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The evolution of a generally covariant theory is under-determined. One hundred years

ago such dynamics had never before been considered; its ramifications were perplexing,

its future important role for all the fundamental interactions under the name gauge prin-

ciple could not be foreseen. We recount some history regarding Einstein, Hilbert, Klein

and Noether and the novel features of gravitational energy that led to Noether’s two the-

orems. Under-determined evolution is best revealed in the Hamiltonian formulation. We

developed a covariant Hamiltonian formulation. The Hamiltonian boundary term gives

covariant expressions for the quasi-local energy, momentum and angular momentum.

Gravity can be considered as a gauge theory of the local Poincaré group. The dynamical

potentials of the Poincaré gauge theory of gravity are the frame and the connection.

The spacetime geometry has in general both curvature and torsion. Torsion naturally

couples to spin; it could have a significant magnitude and yet not be noticed, except on

a cosmological scale where it could have significant effects.
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1. Introduction

There have long been disputes about all of the principles used by Einstein for his

gravity theory. Kretschmann in 1917 argued that general covariance has no real

physical content and no connection to an extension of the principle of relativity.1, 2

From a different perspective general covariance has deep fundamental ramifications.

GR with general covariance is the premier gauge theory. The consequences of

this, especially regarding gravitational energy and under-determined evolution, were

long perplexing. The Hamiltonian approach clarifies these issues. Gravity can be

understood as a gauge theory of the local Poincaré symmetries of spacetime.

1
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2. Some Historical Background

In 1915 Einstein made presentations to the Prussian Academy of Sciences on Nov. 4,

11, 18 and 25 (published one week later). The last had his generally covariant

equations along with energy conservation. Hilbert presented his “Foundations of

physics” on November 16 and 20; he submitted his first note on Nov. 19 (published

in March 1916).3 His first theorem is central to our concerns:

Theorem I (‘Leitmotiv’a). In the system of n Euler-Lagrange differential equations

in n variables obtained from a generally covariant variational integral such as in

Axiom I, 4 of the n equations are always a consequence of the other n − 4 in the

sense that 4 linearly independent combinations of the n equations and their total

derivatives are always identically satisfied.

Some discussions of Hilbert’s work have appeared recently,3–5 often it has been

viewed from the Einstein GR perspective (e.g., Ref. 6). An alternative view7 of

Hilbert’s agenda argues that a main aim was to reconcile the tension between general

covariance and its inevitable consequence: a lack of unique determinismb—this

is the essence of gauge theory. Dynamical equations obtained from a variational

principle had formerly had deterministic Cauchy initial value problems, but for GR

there was a differential identity connecting the evolution equations; they were not

independent and could not give uniquely determined evolution. Later it was found

that this is best addressed using the Hamiltonian approach.8, 9

We note some excerpts from Einstein’s correspondence, from Vol. 8 in Ref. 10.

“In your paper everything is understandable to me now except for the energy

theorem. Please do not be angry with me that I ask you about this again. . . . How is

this cleared up? It would suffice, of course, if you would charge Miss Noether with

explaining this to me.” (Doc. 223 to Hilbert 30 May 1916)

“The only thing I was unable to grasp in your paper is the conclusion at the top

of page 8 that εσ was a vector.” (Doc. 638 to Klein 22 Oct 1918)

“. . .Meanwhile, with Miss Noether’s help, I understand that the proof for the

vector character of εσ from “higher principles” as I had sought was already given

by Hilbert on pp. 6, 7 of his first note, . . . ” (Doc. 650 from Klein 10 Nov 1918)

Briefly, after a couple of years Klein clarified Hilbert’s energy-momentum “vec-

tor”; he related it to Einstein’s pseudotensor, but he disagreed with Einstein’s phys-

ical interpretation of divergenceless expressions.c Enlisted by Hilbert and Klein, it

was Emmy Noether who resolved the primary puzzle regarding gravitational energy.

