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We analyse a spin precession of slow neutrons in the Einstein—Cartan gravity with torsion,
chameleon and magnetic field. For the derivation of the Heisenberg equation of motion of the
neutron spin we use the effective low—energy potential, derived by Ivanov and Wellenzohn (Phys.
Rev. D 92, 125004 (2015)) for slow neutrons, coupled to gravitational, chameleon and torsion fields
to order 1/m, where m is the neutron mass. In addition to this low—energy interactions we switch
on the interaction of slow neutrons with a magnetic field. We show that to linear order approx-
imation with respect to gravitational, chameleon and torsion fields the Dirac Hamilton operator
for fermions (neutrons), moving in spacetimes created by rotating coordinate systems, contains the
anti-Hermitian operators of torsion—fermion (neutron) interactions, caused by torsion scalar and
tensor space-space-time and time-space—space degrees of freedom. Such anti-Hermitian operators
violate CP and T invariance. In the low—energy approximation the CP and T violating torsion—
fermion (neutron) interactions appear only to order O(1/m). One may assume that in the rotating
Universe and galaxies the obtained anti-Hermitian torsion—fermion interactions might be an origin
of i) violation of C'P and T invariance in the Universe and ii) of baryon asymmetry. We show that
anti-Hermitian torsion—fermion interactions of relativistic fermions, violating C' P and T invariance,
i) cannot be removed by non—unitary transformations of the Dirac fermion wave functions and
ii) are conformal invariant. According to general requirements of conformal invariance of massive
particle theories in gravitational fields (see R. H. Dicke, Phys. Rev. 125, 2163 (1962) and A. J.
Silenko, Phys. Rev. D 91, 065012 (2015)), conformal invariance of anti-Hermitian torsion—fermion
interactions is valid only if the fermion mass is changed by a conformal factor.

PACS numbers: 03.65.Pm, 04.25.-g, 04.25.Nx, 14.80.Va

I. INTRODUCTION

Recently @] we have derived to order O(1/m) the most general effective low—energy potential for slow Dirac
fermions with mass m, coupled to gravitational, chameleon and torsion fields in the Einstein—Cartan gravity. We have
reduced the obtained potential to order O(1) in the large fermion mass expansion. We have shown that the torsion
pseudoscalar and tensor degrees of freedom can be, in principle, measured in terrestrial laboratories through minimal
torsion—fermion couplings by using rotating devices. This is similar to the experiments by Atwood et al. ﬂ] and by
Mashhoon B] These experiments used a rotating two—crystal neutron interferometer and a neutron interferometer
in a rotating reference frame, respectively. We have assumed that the measurements of the transition frequencies
between quantum gravitational states of ultracold neutrons in the qBounce experiments [4]-[9] as functions of an
angular velocity & of a rotating mirror should provide a new level of highly precise probes of the properties of the
Einstein—Cartan gravity, dark energy and evolution of the Universe. In turn, the measurements of the phase-shift of
slow neutron wave function as a function of an angular velocity & by a rotating neutron interferometer HE] should be
of use for terrestrial probes of new gravitational, chameleon and torsion interactions, derived in @]

In this paper we propose an analysis of a spin precession of slow neutrons in the Einstein—Cartan gravity with
torsion, chameleon and magnetic fields. As has been mentioned by Lehnert, Snow, and Yan ﬂl_lﬂ, a spin precession
of slow neutrons is a very sensitive technique to search for possible exotic neutron interactions. In the experiment
ﬂﬂ] for the measurement of an upper bound of the linear superposition of constant torsion scalar and pseudoscalar
degrees of freedom (, caused by torsion—fermion interactions by Kostelecky, Russell, and Tasson ﬂﬁ], a neutron spin
rotation in the liquid *He was investigated. The upper bound [¢| < 9.1 x 10723 GeV, obtained by Lehnert, Snow,
and Yan ﬂﬂ], is by a factor 10° larger compared with the estimate |[¢| < 10727 GeV, obtained in ﬂﬁ] by using the
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estimates in Table I by Kostelecky et al. ﬂﬁ A spin dynamics of Dirac fermions with mass m in curved spacetimes
has been also investigated by Obukhov, Silenko, and Teryaev in [14-16].

The paper is organized as follows. In section [[Il we calculate the effective low—energy potential, derived in @ to
linear order in gravitational, chameleon and torsion fields in the spacetime with the Schwarzschild metric, taken in
the weak gravitational field approximation and modified by the chameleon field and rotation with an angular velocity
. We show that the linearised effective low—energy potential contains the anti-Hermitian interactions, vanishing at
zero angular velocity. In section [Tl we give a detailed analysis of the anti-Hermitian interactions. In section [V] we
derive the Heisenberg equation of motion for a neutron spin precession in terms of the angular velocity operators,
caused by i) a magnetic field, ii) gravitational and chameleon fields and iii) a torsion field, defining Hermitian and
anti-Hermitian torsion—fermion interactions. In section [V] we show that the anti-Hermitian Hamilton operator and,
correspondingly, the anti—-Hermitian effective low—energy potential of torsion—fermion interactions, violating C'P and
T invariance, i) cannot be removed by non-unitary (non-Hermitian) transformations [16]-[24] (see also ﬁ]), ii) are
conformal invariant m ﬂ and, referring to the experiments by Atwood et al. E and by Mashhoon B iii) can be in
principle observable. It should be emphasized that, according to the general requirements of conformal invariance of
massive particle theories in gravitational fields under conformal transformation g, — 02§, (see, for example, Brans
and Dicke [25], Dicke [26] and Silenko [21])), anti-Hermitian torsion—fermion interactions are conformal invariant only
if the fermion mass m is changed by a conformal factor O, i.e m — O~ 'm. In section [Vl we summarize the obtained
results and discuss some possible consequences of the anti-Hermitian torsion—fermion interactions. In the Appendix
we give a detailed calculation of the operator G-, responsible for the anti—-Hermitian part of Dirac Hamilton operator
and of the effective low—energy potential of slow fermions, coupled to gravitational, chameleon and torsion fields to
linear order approximation in curved spacetimes with rotation.

