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Spinning and Spinning Deviation Equations for Special Types of Gauge
Theories of Gravity

Magd E. Kahil1

Abstract

The problem of spinning and spin deviation equations for particles as defined by

their microscopic effect has led many authors to revisit non-Riemannian geometry

for being described torsion and its relation with the spin of elementary particles. We

obtain a new method to detect the existence of torsion by deriving the equations of

spin deviations in different classes of non-Riemannian geometries, using a modified

Bazanski method. We find that translational gauge potentials and rotational gauge

potentials regulate the spin deviation equation in the presence of Poincare gauge

field theory of gravity.

Introduction

Einstein’s legacy has bestowed geodesics and null geodesics to examine the trajectory
massive and massless particles respectively, introducing the notation of a test particle
which ignores the interaction associated with its intrinsic properties. Such a problem may
be assigned to measure the behavior of a certain gravitational field. Yet, the concept of test
particle is counted to be existed relatively rather than absolutely. From this principle, the
problem of spinning objects is necessary to be examined using the Mathissson-Pappetrou
equation [1].

Due to extending the geometry to become a non-Riemanian, torsion is expressed in
some theories of gravity to be interacting with the spin of elementary particle, this is
vital to examine the internal symmetry of some gauge theories of gravity with the flavor
of Yang-Mills for this issue, one introduces its own corresponding building blocks which
mainly related to the tetrad space , in order to relate it with some properties of elementary
particles [3-5]. Such theories are developed in different stages from Utyima (1956), Kibble
(1961), Sciama (1962), Hehl et al (1976) [3-6]and finally crowned with MAG in 1995.[7]
The main theme of these theories is centered on its description in the presence of the
tetrad field following same mechanism of Yang-Mills gauge theory of spaces admitting
non vanishing curvature and torsion represented as gauge theories of gravity [8].

This approach has led many authors to consider a wide spectrum of theories of grav-
ity possessing gauge formulation such as Teleparallel-gravity [9], gauge version of GR in
tetrad space (torsion-less)[10], and most general one is the Poincare gauge field theory of
gravity [11].
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1 The Papapertrou Equation in General Relativity:

Lagrangian formalism

The Lagrangian formalism of a spinning and precessing object and their corresponding
deviation equation in Riemanian geometry is derived by the following Lagrangian [18]

L = gαβP
αDΨβ

Ds
+ Sαβ

DΨαβ

Ds
+ FαΨ

α +MαβΨ
αβ (1.1)

where

P α = mUα + Uβ

DSαβ

DS
.

Taking the variation with respect to Ψµ and Ψµν simultaneously we obtain

DP µ

DS
= F µ, (1.2)

DSµν

DS
= Mµν , (1.3)

where P µ is the momentum vector, F µ def
= 1

2
R

µ
νρδS

ρδUν , and Rα
βρσ is the Riemann curvature,

D
Ds

is the covariant derivative with respect to a parameter S,Sαβ is the spin tensor, Mµν =
P µUν

− P νUµ, and Uα = dxα

ds
is the unit tangent vector to the geodesic.

Using the following identity on both equations (1) and (2)

Aµ
;νρ −Aµ

;ρν = R
µ
βνρA

β, (1.4)

where Aµ is an arbitrary vector. Multiplying both sides with arbitrary vectors, UρΨν as
well as using the following condition [Heydri-Fard et al (2005)]

Uα
;ρΨ

ρ = Ψα
;ρU

ρ, (1.5)

and Ψα is its deviation vector associated to the unit vector tangent Uα. Also in a similar
way:

Sαβ
;ρ Ψρ = Φαβ

;ρ Uρ, (1.6)

one obtains the corresponding deviation equations [19]

D2Ψµ

DS2
= Rµ

νρσP
νUρΨσ + F µ

;ρΨ
ρ, (1.7)

and
DΨµν

DS
= Sρ[µRν]

ρσǫU
σΨǫ +Mµν

;ρ Ψρ. (1.8)

Equations (1.7), (1.8) are essentially vital to solve the problem of stability for different
celestial objects in various gravitational fields. This will examined in detail in our future
work.
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2 The Papapertrou Equation in Rieman-Cartan The-

ory of Gravity: Lagrangian formalism

The Mathisson-Papapetrou equation in non-Riemanian geometry are generalized forms
of both (1.7)and(1.8), as a result of existence of a torsion tensor Λα

βγ, which is considered
as a propagating field defined in the following manner,

Λα
βγ

def
=

1

2
(δαβφ,γ − δαγφ,β) (2.9)

where φ is a scalar quantity.
Yet, there are two different visions of admitting torsion in path and spinning equations, one
is considering it acting analogously as a Lorentz force, which led some authors to utilize
the concept of torsion force [20]. Others may involve torsion in the affine connection by
replacing the Christoffel symbol with the non-symmetric affine connection [21].

