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Abstract

We consider a model belonging to the class of Poincaré gauge gravities. The model

is free of ghosts and gradient instabilities about Minkowski and torsionless Einstein

backgrounds. We find that at zero cosmological constant, the model admits a self-

accelerating solution with non-Riemannian connection. Small value of the effective

cosmological constant is obtained at the expense of the hierarchy between the dimen-

sionless couplings.

1 Introduction

The possibility of modifying General Relativity at large distances is both theoretically excit-

ing and potentially interesting for cosmology. In particular, IR-modified gravity may serve

as an explanation of the accelerated late-time expansion of the Universe, alternative to the

cosmological constant and the dark energy. However, it often happens that self-accelerating

solutions in IR-modified gravities are plagued by instabilities. A famous example is the DGP

model [1], which admits both Minkowski and self-accelerating backgrounds [2, 3]. The latter,

however, has ghost instability [4–8].

There are various approaches to modifying gravity in IR, see a comprehensive review

[9]. These include theories with extra dimensions [1, 10–13] (for a review see Ref. [14]),

f(R) and scalar-tensor gravities (for reviews see Refs. [15] and [16]), theories with massive
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gravitons [17–20] (for a review see Ref. [21]) and theories with explicitly broken Lorentz

invariance [22–26] (for a review see Ref. [27]).

Yet another class of theories which are self-consistent on the Minkowski background

[28–31] and may serve as candidates for the consistent infrared modification of gravity are

Poincaré gauge gravities. These theories treat the vierbein and connection as independent

variables, and the Lagrangians include bilinear terms in the full curvature tensor, as well

as bilinear terms in the torsion. The spectrum of such theories about the Minkowski back-

ground contains massless degrees of freedom corresponding to the standard graviton, as

well as massive degrees of freedom related to the propagating torsion [30]; the gravitational

interaction in these theories contains both Newtonian and Yukawa terms [29].

We consider one theory from the class described in [28–31], which was studied previously

in Refs. [32–34]. It was shown that the spectrum of small perturbations about the Minkowski

background is free of ghosts and tachyons [30, 33]. Remarkably, ghosts, gradient instabilities

and tachyons are absent in de Sitter and anti-de Sitter spaces and in arbitrary torsionless

Einstein backgrounds of sufficiently small curvature [32, 33]. The gravitational interaction

is mediated by both massless and massive spin-2 fields, with relative strength being a free

parameter [33]. Thus, the model is indeed an example of the infrared modification of gravity.

It is natural to ask whether the model admits self-accelerating cosmological solution(s).

Other models belonging to the class of Poincaré gauge gravities have been studied from this

viewpoint by A. Minkevich and collaborators [35, 36] (see also [37] and references therein)

who have found self-accelerating cosmological solutions in certain models from the general

class of Refs. [28–31]. Here we show that the model studied in Refs. [32–34] is not an

exception: it does admit a self-accelerating solution with the de Sitter metric, even though

there is no explicit cosmological constant term in the action. The self-acceleration is due to

the non-metric connection; we find that the connection coefficients are consistent with the

de Sitter metric provided that they are independent of time and uniquely determined by the

parameters of the theory.

The key issue is then the stability of perturbations about this solution. We plan to

address this issue in future publications.

The paper is organized as follows. We present the Lagrangian and remind the earlier

results in Section 2. In Section 3 we study spatially flat homogenous and isotropic cosmology

and find that the model admits a self-accelerating solution with de-Sitter metric and non-

zero torsion. In Section 4 we demonstrate that the effective dark energy density can be made

small by an appropriate choice of parameters.
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2 The Model

We make use of the tetrad formalism. The vierbein and connection are considered as in-

dependent fields. Following the notations of Refs. [32–34], we denote the vierbein by eiµ
and connection by Aijµ = −Ajiµ, where µ = (0, 1, 2, 3) are the space-time indices, and

i, j = (0, 1, 2, 3) are the tangent space indices. The latter are raised and lowered using the

Minkowski metric ηij , so we do not distinguish upper and lower tangent space indices in

what follows, if this does not lead to an ambiguity. The signature of metric is (−,+,+,+).

