribution of the density field
and coupled to an external electro-dynamic field.

The additional term ∇µφ
2 is because the matter distri-

bution is still a field and it is only when the field vanishes
everywhere except in localized regions that

muρ∇ρu
σ=qF σαuα

or in the free case

uρ∇ρu
σ=0

as the equation of motion usually known as Newton law
expected to appear in macroscopic approximation.

We started from the most general situation, and first
we have neglected gravitation to implement the condition
of quantization (211) as above, then we neglected torsion
and internal dynamics, finally we assumed the field to be
localized and without electro-dynamics, and only in this
case we reduced to uρ∇ρu

σ=0 as the equation of motion,
that is the Newton law: we notice that if we were to write
non-relativistic cases of Newton gravitational potential
and equation of motion, the term 2φ2m is both the energy
and the mass density, or equivalently both gravitational
and inertial mass density, a fact known as the equivalence
of gravitational and inertial mass, established with great
experimental accuracy. This equivalence of gravitational
and inertial masses is said weak equivalence principle, in
parallel to the fact that the equivalence of gravitational
and inertial accelerations is the equivalence principle, but
despite it is ubiquitously told that the equivalence prin-
ciple implies the weak equivalence principle, this is true
when Newton law is assigned and in this case solely.

As already remarked, the principle of equivalence is a
general consequence of the theory, and the accuracy with
which the weak equivalence principle is confirmed should
not be taken as confirmation of the equivalence principle,
for which no proof is required, but as confirmation of the
fact that the macroscopic approximation is good.

Finally, we recall that above we have suggested that
the problem with energy not being positive may be due to
energies that are negative as the contributions of internal
dynamics, so only if these are hidden can positive energy
be ensured, which is what we proved now [55].

B. Singularity

Having discussed macroscopic approximations result-
ing from concealing internal structures and disregarding
the shape of the matter distribution, we want to address
the opposite problem: given that the matter field is very

well approximated by a localized distribution, it might be
possible that this localization takes the distribution down
to point-like objects so much that singularities may form
according to the Hawking-Penrose theorem. Henceforth,
we want to see what happens if torsion is not neglected.

As a matter of fact, this study has already been started
by Kerlick [61], but demonstrating that when in gravity
also torsion is considered the singularity formation is not
avoided, rather it is enhanced; however, this result is due
to the fact that the torsionally-induced spin-spin forces
are intrinsically repulsive, with the consequence that they
have a positive potential increasing the energy content of
the space-time, and thus the possibility of singularities.

This happens to be the case because Kerlick considers
the simplest generalization of Einstein gravity, where the
torsion does not propagate, and in which the coupling is
taken to be the Newton constant, and this results into a
spin-spin force having a weak and repulsive character.

On the other hand, however, we have been discussing
above that, first of all, in a more general theory of torsion
gravity, the torsion-spin coupling is in no way related to
the curvature-energy coupling, thus there is no reason for
them to be equal, and not only the torsion-spin coupling
is allowed to be different from the Newton constant but
additionally it is allowed to have opposite sign; moreover,
we also remarked that in the most general theory in which
torsion propagates, the torsion-spin coupling necessarily
has an opposite sign in the effective case. Consequently,
the effective forces will be intrinsically attractive, so that
their negative potential will decrease the energy content
of the space-time, and singularities may be avoided.

To put words in expressions, take (131) contracted as

−R−4Λ= k
2 (−M2W 2+mΦ) (231)

where (134) was used; when this form is plugged into the
original equations we obtain that they become

Rρσ+Λgρσ= k
2 [

1
4F

2gρσ−F ραF σ
α +

+ 1
4 (∂W )2gρσ−(∂W )σα(∂W )ρα+M

2W ρW σ +

+ i
4 (ψγ

ρ
∇

σψ−∇
σψγρψ+ψγσ

∇
ρψ−∇

ρψγσψ)−
− 1

2X(W σV ρ+W ρV σ)− 1
2mΦgρσ] (232)

equivalent to those in the original form. But this form is
best suited for application to the singularity theorem.

In fact, for the singularity theorem in Einstein gravity

Rρσuρuσ>0 (233)

known as the strongest energy condition: neglecting the
cosmological constant and electro-dynamics we obtain

[ 14 (∂W )2gρσ−(∂W )σα(∂W )ρα+M
2W ρW σ +

+ i
2 (ψγ

ρ
∇

σψ−∇
σψγρψ)− 1

2mΦgρσ]uρuσ>0 (234)

which in the effective approximation becomes

i
2 (ψγ

0
∇0ψ−∇0ψγ

0ψ)− 1
2mΦ>0 (235)
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and because (133) in the effective approximation is

iγ0
∇0ψ+i~γ · ~∇ψ− X2

M2 Vσγ
σπψ−mψ=0 (236)

we may use this into the above to get

i
2 (
~∇ψ ·~γψ−ψ~γ · ~∇ψ)+ X2

M2VσV
σ+ 1

2mΦ>0 (237)

whose structure is similar to the condition of Kerlick but
with the sign of the non-linear interaction inverted.

We may now follow Kerlick argument by neglecting the
derivative term, and by employing (97), we get that

−4X2

M2φ
4+mφ2 cosβ>0 (238)

which for specific Takabayashi angles, or in general for
large densities, can be violated, and quite easily too.

This is already an improvement compared to Kerlick’s
model but we would press further and see what happens
when no effective approximation is done: in this case

[ 14 (∂W )2gρσ−(∂W )σα(∂W )ρα+M
2W ρW σ +

+ i
2 (ψγ

ρ
∇

σψ−∇
σψγρψ)− 1

2mΦgρσ]uρuσ>0 (239)

or equivalently

1
4 (∂W )2−(∂W )0k(∂W )0k+M

2W 0W 0 +

+ i
2 (ψγ

0
∇0ψ−∇0ψγ

0ψ)− 1
2mΦ>0 (240)

and with (133) we obtain

1
4 (∂W )2−(∂W )0k(∂W )0k+M

2W 0W 0 +

+ i
2 (
~∇ψ ·~γψ−ψ~γ · ~∇ψ)+XWσV

σ+ 1
2mΦ>0 (241)

which is indeed more general than Kerlick’s condition.
With no other approximation to do, and even with all

derivative terms positive defined, it is straightforward to
see that because of presence of the torsion-spin coupling
and the Takabayashi angle, the energy condition need not
be verified and the singularity is no longer a necessity.

As a consequence, the widely-spread claims that gravi-
tation would break-down due to singularity formation at
high energy, and which appear to be worsened in torsion
gravity, are no longer supported if propagating torsion in
gravitational backgrounds is properly considered and for
a treatment that is not too strong in approximation [62].

When before we talked about the Pauli principle of ex-
clusion we did not consider possible applications such as
the stability of neutrons stars due to degeneracy pressure,
and it is intriguing that torsion-spin coupling be capable
of mimicking degeneracy pressures to such extent.

VIII. COMMENTS

In this second part, we started by re-calling, beginning
from the pre-history of quantum theories, the foundations
of the quanta and their mathematical implementation in
the fiber of our models: we have proceeded to critically

discuss the weak points, deconstructing the implementa-
tion of quantum protocols, to find that alternatives could
be obtained, by exploiting the spin content. We have dis-
cussed the approximation in which the internal dynamics
is neglected, as a basis for the macroscopic approximation
that naturally followed: we have seen that in the theory
with propagating torsion in gravitational backgrounds no
singularity need form. Some comment is now in order.

The key point of this part is that there are theoretical
as well as phenomenological issues that pushes us toward
corrections of field theory: the usual paradigm is that of
quantum field theory, the theory of fields with implemen-
tation of field quantization, where particles are taken to
be point-like, mathematically realized in the employment
of plane waves, and expanding the interactions in terms
of radiative processes involving a definite number of loop
diagrams; in what we have presented, no quantization is
implemented, and particles are considered to have a finite
size, with internal structure given in terms of two chiral
parts in interaction through torsion, that is we imposed
no quantization, but we insisted on internal dynamics.

It may be that in quantum field theory the process of
field quantization is needed as a supplement for the loss of
information that is due to the fact that the Takabayashi
angle is systematically neglected, so there may be no need
for it if the Takabayashi angle is allowed; and in general
the Takabayashi angle is different from zero indeed.

The link between Zitterbewegung effects of the internal
dynamics and quantum aspects may be profound.

THREE: PHYSICS

IX. STANDARD MODELS

In this third part we apply the field equations and the
Lagrangians we have obtained above, to investigate six
different known open problems in the standard models.