2.1 Path and Path deviation equations having Torsion Force

We suggest the following modified Bazanski Lagrangian to obtain the path and path
deviation equations for non-Riemannian geometry using the notion of torsion force

L = gαβU
αDΨβ

DS
+ ΛαβγU

αUβΨγ . (2.10)

Thus by taking the variation with respect to Ψµ, provided that

gµν;ρ = 0,

we obtain,
dUµ

ds
+

{

α

µν

}

UµUν = −Λ . .µ
αβ. U

αUβ (2.11)

Using the following commutation relation

Aµ;νρ − Aµ;ρν = Rα
βρσAα (2.12)

on equations (2.11) provided that

DUα

dτ
=

DΨα

DS
, (2.13)

we obtain the corresponding deviation equations

∇
2Ψµ

∇s2
= R

µ
.αβγU

αUβΨγ + (Λ . .µ
αβ. );ρΨ

ρ. (2.14)
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2.2 Path and Path Deviation having torsion in a non-symmetric
affine connection

Path equations and path deviation equations are obtained its corresponding Bazanski
approach as follows

L
def
= gµνÛ

µ∇Ψ̂ν

∇S
, (2.15)

where,
∇Ψ̂µν

∇S
=

dΨ̂µν

dS
+ Γα

.βσΨ̂
σ, (2.16)

where

Γα
.βσ

def
=

{

α

βσ

}

+Kα
.βσ. (2.17)

By taking the variation with respect to Ψα, provided that

gµν|ρ = 0, (2.18)

we obtain
∇Ûα

∇S
= 0, (2.19)

i.e.
dUµ

ds
+

{

α

µν

}

UµUν = −Λ . .µ
αβ. U

αUβ .

Using the following commutation relation

Aµ||νρ −Aµ||ρν = R̂α
βρσAα + Λδ

νρAµ||δ, (2.20)

and
∇Ψµ

∇τ
=

∇Uµ

∇S
(2.21)

on equation (2.17) we obtain

∇
2Ψ̂α

∇S2
= R̂α

νρσÛ
νΨ̂σÛρ + Λρ

µνU
α
|ρÛ

µΨ̂ν . (2.22)

Thus, we found that equations (2.11) and (2.17) describe the same path equation but
their corresponding path deviation equations (2.13) and (2.20) are different due to the
building blocks of the each type of geometry.

2.3 Spin and spin deviation equations having a torsion force

For a spinning object, we suggest the following modified Bazanski Lagrangian, to derive
both spin and spin deviation equations simultaneously.

L = gµνP
µDΨν

DS
+ Λ(µν)ρP

µUνΨρ + Sµν

DΨµν

DS
+

1

2
RµνρσS

ρσUµΨν + (PµUν − PνUµ)Ψ
µν .

(2.23)

4



Taking the variation with respect to Ψα and Ψαβ respectively we obtain

DP α

DS
= −Λ .. α

(µν)P
µUν +

1

2
Rα

ρµνS
µνUρ, (2.24)

and
DSαβ

DS
= (P αUβ

− P βUα). (2.25)

The associated deviation equations are obtained by considering the following commutation
relation

D

DS

D

Dτ
Aα

−
D

Dτ

D

DS
Aα = Rα

βρσA
βUρΨσ (2.26)

and
DUα

DS
=

DΨα

Dτ
, (2.27)

we get
D2Ψα

DS2
= Rα

βρσU
βUρΨσ + (

1

2
Rα

βµνS
µνUβ

− Λ. . α
.µν )

ρ
Ψρ (2.28)

and

DΨαβ

DS
= Sρ[βR

α]
ργδU

γΨδ
;δU

µΨν + (P αUβ
− P βUα);ρΨ

ρ. (2.29)

2.4 Spin and spin deviation equations having torsion in a non-
symmetric affine connection

If we replace the covariant derivative in Riemanian geometry by the absolute derivative in
Einstein-Cartan geometry, we suggest the following Lagrangian of spinning and spinning
deviation objects with precession