The action of the model is [34]:

S =

∫

d4x eL , L =
3

2
(α̃F − αR) + c3F

ijFij + c4F
ijFji + c5F

2 + c6(ǫ · F )2 , (1)

where e ≡ det(eiµ) ; Fijkl is the curvature tensor constructed with the connection Aijµ,

Fijkl = eµke
ν
l (∂µAijν − ∂νAijµ + AimµAmjν − AjmµAmiν) ;

Fij = ηklFikjl , F = ηijFij , ǫ · F ≡ ǫijklFijkl ;

ǫijkl is the Levi-Civita symbol defined in such a way that ǫ0123 = −ǫ0123 = 1; Rijkl is the

Riemanian curvature tensor,

Rijkl = eµke
ν
l (∂µωijν − ∂νωijµ + ωimµωmjν − ωjmµωmiν) ;

Rij = ηklRikjl , R = ηijRij ,

where ωijµ is the Riemanian spin-connection. It is expressed in terms of the vierbein as

follows:

ωijµ ≡ ωijke
k
µ =

1

2
(Cijk − Cjik − Ckij)e

k
µ ,

where

Cijk = eµj e
ν
k(∂µeiν − ∂νeiµ) .

The constants α, α̃, c3, c4, c5, c6 are the parameters. We impose the following conditions,

c3 + c4 = −3c5 , (2a)

α < 0, α̃ > 0, c5 < 0, c6 > 0 , (2b)

in order not to have the pathological degrees of freedom in the Minkowski background [30].

It is worth noting that the action (1) is equivalent to the action used in [28–30, 32, 33],

which, instead of the explicit αR-term, involves mass terms for torsion. To this end, one
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decomposes the connection as follows,

Aijµ ≡ Aijke
k
µ =

[

1

2
(Tijk − Tjik − Tkij) + ωijk

]

ekµ ,

where Tijk = −Tikj is the torsion tensor. The latter can be decomposed into its irreducible

components under the local O(1, 3) group,

Tijk =
2

3
(tijk − tikj) +

1

3
(ηijvk − ηikvj) + ǫijkla

l ,

where the field tijk is symmetric with respect to the interchange of i and j and satisfies the

cyclic and trace identities,

tijk + tjki + tkij = 0, ηijtijk = 0, ηiktijk = 0 .

The action is then

S =

∫

d4x eL ,

where

L =
3

2
(α̃− α)F + α(tijkt

ijk − viv
i +

9

4
aia

i) + c3F
ijFij + c4F

ijFji + c5F
2 + c6(ǫ · F )2 .

We will use the action (1) in what follows.

In Ref. [33] it was found that there are three propagating modes at the linear level in the

Minkowski background: the massless spin-2 mode, the massive spin-2 mode with mass

m2 =
α̃(α̃− α)

2αc5
(3)

and the massive spin-0 mode with mass

m2

0
=

α̃

16c6
. (4)

There are no ghosts or tachyons in the Minkowski background. In the theory equipped with

the cosmological constant, the perturbations are healthy in torsionless Einstein backgrounds

as well.

The analysis of gravitational interactions between sources in Minkowski background [33]

reveals that for small m there is the correspondence,

α = −
M2

P l

24π
. (5)
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We leave other parameters arbitrary for the time being.

3 The self-accelerating solution

We consider now spatially flat homogeneous and isotropic cosmology. Homogeneity and

isotropy dictate the following most general Ansatz:

e0̃
0
= N(t) , eãb = a(t)δãb , A

0̃ãb̃ = f(t)δãb̃ , Aãb̃c̃ = g(t)εãb̃c̃ , (6)

where a, ã = (1, 2, 3), tilde denotes tangent space indices, and space-time indices do not have

tilde. In other words, i = (0̃, ã), µ = (0, a). Due to the antisymmetry of Aijk with respect

to the interchange of the first pair of indices no other components can be non-vanishing.

With the Ansatz (6), we calculate the non-vanishing components of the curvature tensor

Fijkl,

F
0̃ã0̃b̃ =

1

Na
∂0(af)δab , F

0̃ãb̃c̃ = −2fgεabc ,

Fãb̃0̃c̃ =
1

Na
∂0(ag)εabc , Fãb̃c̃d̃ = (f 2 − g2)(δacδbd − δadδbc) .

The non-vanishing components of Fij are

F
0̃0̃

=
3

Na
∂0(af) , Fãb̃ =

[

2(f 2 − g2)−
1

Na
∂0(af)

]

δab .