A. Axial-vector interactions

Throughout the entire presentation, we have been con-
sidering single spinor fields, but clearly the treatment of
two spinor fields, or even more spinor fields, is doable, and
it is achieved by replicating the spinor field Lagrangian as
many times as the number of independent spinor fields.

For instance, in the case of two spinor fields we have

L =− 1
4 (∂W )2+ 1

2M
2W 2− 1

kR− 2
kΛ− 1

4F
2 +

+iψ1γ
µ
∇µψ1+iψ2γ

µ
∇µψ2 +

−X1ψ1γ
µπψ1Wµ−X2ψ2γ

µπψ2Wµ +

−m1ψ1ψ1−m2ψ2ψ2 (242)

and taking the variation with respect to torsion gives

∇ν(∂W )νµ+M2Wµ=X1ψ1γ
µπψ1 +

+X2ψ2γ
µπψ2 (243)
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as the torsion field equations with two sources: if we con-
sider the effective approximation we obtain expressions

M2Wµ≈X1ψ1γ
µπψ1+X2ψ2γ

µπψ2 (244)

which can be plugged back into the Lagrangian giving

L =− 1
kR− 2

kΛ− 1
4F

2+iψ1γ
µ
∇µψ1+iψ2γ

µ
∇µψ2 +

+ 1
2

∣

∣

X1

M

∣

∣

2
ψ1γ

µψ1ψ1γµψ1+
1
2

∣

∣

X2

M

∣

∣

2
ψ2γ

µψ2ψ2γµψ2 −
−X1

M
X2

M ψ1γ
µπψ1ψ2γµπψ2−m1ψ1ψ1−m2ψ2ψ2 (245)

in which each spinor has the self-interaction but between
the two spinors there is also a mutual interaction.

The extension to three spinor fields, or n spinor fields,
is similar: there are n self-interactions, always attractive,
and 1

2n(n−1) mutual interactions, being either attractive
or repulsive according toXiXj being positive or negative.

This extension is interesting for n = 3 because such
is the situation we have for neutrinos: by neglecting all
interactions apart from the effective interactions, and in
them neglecting the self-interaction so to have only the
mutual interactions, one may calculate the Hamiltonian

H =
∑

ij

νi(Uij−XiXjγ
µπνiνjπγµ)νj (246)

where the Latin indices run over the three labels asso-
ciated to the three different flavours of neutrinos; then
the matrix Uij −XiXjγ

µπνiνjπγµ is the combination
of the constant matrix Uij describing kinematic phases
that arise from the mass terms as usual plus the field-
dependent matrix XiXjγ

µπνiνjπγµ describing the dy-
namical phases that arise from the torsionally-induced
non-linear potentials that pertain to this theory.

Dealing with the non-linear potentials is problematic,
but in reference [63] this problem is solved by taking neu-
trinos dense enough to make the torsion field background
homogeneous and thus constant: the phase difference is

∆Φ≈
(

∆m2

2E
+
1

4
|W 0−W 3|

)

L (247)

having assumed W1=W2=0 and where L is the length of
the oscillations. In [64] it was seen that (247) in the case
in which the neutrino mass difference is small becomes

∆Φ≈
(

∆m2+m
X2

eff

4M2
|νγµννγ

µν| 12
)

L

2E
(248)

where m is the value of the nearly-equal masses of neutri-
nos while X2

eff is a combination of the coupling constants
and with the dependence L/E as the ratio between length
and energy of the oscillations as it is well expected.

The phase difference due to the oscillation has the kine-
matic contribution, as difference of the squared masses,
plus a dynamic contribution, proportional to the neutrino
mass density distribution: the novelty torsion introduces
is that even in the case in which neutrino masses were to
be non-zero but with insufficient non-degeneracy in mass

spectrum, we might still have oscillations, and therefore
ampler margin of freedom before having some tension.

Notice also that both m andX2
eff depend on the masses

and coupling constants of the two neutrinos involved and
so that they would be different for another pair of neutri-
nos, making it clear how the parameters of the oscillation
depend on the specific pair of neutrinos, as should be.

If torsion can have effects for neutrino oscillation, then
it may also affect the weak interactions among all leptons
we know, that is between neutrinos and charged leptons.

The Lagrangian of the standard model [46] is such that
after the symmetry breaking it can be written as

L SM= 1
2λ

2v4−m2
H(H

2+4vH
4v2 )H2−me

v Hee +

+(m2
WW−

µ W
µ++ 1

2m
2
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2)(H
2+2vH
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(
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ν W
+
µ
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(
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)

+

+ig cos θZν
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µ ∇[µW ν]−−W−

µ ∇[µW ν]+
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+
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2
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W−
µ νγ

µeL+W
+
µ eLγ

µν
)

+

+ g
cos θZµ[

1
2 (νγ

µν−eLγµeL)+|sin θ|2eγµe]−
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4F
2− 1

4

(

∇[µZν]∇[µZν]
)

+ 1
2m

2
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2 −
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2 (∇[µW
+
ν]∇[µW ν]−)+m2

WW−
µ W

µ+ +

+
(

∇µH∇µH−m2
HH

2
)

+

+(ieγµ
∇µe−meee) +

+iνγµ
∇µν (249)

where ∇µ and ∇µ are the general tensorial and spinorial
covariant derivatives of the remaining abelian symmetry
which, consequently, accounts for the electro-dynamic in-
teraction of all the fields that carry an electric charge.

We already discussed the impact on the Lagrangian of
the effective Higgs field, and in the following we focus on
the effective weak interactions as also these are mediated
by two massive bosons: by taking the field equations for
the vector bosons in the effective approximation we get

m2
ZZµ=− g

cos θ [
1
2 (νγµν−eLγµeL)+|sin θ|2eγµe] (250)

m2
WW+

µ =− g√
2
νγµeL (251)

which can be substituted within the Lagrangian, and by
employing (87) as usual, one gets the effective Lagrangian

∆L
SM
effective=− g2

2m2

Z

|sin θ|2|tan θ|2eγµeeγµe−

− g2

2m2

Z

|tan θ|2 (νγµν−eLγµeL) eγµe+

+
(

g2

2m2

W

+ g2

4m2

Z |cos θ|2
)

eLγ
µeLνγµν (252)

in terms of the effective coupling and the mixing angle,
and showing that the weak interactions are repulsive.

On the other hand, the Lagrangian for the two spino-
rial fields, neglecting the gravitational contributions, and
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calling the spinors e and ν just for clarity, is given by

L Q=− 1
4 (∂W )2+ 1

2M
2W 2− 1

4F
2− 1

4G
2 +

+ieγµ
∇µe+iνγ

µ
∇µν +

−Xeeγ
µπeWµ−Xννγ

µπνWµ +

−meee−mννν (253)

in which we have indicated as F 2 and G2 all gauge terms
referring to the U(1) and the SU(2) group respectively,
and with effective approximation that is given by

∆L
Q
effective=

1
2

X2

e

M2 eγ
µeeγµe+

1
2
X2

ν

M2 νγ
µννγµν −

−XeXν

M2 eγµπeνγµπν (254)

in which we have profited of the identity (97) once again
and where ∆L means we consider only the spinor sector.

To meaningfully compare this Lagrangian against the
Lagrangian of the standard model, it is compulsory that
the two Lagrangians have the same field content, and as
in the standard model all the neutrinos are massless and
left-handed the same should be for this Lagrangian: after
re-arranging chiral parts according to (87) we get

∆L
Q−reduced
effective = Xe(Xe+Xν)

2M2 eγµeeγµe+

+XeXν

M2 (νγµν−eLγµeL)eγ
µe−

−2XeXν

M2 eLγ
µeLνγµν (255)

reduced indeed to the same field content of the standard
model Lagrangian and so they can be compared.

To actually do such a comparison, we take the standard
model complemented with torsional effects, so that

∆L
total−reduced
effective =∆L SM

effective+∆L
Q−reduced
effective =

= −
(

g2

2m2

Z

|sin θ|2|tan θ|2−Xe(Xe+Xν)
2M2

)

eγµeeγµe−

−
(

g2

2m2

Z

|tan θ|2−XeXν

M2

)

(νγµν−eLγµeL) eγµe +

+
(

g2

2m2

W

+ g2

4m2

Z
|cos θ|2 −2XeXν

M2

)

eLγ
µeLνγµν (256)

showing that in such a case the torsionally-induced spin-
contact interaction affects the standard model by correct-
ing its coupling constants as to make them weaker, which
is reasonable since torsion is attractive whereas the weak
interactions are repulsive. And nevertheless we have that
the precision with which these constants are now known
imposes the torsional corrections to the standard model
to be very small, which is a hint of the fact that either all
coupling constants are small or the torsion mass is large.