3. Automatic Conservation of the Source and Gauge Fields

In 1916 Einstein showed that local coordinate invariance plus his field equations

gives material energy momentum conservation, without using the matter field equa-

aguiding theme
bEinstein had struggled with this in connection with his hole argument.
cThings were not as easy then; in particular the Bianchi identity and its contracted version were

not known to these people;11, 12 they each had to rediscover an equivalent identity on their own.
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tions (see Doc. 41 in Vol. 6 of Ref. 10). This is referred to as automatic conservation

of the source (see section 17.1 in Ref. 13); it uses a Noether second theorem lo-

cal (gauge) symmetry type of argument to obtain current conservation. Hermann

Weyl argued in this way for the electromagnetic current in his papers of 1918 (the

name gauge theory comes from this work) and 1929,d whereas modern field theory

generally uses Noether’s first theorem for current conservation.15

The essence of gauge theory is a local symmetry, consequently: (i) a differential

identity, (ii) under-determined evolution, (iii) restricted type of source coupling,

(iv) automatic conservation of the source. Yang-Mills is only one special type. Our

gauge approach to gravity does not try to force it into the Yang-Mills mold, but

rather simply recognizes the natural symmetries of spacetime geometry.

4. Noether’s 1918 Contribution

One word well describes 20th century physics: symmetry. Most of the theoretical

physics ideas involved symmetry—essentially they are applications of Noether’s two

theorems.16 The first associates conserved quantities with global symmetries. The

second concerns local symmetries: it is the foundation of the modern gauge theories.

Why did Noether make her investigation? Klein was looking into the relationship

between Einstein’s pseudotensor and Hilbert’s energy vector. He published a paper

based on his correspondence with Hilbert. We quote some excerpts:16

Klein: “You know that Miss Noether advises me continually regarding my work,

and that in fact it is only thanks to her that I have understood these questions.”

Hilbert: “I fully agree in fact with your statements on the energy theorems:

Emmy Noether, on whom I have called for assistance more than a year ago to

clarify this type of analytical questions concerning my energy theorem, found at

that time that the energy components that I had proposed—as well as those of

Einstein—could be formally transformed, . . . into expressions whose divergence van-

ishes identically,. . . Indeed I believe that in the case of general relativity, i.e., in the

case of the general invariance of the Hamiltonian function, the energy equations

which in your opinion correspond to the energy equations of the theory of orthog-

onal invariance do not exist at all; I can even call this fact a characteristic of the

general theory of relativity.”

This is why Noether wrote her paper. After presenting her two famous theorems

she uses them to draw the conclusion that clarifies the situation:16

“Given I invariant under the group of translations, then the energy relations

are improper if and only if I is invariant under an infinite group which contains

the group of translations as a subgroup. . . . As Hilbert expresses his assertion, the

lack of a proper law of energy constitutes a characteristic of the “general theory

of relativity.” For that assertion to be literally valid, it is necessary to understand

the term “general relativity” in a wider sense than is usual, and to extend it to the

dAn English translation of Weyl’s seminal papers can be found in Ref. 14.
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aforementioned groups that depend on n arbitrary functions.”

Her result regarding the lack of a proper law of energy applies not just to Ein-

stein’s GR, but to all geometric theories of gravity. The modern view is that energy-

momentum is quasi-local, associated with a closed 2 surface.17

5. Energy-momentum Pseudotensors and the Hamiltonian

The Einstein Lagrangian differs from Hilbert’s by a total divergence:

2κLE(gαβ , ∂µgαβ) := −
√
−ggβσΓα

γµΓ
γ
βνδ

µν
ασ ≡

√
−gR− div. (1)

The Einstein pseudotensor is the associated canonical energy-momentum density:

t
µ
Eν := δµνLE − ∂LE

∂∂µgαβ
∂νgαβ. (2)

Using
√−gGµ

ν = κTµ
ν one gets a conserved total energy-momentum:

∂µ(T
µ
ν + t

µ
Eν) = 0, ⇐⇒

√
−gGµ

ν + κtµEν = ∂λU
[µλ]

ν . (3)

The superpotential was found by Freud in 1939:18 U
µλ
F ν := −gβσΓα

βγδ
µλγ
ασν . Other

pseudotensors likewise follow from different superpotentials. They are all inherently

reference frame dependent. Thus there are two big problems: (1) which pseudoten-

sor? (2) which reference frame? The Hamiltonian approach has answers.