L = gµνP̂
µ∇Ψ̂ν

∇S
+ Sµν

∇Ψ̂µν

∇S
+

1

2
R̂µνρσŜ

ρσUνΨµ + (P̂µUν − P̂νUµ)Ψ
µν , (2.30)

such that

P̂ µ def
= mÛα + Ûβ

∇Sαβ

∇S
, (2.31)

regarding that,
ŜµνÛν = 0 (2.32)

,

then taking the variation with respect to Ψ̂α and Ψ̂αβ .
Thus, we obtain

∇P̂ α

∇S
=

1

2
R̂α

νρσŜ
ρσUν , (2.33)

and
∇Ŝαβ

∇S
= (P̂ αUβ

− P̂ βUα). (2.34)
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Using the commutation relation (2.22) and equation (2.27) on (2.33) and (2.34), we obtain
the following set of deviation equations viz,

∇
2Ψα

∇S2
= R̂α

βγδP
βUγΨδ + Λρ

σδU
σΨδP σ

|ρ +
1

2
(R̂α

ρσǫS
σǫUρ)

|ρ
Ψρ, (2.35)

and

∇Ψαβ

∇S
= Ŝρ[βR̂

α]
ργδU

γΨδ + Λδ
µνS

αβ
|δ UµΨν + (P̂ αUβ

− P̂ βUα)|ρΨ
ρ. (2.36)

We can find that there is a link between spin deviation tensor and torsion of space time.
While, the spinning motion has no explicit relation with the same torsion tensor which
confirms Hehl’s point of view [22]. This result has led to find out its detailed description
in case of taking into account the microstructure of any system. Such a trend can reach
to define its contents with in the context of tetrad space.

3 Tetrad Spaces and Gauge Theories of Gravity

The concept of torsion of space time may give rise to revisit its existence in a tetrad
space, which may give rise to express space-time as a system of two different coordinate
systems. At each point of space-time is defined by the vector xµ , µ = 0, 1, 2, 3 and its
metric tensor is gµν . each point is associated with tangent space becoming a fiber of its
corresponding tangent bundle given by Minkowski space whose metric tensor is defined

by ηab
def
= dig(1,−1,−1,−1) .

Accordingly, this type of description may be analogous to explain the underlying
geometry associated with some gauge theories e.g. it is analogous to internal gauge
theories, in which gravity becomes as a special gauge theory [12]. Thus, as a result of
similarity between the above mentioned space-time and gauge theory, it is of interest to
derive the gauge approach of equations of motion for different particles.
From this perspective, the problem of invariance of any quantities must be a covariant
derivative invariant under general coordinate transformation (GCT) and Local Lorentz
transformation (LLT) that are expressible in terms of gauge potential of translation and
rotation in the following way .
The building blocks of the space is two quantities, one represents the tetrad vector (eaµ,
and the other is the generalized spin connection Ωij

µ ). The tangent space is raised and
lowered by the Minkowski space, while the space-time indices are raised and lowered by
the Riemannain metric

gµν
def
= eaµe

b
νηab, (3.37)

gµν
def
= eaµe

b
νηab. (3.38)

This type of geometry defined its curvature tensor Ri
jµν [25] is defined as follows

Ri
jµν

def
= Ωi

jν,µ − Ωi
jµ,ν + Ωk

jνµΩ
i
kµ − Ωk

jµµΩ
i
kν (3.39)
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and its corresponding torsion tensor Λa
µν is becoming as

Λa
µν

def
= (eaµ,ν − eaν,µ + Ωa

bµe
b
ν − Ωa

bνe
b
µ) (3.40)

, provided that
∇νe

m
µ = 0, (3.41)

i.e.
emµ||ν ≡ 0.

Due to the following condition [23],

gµν||σ = 0,

which becomes
eaµ,ν − Γλ

µνe
a
λ + Ωa

.bνe
b
µ = 0,

and
Γα
νµe

m
α = eαm(e

m
ν,µ + Ω .m .

µ . ne
n
ν ).

Consequently, the relationship between the generalized spin connection and contortion
of space time can be obtained as

Ω .m .
n. µ = −eνn(e

m
ν,µ + Γm

νµ)

comparing with (2.17) one obtains that, one gets

Ω .m .
n. µ = ω .m .

n. µ +K .m .
n. µ

where ω .m .
n. µ spin connection associated with Christoffel symbol, and

K .m .
n. µ = eνne

m
α K

α
νµ.

Special cases:
i Tele-parallelism: Ωi

jµ = 0 → ωi
jµ = −Ki

jµ gives that the spin connection is equivalent to
Ricci coefficient of rotation2.
(ii) General Relativity in a gauge form: Ki

jµ = 0 → Ωi
jµ = ωi

jµ gives that the genealized
spin connection is equivalent to Ricci coefficient of rotation.