Note that Fij is symmetric as required by the homogeneity. Finally, we calculate F = ηijFij ,

ǫ · F and R ≡ Rijklη
ikηjl:

F = 6

[

f 2 − g2 −
1

Na
∂0(af)

]

, ǫ · F = 12

[

−2fg +
1

Na
∂0(ag)

]

,

R = 6

[

1

Na
∂0

(

ȧ

N

)

+
1

a2

(

ȧ

N

)2
]

.

The action (1) in terms of the homogeneous and isotropic fields is

eL =9α̃
[

Na3(f 2 − g2)− a2∂0(af)
]

− 9α

[

a2∂0

(

ȧ

N

)

+
a

N
(ȧ)2

]

− 36c5a
2(f 2 − g2)∂0(af) + 144c6

{

4Na3f 2g2 − 4a2fg∂0(ag) +
a

N
[∂0(ag)]

2

}

,

where ȧ ≡ ∂0a. Note that, due to (2a) and symmetry of Fij, this expression contains only

c5, c6, α and α̃, but not c3 and c4 separately. The terms with (f 2 − g2)2 and [∂0(af)]
2 have
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canceled out also due to (2a). Upon integrating by parts we write the action in the following

form:

eL =9α̃
[

(f 2 − g2)Na3 + 2a2ȧf
]

+ 9α
a

N
(ȧ)2 + 36c5g

2a2∂0(af)

+ 144c6

{

4f 2g2Na3 − 4a2fg∂0(ag) +
a

N
[∂0(ag)]

2

}

. (7)

There are three independent equations of motion that follow from (7). We choose the

gauge N = 1 after varying with respect to N , f and g, divide by a3 and obtain

δ

δN
: α̃(f 2 − g2)− α

ȧ2

a2
− d6

[∂0(ag)]
2

a2
+ 4d6f

2g2 = 0 , (8a)

δ

δf
: α̃(f +

ȧ

a
)− d5g

∂0(ag)

a
+ 4d6fg

2 = 0 , (8b)

δ

δg
: −α̃g + d5g

∂0(af)

a
− d6

∂0[a∂0(ag)]

a2
+ 4d6f

2g = 0 , (8c)

where we have introduced the notations

d6 ≡ 16c6 , d5 ≡ 4c5 + 32c6 .

We are interested in a self-accelerating solution of this system with

a = eλt ,

where λ = const. Such a solution necessarily has time-independent f and g. To see this, we

note that eq. (8b) can be solved for ∂0g as function of f and g. Then eq. (8a) becomes an

algebraic equation that determines f = f(g). Hence, we can express ∂0g, ∂
2

0
g and ∂0f as

algebraic functions of g. Plugging these into eq. (8c) we obtain an algebraic equation for g

with time-independent coefficients. We have checked that g does not drop out of the latter

equation (which, in fact, can be cast into the eighth order equation for g2). The solution to

that equation is independent of time, as claimed.

For constant f , g and λ the three equations (8a), (8b) and (8c) become algebraic. As-

suming g 6= 0 we have,

α̃(f 2 − g2)− αλ2 − d6g
2λ2 + 4d6f

2g2 = 0 , (9a)

α̃(f + λ)− d5g
2λ+ 4d6g

2f = 0 , (9b)

−α̃ + d5λf − 2d6λ
2 + 4d6f

2 = 0 . (9c)
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A useful consequence of eqs. (9a) - (9c) is

α̃(f 2 − g2 − λf)− 2αλ2 = 0 . (10)

Let us solve eq. (9b) for f :

f = −
α̃− d5g

2

α̃ + 4d6g2
λ . (11)

We substitute this into eq. (9a) and solve for λ2. The result is

λ2 =
α̃g2(α̃ + 4d6g

2)

(d2
5
− 4d2

6
)g4 − [α̃(2d5 + d6) + 4αd6]g2 + α̃(α̃− α)

. (12)

Finally, we substitute f from (11) and λ2 from (12) into (10) and obtain an equation for

x = g2:

4d6(d
2

5
− 4d2

6
)x3 − 4(2α̃d2

6
− 4αd2

6
+ α̃d5d6)x

2 + α̃(α̃d5 − α̃d6 + 8αd6)x− α̃2(α̃− α) = 0 .