Or yet again, it might suggest that the approximations
with which we worked have been too strong, and that is
we should not have considered effective approximations.

Without any effective approximation and allowing ster-
ile right-handed neutrinos, the torsional correction to the
standard model in the spinor sector is described by

∆L total=−Xeeγ
µπeWµ−Xννγ

µπνWµ +

+ g√
2

(

W−
µ νγ

µeL+W
+
µ eLγ

µν
)

+

+ g
cos θZµ[

1
2 (νγ

µν−eLγµeL)+|sin θ|2eγµe] (257)

in which care has to be taken in distinguishing the weak
boson from torsion (the reason why I used the same letter
for both is that when defining torsion I did not intend to
study the standard model); clearly if the neutrino is not
left-handed (as it should be to grant the mass from which
we obtain the kinematic mechanism that is needed to fit
oscillations), the two types of neutrino coupling are quite
different, according to whether we consider the torsion or
the weak interactions: the fact that a sterile neutrino is
by construction insensitive to weak interactions but it is
sensitive to the universal torsion interaction is the single
most important reason for such type of discrepancy.

If we are under the conditions where we can perform an
effective approximation, torsionally-induced spin-contact
interactions can be re-arranged as to become structurally
identical to the weak forces, so that they affect the weak
sector only by shifting the coupling constants, but this is
already a problem since such a change would be visible in
the clean environment of leptonic scattering; on the other
hand, if we cannot perform this approximation therefore
staying in the most general case, the propagating torsion
does not even have the structure of the weak interactions,
and its presence is even clearer: as a consequence, it is not
likely to find torsional corrections to weak interactions in
the case in which only lepton fields are considered.

Hence, if we want to have some hope of finding torsion
we should look beyond the standard model.

Before proceeding further to the problem of looking for
torsion beyond the standard model, it may be instructive
to pause and ask if it is possible that torsion may already
be around at the present energy scale, although somehow
hidden: we have argued that torsion does not affect weak
interactions in the leptonic sector because we would have
already seen it in the clear lepton scattering, but torsion
may affect the weak interactions in the case of quarks
or influence chromo-dynamics and still be hidden in the
messy environment involving nucleons. Therefore, it may
be that torsion is already present although not manifest.

The question we are asking now is: granted that in the
case of leptons all the torsion coupling constants must be
small as to comply with very stringent limits, still in the
case of quarks the torsion coupling constants are allowed
to be larger since experimental limits are less strict, and
therefore could it be that in the case of quarks the torsion
coupling constants happen to be larger, and in fact large
enough to take place beside the weak forces and chromo-
dynamics, changing some physical quantity for nucleons?

The answer requires mean beyond my capabilities, but
still I am tempted to give a sort of reasonable speculation.

Recently a group of researchers [65] measured the pro-
ton radius obtaining a value that was more than five stan-
dard deviations off theoretical predictions; this “proton
radius problem” may of course be tied to the appearance
of new physics, as it is normally expected, but clearly this
new physics may actually be some old physics in disguise
and what we have in mind is the presence of torsion.

In fact the torsion field, being present, would superpose
to chromo-dynamic interactions, and being attractive, it
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would result into an apparent strengthening of the bind-
ing potential, and the subsequent shrinking of the region
in which the matter field distribution finds place.

And of course it would not be necessary to invoke this
as a new physical effect, torsion being naturally present
in the most general geometric background.

After this brief speculation about the way torsion could
superpose to chromo-dynamics to change the parton dis-
tribution, we go back to our line of thought, and wonder
if torsion gives rise to effects beyond the standard model.

The most immediate place in which to look is the stan-
dard model of cosmology, and more specifically the dark
matter sector; there are a few assumptions we will make
throughout this section, quite reasonable nonetheless.

A zeroth point is, of course, that despite we still do not
exactly know what dark matter is, nevertheless it has to
be a form of matter: albeit many models may fit galactic
behaviour in the case of rotations, only dark matter as a
real form of matter fits galactic behaviours that are less
trivial like those encountered in crossing galaxies [66].

A first point is that, given dark matter as matter, mas-
sive and very weakly interacting, we will also assume it to
be a 1

2 -spin spinor field: there is no specific reason for this
apart from the fact that most attempts to describe dark
matter are based on this assumption, and by assuming it
we place ourselves in a good position for comparison.

The fact we have assumed dark matter be a spinor also
makes it prone to have the torsional interactions in which
we are interested: in [67] torsion effects have been studied
in a classical context to see how galactic dynamics could
be modified by torsion, and in [68] we have applied those
results to the case in which torsion was coupled to spinors
to see how galactic dynamics could be modified by torsion
and how torsion could be sourced by dark matter.

So here as before, torsion is not used as an alternative
but as a correction over pre-existing physics. Having this
in mind, we recall that in [68] we showed how, if spinors
are the source of torsion, the gravitational field in galaxies
turns out to be increased: from (131) we see that in the
case of the effective approximation (170) we get

Rρσ− 1
2Rg

ρσ−Λgρσ= k
2 (E

ρσ− 1
2
X2

M2 V
µVµg

ρσ) (258)

showing that the spinor field with the torsionally-induced
non-linear interactions has an effective energy which is
written as the usual term plus a non-linear contribution.

For this contribution we have to recall that we are not
considering a single spinor field, as we have done when in
particle physics, but collective states of spinor fields, as it
is natural to assume in cosmology, with the consequence
that it is not possible to employ the re-arrangements we
used before and thus V µVµ cannot be reduced: generally
we do not know how to compute it, but we know it is the
square of a density, and it may turn out to be positive.

In reference [68] we have been discussing precisely what
would happen if the spin density square happened to be
positive, and we have found that the contribution to the
energy would change the gravitational field as to allow for
a constant behaviour of the rotation curves of galaxies,

discussing the value of the torsion-spin coupling constant
that is required to fit the galactic observations.

The details of the calculations were based on the fact
that in this occurrence and within the approximations of
slow rotational velocity and weak gravitational field, the
acceleration felt by a point-particle was given by

div~a≈−mρ−K2ρ2 (259)

in which the Newton gravitational constant has been nor-
malized and whereK is the effective value of the torsional
constant, with constant tangential velocity obtained for
densities scaling down as r−2 in general: in the standard
approach to dark matter there are only Newtonian source
contributions scaling down as r−1 and so a modification
to the density distribution has to be devised, and it is the
well known Navarro-Frenk-White profile; in the presence
of torsional corrections, the Newtonian profile suffices be-
cause even if the density drops as r−1 it is squared in the
torsional correction and thus the r−2 drop is obtained.

This suggests that the torsion correction may be what
gives the Navarro-Frenk-White profile: after all the NFW
profile is obtained in n-body dynamics as those assumed
here provided that the n spinors interact through torsion.

Nor is it unexpected the idea of modelling dark matter,
through the NFW profile, in terms of torsion, since this
is precisely what a specific type of effective theories does.

In quite recent years there has been a shift of approach
in looking for physics beyond the standard model, and in
particular dark matter: the new way of tackling the issue
is based on the idea of studying all types of effective inter-
actions that can be put in a Lagrangian, and among all
of them there is the axial-vector spin-contact interaction.

However, in even more recent years this approach has
been generalized, shifting the attention from the effective
interactions to the mediated interactions, known as sim-
plified models [69], but the story does not change, since
among all these there is the axial-vector mediated term

∆L =−gχγµπχBµ (260)

where χ is the dark matter particle and Bµ is the axial-
vector mediator, and where the structure of the interac-
tion is that of the torsion-spin coupling, as it should be
quite easily recognizable for the reader at this moment.

Since when the standard model has been acknowledged
to need a complementation, we have been striving to have
it placed within a more general model, which should have
contained also some new physics, and in particular dark
matter; it has been the constant failure in this project
that prompted us to reverse the strategy, pushing us to
look for simplified models, namely models that can imme-
diately describe dark matter, or in general new physics,
and leaving the task of including them, together with the
standard model, into a more general model for later, and
better, times: therefore, if we were to see that the dark
matter, or generally some new physics, were actually de-
scribed by one of these simplified models, the following
step would be to include it beside the standard model
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within a more general model, and at this point it should
be clear what is our ultimate claim for this entire section.

Our claim is that if such a simplified model is the one
described by the axial-vector mediator, then we will need
not look very far: the general model would be torsion.