3.1 The Need for Gauge Theories in Gravity

The study of microscopic structure of particles gives rise to utilize the richness Yang-Mills
guage theory to express gravity as a gauge theory having internal gauge invariance. This
can be done by involving two different types of coordinate system one for GCT and the
other for internal gauge invariance such as LLT. Consequently, it is worth mentioning
that local Poincare gauge theory is an appropriate theory to explain gravity at this level.
This approach was achieved by Hehl after a long process of versions by, Utimama, Kibble,

2Ricci coefficient of rotation Aρ
µν

def
= e

ρ
i e

i
µ;ν
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Sciama, and others [11].
The advantage of importing Yang-Mills gauge field concept is the existence of two field
strength tensors for translational and rotational in such a way that they are defined
by two different vector potentials acting independently. It is well known the analogy
between gauge field and space time one can consider translational gauge fa

α is equivalent
to eaµ and the rotational gauge Γab

β is equivalent to Ωab
µ . This may give rise to find another

similarity between the gauge field strength F ab
µν and curvature of space time admitting the

anholonomic coordinates Rab
µν [24]. to be added for Poincare gauge theory Translational

gauge potential enµ and rotational gauge potential Γab
µ in which the commutation derivative

operators[11]. As in gauge theories the commutation relation is defined as with respect
to the gauge field strength

[D̃a, D̃b] = fα
a f

β
b (F

. . .µν
αβ sαβ − F . . n

αβ D̃n), (3.42)

which becomes is equivalent to

[∇a,∇b] = eαae
β
b (R

. . .µν
αβ sab − Λ. . n

αβ ∇n). (3.43)

3.2 Teleparalellism: Translational Gauge Theory

In this case, Ωa
bµ = 0 the conventional absolute parallelism geometry: a pure gauge theory

for translations [9],[12].
Using Acros and Pirra method[12], one can find out that

R̂α
βγδ

def
= Γα

βγ,δ − Γα
βδ,γ + Γǫ

βγΓ
α
ǫδ − Γǫ

βδΓ
α
ǫγ ≡ 0,

Γρ
µν = eρc(e

c
µ,ν − ecν,µ),

Λα
βγ = Γα

βρ − Γα
ρρ.

As, in GR the spin connection is equal to Ricci coefficient of rotation ωa
bµ

def
= eaρe

ρ
a;µ

thus,

ωa
bµ

def
= Aa

bµ − γa
bµ,

where Ka
bµ its contortion defined as

Ka
bµ =

1

2
ecµ(Λ

a
c.b + Λ a

b.c − Λa
.bc ).

Consequently, one obtains,
Rc

dµν = R̂c
dµν −Kc

dµν ,

where
Kc

dµν

def
= γc

dν;µ − γc
dµ;ν + γc

aµγ
a
dν − γc

aνγ
a
dµ

.
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3.3 General Relativity: A Tetrad Version of Gravitational Gauge
Theory

Collins et al (1989)[10] described GR as a gauge theory of gravity subject to the follow-
ing gauge potential vectors eaµ and ωij

. .µ to represent translational and rotational gauge
potentials respectively.
The equations of physics will contain derivatives of tensor fields and it is therefore nec-
essary to define the covariant derivatives of tensor fields under the transformations GCT
and LLT, one must need to define two types of connection fields to be associated with
each of them. Accordingly the Christoffel symbol

{

α

µν

}

is referred to GCT while the spin
connection ωabµ as related to LLT.

which is considered a torsion less condition of Poincare gauge theory

Dµe
m
ν

def
= emν,µ −

{

α

νµ

}

emα + ω .m .
µ . ne

n
ν , (3.44)

provided that
DρDµe

m
ν = DµDρe

m
ν . (3.45)

Using this concept it turns out that GR may be expressed in terms of connecting eµa ,

ωabµ and
{

α

µν

}

together

gµν
def
= eaµe

b
νηab, (3.46)

such that,
{

α

µν

}

def
=

1

2
gασ(gνσ,α + gσα,ν − gαν,σ) (3.47)

. Thus, the curvature tensor may be defined ,due to gauge approach, in terms of spin
connection ωa

bµ

Rc
.dµν

def
= ωc

dν,µ − ωc
dµ,ν + ωc

aµω
a
dν − ωc

aνω
a
dµ.