This is cubic in x. The product of the three roots of this equation is

α̃2(α̃− α)

4d6(d25 − 4d2
6
)
, (13)

which is positive provided that we impose the condition d2
5
− 4d2

6
≡ 4c5(d5 + 2d6) > 0, i.e.,

with the restriction (2b),

d5 + 2d6 ≡ 4c5 + 64c6 < 0 . (14)

The positivity of (13) guarantees that there is one positive root x1 for g2. The two other

roots are negative. Indeed, the following bilinear combination of the three roots is

x1x2 + x1x3 + x2x3 =
α̃(α̃d5 − α̃d6 + 8αd6)

4d6(d
2

5
− 4d2

6
)

< 0

Furthermore, with our inequality (14), we have,

2d5 + d6 = 2(d5 + 2d6)− 3d6 ≡ 2(4c5 + 64c6)− 48c6 < 0 ,

and hence

α̃(2d5 + d6) + 4αd6 < 0 .

Using the latter inequality it is straightforward to see that eq. (12) gives positive λ2 and

with positive λ we obtain a negative value for f from (11).

To summarize, if the condition (14) is satisfied together with the conditions (2b), then
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there exists the self-accelerating solution with λ > 0, f < 0. The sign of g can be arbitrary,

since g is P-odd.

4 The limit of small λ

The solution given in the previous section, although exact and explicit, is fairly complicated.

Having in mind the present acceleration of the Universe, we consider the limit of small λ.

Let us find out the relevant corner in the parameter space of the action (1). We assume the

following power counting:
α̃

|α|
= O(λ0) , f = O(λ0) ,

where |α| ∼ M2

P l, see eq. (5). We note in passing that this power counting does not exclude

the case α̃ << |α| and/or f 2 << |α| ; it merely means that λ is the smallest parameter in

the problem.

We make use of (10) to solve eqs. (9a), (9b) and (9c) for c5 and c6:

c6 =
α̃λ(α̃f + αλ)

16(λ2 − 4f 2)(α̃f 2 − α̃λf − 2αλ2)
,

c5 =
α̃[2α̃f 2 + λfα̃+ λ2(α̃− 2α)]

4λ(λ+ 2f)(f 2α̃− λfα̃− 2αλ2)
.

In the small-λ limit, these equations give

c6 = −
α̃

64f 3
λ ,

c5 =
α̃

4λf
,

or

λ =

(

−
c6α̃

2

c3
5

)1/4

,

f = −
α̃1/2

4(−c5c6)1/4
,

so that the parameter c6 must be small and c5 must be large, c6 = O(λ), c5 = O(λ−1).

Equation (10) then gives

g = ±f +O(λ) .

As we pointed out above, the sign of g can be chosen arbitrarily.

The effective cosmological constant can also be written in terms of the masses (3), (4) of
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excitations about the Minkowski background:

λ = m

(

m

m0

)1/2
(−α)3/4

21/4(α̃− α)3/4
.

At α̃/|α| = O(λ0) this shows that the small value of λ is obtained for small mass m of the

spin-2 excitation, and also that large m0 suppresses λ.

5 Conclusions

To conclude, the model (1) admits the self-accelerating solution,

e0̃
0
= 1 , eãb = eλtδãb , A

0̃ãb̃ = fδãb̃ , Aãb̃c̃ = gεãb̃c̃ ,

We have shown that for the most general solution with the de Sitter metric, the functions

f and g are necessarily time independent constants. Furthermore, we have established a

direct relationship between the dark energy λ and the mass m characteristic of the massive

graviton originating from torsion in Minkowski background. The small value of the effective

cosmological constant λ is obtained provided that there is a hierarchy between the couplings,

c6 = O(λ), c5 = O(λ−1). It is worth noting that with this choice of parameters and in

Minkowski background, the mass of the spin-2 state (3) is small, m2 ∼ λf , while the mass

of spin-0 state (4) is large, m2

0
∼ f 3/λ. In fact, in the limit of small λ, the scale m0 may

be above the UV cutoff of the effective low energy theory; in that case the scalar degree

of freedom is absent in the spectrum about Minkowski background. We emphasize that

perturbations about our self-accelerating background may have quite different properties.

We plan to address this issue in a forthcoming publication.
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