And torsion also has yet another role for cosmology, as
we are going to discuss in the following section.

B. Scalar potential

We have just seen some torsional effect for the domain
of particle physics in the case of a system of many parti-
cles at a galactic level, and we next move to investigate
a more direct effect concerning a cosmological situation.

To begin our investigation, the very first thing we want
to do is remarking that, as the reader may have noticed,
we never treated the scalar field; the reason was merely
to keep an already heavy presentation from being heavier
still, but it is now time to put some scalar field in.

Lagrangian (168) complemented with a scalar field is

L =− 1
4 (∂W )2+ 1

2M
2W 2− 1

kR− 2
kΛ− 1

4F
2 +

+iψγµ
∇µψ+∇µφ†∇µφ−

−XψγµπψWµ− 1
2Ξφ

2W 2−Y ψψφ−
−mψψ+µ2φ2− 1

2λ
2φ4 (261)

where the X , Ξ, Y are the coupling constants related to
the torsion with spinor and scalar interactions.

It is interesting to notice that in this complementation
there is also the term φ2W 2 which couples torsion to the
scalar: this may look weird, since torsion is supposed to
be sourced by the spin density, which is equal to zero for
scalar fields. Therefore we should expect to have torsion
without a pure source of scalar fields, although we will
have scalar contributions in the torsional field equations.

In fact, upon variation of the Lagrangian, we obtain

∇α(∂W )αν+(M2−Ξφ2)W ν =Xψγνπψ (262)

in which there is indeed a scalar contribution, although in
the form of an interaction giving an effective mass term.

There is, immediately, something rather striking about
this expression: in a cosmic scenario, for a universe in a
FLRW metric, we would have that the torsion, to respect
the same symmetries of isotropy and homogeneity, would
have to possess only the temporal component, but in this
case the dynamical term would disappear leaving

(M2−Ξφ2)W ν =Xψγνπψ (263)

as the torsion field equations we would have had in the
effective limit, though now the result is exact. The source
would have to be the sum of the spin density of all spinors
in the universe, and because the spin vector points in all
directions, statistically the source vanishes too and

(M2−Ξφ2)W ν=0 (264)

which tells us that, if torsion is present, then

M2=Ξφ2 (265)

and if Ξ is positive, the scalar acquires the value

φ2=M2/Ξ (266)

which is of course constant throughout the universe.
A constant scalar all over the universe is the condition

needed for slow-roll in inflationary scenarios, and in this
case there arises an effective cosmological constant

Λeffective=Λ+ 1
2

∣

∣

∣

λ
2

∣

∣

M
Ξ

∣

∣

2
∣

∣

∣

2
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in the Lagrangian (261), driving the scale factor of the
FLRW metric and therefore driving the inflation itself.

Inflation will last, so long as symmetry conditions hold,
but as the universe expands and the density of sources
decreases, local anisotropies are no longer swamped, and
their presence will spoil the symmetries that engaged the
above mechanism, bringing inflation to an end [70].

This is a first effect of the presence of the torsion field.
But of course we should not stop here. As the universe

expands in a non-inflationary scenario, the torsion field
equation would no longer lose the dynamic term due to
the symmetries; but it may still lose it because of the pos-
sibility to have a massive torsion effective approximation,
and in this case we would still have the expression

(M2−Ξφ2)W ν ≈Xψγνπψ (268)

although only as an approximated form: we may plug it
back into the initial Lagrangian (261) obtaining

L =− 1
kR− 2

kΛ− 1
4F

2+iψγµ
∇µψ+∇µφ†∇µφ−

− 1
2X

2(M2−Ξφ2)−1ψγνπψψγνπψ −
−Y ψψφ−mψψ+µ2φ2− 1

2λ
2φ4 (269)

as the resulting effective Lagrangian. The presence of an
effective interaction involving spinors and scalars, having
a structure much richer than that of the Yukawa interac-
tion, is obvious; and we observe that, if for vanishingly
small scalar this reduces to the above effective interaction
for spinors, in presence of larger values for the scalar it
can even become singular. We might speculate that such
a value is the maximum allowed for the scalar as the one
at which the above mechanism of inflation takes place.

And in addition, we have now at our disposal a poten-
tial whose richer structure can be exploited further.

For example, if in the above Lagrangian one considers
the starting assumption m=µ=0 then the potential is

V = 1
2X

2(M2−Ξφ2)−1ψγνπψψγνπψ +

+Y ψψφ+ 1
2λ

2φ4 (270)

containing spinor-scalar interactions: for a single spinor
field we employ (97) to write this according to the form

V =− 1
2X

2(M2−Ξφ2)−1(|ψψ|2+|iψπψ|2) +
+Y ψψφ+ 1

2λ
2φ4 (271)
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whose minimum with respect to scalars and spinors is

(iψπψ)v=0 (272)

−X2(M2−Ξφ2v)
−1(ψψ)v+Y φv=0 (273)

−ΞX2(M2−Ξφ2v)
−2φv(|ψψ|2v+|iψπψ|2v) +

+Y (ψψ)v+2λ2φ3v=0 (274)

or plugging (iψπψ)v=0 into the others

X2(ψψ)v=Y φv(M
2−Ξφ2v) (275)

−ΞX2(M2−Ξφ2v)
−2φv|ψψ|2v +

+Y (ψψ)v+2λ2φ3v=0 (276)

and plugging X2(ψψ)v=Y φv(M
2−Ξφ2v) again

−ΞXY φ2v+Y
3

2 (φv)
1

2 (M2−Ξφ2v)
3

2 +

+2λ2Xφ3v(M
2−Ξφ2v)=0 (277)

giving the scalar vacuum; this expression is complicated,
but in the case M2≫Ξφ2v it simplifies to

−ΞXY φ2v+Y
3

2 (φv)
1

2M3+2λ2Xφ3vM
2=0 (278)

and if the Yukawa coupling is not large then

−ΞY φ2v+2λ2φ3vM
2=0 (279)

admitting the non-trivial solution

2λ2M2φv=ΞY (280)

with 2λ2X2(ψψ)v=ΞY 2 and (iψπψ)v=0 in the above.
Therefore, even in the case we have no mass-like terms

for the spinors and scalars, nevertheless it is still possible
to have non-trivial minima for spinors and scalars if the
torsion field can have interactions with the two of them.

This circumstance is of great importance in view of a
possible solution for one of the most unsettling problems
that physics is witnessing, lying at the interface between
the standard models of cosmology and particle physics,
that is the problem of the cosmological constant [71, 72].

The problem is quite simply the fact that the cosmolog-
ical constant has a measured value that, in natural units,
is about one hundred and twenty orders of magnitude off
the theoretically predicted one; normally this would have
made physicists rejecting the theories in which its value
is calculated, but those theories are quantum field theory
and the standard model, being very successful otherwise.

Philosophers may argue that in the face of a bad result
disproving a theory there can be no good result that can
support it: the history of physics is loaded with examples
of good agreements between observations and predictions
that were based on theories later seen to be false; and in
this specific situation, the bad agreement is not only bad,
but it is the worst in all of physics since ever. Nowadays,

the common behaviour would be to claim that this is not
really a bad agreement, since new physics might intervene
to make the agreement acceptable: it does not take very
experienced philosophers to see that this argument could
always be invoked to push the problems under the carpet
of an even higher energy frontier, and when this frontier
will be unreachable, the predictivity of the theory will be
annihilated. In this work we try to embrace a philosophic
approach, or merely be reasonable, admitting that such
a discrepancy between theory and observation is lethal.

As a consequence of this, it follows that all theories pre-
dicting contributions to the cosmological constant must
be dramatically re-adjusted: as we said above, these are
the general theory of quantum fields, where it is the con-
cept of zero-point energy that comes from vacuum fluc-
tuations what gives rise to a cosmological constant con-
tribution; and the standard model itself, where it is the
mechanism of spontaneous symmetry breaking what gen-
erates all masses as well as a cosmological constant term.

As for the contribution coming from the general theory
of quantum fields in terms of the zero-point energies, we
have to recall that the zero-point energies are the result
of quantization implemented with commutation relation-
ships; but as we discussed in the second part such com-
mutators are ill-defined: if we abandon them, then there
is no zero-point energy, and thus no further contribution
to the effective value of the cosmological constant.

Leaving us without zero-point energy, it becomes nec-
essary to find a way to compute the Casimir force without
employing vacuum fluctuations: however, the Casimir ef-
fects can be obtained without any reference to vacuum
fluctuations [75], with radiative processes [76], or by em-
ploying more general field theoretical descriptions [77].