II. SCHRODINGER-PAULI EQUATION FOR SLOW NEUTRONS IN EINSTEIN-CARTAN GRAVITY
WITH TORSION, CHAMELEON AND MAGNETIC FIELDS

The Schrédinger—Pauli equation for slow neutrons, coupled to gravitational, chameleon, torsion and magnetic fields
in the Einstein—Cartan gravity ﬂ], is equal to

OU(t, F)
; 0¥t T)

5 = Hew U(t,7) (1)

where U(t,7) is the wave function of slow neutrons and H is the Foldy—Wouthuysen Hamilton operator given by
1 L -
HFWZ—%A-FmUE—ﬁ'B-i-@eff(t,ﬁS)a (2)

where m is the neutron mass, A is the Laplace operator, Ug = ¢ -7 1is the gravitational potential of the Earth
with the Newtonian gravitational acceleration ¢, and Bisa magnetic field. The neutron magnetic dipole moment
fi = 2k, un S [27] is expressed in terms of the neutron anomalous magnetic moment r,, = —1.9130427(5), measured in
nuclear magnetons gy = e/2m, = 3.1524512605(22) x 10~8eV T~1 ﬂ%], which is defined in terms of the electric charge
e and mass m,, of the proton, and the neutron spin operator S = % &, where & are the 2 x 2 Pauli matrices m] Then,
Bogr (t, 7, ,S_") = Dog(t, 7, ,S_") — Ug, where ®eg(t, 7, ,S_”) is the effective low—energy potential for slow neutrons, coupled to
gravitational, chameleon and torsion fields (see Eq.(A.15) of Ref.[l]). We would like to note that we have included
the interaction of slow neutrons with a magnetic field to linear order approximation of the magnetic field. Since
below we analyse the contributions of the effective low—energy potential ®og(t, 7, S ) to linear order approximation of
gravitational, chameleon and torsion fields, we have neglected all interactions, containing the products of a magnetic
field with gravitational, chameleon and torsion fields.

—

The calculation of the effective low-energy potential ®og(t, 7, S ) we perform in the curved spacetime with the line
element [1] (see also [15])

ds® = V2($) dt® + njéWjj(x)Wf(x) (dmj — K7 (x) dt) (dwé — Ke(x) dt), (3)

where j = 1,2,3 and j = 1,2,3 are indices of the Minkowski and curved spacetime, respectively, n:; is a spatial
part of the metric tensor in the Minkowski spacetime. The functions V() and WJJ (x) are defined by an arbitrary

gravitational field. In comparison with Obukhov, Silenko, and Teryaev [15] the functions VZ(zx) and VVJJ (x) are
modified by the chameleon field. In turn, the functions K7 (x), caused by rotations, are not modified by the chameleon



field. The vierbein fields in terms of which slow neutrons couple to gravitational, chameleon and torsion fields in the
Einstein—Cartan gravity with the metric tensor in Eq.([]) are equal to @]

&(z) = V(). &z) = Wi (@)K (z), &(x) =0, &(x) = W(x),
1

ég(:c) = % , ég(:c) =0, éé(z) = —= , e(x) = W (2). (4)

The vierbein fields in Eq.([ ) have been calculated at the assumption that the functions WJJ (x) and VNVJJ (x) obey the
orthogonality relations [1]

Wi ()W) = 61 W (@)W =3, (5)

which are fulfilled for the Schwarzschild metric in the weak gravitational field approximation ﬂﬁ] In terms of the
vierbein fields Eq.([ ) the effective low—energy potential ®.g(t, 7, S ) is given by
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Here g(z) = —det{g,,(x)}, where the metric tensor in the Jordan frame g,,(z) is related to the metric tensor
1 1

in the Einstein frame g,,(z) by g () = £2(z) gu (x) [30, B1], where the conformal factor f(z) = e #@)/Mer g
defined in terms of the chameleon field ¢(z), the chameleon—matter coupling constant 8 and the reduced Planck mass
Mp; = 1//8rGx = 2.435x 10?" eV with the Newtonian gravitational constant Gy [28]. The spin connection ©,45(2)

is defined by [1, [13]