Using this concept it turns out that GR may be expressed in terms of connecting eµa , ωabµ

and
{

α

µν

}

together. Accordingly where Rα
.µdc the curvature tensor may be defined ,due to

gauge approach, in terms of spin connection ωa
bµ

Rc
.dµν

def
= ωc

dν,µ − ωc
dµ,ν + ωc

aµω
a
dν − ωc

aνω
a
dµ.

4 Motion of Special Classes for Gauge Theories

4.1 Path and Path Deviation Equations of Gauge Theories of

Torsion Force

We suggest the following Lagrangian to derive both path and path deviation equation for
gauge theories having a torsion force.

L = eµae
ν
bU

aDΨb

DS
+ eαaΛαβγP

aUβΨγ, (4.48)
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to obtain its corresponding path equations by applying the Bazanski approach to
become,

DUa

DS
= −eaαΛ

. . α
(βγ). U

βUγ . (4.49)

Applying the following commutation relations of equation (2.20) and following (2.21),
we obtain after some manipulation its corresponding path deviation equations

DΦa

DS
= eaµK

µ
αβσU

αUβΦσ + Λ. . a.βγU
γUβ);ρΦ

ρ. (4.50)

4.2 Spin and Spin Deviation Equations of Gauge Theories of

Torsion Force

Thus spinning and spinning equations are obtained from taking the variation with respect
to Ψµ and Ψµν simultaneously, for the following Lagrangian

L = eµae
ν
bP

aDΨb

DS
+ΛaβγP

aUβΨγ
−
1

2
KabµνS

µνU bΨa+Sab

DΨab

DS
+(PaUb−PbUa)Ψ

ab (4.51)

to obtain

DP a

DS
= −

1

2
Ka

νρδS
ρδUν + Λ. . a.βγP

αUβ . (4.52)

and

Deaαe
b
βS

ab

DS
= (P αUβ

− P βUα), (4.53)

and
DScd

DS
= (P cUd

− P dU c). (4.54)

Using the commutation relations as mentioned above, we obtain;

DΦa

DS
= Ka

bβσP
bUβΦσ + (Ra

bµνS
µνUα + Λ. . a.βγP

γUβ);ρΦ
ρ, (4.55)

and
DΨcd

DS
= Sρ[dR̂

c]
ργδU

γΨδ + (P cUd
− P dU c);ρΨ

ρ. (4.56)

4.3 Path and Path Deviation Equation of Gauge Theories of
Torsion-less

The Lagrangian formalism of path and path deviation equation of gauge theories of
torsion-less is given as

L
def
= eµae

ν
bU

aDΨb

DS
. (4.57)
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Applying the Bazanski approach , taking the variation with respect to Ψα, we obtain

Deαc Û
c

DS
= 0, (4.58)

provided that
Deaα
DS

≡ 0,

we get
DU c

DS
= 0. (4.59)

Applying the following commutation relation

Aa||νρ − Aa||ρν
def
= R̂c

bρσAb, (4.60)

on equation (4.59) and using (2.13) we obtain

D2Ψc

DS2
= Rc

bρσÛ
bΨ̂σÛρ (4.61)

Substituting with the path equation in the deviation equation we get

D2Ψc

DS2
= Rc

bρσU
bΨ̂σUρ. (4.62)

4.4 Spin and spin deviation equation of gauge theories of torsion-
less

Thus spinning and spinning equations are obtained from taking the variation with respect
to Ψµ and Ψµν simultaneously, for the following Lagrangian

L = eµae
ν
bP

aDΨb

DS
+

1

2
(Rabµν)S

µνU bΨa + eaµe
b
νSab

DΨµν

DS
+ eµae

ν
b (PaUb − PaUb)Ψ

µν , (4.63)

to obtain its corresponding path equation using the Bazanski approach to get

DP a

DS
=

1

2
(Ra

bµν)S
µνUν , (4.64)

and

DSab

DS
= (P αUβ

− P βUα), (4.65)

eaαe
b
β

DSab

DS
+ Sab

D(eaαe
b
β)

DS
= (P αUβ

− P βUα). (4.66)

Multiplying both sides by ecαe
d
β

ecαe
d
βe

a
αe

b
β

DSab

DS
+ ecαe

d
βS

ab
D(eaαe

b
β)

DS
= ecαe

d
β(P

αUβ
− P βUα), (4.67)
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such that
D(eaαe

b
β)

DS
= 0.