The cosmological constant contribution due to vacuum
fluctuations of quantized fields may not be there at all.

As for the contribution of the standard model in terms
of the mechanism of spontaneous symmetry breaking, we
first recall the generalities [46]: the standard model is the
local gauge theory of the U(1)×SU(2) group for which

R′=e−iαR (281)

L′=e−
i
2 (~σ·~θ+Iα)L (282)

and

φ′=e−
i
2 (~σ·~θ−Iα)φ (283)

where R is the right-handed spinor and L is the doublet
of left-handed spinors while φ is the doublet of complex
scalars, and that these transformations be local requires
the introduction of the gauge fields transforming as

~σ · ~A′
µ=e

− i
2
~σ·~θ
[

~σ ·
(

~Aµ− 1
g∂µ

~θ
)]

e
i
2
~σ·~θ (284)

B′
µ=Bµ− 1

g′ ∂µα (285)

so that also the derivatives

DµR=∇µR−ig′BµR (286)

DµL=∇µL− i
2

(

g~σ · ~Aµ+g
′
IBµ

)

L (287)
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and

Dµφ=∇µφ− i
2

(

g~σ · ~Aµ−g′IBµ

)

φ (288)

are locally symmetric; the gauge curvatures are given by

~Aµν =∂µ ~Aν−∂ν ~Aµ+g ~Aµ× ~Aν (289)

Bµν=∂µBν−∂νBµ (290)

and they are gauge invariant. With this matter content,
the dynamics is assigned by giving the Lagrangian

L = iRγµDµR+iLγµDµL+|Dφ|2− 1
4A

2− 1
4B

2 −
−Y

(

Rφ†L+LφR
)

+λ2
(

v2φ2− 1
2φ

4
)

(291)

written in terms of the Y , λ2 and v2 parameters.
For such a Lagrangian, the potential is given by

V = 1
2φ

4−v2φ2 (292)

whose minimum φ2v = 0 is invariant but not stable and
therefore it will move toward the stable but non-invariant
configuration given by φ2v = v2 being the non-trivial min-
imum; having broken the symmetry, we choose the gauge
in which such breakdown of symmetry is manifest as

φ =

(

0

v+H

)

(293)

with

~Aµ= ~Mµ (294)

Bµ=Nµ (295)

and

L=

(

νL
eL

)

(296)

R=(eR) (297)

and called unitary gauge: the theory can be eventually
diagonalized with a field re-configuration given by

cos θNµ−sin θM3
µ=Aµ (298)

sin θNµ+cos θM3
µ=Zµ (299)

and

1√
2

(

M1
µ±iM2

µ

)

=W±
µ (300)

and by recalling that

eL+eR=e (301)

where g′=g tan θ gives the mixing angle.
The passage to the unitary gauge was such that from

the doublet of complex scalar fields we have a transfer
of three degrees of freedom into three gauge fields, with

the consequence that they acquire all degrees of freedom
they need to be massive: and in fact after the breaking is
implemented in the Lagrangian, we find that three mass
terms appear for the pair of complex vector fields and for
the real vector field gv=mW

√
2 =mZ

√
2 cos θ together

with the mass generation of the spinor vY =me and the
mass of the scalar

√
2λv=mH and additionally there is

also a cosmological constant term v4λ2 =−4Λ as it can
be seen from (249) or with a straightforward calculation.

We notice that the contribution to the Lagrangian

L SM
cc = 1

2λ
2v4 (302)

gives a cosmological constant that is negative, as it should
have been expected from the fact that it corresponds to
the lowest point of the potential, while its numerical value
is about 10120 in natural units, again as it should have
been expected since the lowest point of the potential must
be deep enough to grant the vacuum stability; if this term
is to disappear, we need vanish either λ or v but as van-
ishing the former would imply no symmetry breaking, the
only possibility is to vanish v so that symmetry breaking
can occur, although not spontaneously but dynamically.

Dynamical symmetry breaking is for instance given by
the example we have presented right above.

The idea of symmetry breaking is that the scalar has a
potential with a trivial minimum, which is symmetric but
unstable, and a non-trivial minimum, which is stable but
asymmetric, so that the symmetric but unstable configu-
ration will tend to reach stability then breaking the sym-
metry: spontaneous symmetry breaking takes place when
the potential is assigned; dynamical symmetry breaking
occurs when the potential is not assigned but induced by
other mechanisms. A spontaneous symmetry breaking is
that of the standard model; and a dynamical symmetry
breaking is induced for instance by having the Higgs be a
condensate, or a bound-state, as done in the mentioned
Nambu–Jona-Lasinio model, or in reference [73].

More specifically, one starts as in the NJL model from
a contact interaction of two spinors ψ and χ as

∆L =−g2ψχχψ (303)

and defining χψ=φ one may have it re-arranged as

∆L =− 1
2 (g

2+µ2)(ψφχ+χφ†ψ)+µ2φ†φ (304)

displaying a Yukawa term and the inverse-mass term that
provides the symmetry breaking; however, because

χψ=φ (305)

shows the Higgs to be a bound-state of two spinors, the
symmetry breaking is dynamical. Dynamical symmetry
breaking may be a consequence of the NJL model, and
because here we discussed how the NJL model is the effec-
tive approximation of torsion, it follows that a dynamical
symmetry breaking may be a consequence of torsion.

Furthermore, even if the Higgs field is not a composite
state of spinors, but rather an elementary scalar, it would
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be possible to have such a scalar coupled to the spinors,
and all of them interacting with torsion, and still have a
dynamical symmetry breaking, as proven above.

Since the Higgs is not a scalar but a doublet of complex
scalars, the relevant Lagrangian (270) is modified to

V = 1
2 (M

2−Ξφ2)−1(XLLγ
νπL+XRRγ

νπR)·
·(XLLγνπL+XRRγνπR) +

+Y (Rφ†L+LφR) +

+ 1
2λ

2φ4 (306)

but still in the same effective approximation we have

Ξ(XRRγ
νR−XLLγ

νL) ·
·(XRRγνR−XLLγνL)|v+2λ2M4φ2v≈0 (307)

giving the square of the Higgs vacuum as the square of
the density of the spinor vacuum: we do not have a single
spinor here, so re-arrangements may not give a negative
square density, but anyway if it happens that there is a
negative square density of the spinor vacuum, then there
is a positive square of the Higgs vacuum, and a dynamical
symmetry breaking mechanism occurs eventually.

After dynamical symmetry breaking, the Lagrangian
of the standard model reduces to the known Lagrangian
of the standard model up to higher-order terms and with
a cosmological constant that is given by

L SM
cc =λ2φ2vM

2Ξ−1 (308)

which is still negative, but now its value depends on the
square of the Higgs vacuum, and hence as the square of
the spinor vacuum: within spinors, the scalar vacuum is
non-trivial, there is the generation of all the masses and
the cosmological constant as in the standard model, and
although the cosmological constant is enormous, never-
theless it is also invisible, in particle physics experiments.

But in cosmology, the vacuum spinor density becomes
negligibly small, so the scalar vacuum becomes negligible
as well, and the generated cosmological constant turns to
be negligible too, so much that its value would not even
interfere with the value that is actually observed [74].

The picture that emerges is one for which symmetry
breaking is no longer a mechanism that happens through-
out the universe but only when spinors are present, with
the consequence that if spinors are not present the effec-
tive cosmological constant is similarly not present.

The cosmological constant due to spontaneous symme-
try breaking in the standard model is avoidable.

Getting rid of vacuum fluctuations, as well as any fluc-
tuation, leaves no contribution apart from those due to
phase transitions, which can be quenched by a symmetry
breaking that is not spontaneous but dynamical, and no
effective cosmological constant actually arise.

X. OVERVIEW

In this third part, we have presented and discussed the
possible torsional dynamics in the cosmology and particle

physics standard models. Now it is time to pull together
all the loose ends in order to display the general overview.

