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Abstract

A hypothesis of general relativity is that spacetime torsion vanishes identically. This assumption
has no empirical support; in fact, a nonvanishing torsion is compatible with all the experimental tests
of general relativity. The first part of this essay studies the framework that is suitable to test the
vanishing-torsion hypothesis, and an interesting relation with the gravitational degrees of freedom is
suggested. In the second part, some original empirical tests are proposed based on the observation that
torsion induces new interactions between different spin-polarized particles.
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Any pseudo-Riemannian manifold admits a metric-compatible derivative operator with nonvanishing
torsion. By definition, the failure of such an operator to commute, when applied to a scalar field, is related
to the torsion tensor field Tab

c. In addition, geometrically, torsion measures the failure of infinitesimal
parallelograms to close [1].

In general relativity (GR) it is assumed, without empirical support, that torsion vanishes identically.
Of course, one may claim that the experimental success of GR justifies the vanishing-torsion hypothesis.
However, as it is argued below, all GR tests are compatible with a nonvanishing torsion, and, as a basic
assumption of the theory, it is paramount to experimentally test it. The main goal of this essay is to
suggest alternative tests of the vanishing-torsion hypothesis, but before embarking on such a task, it is
useful to specify the theoretical framework.

It is important to start by narrowing down the action that is used to empirically test the vanishing-
torsion hypothesis. The experimental validation of GR allows one to conclude that the dominant term of
the gravitational part of this action must be the Einstein–Hilbert action with the torsion-full derivative
operator ∇a; this is known as the Einstein–Cartan theory [2]. Moreover, if torsion is present, the gravi-
tational degrees of freedom have to be described with the Palatini formalism [3]. This is because, in the
standard approach, the derivative operator is completely determined by the metric, and torsion, which is
a property of such an operator, is supposed to be metric independent.

Since torsion is a property of the derivative operator, it can only couple to matter through such an
operator. It turns out that, with this restriction, spinors are the only known particles that couple to
torsion [4]. Therefore, in this essay, Dirac spinors are the only matter fields under consideration. Now,
if the tetrad eaµ and spin connection ωaµν are chosen as the independent dynamical variables to describe
gravity (the conventions of Ref. [5] are used), then, the total action, for a spinor field Ψ of mass M , takes
the form

S =

∫

d4xe

[

R(e, ω) + 16πG

(

i

2
eaµΨ̄γ

µ
∇aΨ−

i

2
eaµ(∇aΨ̄)γµΨ−MΨ̄Ψ

)]

(1)

=

∫

d4xe

[

R(e, ω) + 16πG

(

i

2
eaµΨ̄γ

µ∂aΨ−
i

2
eaµ(∂aΨ̄)γµΨ−

1

4
eaµωaνρǫ

µνρ
σΨ̄γ5γ

σΨ−MΨ̄Ψ

)]

,

where e is determinant of the tetrad components, R is the curvature scalar associated with ∇a, and G
is Newton’s constant. Also, for the second identity the explicit form of the covariant derivative acting
on spinors is used [6], and ǫµνρσ are the components of the volume form in the dual tetrad basis, γµ are
the Dirac matrices, γ5 = iγ0γ1γ2γ3, and Ψ̄ = Ψ†γ0. Note that the action (1) has no free parameters
and that the chiral current associated with Ψ, which is given by Ψ̄γ5γ

µΨ, plays an important role. In
addition, the spinor action explicitly depends on the derivative operator through ωaµν . This last remark
is relevant since the standard and the Palatini approaches are inequivalent in such cases [7]. Furthermore,
bear in mind that spinors, which are fundamentally quantum-mechanical objects, are introduced through
a semi-classical framework. Thus, for practical purposes, such particles behave as extended objects which
can be spatially overlapped.

The variation of the action (1) with respect to the tetrad gives an equation whose symmetric part
reduces to Einstein equations and the antisymmetric part reflects the freedom to perform local Lorentz
transformations (in the presence of torsion, the Ricci tensor is not necessarily symmetric). On the other
hand, the spin-connection variation yields

0 = 2∇a(e
[a
µ e

c]
ν )− 4δρ[µe

[a
ν]e

c]σωaρσ − eaµe
b
νTab

c + 4πGecρǫ
ρ
µνσj

σ
5 , (2)

where jµ5 is the total chiral current. Naturally, equation (2) does not give a unique solution for ωaµν and
Tab

c. However, for consistency, the solution is chosen to be ωaµν = eµb∇ae
b
ν since this relation is used to

obtain the equations of motion from the action. This restricts torsion to satisfy

Tab
c = 4πGedµǫ

c
abdj

µ
5 . (3)

2



Observe that torsion is linked to jµ5 through an algebraic equation, which implies that torsion does not
propagate. In addition, jµ5 has contributions of all the spinor fields under consideration. Moreover, since
the chiral current is generated by spin-polarized spinors, to look for torsion, the experiments need to be
done inside a spin-polarized media. This justifies the previous claim that all GR tests are compatible
with a nonvanishing torsion since, clearly, these tests are done in situations where, at least on average,
j
µ
5 = 0.