B (@) = e (945 () = T ()8 (@) )24 (). (8)



where a = 0,1,2,3 and & = 0,1,2,3 are the indices in the 4-dimensional curved and Minkowski spacetime, respec-
tively. The affine connection I'* ,,, () is determined by

e~

L (@) = {%w} + K% (), ©)

where {@,,} are the Christoffel symbols [32]
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and K%, (z) = —3(T% 4 (2) — ﬁa (x) — ﬁa#(z)) is the contorsion tensor, expressed in terms of the torsion
field T ., (z) = §°7(2) To () [13]. For the analysis of the effective potential Eq.(@) we assume a motion of Dirac
fermions with mass m in the curved spacetime with the Schwarzschild metric, taken in the weak gravitational field
approximation and modified by the contributions of the chameleon field and rotation. The line element of such a
spacetime is given by @]

d3? = (1 +2U4) dt> +2(1 — 2U_) K - dFdt — (1 — 2U_) dF?, (11)

where we have neglected the contribution of the terms of order K 2 that is well justified in terrestrial laboratories @]
and kept the contributions of the chameleon field to linear order. The potentials Uy are equal to ﬂﬁ]

B
Ui—UEiM—Pléf’( 7). (12)

To linear order contributions of the gravitational and chameleon field the vierbein fields Eq.([ ) read

S(z) = 14U, , &@) = -(1-U_)K)(), &) =0, & ()= (1-U-)d,

Q@) = 1-Us, &(x) =+(1-Uy) K (z) , &) =0, & (x) = (1+U,)5§. (13)

In the spacetime with metric Eq.([I)) and the vierbein fields Eq.([3]) the operators A, B, CZ, D;, G, K and L7,
calculated to linear approximation in gravitational, chameleon and torsion fields, are equal to

A= 1+Uy,
1 4
B = —gidivk,
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where B¢ = 1 eeﬂk (Tko + 7;€0J + 7631@) K= —ejke Tu, Mo (Mggis Mz Mz and MJM) and & = T%,; are
torsion axial— vector pseudoscalar, tensor and scalar degrees of freedom, respectively |E] For the calculation of
the operators in Eq.(IE) we have used the following irreducible representation of the torsion field 75, [12] (see also

[ [13])

= €5pva Bd (:L') + M&ﬂf, (:L') (15)



The torsion field 75,5 (), antisymmetric with respect to indices i and ¥, possesses 24 independent components, where
the 4—vector &;(x) and axial 4—vector B(x) fields with 4 independent degrees of freedom each are defined by

1
SO T, (). (16)

Eo(x) =" Topo(z) Bd($)=2

The residual 16 degrees of freedom are absorbed by the tensor Mg, which obeys the constraints 77&’1/\/1&,11; =

€49 Msap = 0. Then, €506 and €% are the Levi-Civita tensors such as €j153 = _0128 — g m] For the
derivation of the axial-vector field BY in terms of the torsion field 755 () we have used the relation €¥#7¢, sapp = 0 5g

m] Now we rewrite the effective low—energy potential Eq.(f) omitting the terms, which contributions are smaller
compared to the terms of the linear order approximation
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Plugging the operators Eq.([[d)) into Eq.([IT) we arrive at the following effective low—energy potential

bo(t,7,5) = 01,7, 8) + Q) (t,7.5) + o) 1,7, §) + 0 (1.7, 9), (18)
where we have denoted:
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with (M )i, = —Mpi- The effective low—energy potential Eq.([I3) agrees well with the result, obtained in @] Then,
the potential @gﬁ«) (t,7 S), taking the form

—
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reproduces the results, obtained in ﬂE The potentials <I>( ¢ (t,7,5) and @i?f( 7, S) are equal to
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and define new torsion—fermion (neutron) low—energy interactions. On the whole the effective low—energy potential
Eq.([I8)) possesses the following properties. First of all, we would like to accentuate that to linear approximation



in gravitational, chameleon and torsion fields there are no new chameleon—fermion interactions in comparison with

those, calculated in ﬂﬁ To order 1/m the potential @i?( 7S ) describes new torsion—fermion interactions of torsion

axial-vector B and tensor M;.; degrees of freedom. Then, the effective low—energy potential <I>( q (7, S ), containing
new torsion interactions with slow fermions to order 1/m, is anti—hermitian. It violates invariance under time reversal
transformation (or T-invariance) and under ChargefParity transformation (or C'P-invariance). In section [[IIl we

discuss in detail such a property of the effective low—energy potential @iﬁf) (t,7, S ).

III. SPACETIME METRIC AND ANTI-HERMITICITY OF THE EFFECTIVE LOW-ENERGY
POTENTIAL &% (¢,7,5)

First of all we would like to note that the metric Eq.(T) is not invariant under time reversal transformation ¢t — —t.
As a result, one can expect a possible violation of T—invariance m Since a violation of time reversal invariance is
yielded by the effective low—energy potential @iﬂ) (t,7, S ), below we analyse step by step the appearance of such a
potential.