We have seen and stated repeatedly that torsion can be
thought as an axial-vector massive field coupling to the
axial-vector bi-linear spinor field according to the term

∆L
Q−spinor
interaction=−XψγµπψWµ (309)

of which we have one for every spinor: effective approx-
imations involving two, three or even more spinor fields
have been discussed, with a particular care for the case of
neutrino oscillations, for which we have detailed in what
way the results of [63] can be generalized in order to have

∆Φ≈ L
2E

(

∆m2+m
X2

eff

4M2 |νγµννγ
µν| 12

)

describing the phase difference for almost degenerate neu-
trino masses, as consisting of the L/E dependence modu-
lating the usual kinetic contribution, plus a new dynamic
contribution, so that even if the neutrino mass spectrum
were to be degenerate, torsion would still induce an ef-
fective mechanism of oscillation; as these considerations
have nothing special about neutrinos, and thus they may
as well be extended to all leptons, then we proceeded in
studying such extension, but once the Lagrangian terms
of the weak interaction after symmetry breaking and the
torsion for an electron and a left-handed neutrino were
taken in the effective approximation, we saw that, due to
the cleanliness of the scattering and the precision of the
measurements, the standard model correction induced by
the torsion had to be very small, and if this occurs be-
cause the torsion mass is large then the effective approx-
imation is no longer viable. We have then re-considered
the case without effective approximations, allowing also
for sterile right-handed neutrinos in order to maintain
the feasibility of the dynamical neutrino oscillations dis-
cussed above, therefore reaching the general Lagrangian

∆L
Q/weak−spinor
interaction =−Xeeγ

µπeWµ−Xννγ
µπνWµ +

+ g√
2

(

W−
µ νγ

µeL+W
+
µ eLγ

µν
)

+

+ g
cos θZµ[

1
2 (νγ

µν−eLγµeL)+|sin θ|2eγµe]

showing that while the sterile right-handed neutrino is by
construction insensitive to weak interactions, it is sensi-
tive to the universal torsion interaction, and suggesting
that to see torsional interactions on a background of weak
interactions we must pass for neutrino physics; we have
argued that this situation occurs because weak interac-
tions among leptons provide some very clean scattering,
but torsional effects may still be allowed if hidden in less
clean processes like the weak or the chromo-dynamical in-
teractions among quarks. We did not dare to deepen the
discussion about torsional effects within nucleons, but we
have argued that because of the universal attractiveness
of torsion, its effect might reasonably be that of shrinking
the nucleon radius, providing a possible avenue to tackle
the “proton radius problem” that arose in recent years.

After having extensively wandered in the microscopic
domain of particle physics, we move to see what type of
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effect torsion might have for a macroscopic application of
a yet unseen particle, dark matter, and we have seen that
in the case of effective approximation, the spinor source
in the gravitational field equations becomes of the form

Rρσ− 1
2Rg

ρσ−Λgρσ= k
2 (E

ρσ− 1
2
X2

M2 V
µVµg

ρσ)

showing that if the spin density square happens to be
positive, the contribution to the energy would change the
gravitational field as to allow for a constant behaviour of
the rotation curves of galaxies; we have discussed that
this behaviour comes from having a matter density scal-
ing according to r−2 for large distances; such a behaviour,
usually, is granted by the Navarro-Frenk-White profile or,
here, is due to the presence of torsion, suggesting that the
NFW profile is just the manifestation of torsional interac-
tions, and ultimately that dark matter may be described
in terms of the axial-vector simplified model, sorting out
one privileged type among all possible simplified models
now in fashion in particle physics. Then we proceeded to
include into the picture also the scalar fields, getting

L =− 1
4 (∂W )2+ 1

2M
2W 2− 1

kR− 2
kΛ− 1

4F
2 +

+iψγµ
∇µψ+∇µφ†∇µφ−

−XψγµπψWµ− 1
2Ξφ

2W 2−Y ψψφ−
−mψψ+µ2φ2− 1

2λ
2φ4 (310)

showing that in general the torsion, beside its coupling to
the spinor, may also couple to the scalar, with the scalar
behaving as a sort of correction to the mass of torsion and
a kind of re-normalization factor in the torsion-spinor ef-
fective interactions; we discussed how within a homoge-
neous isotropic universe, the torsion field equations grant
the condition M2=Ξφ2 so that, if Ξ were positive, then
the scalar field would acquire a constant value, slow-roll
will take place and inflation can engage. And eventually,
we have discussed that after inflation has ended, torsional
contributions to the scalar sector are such that for single
particles we have WαWα<0 as it is clear in the effective
approximation, inducing dynamical symmetry breaking.

This symmetry breaking, being dynamical, may solve
the standard model part of the cosmological constant
problem; the quantum field theoretical part of the cos-
mological constant problem may well be a false problem,
as we reported above, and as discussed in literature [77].

So for summarizing, we have seen that the torsion field
has several potentially interesting effects superposing to
the standard models: it might give rise to a dynamical
mechanism of oscillations for neutrinos, and although no
other effects would be relevant for leptons, it may still
have effects for quarks with a possible explanation of the
recently emerged “proton radius problem”, it may be the
fundamental physics behind the NFW profile and as such
selecting the axial-vector simplified model as a privileged
description of dark matter, it may grant slow-roll and in-
flation, it may provide the conditions to have a dynami-
cal form of symmetry breaking that would help solve the
cosmological constant problem. Presumably, it would be

surprising if torsion could do all of those things and we
would be the first to be astonished if it actually did, but
admittedly there is also no real argument against this.

Moreover, despite having listed six possible scenarios,
nevertheless the first four of them were four different ap-
plications of the axial-vector coupling while the last two
of them were two different applications of the coupling to
scalar fields [78]. Only two physical couplings are needed.

And these two couplings are simply all of the possible
renormalizable couplings torsion that may have.

FOUR: BEHAVIOUR

XI. DISCUSSION

In this fourth part we are going to provide some general
thoughts around torsion in view of the most general, but
also difficult, problem of all, finding exact solutions.

We start with some general consideration on the spino-
rial field equations (166, 167), from which we deduce

φ−2∇2φ2+(2m)2 +

+2mvµ(Gµ sinβ+Kµ cosβ)−
−(∇µG

µ+G2)=0 (311)

∇2β−(2m)2 sinβ cosβ −
−2mvµ(Gµ cosβ+Kµ sinβ)−

−∇µK
µ=0 (312)

which are recognized as a Klein-Gordon equation of real
mass 2m and a sine–Klein-Gordon equation of imaginary
mass 2m respectively; both have additional mixing terms
that depend on vµ and which can be made to disappear
by working out the products of the Gµ and Kµ potentials
to obtain that the final result is given according to

∣

∣

∣∇β
2

∣

∣

∣

2

−m2−φ−1∇2φ+ 1
2 (∇G+ 1

2G
2− 1

2K
2)=0 (313)

∇µ(φ
2∇µ β

2 )− 1
2 (∇K+KG)φ2=0 (314)

as a Hamilton-Jacobi equation and a continuity equation
respectively: the term ∇µβ/2 is to be interpreted as a
momentum density and ∇2φ/φ is the quantum potential.

In terms of this analysis it becomes clearer that another
role which can be attributed to the Takabayashi angle can
be that of the action functional of a theory, whenever that
theory is written in terms of the Hamiltonian formalism.

We notice that as the action functional is used in path
integral quantization [50], then the action functional can
be seen as yet another bridge connecting the Takabayashi
angle and the peculiar character of quantum fields.

The spinor field equations (166, 167) are the field equa-
tions for the Takabayashi angle and for the module, and
it is possible to have the former substituted into the lat-
ter, taking the limit in which the Takabayashi angle tends
to zero, getting an equation for the field φ|g| 14 = ς as

∇2ς− X2

M2

4m√
|g|
ς3+m2ς=0 (315)
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displaying an attractive force; separating space and time
coordinates, we may write this equation according to

~∇·~∇ς+ X2

M2

4m√
|g|
ς3−(m2−E2)ς=0 (316)

where we assumed iς̇=Eς as usually done: then if energy
and mass have a small difference it becomes given by

1
2m

~∇·~∇ς+ X2

M2

2√
|g|
ς3−(m−E)ς=0 (317)

looking like a non-relativistic equation with an attractive
self-interaction, or a Schrödinger non-linear equation.

We notice that attractive potentials entail the fact that
solutions may be trapped in their own potential well, with
the consequence that they have a negative potential, and
their energy is smaller than the mass: so in (317) we can
recognize the structure of a soliton field equation. Since
the volume element

√

|g| is present in most general cases
of three dimensions, we know of no analytic solution, but
in one dimension the solutions are hyperbolic secants.

Therefore, it is legitimate to believe that also for three
dimensional cases we may find localized solutions [79, 80].

Nevertheless, in the large-r regions the non-linear term
tends to vanish, and therefore it becomes possible to find
solutions because in this approximation (317) reduces to

1
2m

~∇·~∇ς−(m−E)ς=0 (318)

whose solutions are real exponentials

ς≈K
[

exp
(

r
√

2m|m− E|
)]−1

(319)

for any constant K and as an exponential damping with
the distance, indeed displaying the drop toward infinity,
and in fact such a drop toward infinity is so fast that its
volume integral is finite and the distribution is localized.