With constant Zµ, the energy-momentum within a region is

− ZµPµ(V ) := −
∫

V

Zµ(Tν
µ + tνµ)

√
−gd3Σν

≡
∫

V

[

Zµ
√
−g

(

1

κ
Gν

µ − T ν
µ

)

− 1

2κ
∂λ

(

ZµUνλ
µ

)

]

d3Σν

≡
∫

V

ZµHGR
µ +

∮

S=∂V

BGR(Z) ≡ H(Z, V ). (4)

HGR
µ is the covariant expression for the Hamiltonian density. The boundary term

2-surface integral is determined by the superpotential. The value of the pseudoten-

sor/Hamiltonian is quasi-local, from just the boundary term, since by the initial

value constraints the spatial volume integral vanishes.

6. The Hamiltonian Approach

Noether’s work can be combined with the Hamiltonian formulation. In Hamiltonian

field theory, the conserved currents are the generators of the associated symmetry.

For spacetime translations (infinitesimal diffeomorphisms), the associated current

expression (i.e., the energy-momentum density) is the Hamiltonian density—the

canonical generator of spacetime displacements. Because it can be varied one gets

a handle on the conserved current ambiguity. The Hamiltonian variation gives in-

formation that tames the ambiguity in the boundary term—namely boundary con-

ditions. Pseudotensor values are values of the Hamiltonian with certain boundary

conditions.19 Thus Problem (1) is under control.
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The Hamiltonian approach reveals certain aspects of a theory. The constrained

Hamiltonian formalism was developed by Dirac8 and by Bergmann and coworkers.

It was applied to GR by Pirani, Schild and Skinner20 and by Dirac.21 Later the

ADM approach22 became dominant. For the Poincaré gauge theory of gravity (PG)

the Hamiltonian approach was developed by Blagojević and coworkers.23

7. The Covariant Hamiltonian and its Boundary Term

From a first order Lagrangian formulation, L = dϕ ∧ p − Λ, which gives pairs

of first order equations for an f -form ϕ and its conjugate p, we developed a 4D-

covariant Hamiltonian formalism.19, 24–28 The Hamiltonian generates the evolution

of a spatial region along a vector field. The Hamiltonian density is the first order

translational Noether current 3-form, it is linear in the displacement vector plus a

total differential:

H(Z) := £Zϕ ∧ p− iZL =: ZµHµ + dB(Z), (5)

and is a conserved “current” on shell (i.e., when the field equations are satisfied):

− dH(Z) ≡ £Zϕ ∧ δL
δϕ

+
δL
δp

∧£Zp. (6)

Furthermore, from local diffeomorphism invariance, it follows thatHµ is linear in the

Euler-Lagrange expressions. Hence the translational Noether current conservation

reduces to a differential identity. This an instance of Noether’s 2nd theorem, exactly

the case to which Hilbert’s “lack of a proper energy law” remark applies. The value

of the Hamiltonian is quasi-local (associated with a closed 2-surface):

− P (Z, V ) = H(Z, V ) :=

∫

V

H(Z) =

∮

∂V

B(Z). (7)

The Hamiltonian boundary term has two important roles: (i) it gives the quasi-local

values, (ii) it gives the boundary conditions. The boundary term can be adjusted

to match suitable boundary conditions. We were led to a set of general boundary

terms which are linear in ∆ϕ := ϕ− ϕ̄, ∆p := p− p̄, where ϕ̄, p̄ are reference values:

B(Z) := iZ

{

ϕ

ϕ̄

}

∧∆p− (−1)f∆ϕ ∧ iZ

{

p

p̄

}

. (8)

The associated variational Hamiltonian boundary term is

δH(Z) ∼ d

[{

iZδϕ ∧∆p

−iZ∆ϕ ∧ δp

}

+ (−1)f
{

−∆ϕ ∧ iZδp

δϕ ∧ iZ∆p

}]

. (9)

Here for each bracket independently one may choose either the upper or lower term,

which represent essentially a choice of Dirichlet (fixed field) or Neumann (fixed mo-

mentum) boundary conditions for the space and time parts of the fields separately.e

eThere are more complicated possibilities, “mixed” choices involving some linear combination of

the upper and lower expressions.
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For asymptotically flat spaces the Hamiltonian is well defined , i.e., the boundary

term in its variation vanishes and the quasi-local quantities are well defined at least

on the phase space of fields satisfying Regge-Teitelboim like asymptotic conditions:

∆ϕ ≈ O+(1/r) +O−(1/r2), ∆p ≈ O−(1/r2) +O+(1/r3). (10)