—

The operator <I>( ¢ (t,7,S) one may obtain from the following terms of the effective low—energy potential Eq.(I7)
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In the linear approximation for interacting gravitational, chameleon and torsion fields the potential Eq.(23) reduces
to the form

= 1 5 ) 1 5 0G; 1 oG,
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where we have replaced A — 1, lez — 75;: and Dj — 75;' (see Eq.([I)). Setting K7 =0 we get (see the Appendix)

9

50 Uy +U-). (25)

1
G =3

The contribution of the operator G;, given by Eq.(28), is important for the derivation of the gravitational-chameleon

part of the effective low—energy potential @g? (t,7, S ), which is Hermitian. This confirms the correctness of the terms
proportional to G; and G}, in the effective low—energy potential Do (t, T, S ).
In the curved spacetime with torsion and metric Eq.(Id]) the operator G3 acquires a certain contribution of the
torsion field (see the Appendix)
1 0
G.— -2
2

J

(U U + 5 K+ (M¢J0+MW) d (26)

Another confirmation of the correctness of the calculation of the contribution of torsion field to the operator Gj isa
cancellation of the part independent of K J, Indeed, a direct calculation of the torsion K Lindependent part in the
operator G; gives (see the Appendix)

torsion
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In the right-hand-side (r.h.s.) of Eq.([217) the first and second terms are cancelled by the third and fourth ones,

respectively. This agrees well with results, obtained by Kostelecky E (see also HE]) In turn, the contribution of
the K7-dependent part (see the Appendix)
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which is fully correlated with the K J —independent part through the affine connection (see the Appendix), does not van-

ish. Hence, taking the operator G;, given by Eq.(28), we obtain the effective low—energy potential @éﬁ«) (t, 7, S ), which
is anti-Hermitian only due to the contribution of torsion and contains both torsion—-non—spin—matter and torsion—

spin—matter interactions. Thus, we have proved that the appearance of the anti-Hermitian potential <I>( )( 7 S ) is
not a mistake of the calculation but an objective reality, caused by the presence of the torsion scalar 5 and tensor
M 50 and Mﬁj ; degrees of freedom in rotating coordinate systems.

IV. HEISENBERG’S EQUATION FOR SPIN OPERATOR OF SLOW NEUTRONS IN
EINSTEIN-CARTAN GRAVITY WITH TORSION, CHAMELEON AND MAGNETIC FIELDS

A time evolution of the neutron spin operator S is described by Heisenberg’s equation of motion 36]

s aS

il | [H,S]. (29)

Since the spin operator S does not depend explicitly on time, the partial derivative in Eq.(29) is equal to zero. This
yields

< =il 5], (30)

Since the operator of the kinetic energy of slow neutrons commutes with a neutron spin, we arrive at the equation

as*

= QS i [Ben(t, 7, 5), 5%, (31)

where Q= —k,unB; with By = (,B’ ); (or Q,, = —KnfiN E), is the standard angular velocity of the neutron spin
precession in the magnetic field B [27]. For the calculation of t%le term e&béAngS@ = (Qy, xS)%, where Q= (—Q);
and Sz = (—S )z, we have used the commutation relation [S?, S%] = i €3¢ S;. The contribution of the commutator

[®eg(t, 7,5 ), S can be written in the following standard form

~ —

i [ Dot (8,7, 5), 5% = €20 5, = (6 x §)?, (32)
where ( is the angular velocity operator of the neutron spin precession, determined by

G G+ Gpren + G + Gy, (33)

” N

where the indices r, gr —ch, t and h mean “rotation”,”gravitation-chameleon”, “torsion” and “anti-Hermitian”,
respectively. The angular velocity operators in the r.h.s. of Eq.@33) are equal to
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For the coordinate system, rotating with an angular velocity J, where K= —G%Zwkxly =—(d x F)ﬁ, we get
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The experimental analysis of the spin—rotation couplings, calculated above, can be, for example, carried out by neutron
interferometer [37]-[49] with rotating interferometers [2, [3, [49].

V. PROPERTIES OF THE DIRAC HAMILTON OPERATOR IN CURVED SPACETIMES

The anti—-Hermitian interactions appears also in the Hamilton operator of a relativistic Dirac fermion with mass
m. Indeed, as has been shown in ﬂ] the Hamilton operator of a relativistic Dirac fermion is equal to H = Hy + 6H',

where Hy = ’yom — i'yof_y' .V is the Hamilton operator of a free Dirac fermion with mass m and 0H’ is the interaction
Hamilton operator equal to [1]

A 5 . . A% a A a P ~ a
’ o 0 AN J T j~A0~T 2 1 inO~d L i~n O~ 5 Ji
H =A-1)y'm+B+C Ee+(D5_ +5§_)w Y 927 + Fiy™y 5 + Gy + Ky + L Zazj' (36)
For the operators A, B, Cé, Djj', Gj-, K and Lj, given by Eq.(d]), the Hamilton operator can be represented in the
form 6H" = 0Hj + 0Hf, where ¢Hj and §H} are the Hermitian and anti-Hermitian parts of the Hamilton operator

h’
Eq.(36]), respectively, equal to
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- ZK75+EK'B’Y5+gejqu'MOfcé’y5 (37)
and
’ 2 = 0— 1 263
5HB:fz§€6K-'y 7+15(M236+M65@)K7'y. (38)

One may assume that in the rotating Universe and galaxies @] (see also ﬂi_lﬂ) the torsion—fermion interaction Eq. (B8]
might be an origin of i) violation of C'P and T invariance in the Universe and ii) of baryon asymmetry [28].