From the spinor field equations (166, 167) we may also
have the latter substituted into the former, and the limit
in which the module tends to zero, obtaining an equation
for the Takabayashi angle that is given according to

∇2β−4m2β=0 (320)

where the Takabayashi angle was taken small; assuming
no time dependence gives the final form

~∇·~∇β+4m2β=0 (321)

with the structure of a purely spatial wave equation.
Therefore solutions are in the form of real circular func-

tions of the spatial coordinates, as for example

β=K sin (2m~u·~r) (322)

for any given constant K and with ~u unitary vector.
We notice the peculiar circumstance that in free cases,

and for small values of their magnitude, the module and
the Takabayashi angle have opposite behaviour: along a
space coordinate, the module has (exponential) dropping,

the Takabayashi angle has (circular) oscillation; a curious
fact is that even where the module drops to vanish, there
the Takabayashi angle may still be present. The bi-linear
spinor quantities are such that in them the Takabayashi
angle always appears inside circular functions, so that an
oscillating behaviour remains; however, this behaviour is
limited, and where the module drops to zero, the bi-linear
spinor quantities drop to zero as well. This Takabayashi
angle has the intriguing property that it can be non-zero
even at infinity without giving divergent quantities.

The limitations of being square-integrable, applicable
to observable quantities, are inherited by the module, but
the Takabayashi angle is not bounded by this constraint.

In absence of a numerical analysis, we may still obtain
some general behaviour of the spinorial field. For this, we
take field equations (227, 228) with no electro-dynamics,
and in spherical coordinates (t, ϕ, θ, r) they become

∇µβ−2XWµ−2P ρu[ρvµ]+vµ2m cosβ=0 (323)

∇µ ln (φ
2r2 sin θ)−2P ρuνvαεµρνα+vµ2m sinβ=0(324)

which we may now study by assuming the tetrads to be

ξ0t =1 ξt0=1 (325)

ξ2ϕ=r sin θ ξϕ2 = 1
r sin θ (326)

ξ1θ =r ξθ1 =
1
r (327)

ξ3r =1 ξr3=1 (328)

and for a momentum of the form

Pµ=(E, 0, 0, 0) (329)

where E is the energy of the spinor: this energy is a free
parameter, but because of the presence of torsion, which
is attractive, the potential is negative, so that the energy
is smaller than the mass; then the field equations read

∂tβ=2XWt (330)

∂ϕβ=2XWϕ (331)

∂θβ=2XWθ (332)

∂rβ+2(E−m cosβ)=2XWr (333)

and defining φ2r2 sin θ= ς2 it turns out this is a function
of r alone and such that it has to verify the equation

∂rς=mς sinβ (334)

as it is possible to check quite straightforwardly.
Notice that solutions with the behaviour of decreasing

exponentials are ensured when the Takabayashi angle is
negative, with partially-conserved axial-vector current

∇µ(φ
2vµ)=2mφ2 sinβ (335)

showing that, when the spinor is coupled to torsion, it is

∇µ(XW
µ)=4X2M−2mφ2 sinβ (336)
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and negative Takabayashi angles are granted, as torsion
is attractive; this is intuitive, since attractive torsion acts
as some sort of tension over the matter distribution.

If torsion were to be negligible within the spinor field
equations, we could find a non-trivial but simple solution
as the one given by a constant Takabayashi angle

β=− arccos (E/m) (337)

and the exponential

ς≈K
[

exp
(

r
√

|m2 − E2|
)]−1

(338)

which is merely the solution (319) before that the non-
relativistic approximation m≈E is assumed.

The above field equations show that an energy smaller
that the mass gives an exponential behaviour; a negative
Takabayashi angle ensures such an exponential to have a
decreasing behaviour. Under these conditions, a material
distribution does display stability and localization.

Notice that the localization takes place for those coor-
dinates that correspond to the non-null directions of the
spin axial-vector: in the case above, the spin-axial vector
has only the third component, and because of the choice
of tetrads, it results to have only the radial components,
and therefore radial localization takes place [81].

This behaviour is general, and it is appreciated also in
the torsionless case, as shown in reference [82].

Before, we have noticed that while the module must be
square-integrable, the Takabayashi angle does not suffer
any constraint, and it is allowed to be different from zero
even at the infinity: could this be taken as a specific form
of non-local behaviour? At the beginning of part two, we
have very briefly introduced the problems concerning the
two-slit experiment and its interpretations: the problems
are about the fact that when a single electron hits a two-
slit apparatus, it behaves as a wave until it also hits the
screen, where it is detected as a particle. That is electrons
display wave properties that can stretch up to non-local
configurations (since the interference holds up even if the
two slits are separated by a very large distance compared
to the size of the electron), but nevertheless they appear
very localized at the moment of observation (that is when
they end up hitting the screen). This situation seems an
unsolvable conundrum in the standard view, but as it has
been repeated several times along the work, the standard
view almost never considers the Takabayashi angle, which
might just turn out to be of some help one more time.

Consider an electron sent toward two slits: the electron
may be represented by the localized module surrounded
by the Takabayashi angle; as (313, 314) showed, the Tak-
abayashi angle can be seen as the action functional, and
we have remarked about its oscillatory behaviour. When
the surrounding field described by the Takabayashi angle
passes through the two slits it behaves as a wave, with a
consequent non-local attitude to interfere; on the other
hand, the field equation (334) shows that it is where the
Takabayashi angle vanishes that the peak of the module

is found. On the screen, the Takabayashi angle forms an
interference pattern, but it is only in the regions in which
it is zero that the module peak could go, and because the
module is localized, wherever it is going to hit it will look
like a confined matter distribution. So, a possible inter-
pretation for the two-slit phenomenon might just be that
there is no entity behaving sometimes as wave and other
times as particle, but the Takabayashi angle behaving al-
ways as wave and the module localized always as particle.

Then, fields propagates as (complex) waves displaying
interference patterns, and it is the (real) localized distri-
butions to be confined like particles; the two parts, being
the Takabayashi angle and the module, coexist. However,
only particle-like distributions are observable. Therefore,
it may be that there is no collapse of waves onto particles,
but only that particles are the sole detectable objects.

The wave/particle duality of a field might just as well
be the Takabayashi angle/module duality of the spinor.

In reference [82] it is also shown, by presenting an exact
solution of the spinor field coupled to its own gravity, that
in general it is not possible to have the Takabayashi angle
arbitrarily set to zero; admittedly, such a solution is too
singular, because of the vanishing of the scalar invariant,
to have any chance of representing physical particles, but
still it is an exact solution. Because the only element we
have left out was torsion, one may be tempted to conclude
that torsion could turn out to be essential in its role of
forbidding unphysical solutions to actually appear.

To better justify this statement, recall that in the ex-
ample above, it was torsion which, by ensuring a negative
Takabayashi angle and that the total energy was smaller
than the mass, ensured that only decreasing exponentials
could be solutions of the spinor field equations.

Indications that torsion can in principle be responsible
for well-behaved matter distributions are present, but not
enough for a strong claim; a boost for the mood can come
by finding exact solutions in presence of torsion, and also
gravity, but finding exact solutions for such a non-linear
system of fully coupled differential field equations is more
like a dream than reality, for the present moment.

Help may come from imposing reasonable symmetries
of the matter distribution, although it is difficult to see
what are the symmetries for such a system.

XII. SYNOPSIS

We have concluded our presentation, which was sepa-
rated in four parts that are independent on each other.

In the first, we considered the most general geometry,
with torsion beside gravity, and gauge potentials, and in
it we defined the spinorial matter, then finding the most
general system of least-order derivative field equations
that was possible: we showed that torsion turns out to be
equivalent to an axial-vector massive field, that spinorial
fields are composed of two chiral parts, suggesting that
torsion could be the mediator of the attraction for which
the spinor may form chiral bound states; we showed that
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this is indeed the case when effective approximations are
implemented and we argued that the Takabayashi angle
is what encodes information about the internal dynamics
and consequently about spin and Zitterbewegung effects.

In the second, we recalled the prescriptions of quantum
physics, and in front of conceptual problems we returned
to the foundations in order to see what could be salvaged
or what had to be differently implemented, exhibiting an
alternative description that exploited the spin content of
spinor fields; we studied spinless approximations, assess-
ing the issue of singularity avoidance for large densities.