Also the formalism has natural boundary term related energy flux expressions.27

8. Gauge and Geometry

For the history of gauge theory see Ref. 14. Gravity as a gauge theory was pioneered

by Utiyama (1956, 1959), Sciama (1961) and Kibble (1961). For accounts of gravity

as a spacetime symmetry gauge theory, see Hehl and coworkers,29–32 Mielke33 and

Blagojević.34 A comprehensive reader with summaries, discussions and reprints has

recently appeared.35 For the observational constraints on torsion see Ni.36

GR can be seen as the original gauge theory: the first physical theory where a

local gauge freedom (general covariance) played a key role. Although the electro-

dynamics potentials with their gauge freedom were known long before GR yet this

gauge invariance was not seen as having any important role in connection with the

nature of the interaction, the conservation of current, or a differential identity—until

the seminal work of Weyl, which post-dated (and was inspired by) GR.

We also note the developments of the concept of a connection in geometry by

Levi-Civita, Weyl, Schouten, Cartan, Eddington, and others. Riemann-Cartan ge-

ometry (with a metric and a metric compatible connection, having both curvature

and torsion) is the most appropriate for a dynamic spacetime geometry theory: its

local symmetries are just those of the local Poincaré group. The conserved quan-

tities, energy-momentum and angular momentum/center-of-mass momentum are

associated with the Minkowski spacetime symmetry, i.e., the Poincaré group.

9. Riemann-Cartan Geometry and PG Dynamics

It is natural to consider gravity as a gauge theory of the local Poincaré group. The

spacetime geometry that suits this perspective is Riemann-Cartan geometry, which

has a (Lorentz signature) metric and a metric compatible connection: Dgµν ≡ 0.

The translation and Lorentz gauge potentials are, respectively, the coframe ϑα =

eαkdx
k and connection Γα

β = Γα
βkdx

k one-forms. The associated field strengths

are the torsion and curvature 2-forms:

Tα := Dϑα := dϑα + Γα
β ∧ ϑβ =

1

2
Tα

ijdx
i ∧ dxj , (11)

Rµ
ν := dΓµ

ν + Γµ
λ ∧ Γλ

ν =
1

2
Rµ

νijdx
i ∧ dxj . (12)

The first and second Bianchi identities are DTα ≡ Rα
β ∧ ϑβ and DRα

β ≡ 0. The

Ricci identity, [∇µ,∇ν ]V
α = Rα

βµνV
β − T γ

µν∇γV
α, reflects the holonomy and

the Lorentz and translational field strengths. For an orthonormal frame gµν = const

and Γαβ is antisymmetric.
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The PG dynamics has been discussed in detail in Ref. 28 including (i) the La-

grangian, both 2nd and 1st order, (ii) the Noether symmetries, conserved currents

and differential identities, (iii) the covariant Hamiltonian including the generators

of the local Poincaré gauge symmetries, (iv) our preferred Hamiltonian boundary

term, (v) the quasi-local energy-momentum and angular momentum/center-of-mass

moment obtained therefrom, and (vi) the choice of reference in the boundary term.

10. Preferred Hamiltonian Boundary Terms and Reference

For the PG and GR our preferred Hamiltonian boundary terms are

BPG(Z) = iZϑ
ατα +∆Γα

β ∧ iZρα
β + D̄βZ

α∆ρα
β, (13)

BGR(Z) =
1

2κ
(∆Γα

β ∧ iZηα
β + D̄βZ

α∆ηα
β), ηαβ... := ∗(ϑα ∧ ϑβ ∧ · · · ). (14)

Like many other choices, at spatial infinity the latter gives the standard values for

energy-momentum and angular momentum/center-of-mass momentum.

Our preferred GR expression has some special virtues: (i) at null infinity it gives

the Bondi-Trautman energy and the Bondi energy flux, (ii) it is covariant, (iii) it is

positive—at least for spherical solutions and large spheres, (iv) for small spheres it

is a positive multiple of the Bel-Robinson tensor, (v) first law of thermodynamics for

black holes, (vi) for spherical solutions it has the hoop property, (vii) for a suitable

choice of reference it vanishes for Minkowski space.