A. Standard non—unitary transformation of Dirac fermion wave functions and anti—-Hermitian
torsion—fermion interactions

It is well-known that the Hamilton operator of the Dirac fermions with mass m, moving in the curved spacetime
with a metric g,,, is not Hermitian. In order to get a Hermitian Hamilton operator one has to perform the standard

non—unitary transformation of the wave function of the Dirac fermions 1) — (/—g 68)1/ 2y, where g is a determinant of

the metric tensor g,, (z) and €J(z) is a vierbein field [17, 18], [14, 15, [19], [16], [20, 21] and [24] (see also [1, 13,22, 23)).
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As has been shown in ﬂ], the Hamilton operator H = ’yém — i'yo:y’~ vV + 0Hj, + 0Hf has been already obtained by
means of the standard non—unitary transformation v — (v/—g éo)l/ 24/, where § is a determinant of the Jordan—frame
metric tensor g, (x) and ég(ac) is a vierbein field in the Jordan frame (see Eq.(3) of Ref.[l]). The appearance of the
anti-Hermitian term §Hf in the Hamilton operator H' = 'yom i’yé:y' v+ 0Hj, + 6Hf is fully related to the spacetime

metric Eq.([[) as a functlonal of the vector K, caused by rotations, or more generally to the spacetime metric Eq.(B)
(see also Eq.(20) of Ref. ﬂ ), proposed by Obukhov, Silenko, and Teryaev HEHE]

B. Non—unitary transformations of Dirac fermion wave functions and removal of anti—-Hermitian
torsion—fermion interactions

Now we would like to show that the anti-Hermitian (non-Hermitian) Hamilton operator 6Hf, given by Eq.(B8),
cannot be removed by a non—unitary (non—Hermitian) transformation of the Dirac fermion (neutron) wave function.
After the standard non—unitary transformation of the Dirac fermion wave function ¢ — (v/— gég)l/ 2y’ (see Eq.(I3)
of Ref.[l]) we arrive at the following Dirac fermion action

Sy = / dtd*z 't (t,7) (i gt H)/(t,7) = / dtdx w(t,f)(z'% ~ Ho — 0H}, — 011} )&/ (&, 7), (39)

where Hy = 70m — ivoﬁ' . V. In order to analyse a possibility to remove the term 6H;—] we make a non—unitary
(non—Hermitian) transformation

Pt T) =Yt T), (40)

where (=14+Q =1+ 773-,%057i€ and 07 is a Hermitian nonfdAiff?rential operator, i.e. @it = Q7. The operator ¢ is a
non-unitary (non-Hermitian) operator ¢f = 1+Qf =1 —1; ,;Oj v* # ¢. Then, for the derivation of the Dirac Hamilton

operator H” we use the following relations ¢(TéH} = 6Hj and of (TéH. = 6H. and 6H{ ¢ = JH} and dH.¢ = SHE.
Plugging Eq.([#{) into Eq.([39) we transcribe the action Sy into the form

0
So = [ dedou 6.7 (ig — 1) (6.7, (41)
where the Hamilton operator H” is equal to
1" ! U aQ

H" = Ho + 0Hy}, + 0Hj + [Hp, Q] — v (42)

Plugging Q = n;;, . 07~4* into Eq. [#2) and calculating the commutator [Hy, Q] we get

S A A 8 -5 P a a > aQA ~
H" = Hy + 0H{, + SH}, + 2mn;; Q77 " 0 QA_ QI — + sﬂ%oz Qk —i—2L 47 (43)
J 7 855] a ot

It is obvious that for the Hermitian operator Qj, ie. Qﬁ = Qj corresponding to a non—Hermitian transformation
with the operator ¢t # ¢, the term 2m775.,;Qj707k cannot cancel the contribution of the anti-Hermitian operator

6Hf. The use of the anti-Hermitian operator Qj — in corresponding to a Hermitian (unitary) transformation with

an operator ( = 1+:1Q =1+ 177 OJ’y such as (T = ¢, allows to shift the Hamilton operator 6H. §» which is the
odd operator according to the Foldy Wouthuysen classification @ to the region of interactions of order O(1/m).
In detail such a unitary transformation or the Foldy—Wouthuysen transformation for the derivation of the effective
low—energy potential Eq.(I7) has been performed in ﬂ] The linearised version of this effective low—energy potential

is given by Eq.(I8).

C. Non-Hermiticity of Dirac Hamilton operator, n—representation and anti—Hermitian torsion—fermion
interactions

An alternative transition from a non—Hermitian Hamilton operator of the Dirac massive fermions, moving in the
curved spacetime with an arbitrary metric tensor g, (z), to a Hermitian form can be performed by using the 7
representation of the Dirac fermion wave functions E’j} In the np-representation the Dirac Hamilton operator becomes
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Hermitian without the standard non—unitary transformation of the Dirac fermion wave function 1 — (v/—§ ég)l/ 29!
and the dynamics of the Dirac fermions is described by the pseudo—Hermitian quantum mechanics ﬂ2__4|] (see also @7
@]) Since in our analysis of the torsion—fermion interactions within the Einstein—-Cartan gravity with the chameleon
field we use the standard non—unitary transformation of the Dirac fermion wave function ¥ — (v/—g ég)l/ 23', the
dynamics of the Dirac fermions and the contributions of the anti—-Hermitian torsion—fermion interactions, violating
CP and T invariance, to the observables can be described within the formalism of the standard relativistic and
non-relativistic quantum mechanics [56, [57).