Interestingly, in a theory described by an action similar to (1), but with a vanishing torsion, and
which is treated à la Palatini, the solution to the equation of motion associated with the spin connection
is ωaµν = eµb∇ae

b
ν − 2πGeρaǫρµνσj

σ
5 , which differs from the expression used to get the equations of motion

in the first place. Also, it can be verified that this last expression, if used in the action, leads to a set of
equations of motion that are inequivalent to those obtained with ωaµν = eµb∇ae

b
ν . In this sense it seems

that Dirac spinors cannot be consistently treated within the Palatini framework. In turn, this suggests
that the issue of whether torsion vanishes could be closely related to the question of whether gravity
is described by the standard or the Palatini approach. Moreover, observe that the chiral current plays
an important role in both of these issues. Needless to say that determining the gravitational degrees of
freedom is a relevant question since the best available description of matter, i.e., the standard model, is
given in terms of an action that does depend on the derivative operator.

To describe the experimental consequences of torsion it is useful to appeal to a test-particle approxi-
mation. For that purpose, the test spinor is denoted by ψ and all other spinor fields, which are collectively
called source spinors, are assumed to generate the chiral current Jµ

5 . The test-spinor equation of motion,
assuming it has mass m, takes the form

0 = ieaµγ
µ∂aψ +

i

2
(∇ae

a
µ)γ

µψ −
1

4
eaµωaρσǫ

µρσ
νγ5γ

νψ −mψ. (4)

Note that torsion is present in equation (4) through ∇a and ωaµν . Therefore, it is possible to use equation
(3) to replace Tab

c in equation (4), leading to the well-known nonlinear terms in ψ [8], and additional
interactions between the test and source spinors.

Surprisingly, the consequences of the torsion interactions involving test and source spinors have not
been extensively explored. For the purpose of characterizing such interactions, it is useful to obtain the
corresponding Hamiltonian. As it is customary, this Hamiltonian can be read off from equation (4). For
particular experimental situations where it is possible to neglect the torsion self-interactions, the special-
relativistic corrections, and the curvature effects, the Hamiltonian, which is obtained using standard
methods [9], takes the form

H = m+
~p2

2m
− 3πG~J5 · ~σ +

3πG

2m
~σ ·

(

~pJ0
5 + J0

5 ~p
)

, (5)

where ~p is the momentum operator, σi are the Pauli matrices, and the standard 3-dimensional vectorial
notation is utilized. The first two terms in this Hamiltonian are the conventional rest and kinetic energy
terms, and the last two terms are due to torsion and are suppressed by G. Moreover, from the explicit
form of these torsion interactions, it is evident that, to produce nontrivial contributions, the test spinor
has to be in a spin-polarized state and overlapping the source spinors.

The ~J5 · ~σ term in the Hamiltonian (5) can be probed in polarized-neutron transmission experiments
through polarized media [10]. Three alternatives look promising in this direction: First, there is an
experiment where a polarized neutron beam is sent into a polarized Holmium target [11], which is, in
principle, sensitive to torsion effects. However, in this experiment, the torsion signal would behave like
the experimental noise, which is discarded. Thus, to test the torsion term, a method to isolate the torsion
signal has to be developed. Second, to perform a neutron spin-rotation experiment, as in Ref. [12], but
where the target is spin-polarized liquid Helium. Third, there are spin sources that have an extremely
high spin-polarization density but are insensitive to magnetic effects [13], and it is conceivable to perform
an experiment where a polarized neutron beam passes through such a spin source. Interestingly, one could
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separate torsion effects from spurious signals by, for example, changing the relative spin orientation, or
using that, in contrast to the electromagnetic interaction, this torsion term is momentum independent.
In addition, in this case one would probe a neutron-electron coupling where the noise is basically electro-
magnetic. This is a huge improvement with respect to the other two proposals where the noise is due to
the strong interaction.

Interferometry tests are sensitive to the last term in the Hamiltonian (5). In fact, it can be shown
that the phase difference produced by such a term is related to the difference of the line integral of J0

5

along the interferometer arms. Naively, it is tempting to eliminate the noise from spin-spin interactions
by surrounding the spin-polarized region as in an Aharonov–Bohm setup. However, J0

5 is not a potential,
thus, no phase difference is produced if J0

5 vanishes in the integration region. Hence, to look for these
effects one must do interferometry within spin-polarized media, which is technologically challenging. In
any case, looking for the effects of both unconventional terms in the Hamiltonian (5) may be a valuable
tool to separate possible torsion effects from other interactions.

In conclusion, the vanishing-torsion hypothesis of GR has no empirical support and it must be em-
pirically tested. Here some original strategies to test this hypothesis are suggested, whose ultimate
sensitivities and consequences are impossible to foresee. Yet, these tests should allow us to quantify the
validity of the vanishing-torsion hypothesis, and a potential discovery of a nonvanishing spacetime torsion
would have deep conceptual consequences.
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