Consequently, one obtains
DScd

DS
= (P cUd

− P dU c). (4.68)

Accordingly, the deviation equation is obtained by applying the commutation relation
and (2.27) on (4.52) and (4.54);

DΦµ

DS
= R

µ
αβσP

αUβΦσ + (Rµ
αabS

abUα + Λ. . α
.βγ P αUβ);ρΦ

ρ, (4.69)

and
DΨcd

DS
= Sρ[dR̂

c]
ργδU

γΨδ + (P cUd
− P dU c);ρΨ

ρ. (4.70)

4.5 Path and Path Deviation Poincare Gauge Theory

Path equations and path deviation equations are obtained its corresponding Bazanski
approach as follows

L
def
= eµae

ν
b Û

a∇Ψ̂b

∇S
. (4.71)

By taking the variation with respect to Ψα, we obtain

∇eαc Û
c

∇S
= 0, (4.72)

provided that
∇eaα
∇S

≡ 0,

we get
∇Û c

∇S
= 0. (4.73)

Thus, the spin deviation equations are obtained by applying the commutation relation
and (2.17) on both

∇
2Ψ̂c

∇S2
= R̂c

bρσÛ
bΨ̂σÛρ + eδbΛ

b
νρUa||δ (4.74)

Substituting with the path equation in the deviation equation we get

∇
2Ψ̂c

∇S2
= R̂c

bρσÛ
bΨ̂σÛρ (4.75)
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4.6 Spin and Spin Deviation Equation Poincare Gauge Theory

We suggest the following Lagrangian of spinning and spinning deviation objects with
precession by replacing the covariant derivative in (1.1) by the absolute derivative as
described in (2.15) to get

L = eµae
ν
b P̂

a∇Ψ̂b

∇S
+ Sab

∇Ψ̂ab

∇S
+

1

2
R̂abµν Ŝ

abUνΨµ + (P̂aUb − P̂bUa)Ψ
ab, (4.76)

such that

P̂ µ def
= mÛα + Ûβ

∇Sαβ

∇S
, (4.77)

Taking the variation with respect to Ψ̂α and Ψ̂αβ and after some manipulations,
we obtain

∇P̂ a

∇S
=

1

2
R̂a

bρσŜ
ρσU b, (4.78)

and
∇Ŝab

∇S
= (P̂ aU b

− P̂ bUa). (4.79)

And their corresponding deviation equations are obtained by applying the commuta-
tion relation (2.20) and (2.21) on both (4.79) and (4.79) to get

∇
2Ψa

∇S2
= R̂a

bβγP
bUβΨγ + eρcΛ

c
βγU

βΨγP a

|ρ
+

1

2
(R̂a

bρσS
ρσU b)

|δ
Ψδ, (4.80)

and

∇Ψab

∇S
= ebβe

c
δŜ

δ[βR̂
a]
cγδU

γΨδ + eδcΛ
c
µνS

αβ
|δ UµΨν + (P̂ aU b

− P̂ bUa)|ρΨ
ρ. (4.81)

Thus, we see clearly the interaction between spin deviation tensor and torsion of space
time is expressed in terms of curvature (rotational) and torsion (translational) strength
fields.

5 Discussion and Concluding Remarks

In our present work, we have developed he Bazanski approach to obtain spin and spin
deviation equations in non-Riemanian geometry. This approach was applied for obtain-
ing path equations for some geometries admitting non vanishing curvature and torsion
simultaneously. [26-28]
Due to the resultant equations (2.35),(2.36), we have figured out that torsion is explicitly
mentioned in spin deviation equations ,even if one puts P µ = mUµ,. Such a result is
in favor of Hehl’s argument falsifying the measurement of torsion from identifying the
spin tensor, for a spinning object in an orbit. This result is an alternative approach to
measure torsion from spinning equations using non-minimal coupling without introducing
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micro-structure[29].
Accordingly, we have obtained (2.35) and (2.36) of Poincare gauge theory of gravity as
described within a tetrad space. Consequently, using the analogy between tetrads and
gauge theories, we obtained equations (4.82), (4.83) that show how a tetrad vector eµi is
equivalent to gauge translational potential explicitly mentioned in the equation while the
generalized spin tensor Ωij

µ , which is equivalent to gauge rotational potentials as men-
tioned implicitly in the presence of curvature and torsion of space-time simultaneously.
These equations are considered to be the generalized cases for some special classes of
gauge theory of gravity of path and spin deviation equations (4.55) and (4.56) having a
torsion force, as well as their counterpart of (4.69) and (4.70) for a gauge theory of gravity
having a torsion free.
Thus, we conclude that torsion of space time can be tested for any spinning object in any
type of gravitational fields by examining its spin deviation equations.
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