D. Conformal invariance of anti—-Hermitian torsion—fermion interactions

As has been shown by Silenko m], the Dirac and Foldy—Wouthuysen Hamilton operators for massless fermions
in the curved spacetimes with arbitrary metric g,, are invariant under conformal transformation g,, — OQQW if
the wave function of massless fermions is subjected to the non-unitary transformation ¢/ — 03/2¢). In ﬂﬂ] the
results, obtained in m], have been extended to massive fermions coupled to gravitational field and torsion in the
Einstein and Einstein—Cartan gravity, respectively, with the requirement that the fermion mass transforms under
the conformal transformation g,, — O0?%§,, as follows m — O~'m. This agrees well with the dimensional analysis
of general relativity, carried out by Dicke m] for the reduction of the Brans-Dicke gravitational theory ﬂﬁ] to the
Einstein gravity, coupled to an effective scalar field. According to Silenko ﬂﬂ], the vector K7 and the contorsion tensor
Ko = f%(’faw — Tuaw — Toap) are not changed by the conformal transformation g, — 02§, i.e. K/ — K/ = K7
and I&a,“, — Iéa,“,. Since the Hamilton operator 6Hj, is expressed in terms of the components of the contorsion tensor

Kajo and the vector K

torsion A A 1 ~ A A 1 PON P
- 0 {0 lk ;.0
(SH%1 = Gj oK) 17y ’}/] = 5 (’CjélfﬁLKjgé)K 17y ’}/] — in KOZ}%” iy =
2L a1 .
= —zgé’éK-v Ttig (M0 + Mg;z) K997, (44)

. torsion
it is invariant under the conformal transformation g,, — O%§,., i.e. OH; — O0HE, where G; . given by (see
Ki

Eq.(28))

torsion 1 7 1 b
; o(K3) = 5(’(:3024—’(:3@0)[( — QKEK:O@U , (45)
torsion . |torsion
is conformal invariant G- - = G- .. Under the conformal transformation g,, — OQQW the vierbein fields
Tlo(ki) To(ki)

transform as follows 6& — Oéf;‘ and % — O~'ék. Since the fermion mass transforms as m — O~ !, the operators

o
mA = fmég and D; =

fégé;_ (see BEq.(@) are invariant under the conformal transformation, i.e. mA — mA and

Dj — Dj In order to show that the effective low—energy potential @iﬁf) (t,7, S ) is conformal invariant we transcribe

the effective low—energy potential 0 Pog (¢, 7, S ), given by Eq.(23), into the form

) - PN torsion a A a 1 torsion oA a 1 torsion
sptorsion(y = Gy — ik G- Dlg i Ik Dlg _( G- ) gkt S Dlg _( G- )
et (BT5S) omA T Vi o(ki)y Kk Qxk Py Ox* \dmA ~7loki) ve E7k 9k \2mA ok

PN torsion . a 1 PP . a torsion PPN . a torsion
—_jha, i 9 4 - pgkpi 9 g kg pi Y g, 46
- omA T Tk oK) 10xi  4mA 30z Floxiy - omA "€ E75029  Flowkiy’ (46)
. . L. torsion torsion
Because of the conformal invariance of mA — mA, D] — DJ and G- = G _ the effective low—energy
Y I o) o)

potential Eq.(#8) is conformal invariant, i.e. d®rsion (¢, 7, S) - sdtorsion(¢ 7 §). This proves the conformal invari-
ance of the effective low—energy potential @S&g (t,7, §), ie. @éﬁ«) (t, 7, ,S_”) — @S&g (t,7, §) Thus, we have shown that
after the non—unitary transformation of the Dirac fermion wave function ¢ — (v/—g ég)l/ 23" in the Jordan frame

with the metric tensor g, (z) the non-Hermitian (anti-Hermitian) torsion—fermion interactions, violating T and C'P
invariance, are conformal invariant. This agrees well with the results, obtained by Silenko in Ref. ﬂﬂ]
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E. The argument in behalf of observability of anti-Hermitian torsion—fermion interactions

Now we would like to discuss a possible observability of the anti-Hermitian torsion—fermion interactions, violating
CP and T invariance. For the coordinate system, rotating with an angular velocity &, the vector K is equal to
K=—(Jdx7) ﬂﬂ, 17, @] The effective low—energy potential Eq.(I8) is equal to

=—(&x =— (X7 =— (X7 =—(&xT)
(47)
Here the effective low—energy potential @g_f) (t,7, S )| () is
K=—(&OXT
Wy » d _ - 7_=~.3 lagilea o=
Do (t,7,5) =mUs —Ug)—&@-L—&G-S—=-S - B+-KS-(dx7)
K=—(&x7) 2 3
1 = - 1 .
—55-@4x@xfof§%éwwmﬁ“%w@ (48)
where (M) = —Moor [1]. In Eq.@R) the first term m (Uy — Ug) describes the chameleon-matter interaction
ﬂ@, ], whereas the terms —&- L and —dj- S, where L = —7"x i V is the orbital momentum operator of slow fermions

