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1 Introduction

The investigation of gauge gravitation theory in Riemann-Cartan spacetime (GTRC), which
is a necessary generalization of metric gravitation theory in the framework of gauge approach
by including the Lorentz group into the gauge group corresponding to gravitational interac-
tion, shows that GTRC allows to solve some principal problems of general relativity theory
(GR) by virtue of the change of gravitational interaction by certain physical conditions in
the frame of GTRC in comparison with GR (see for example [1–3]). The change of gravita-
tional interaction is provoked by more complicated structure of physical spacetime, namely
by spacetime torsion. In the frame of GTRC the gravitational interaction in the case of usual
gravitating matter with positive values of energy density and pressure can be repulsive. The
effect of gravitational repulsion appears at extreme conditions when energy density and pres-
sure are extremely high and also in case when energy density is very small and vacuum effect
of gravitational repulsion is essential. This allows to solve the problem of cosmological sin-
gularity and to explain accelerating cosmological expansion at present epoch without using
the notion of dark energy. Given data were obtained by study of isotropic cosmology built in
the frame of GTRC based on general expression of gravitational Lagrangian including both a
scalar curvature and quadratic in the curvature and torsion invariants with indefinite parame-
ters by certain restrictions on these parameters. A physical cause of a change of gravitational
interaction in GTRC is connected with the fact that torsion according to gravitational equa-
tions is function of energy density and pressure and together with energy-momentum tensor
affects on spacetime metric. The torsion plays the principal role at extreme conditions by
formation of limiting energy density for gravitating matter [4] and also leads to formation of
effective cosmological constant at asymptotics of cosmological models by virtue of influence
on physical spacetime in the vacuum having the structure of Riemann-Cartan continuum
with de Sitter metric (but not Minkowski spacetime) [5].

The following question appears: what is possible role of the torsion in astrophysics in
the case of usual gravitating systems, for which energy density is much smaller than limiting
energy density 1 but greater than average energy density in the Universe at present epoch (or
effective cosmological constant). It should be noted that one torsion function at asymptotics
of cosmological models has the structure (see below) which can be essential quantitatively
in newtonian approximation though the evolution of cosmological models at asymptotics

1We don’t discuss here massive stars collapsing in GR. In the frame of GTRC the collapse is impossible if
limiting energy density exists in the nature.
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coincides practically with that of Friedmann cosmological models with cosmological constant.
The study of this question is particular case of research of relationship of GTRC and GR.

This paper is devoted to investigation of relationship of GR and the simplest GTRC
(minimum GTRC) which allows to build the theory of regular accelerating Universe.

2 Isotropic cosmology and minimum gauge gravitation theory in Riemann-

Cartan spacetime

In the beginning lets introduce the base definitions and relations used in this paper. In the
framework of GTRC the role of gravitational field variables play the orthonormalized tetrad
hiµ and the Lorentz connection Aik

µ; corresponding field strengths are the torsion tensor
Si

µν and the curvature tensor F ik
µν defined as

Si
µ ν = ∂[ν h

i
µ] − hk[µA

ik
ν] ,

F ik
µν = 2∂[µA

ik
ν] + 2Ail

[µA
k
|l |ν],

where holonomic and anholonomic spacetime coordinates are denoted by means of greek and
latin indices respectively 2 . Isotropic cosmology in Riemann-Cartan spacetime investigated
in a number of papers (see for example [1–6]) was built by using the gravitational Lagrangian
given in the following sufficiently general form

Lg = f0 F + Fαβµν (f1 Fαβµν + f2 Fαµβν + f3 Fµναβ) + Fµν (f4 Fµν + f5 Fνµ)

+f6 F
2 + Sαµν (a1 Sαµν + a2 Sνµα) + a3 S

α
µαSβ

µβ, (2.1)

where Fµν = Fα
µαν , F = Fµ

µ, fi (i = 1, 2, . . . , 6), ak (k = 1, 2, 3) are indefinite parameters,
f0 = (16πG)−1, G is Newton’s gravitational constant (the light speed in the vacuum c = 1).
Gravitational equations of PGTG obtained from the action integral I =

∫

(Lg + Lm) hd4x,
where h = det

(

hiµ
)

and Lm is the Lagrangian of gravitating matter, contain the system of
16+24 equations corresponding to gravitational variables hiµ and Aik

µ. By using minimal
coupling of gravitational field with matter, the energy-momentum tensor Ti