In the third, we presented the torsion-spin axial-vector
interaction, discussing also the coupling with scalar fields.

In the fourth, we discuss general solution behaviour.
All across these four a priori independent parts is the

interconnecting idea that torsion and spin, and their cou-
pling, could play a fundamental role: they can well be the
essential reason for the stability of spinors; they give rise
to Zitterbewegung effects that can describe the anomalies
of field theory which are usually ascribed to the quantum
correction, with no need of forcing fields to be represented
by point particles that are unphysical and without need
to assume radiative loops that are troublesome; they have
a coupling giving rise to axial-vector models and a special
interaction to scalar fields that can solve open problems
in the standard models without disrupting consequences
like the cosmological constant problem; they can have an
effect in sorting out only solutions that are well behaved.

So torsion and spin could be used for addressing open
problems in theoretical physics without introducing bad
effects as those arising in the common approach.

XIII. OUTLOOK

In a geometry which, in its most general form, is natu-
rally equipped with torsion, and for a physics which, for
the most exhaustive form of coupling, has to couple the
spin of matter, the fact that torsion couples to the spin of
spinor material field distributions is just as well suited as
a coupling can possibly be, and its consequences about
the stability of such field distributions are certainly worth
to receive further attention and to be better understood.

The commonly followed approach to quantum field the-
ory is devised on the prescription that particles be point-
like and that their interactions be quantized in terms of
radiative corrections, but as it is widely known the point-
like character of particles is the reason for the appearance
of ultraviolet divergences when radiative corrections are
computed, and although renormalization does remove di-
vergences nevertheless it is best to have a theory in which
divergences do not appear in the first place; we discussed
that renormalization means the existence of a cut-off be-
yond which we have to stop calculations since we ignore
what physical effect might be relevant, and it might just
be that this limit is the threshold beyond which particles
can no longer be point-like and the novel physical effects
may simply be the fact that the now extended field starts

to display its internal structure. By providing a model in
which extended fields do have an internal dynamics, it is
feasible that Zitterbewegung effects are what gives rise to
the anomalies thought to be due to radiative corrections.

The standard models of cosmology and particle physics
are also erected on arbitrary assumptions and we already
envisage several ways to promote them to more complete
models, such as simplified models or dynamical symme-
try breaking; simplified models and dynamical symmetry
breaking may be due to axial-vector interactions and a
peculiar type of scalar potential, exactly as the ones that
are given for the most general coupling of the torsion.

For the general behaviour of matter distributions, the
Takabayashi angle tends to behave like a wave, spreading
to far away regions, the module tends to be localized like
a particle, confined within small regions, and with a peak
in those regions in which the Takabayashi angle tends to
vanish, therefore opening the possibility of an alternative
interpretation of the two-slit experiment that is not based
on the wave/particle duality but on the fact that there are
two complementary fundamental fields within one spinor.

Where do all this leaves us? For the analogies between
quantum point particles and classical spinning fields, and
if the analogy actually holds, it may be that these two ap-
proaches are fully equivalent. The formalism of quantum
field theory, decomposing the scattering into propagation
of fields that are free plus interacting vertices encoding all
the quantum information, can be visualized as a techno-
logically complicated form of Taylor expansion, where a
curve can be decomposed into straight segments and an-
gles at their junctions: as radiative corrections are added,
segments are shorter and form more junctions, and if the
number of radiative corrections goes to infinity, the seg-
mented line approximates a smooth curve; according to
our perspective, the scattering would immediately be de-
scribed in terms of a smooth line. If this were so, we may
expect a formal equivalence; this equivalence would state
that if the perturbative expansions were to be calculated
exactly then they would yield scattering amplitudes like
those we would get if we considered the effects of spin for
classical fields. This fact has an implication, and that is
even if such equivalence could be demonstrated this can
only be done for spinor fields. If instead we consider the
scalar field, it does not have spin, and consequently there
can be no equivalence with quantum corrections; but con-
versely, if this equivalence were in fact true, we would be
brought to the inescapable conclusion that there can be
no quantum corrections for scalar fields. The problem of
the vacuum metastability due to quantum corrections of
the Higgs potential may not be a problem if this scenario
is correct. And this statement has a fairly predictive con-
tent, being that no quantum correction can appear in the
dynamics of scalar fields so long as they are fundamental.

And what about the standard models? In the standard
model of particle physics, there are different facets to be
considered: by assuming the existence of right-handed
sterile neutrinos, the torsion-spin coupling gives dynamic
corrections to the oscillation pattern; by assuming dark
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matter constituted by spinors, the torsion-spin coupling
may give rise to the NFW profile. In the standard model
of cosmology, the most urgent of the problems is that of
the cosmological constant: in this case a solution has to
be sought by generalizing the symmetry breaking from a
spontaneous to a dynamical mechanism, and this can be
done if the scalar field is allowed to interact with spinors
through torsion. In the first two instances, the new con-
tributions are condensed by ∆L =−XψγµπψWµ as the
axial-vector coupling; in the last instance, new physics is
represented by ∆L =−XψγµπψWµ− 1

2Ξφ
2W 2 as what

gives the torsion-spin and scalar interaction, with Ξ being
positive as WαWα<0 holds for single particles. The last
potential for torsion coupling is the most comprehensive,
and its good property is that we do not need to postulate
it as this is the most general interaction that can be given
to torsion, at least within our restriction of allowing only
terms for the interactions that are renormalizable.

And finally, what about the general behaviour of spino-
rial solutions? Here we have discussed how spinor fields
are constituted by two fundamental degrees of freedom,
the Takabayashi angle β with a wave behaviour, and the
module φ with a localized character, which could be used
to give rise to an interpretation of matter complying with
the requirements needed to provide an intuitive image of
the two-slit experiment. At the level of this presentation
however, there have been generic discussions and reason-
able insights, but nothing that was fully mathematically
demonstrated, and finding exact solutions would be best,
although this task for such a system of field equations is
out of the reach of our capabilities, at least for now.

As for the ∆L =−XψγµπψWµ− 1
2Ξφ

2W 2 potential,
new physics should certainly be hidden within the pecu-
liar properties of such a torsion-spinor/scalar interaction,
and in particular one would have to pay attention to the
implementation of condition WαWα < 0 investigating if
there are situations where it does not apply; for a single
spinor with torsion in effective approximation it is valid,
but if the effective approximation cannot be established
or we have multiple spinor configurations then it may no
longer hold and changes are expected. The role of a scalar
interaction may be limited but still quite intriguing.

But what in my opinion is the most intriguing aspect of
all is the action of the Takabayashi angle in the dynamics
of the module within the spinorial field, an action almost
constantly neglected in the usual approaches but that has
quite a lot of things to tell us if only we dared to keep it.

And in this case, how can we find exact solutions?
All over the work, there are several assumptions that

have been taken into account, such as for instance the fact

that, in conditions in which a collective system of spinors
was considered, we assumed that they form condensates,
which may be reasonable, but not proven; or we assumed
that the torsion mass is large enough to allow the effective
limits, but despite this may be reasonable since we have
not detected torsion yet as an elementary particle, it may
still be that torsion has small mass, but that nevertheless
it couples to everything weakly. And in discussing what is
the general behaviour of solutions, we assumed very little
influence of external fields, and this is also an unphysical
requirement. Studying the validity of these limits has to
be done for the treatment to become more reliable.

Then, there are problems which we have left aside alto-
gether, like the problem of discrete transformations and
their violation, giving matter/antimatter asymmetry, for
which we suspect that the torsion may have something to
tell us, but we never ventured into this type of problems
due to the mundane reason of simple lack of time.

Therefore, opportunity for future works might span a
large variety of domains, starting from making all results
we discussed here more reliable, or complementing them
to a greater extent, and reach some yet untackled cases.

An additional problem that torsion gravity has is the
fact that there is an astonishingly small number of people
working in this domain, and as of this writing, a search
in INSPIRE with keywords “torsion” and “spinor” is pop-
ping out less than 450 items, a record that is too far from
being competitive with any other area of research.

Clearly, progress is faster when there is a critical mass
of people working together with a common goal.

In this work we have tried to present what we believe
to be the full range of applications that torsion and spin,
and their coupling, could have in modern physics, and if,
on the one hand, we hope to have clearly made a case for
not neglecting the torsional effects on spinorial dynamics,
on the other hand, there is still a long way to have these
general indications commuted into solid evidence, further
completed withing a comprehensive theory, and the effort
of a larger number of people would be productive.

I hope this work tickled curiosity in someone.
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