(neutrons), agree well with the results, obtained by Hehl and Ni [33]. The interactions — - L and —& - S were
investigated and observed in the experiments by Werner, Staudenmann, and Colella @], by Atwood et al. ﬂﬂ] and

by Mashhoon B] Since the effective low—energy potentials @ég,«) (t, 7, S ) for n = 2, 3,4, are calculated from

K=—(&x7

the general effective low—energy potential Eq.(@]) as well as the potential @g_f) (t,7, S )’ i (o) the observability
K=—(dx7

of the interactions —d - (E + S ) supports in principle an observability of the torsion—fermion interactions in the
) ﬂvam¢g@a§)ﬁ

K=—(dx7 K=—(&x7)

effective low—energy potential Eq.([8), the Hermitian interactions @éZH«) (t, 7, S)

and, correspondingly, the anti—-Hermitian interaction @éﬁ«) (t, 7, S ) , respectively.

K=—(dx7)

VI. CONCLUSION

We have derived the operator of the angular velocity of the neutron spin precession in the Einstein-Cartan gravity
with torsion and chameleon fields. For the calculation of such an operator we have used the most general effective
low—energy potential for slow Dirac fermions, coupled to gravitational, chameleon and torsion fields to order 1/m,
where m is the fermion mass ﬂ] In order to adapt such an effective low—energy potential to the experimental analysis
of the contributions of fermion—gravitational,~chameleon and —torsion interactions we have linearised it with respect to
gravitational, chameleon and torsion fields. Such a linearisation we have carried out in the curved spacetime with the
Schwarzschild metric, taken in the approximation of the weak gravitational field and modified by a rotation with an
angular velocity & and the chameleon field. We have shown that in the curved spacetime with such a modified metric
torsion scalar, pseudoscalar, axial-vector and tensor degrees of freedom couple to slow neutrons through minimal
torsion—fermion couplings @] The obtained linearised effective low—energy potential Eq.(I8]) is the generalization of
the effective low—energy potential, derived in ﬂﬁ]

An important peculiarity of the linearised effective low—energy potential Eq.(I8) is the appearance of the anti—
Hermitian part. Such a part of the effective low—energy potential comes from the operator Gj- and proportional to

the vector K/ = —(& x 7)7, related to a rotation of a coordinate system. A possible violation of Hermiticity of a
low—energy potential for slow fermions, coupled to gravitational, chameleon and torsion fields in terms of the vierbein
fields Eq. ), caused by the metric Eq.(B]), might be expected because of a non—invariance of the metric tensor Eq.(B)
and, correspondingly, Eq.(I3]) in a rotating coordinate system with respect to time reversal transformation, i.e. a non—
invariance under ¢t — —t transformation. We have found that the anti-Hermitian part contains the terms proportional
to vector K7 and dependent on the torsion scalar &y and space-space-time ./\/lj i and time-space-space Mél}j tensor
degrees of freedom. For the confirmation of the correctness of such an anti-Hermitian part we have pointed out that
the contribution of the operator Gj is important for the correct derivation of the effective low—energy potential for slow
fermions (neutrons), coupled to gravitational and chameleon fields. Another argument on behalf of the correctness
of such an anti—-Hermitian part is the cancellation of the torsion vector components in the K jfindependent part of
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the operator G;. Such a cancellation agrees well with the results, obtained by Kostelecky [35] (see also [13]). In the
Appendix we have given a detailed calculation of the operator G 5 to linear order in the gravitational, chameleon and
torsion field approximation.

It is obvious that an anti—-Hermitian part @g? (t,7, S ) of the effective low—energy potential ®eg (¢, 7, S ) violates T (or

time reversal) invariance. Since the effective low—energy potential @ (t, 7, S ) is invariant under CPT transformation,

the anti-Hermitian part @gﬁf) (t, 7, S ) violates also CP invariance, i.e. invariance under Charge—Parity transformation.

A violation of CP and T invariance in the spacetime with the asymmetric Kerr metric, which is analogous to a
spacetime in the coordinate system rotating with an angular velocity M], has been discussed by Hadley M] We
would like also to mention that violation of parity and time reversal invariance in the spin—rotation interactions has
been discussed by Papini ﬂ6__1|] and Scolarici and Solombrino @] in the model with a modified Mashhoon’s potential
of the spin-rotation coupling [3)].

Finally we would like to discuss the results, obtained in section [Vl As has been shown in ﬂﬁ]fﬂﬁ] the well-
known non-Hermiticity of the Dirac Hamilton operator for relativistic fermions, moving in the curved spacetime with
an arbitrary metric g,,(z) or in an arbitrary gravitational field, can be removed by a non-unitary transformation

¥ — (V=) /2y, where § is the determinant of the metric tensor Guv(z) and &) is the vierbein field. Such a
property of the Dirac Hamilton operator is also retained in the curved spacetime with an arbitrary metric, torsion
and chameleon field [I, [13]. In section [V] we have shown that i) the anti-Hermitian Hamilton operator of torsion—

fermion interactions dHf in the Dirac Hamilton operator H' = Om —iy07 .V + 0H{ + 0H/, obtained by means of

h)
the non-unitary transformation of the Dirac fermion wave functions ¢ — (/=g é9)/?¢’, cannot be removed by any
additional non—unitary transformations and ii) the existence of these anti—-Hermitian torsion—fermion interactions is
fully caused by the properties of the curved spacetimes with rotation, described by the metric Eq.(B]).