µ = − 1
h
δLm

δhi
µ

and spin momentum tensor J[ik]
µ = − 1

h
δLm

δAik
µ
of gravitating matter manifest as sources of

gravitational field in gravitational equations. Gravitational equations are complicated system
of differential equations in partial derivatives with indefinite parameters fi and ak. Physical
consequences depend essentially on restrictions on these parameters. Some of such restrictions
were obtained by investigation of isotropic cosmology, notably the solution of cosmological
problems mentioned previously was obtained by the following restrictions: 2a1+a2+3a3 = 0
and 2f1 − f2 = 0. Then cosmological equations and equations for torsion functions include
three indefinite parameters: parameter α = f

3f2
0

(f = f1 +
f2
2 + f3 + f4 + f5 + 3f6 > 0)

with inverse dimension of energy density, parameter b = a2 − a1 with the same dimension
as f0 and dimensionless parameter ω = f2+4f3+f4+f5

f
. The value of α−1 corresponds to the

scale of extremely high energy densities, by which the correspondence of GTRC to GR in
linear approximation with respect to metric and torsion is violated [1], the parameter b has
to satisfy the condition 0 < x = 1 − b

f0
≪ 1 and for parameter ω we have the following

2Like our previous papers we will use notations corresponding to the following relation between holo-
nomic connection Γλ

µν and A
ik

µ: Γλ
µν = hi

λ
∂ν h

i
µ − hkµA

ik
ν . Then the tensor F

ρ
σµν = hi

ρ
hkσF

ik
µν =

2∂[νΓ
ρ
|σ |µ] + 2Γρ

λ[νΓ
λ
|σ |µ] has the opposite sign as compared with usually defined curvature tensor and

S
λ
µ ν = Γλ

[µν] (cf.[7, 8]). The signature of spacetime metric is (-2).
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restriction: 0 < ω < 2 b
f0

≈ 2, the value of ω is probably small (0 < ω ≪ 1), however, it is
not ruled out that ω ∼ 1. If parameter ω is small, there is the second scale of extremely high
energy densities of order (ωα)−1, which determines the value of limiting energy density.

Any homogeneous isotropic model (HIM) is described by three functions of time: the
scale factor of Robertson-Walker metric R(t) and two torsion functions S1(t) and S2(t).
Cosmological equations generalizing Friedmann cosmological equations of GR take the form

k

R2
+ (H − 2S1)

2 − S2
2 =

1

6f0Z

[

ρ− 6bS2
2 +

α

4

(

ρ− 3p − 12bS2
2

)2
]

, (2.2)

Ḣ − 2Ṡ1 +H(H − 2S1) =

− 1

12f0Z

[

ρ+ 3p− α

2

(

ρ− 3p− 12bS2
2

)2
]

, (2.3)

where H = Ṙ/R is the Hubble parameter (a dot denotes the differentiation with respect to
time), k = +1, 0,−1 for closed, flat and open models respectively, ρ is energy density, p is
pressure and Z = 1 + α

(

ρ− 3p− 12bS2
2

)

. The torsion functions S1 and S2 are

S1 = − α

4Z
[ρ̇− 3ṗ+ 12f0ωHS2

2 − 12(2b − ωf0)S2Ṡ2]. (2.4)

S2
2 =

ρ− 3p

12b
+

1− (b/2f0)(1 +
√
X)

12bα(1 − ω/4)
, (2.5)

where
X = 1 + ω(f2

0 /b
2)[1− (b/f0)− 2(1 − ω/4)α(ρ + 3p)] ≥ 0. (2.6)

As consistent with cosmological equations the energy density ρ and pressure p satisfy the
equation:

ρ̇+ 3H (ρ+ p) = 0. (2.7)

The torsion function S2 plays important role at asymptotics when energy density is
sufficiently small: α(ρ + 3p) ≪ 1. Then according to (2.5)-(2.6) if 0 < x = 1 − b

f0
≪ 1 we

have in the lowest approximation with respect to x:

S2
2 =

1

12b

[

ρ− 3p+
1− b/f0

α

]

, (2.8)

The presence of constant term in (2.8) leads to appearance of effective cosmological constant
in cosmological equations, which at asymptotics take the form:

k

R2
+H2 =

1

6f0

[

ρ
f0
b

+
1

4α

(

1− b

f0

)2 f0
b

]

, (2.9)

Ḣ +H2 = − 1

12f0

[

(ρ+ 3p)
f0
b

− 1

2α

(

1− b

f0

)2 f0
b

]

. (2.10)
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In situation when the value of energy density ρ is comparable with effective cosmological
constant, equations (2.9)-(2.10) practically coincide with Friedmann cosmological equations
with cosmological constant. However, in situation when effective cosmological constant in
cosmological equations (2.9)-(2.10) can be neglected in comparison with energy density ρ, the
evolution of HIM described by (2.9)-(2.10) weakly differs from that of Friedmann cosmological
equations because we have the term ρf0

b
≈ ρ(1 + x) instead ρ in right part of (2.9).