Regarding the second ambiguity inherent in our quasi-local energy-momentum

expressions: the choice of reference. Minkowski space is the natural choice, but one

needs to choose a specific Minkowski space. Recently we proposed (i) 4D isometric

matching on the boundary,f and (ii) energy optimization as criteria for selecting

the “best matched” reference on the boundary of the quasi-local region. A detailed

discussion of our covariant Hamiltonian boundary terms and our reference choice

proposal was presented in the MS parallel session39 and in Ref. 40. They have been

tested on spherically symmetric and axisymmetric spacetimes.41

11. The Poincaré Gauge Theory of Gravity

The standard PG Lagrangian density has a quadratic field strength form:g

LPG ∼ 1

κ

(

Λ + curvature + torsion2
)

+
1

̺
curvature2 . (15)

Varying ϑ,Γ gives quasi-linear 2nd order dynamical equations for the potentials:

κ−1(Λ + curv +D tor + tor2) + ̺−1curv2 = energy-momentum, (16)

κ−1tor + ̺−1D curv = spin. (17)

fThe hardest part of 4D isometric matching is the embedding of the 2D surface S into Minkowski

space; Yau and coworkers have extensively investigated this.37, 38

g κ := 8πG/c4 and ̺−1 has the dimensions of action. Λ is the cosmological constant.
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The general theory has 11 scalar plus 7 pseudoscalar parameters, but there is one

even parity and two odd total differentials; effectively 15 “physical” parameters.42, 43

Torsion couples to intrinsic spin, not orbital angular momentum.44 But highly

polarized spin density is practically nonexistent in the present day universe. So on

ordinary scales matter hardly excites or responds directly to torsion. Torsion could

have a significant magnitude and yet be hardly observable: “dark torsion”.

At very high densities it a different story; at around 1052 gm/cm3 the nucleon

spin density is comparable to the material energy density, and beyond that the spin-

torsion interaction dominates gravity in the PG. So one can expect major effects in

the early universe. But even in the present day, while being hardly noticeable on

the lab, solar system, or galactic scale, the gravitational effects of torsion (like Λ)

could well have measurable effects on the cosmological scale.

12. General PG Homogeneous and Isotropic Cosmologies

The general PG homogeneous and isotropic cosmology has been considered re-

cently.45 For such cosmologies the general PG has an effective Lagrangian. From

this with ȧ = aH , 6 first-order equations for a,H , the scalar and pseudoscalar

curvatures R,X and the two “scalar” torsion components u, x were obtained:

− w4+6

2
Ṙ− µ3−2

4
Ẋ = −

[

−3ã2 − w4+6R− µ3−2

2
X
]

u+
[

6σ̃2 −
µ3−2

2
R+ w2+3X

]

x

+w4−2[2X − 24(H − u)x]x, (18)

−µ3−2

4
Ṙ+

w2+3

2
Ẋ = −

[

6σ̃2 −
µ3−2

2
R+ w2+3X

]

u+
[

12ã3 + w4+6R +
µ3−2

2
X
]

x

−w4−2(2R− 12[(H − u)2 − x2 + ka−2])x, (19)

Ḣ − u̇ =
R

6
− 2H2 + 3Hu− u2 + x2 − ka−2, (20)

a2u̇ =
1

3
(−a0R− σ̃2X + ρ− 3p+ 4Λ) + a2(u

2 − 3Hu)− 4a3x
2,(21)

ẋ =
X

6
− 3Hx+ 2xu. (22)

Here the material energy density satisfies a generalized Friedmann relation:

ρ = −Λ + 3a0[(H − u)2 − x2 + ka−2]

−3

2
a2(u

2 − 2Hu) + 6a3x
2 + 6σ̃2x(H − u)

+
w4+6

24

[

R2 − 12R
{

(H − u)2 − x2 + ka−2
}]

+
µ3−2

24

[

RX − 6X
{

(H − u)2 − x2 + ka−2
}

− 12Rx(H − u)
]

−w2+3

24

[

X2 − 24Xx(H − u)
]

. (23)

The above equations are the most general—they include all the quadratic PG cos-

mologies. Generically the model has, in addition to the usual metric scale factor,

effectively two dynamical “scalar” torsion components carrying spin 0+ and 0−.
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Typically they, and the Hubble expansion rate, show damped oscillations. But the

model has other types of behavior in the various degenerate special cases, including

GR.45
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