We have also pointed out that our analysis of the Dirac Hamilton operator and a derivation of the anti-Hermitian
torsion—fermion interactions are not related to the analysis of the non—Hermiticity of the Dirac Hamilton operator by
means of the n-representation ﬂ2__4|], requiring pseudo—Hermitian quantum mechanics for a description of a dynamics
of Dirac fermions in curved spacetimes ﬂﬂ, ,@]

Then, we have discussed conformal invariance of the anti-Hermitian torsion—fermion interactions. As has been
shown by Silenko M], quantum field theories of massless particles, coupled to arbitrary gravitational fields or moving
in curved spacetimes with arbitrary metrics, are conformal invariant under conformal transformation g,, — 0? Guvs
where O is a conformal factor. The requirement of conformal invariance of quantum field theories of massive particles
in curved spacetimes with arbitrary metrics can be fulfilled if and only if particle masses are changed by the conformal
factor as follows m — O~'m [21] (see also [2d, [26]). We have shown that under the condition m — O~ ' the

relativistic anti-Hermitian Hamilton operator Hy, and the anti-Hermitian effective low—energy potential @iﬁf) (t,7, S )
are conformal invariant.

We have discussed also an observability of the anti-Hermitian torsion—fermion interactions. As a result, we may
argue that the anti-Hermitian torsion—fermion interactions can be in principle observable. First, an observability
of the obtained anti-Hermitian torsion—fermion interactions is supported by their derivation, carried out on the
same footing as the effective low—energy potentials @é}:f) (t, 7, S ) and @é}:f) (t,7, S ), which have been derived earlier in
ﬂ, 13, 22, é] Second, an observability of the anti—Hermitian torsion—fermion interactions Eq.([22) and Eq.(38) is

supported experimentally as follows. In the effective low—energy potential @ig (t,7,S) the interactions

3 - G- L-a-8,

sVt 7, S
eff( 7T5S) Kzf(QXF)

(49)

derived also by Hehl and Ni ﬂﬁ], have been investigated experimentally by Werner, Staudenmann, and Colella @], by
Atwood et al. E] and by Mashhoon E] This makes reliable in principle an observability of the anti-Hermitian torsion—
fermion interactions, described by the relativistic anti-Hermitian Hamilton operator Eq.([B8) and the anti-Hermitian
effective low—energy potential Eq.(22).

The analysis of reliability and observability of the obtained anti—-Hermitian torsion—fermion interactions makes
meaningful the assumption that in the rotating Universe and galaxies [50] (see also [51]) the torsion—fermion interaction
0H; in Eq.(88) as well as the low—energy effective potential @SF) (t,7, S in Eq.([22) might be an origin of i) violation
of CP and T invariance in the Universe and ii) of baryon asymmetry |2§].
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VIII. APPENDIX A: DETAILED CALCULATION OF THE OPERATOR G;

In the Appendix we give a detailed calculation of the operator Gj. According to Eq.(d) it is defined by

G; = %ég(x)( () € (@) + Byjo() 85 (@) + D455 () 2 (2) + @y53(w) () ™)
L a0ian2el 19 —_
(@) \/_ — (V=@ aw). (A-1)

Using v/—g = 1 + Uy — 3U_ [1] and the vierbein fields Eq.(I3) we transcribe the r.h.s. of Eq.(A=I) into the form

1 1

1. ) ] ) A
Gy = 3 T7%5(@) + 5 G0j0(@) + 5 Ggo(@) K+ 5 o (@)n™ = 5 == (A-2)

J
where we have made the following replacements (1 + Uy + U_)T® -(z) — T -(x) and 1 + Uy + U= (2) ntk —

aj

Wi (@ z)n* and calculated

S @) @) s (V@ ) = 5 (A3

\/—g(z) 0z 2 9xi

keeping only the linear order contributions of the gravitational, chameleon and torsion fields. Since we keep the
contributions to order O(K7), we get

1~ 1 1 i
5 T%@) = 5 Ta0; + 5 Targ s
1. 1 oU. 18U; 1 1 i
5&)030(1') = inwf 5 axJ +§’C560+5K5()2K7
1. ) 1 oUu_ 1 i
3 Weo(2) K° = —5 Ky — =+ 5 Ky K7,
1. g OU- 1 i1 0k
3 @gr(@)n™ = o Tl =5 K K (A-4)

Plugging Eq.([A-d) into Eq.([A=2) we derive the operator G; in the following form

1 0 oh o 1 ) oh
G; = 29w Uy +U_) + (7663 + Tii; n* + Ko + K5 77%) + B ((chf)é + Kﬁéﬁ) K- K5 Koo nek). (A-5)

Using the properties of the contorsion tensor [1] and the irreducible representation of torsion Eq.(IH) we transcribe

Eq.(A3) into Eq.(28) (see also Eq.(Id)).
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