The dependence of S2
2 on energy density and pressure is similar to that of energy-

momentum tensor in gravitational equations, moreover the constant term in expression (2.8)
is much greater than effective cosmological constant in cosmological equations. However,
terms in (2.2)-(2.3) depending on S2

2 are mutually cancelled and influence of torsion function
S2 appears by formation of effective cosmological constant because of terms S4

2 in cosmological
equations 3. Is it distinctive feature of HIM connected probably with its high symmetry or
is it some characteristic property of gravitational equations of GTRC?

We will study this question by using discussed earlier restrictions on indefinite parame-
ters introduced in the frame of isotropic cosmology. The remaining indefinite parameters in
gravitational Lagrangian (2.1) can be excluded by using additional physical considerations.
So we can use restrictions on indefinite parameters obtained in [7] from analysis of particle
content of GTRC in linear approximation and exception of ghosts and tachyons 4. Restric-
tions on indefinite parameters obtained in the frame of isotropic cosmology are compatible
with the following conditions: f1 = f2 = f3 = f4 = 0 and

a1 = f0(1− x), a2 = 2f0(1− x),

a3 = −4

3
f0(1− x), f5 = 3f2

0αω,

f6 = f2
0α(1 − ω) (x = 1− b

f0
). (2.11)

The particle content of GTRC with such restrictions on indefinite parameters includes besides
massless graviton massive particles with spin-parity 2+. Our further consideration will be
connected with this GTRC - so-called minimum GTRC.

3 Relationship of minimum GTRC and GR

Gravitational equations of minimum GTRC have the following form:

∇νUi
µν + 2Sk

iνUk
µν + 2(f0 + 2f6 F )Fµ

i + 2f5(FkiF
µk + Fµ

kimFmk)−
hi

µ(f0F + f5F
µνFνµ + f6 F

2 + Sαµν (a1 Sαµν + a2 Sνµα) + a3 S
α
µαSβ

µβ) = −Ti
µ, (3.1)

4∇ν [(f0/2 + f6 F )h[i
νhk]

µ ++f5 F
[µ

[khi]
ν]] + U[ik]

µ = −J[ik]
µ, (3.2)

where Ui
µν = 2(a1 Si

µν − a2 S
[µν]

i − a3 Sα
α[µhi

ν]), ∇ν denotes the covariant operator having
the structure of the covariant derivative defined in the case of tensor holonomic indices by

3This means that establishing of correspondence between GTRC and GR in linear approximation with
respect to torsion [1, 7] is not sufficient.

4The strict analysis of particle content has to be connected with consideration of gravitational perturba-
tions above the vacuum spacetime having the structure of Riemann-Cartan continuum with de Sitter metric.
However, the deviation of the structure of the vacuum space-time from Minkowski space-time, which is essen-
tial at cosmological scale, can be unimportant by local analysis given in [7] because of smallness of values of
parameter H and torsion for the vacuum.
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means of Christoffel coefficients
{

λ
µν

}

and in the case of tetrad tensor indices by means of

anholonomic Lorentz connection Aik
ν (for example ∇νh

i
µ = ∂ν h

i
µ −

{

λ
µν

}

hiλ − Aik
νhkµ).

Analytic analysis is possible if ω ≪ 1, then according to (2.11) f5 ≪ f6. We will analyze the
system of equations (3.1)-(3.2) in the case of spinless matter (J[ik]

µ = 0) by neglecting terms
with f5. Then the system of gravitational equations takes the form:

∇νUi
µν + 2Sk

iνUk
µν + 2(f0 + 2f6 F )Fµ

i −
hi

µ(f0F + f6 F
2 + Sαµν (a1 Sαµν + a2 Sνµα) + a3 S

α
µαSβ

µβ) = −Ti
µ, (3.3)

4∇ν [(f0/2 + f6 F )h[i
νhk]

µ] + U[ik]
µ = 0. (3.4)

By taking into account that

Γλ
µν =

{

λ

µν

}

+Kλ
µν , (3.5)

where
Kλ

µν = Sλ
µν + Sµν

λ + Sνµ
λ, (3.6)

we obtain that

∇νhi
µ = ∂ν hi

µ +

{

µ

λν

}

hi
λ −Ak

iνhk
µ = −Kµ

λνhi
λ. (3.7)

By using (3.7) and the relation a2 = 2a1 and by multiplying eq. (3.4) with hiσh
k
ρ we

transform the equation (3.4) to the following form:

2f0(1 +
2f6
f0

F )(Sµ
σρ + 2Sν

ν[σδ
µ
ρ])− a2S

µ
σρ + a3S

ν
ν[σδ

µ
ρ] + 4f6∂νFδν[σδ

µ
ρ] = 0. (3.8)

By denoting Z1 = 1 + 2f6
f0

F ≈ 1 + 2f0αF we write eq. (3.8) in the form5:

(2f0Z1 − a2)S
µ
σρ + (4f0Z1 + a3)S

ν
ν[σδ

µ

ρ] + 4f6∂νFδν[σδ
µ

ρ] = 0. (3.9)

From (3.9) follows that if there is nonvanishing component of torsion with µ 6= ρ and µ 6= σ
we obtain f0Z1− a2

2 = 0 and for minimum GTRC with restrictions (2.11) Z1 =
b
f0
. As result

the scalar curvature F is constant: F = −
1− b

f0
2f0α

. In the case µ = ρ and µ 6= σ eq. (3.9) leads
to Sν

νσ = 0.
Now we will analyze gravitational equation (3.3). By using that ∇νh

i
µ = Kλ

µνh
i
λ and

by multiplying eq. (3.3) with hiλ we transform eq. (3.3) to the following form:

∇νUλ
µν −Kρ

λνUρ
µν + 2Sρ

λνUρ
µν + 2f0(1 +

2f6
f0

F )Fµ
λ −

δµλ(f0F + f6 F
2 + Sαµν (a1 Sαµν + a2 Sνµα) + a3 S

α
µαSβ

µβ) = −Tλ
µ. (3.10)

From (3.10) we obtain the following expression for scalar curvature:

F =
1

2f0
[T − 2bSλµν(S

λµν − 2Sµνλ)], (3.11)

5The quantity Z1 corresponds to Z used earlier in cosmology.
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where T = Tµ
µ. The expression (3.11) corresponds to scalar curvature of HIM obtained

earlier [1].

By using obtained value of constant scalar curvature F = −
1− b

f0
2f0α

and the formula
Sν

νσ = 0 we transform eq. (3.10) to the form:

1

2b
(∇νUλ

µν −Kρ
λνUρ

µν + 2Sρ
λνUρ

µν) + Fµ
λ −

1

2
δµλF −

1

2
δµλS

αµν(Sαµν + 2Sνµα) = − 1

2b
(Tλ

µ + δµλ
(1− b

f0
)2

12α
). (3.12)

The tensor F ρ
σµν can be presented in the form of sum of riemannian part depending on

Christoffel coefficients and denoting by Rρ
σµν(

{}

) and part depending on torsion and denot-
ing by F ρ

σµν(K). As result the tensors Fµ
λ and F in (3.12) are divided by the following

way: Fµ
λ = Rµ

λ + Fµ
λ(K) and F = R + F (K) and by taking into account Sν

νσ = 0 we
have:

Fµ
λ(K) = −∇νK

νµ
λ +KνρλK

ρµν , F (K) = KλµνK
µνλ. (3.13)

By using formulas (3.13) and (3.6) we find that all terms with torsion in (3.12) are mutually
eliminated and eq. (3.12) takes the form of Einstein gravitational equations with cosmological
constant6:

Rµ
λ −

1

2
δµλR = − 1

2b
(Tλ

µ + δµλ
(1− b

f0
)2

12α
). (3.14)

Besides effective cosmological constant the influence of torsion in eq. (3.14) appears via
the change of gravitational constant, however, because the value of b is very near to f0
corresponding consequences are insignificant. Note that analysis leading to eq. (3.14) is not
applicable at extreme conditions near limiting energy density, where terms with parameter
ω in gravitational equations play principal role.

It should be noted that equations of minimum GTRC (3.1)-(3.2) like GTRC based
on gravitational Lagrangian (2.1) have a number of solutions which are unacceptable from
physical point of view. In particular, as it was shown in [7] any vacuum solution of GR with
vanishing torsion is exact solution of GTRC independently on values of indefinite parameters
fi and ak while solutions of GTRC far from spatially limited systems have to tend to the
vacuum solution with nonvanishing torsion. In connection with this we have to state the
criterion [1], which allows to distinguish acceptable solutions from unphysical ones. Such
criterion can be based on investigation of solutions at asymptotics: far from spatially limited
systems and at asymptotics of cosmological models solutions of GTRC have to tend to the
vacuum solution in the form of corresponding Riemann-Cartan continuum.

4 Conclusion

We obtain that minimum GTRC does not lead to essential distinction in behavior of usual
astrophysical objects in comparison with GR, if our assumptions (ω ≪ 1) are valid. However,
consideration of the question about relationship of GTRC and GR is not terminated. Analysis
of this question in the case ω ∼ 1 is essentially more complicated. If spacetime torsion appears
as energy density and pressure, its influence on gravitational interaction in connection with
dark matter problem obtains principal interest.

6These equations were derived in the case of spinless matter. Investigation of significance of spin effects in
the frame of minimum GTRC similar to that in Einstein-Cartan theory [9] is of physical interest.
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