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An analytic cosmological solution of Poincare gauge gravity with a pseudoscalar

torsion
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A cosmology of Poincare gauge theory is developed, and its analytic solution is obtained. The

calculation results agree with observational data and can be compared with the ΛCDM model. The

cosmological constant puzzle, the coincidence and fine tuning problem are relieved naturally at the

same time. The cosmological constant turns out to be the intrinsic torsion and curvature of the

vacuum universe and is derived from the theory naturally rather than added artificially. The dark

energy originates from geometry, includes the cosmological constant but differs from it. The analytic

expression of the state equations of the dark energy and the density parameters of the matter and

the geometric dark energy are derived. The full equations of linear cosmological perturbations and

the solutions are obtained.
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I. Introduction

The discovery of the accelerated expansion of the universe motivates a large variety of theoretical works to explain

it. In order to account for the acceleration the Einstein equation has to be modified and then two approaches are

developed. One is to introduce ”dark energy” in the right-hand side in the framework of general relativity ( see [1] for

recent reviews). The another is to modify the left-hand side of the equation, called modified gravitational theories,

e.g., f(R) gravity (see [2] for recent reviews). A large amount of literature in every approach has been accumulated in

the past years. However, none of them offers a convincing explanation of the observed results, and most of them were

introduced to explain the acceleration phenomenologically, rather than emerging naturally out of fundamental physics

principles. The most popular model in the fist approach is the Λ cold dark matter (ΛCDM) model which is plagued by

the cosmological constant problem and the coincidence and fine tuning problem. Meanwhile, there is not the enough

evidence on the validity of this model. It is shown that the thermal and mechanical stability requirement provides

an evidence against the dark energy hypothesis [3]. Adding dark energy to the content of the Universe may not be

the answer to the cosmic acceleration problem. In the second approach the Einstein-Hilbert Lagrangian is usually

generalized to a function f of the Ricci scalar R. However, at present there are no fully realized and empirically viable

f (R) theories that explain the observed level of cosmic acceleration. Furthermore, the f (R) theories suffer from a

long-standing controversy about which frame (Einstein or Jordan) is the physical one [4]. It should be noted that

although we have strong observational evidence for accelerated cosmic expansion but no compelling evidence that the
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cause of this acceleration is really a new energy component. At the same time we do not have enough independent data

yet to clarify the nature of dark energy. This provides further motivation for a deeper investigation of the very nature

of dark energy and the origin of the accelerated cosmic expansion. In the framework of f(R) gravity, the field equation

can be written as the Einstein equation with an effective energy-momentum tensor that contains all the modifications

and the energy-momentum tensor of matter fields. The contributions of the modifications of gravity can be identified

with some kind of geometric dark energy. This is specially advantageous since one can define an equation of state

associated with such dark energy and compare it with the ΛCDM model [5]. However, the function f(R) is not known

a priori, none introduces a new fundamental principle that can be used as a guiding line, it is usually constructed by

trial and error. In fact, as a geometric theory a modified gravity should be formulated in a gauge theoretical framework

including. A famous example is the Poincare gauge theory of Gravity [6]. Some works have been done to develop a

model of geometric dark energy in the Poincare gauge theory framework [7], [8], [9]. In [7] the effect of torsion is to

introduce an extra-term into matter density and pressure which gives rise to an accelerated behavior of the universe.

However, the torsion contributes only a constant density, it is not possible to solve the coincidence and fine tuning

problem. The torsion model in [8] contributes an oscillating aspect to the expansion rate of the universe and displays

features similar to those of only the presently observed accelerating universe. In [9] the Lagrangian involves too many

terms and indefinite parameters, which make the field equations complicated and difficult to solve and the role of each

term obscure. In order to simplify the field equations, some restrictions on indefinite parameters have to be imposed.

Under these restrictions, especially, all the higher derivatives of the scale factor are excluded from the cosmological

equations. In fact, starting from a well behaved Lagrangian 1
2R+αR2+βRµνR

µν in quadratic gravity [10] and string

theory [11] and adding a quadratic term of torsion γT µ
νρTµ

νρ a good toy model can be obtained [12]. In addition to

the simplicity the main advantage of this Lagrangian is to permit exact or analytic solutions which have not been found

in previous works. In contrast with [9] the field equations are allowed to contain higher derivatives in [12]. When the

macroscopic spacetime average of the spin vanishes, the solutions of the cosmological equations are found to split into

two families. Each of them is related with only one torsion function, the scalar or the pseudoscalar torsion function.

It has been proved [8] that only these two scalar torsion modes are physically acceptable and no-ghosts. This model

has a free-ghost dynamics. It has a well posed initial value problem without any ghost or tachyonic propagation.

The first family has been investigated in detail in [12], the second family corresponding to the pseudoscalar torsion

function will be studied in a totally different way in this paper. Some meaningful consequences can be inferred from

the solutions obtained. The cosmological constant problem and the coincidence and fine tuning problem are solved

naturally.

In Sec. II, starting from the Poincare gauge principle and the Lagrangian 1
2R+αR2+βRµνR

µν+γT µ
νρTµ

νρ, which

is the sum of the Starobinsky Lagrangian [13] and Yang-Mills type terms of the local rotation and translation field

strength, the field equations are derived. In order to evade any unnecessary discussion regarding frames (i.e. Einstein

.vs. Jordan) the theory is treated using the original variables instead of transforming to a scalar-tensor theory in

contrast to f(R) theories. As an exact solution a set of cosmological equations is obtained. Although we do not

introduce a cosmology constant in the action it automatically emerges in the derivation of the cosmological equations

and then is endowed with intrinsic character. The dark energy is identified with the geometry of the spacetime and

is a function of the density and the pressure of the matter. It includes the cosmological constant but can not be

identified with it. It is nothing but the intrinsic torsion or curvature of the vacuum universe. In Sec. III, the analytic



3

expressions of the state equation and the density parameters of the matter and the geometric dark energy are derived

and used to determine the values of α , β and γ. Then a theoretical value of the cosmological constant is computed

and compared with the observed datum. The cosmological constant problem and the coincidence and fine tuning

problem are solved naturally. In Sec. IV an analytic integral of the cosmological equation is obtained and used

to evaluate the age of the universe which can be compared with observed data. In Section V the full equations of

linear cosmological perturbations and the solutions are obtained. In addition, the behavior of perturbations for the

sub-horizon modes relevant to large-scale structures is discussed. It is shown that our model can be distinguished

from others by considering the evolution of matter perturbations and gravitational potentials. Sec. VI is devoted to

conclusions.

II. Cosmological equations

The discussion in this paper are entirely classical. We consider a Poincare gauge theory of gravity [6], [7], [8], [9], in

which there are two sets of local gauge potentials, the orthonormal frame field (tetrad) eI
µ and the metric-compatible

connection ΓIJ
µ associated with the translation and the Lorentz subgroups of the Poincare gauge group, respectively.

We use the Greek alphabet (µ, ν, ρ, ... = 0, 1, 2, 3) to denote (holonomic) indices related to spacetime, and the Latin

alphabet (I, J,K, ... = 0, 1, 2, 3) to denote algebraic (anholonomic) indices, which are raised and lowered with the

Minkowski metric ηIJ = diag (−1,+1,+1,+1). The field strengths associated with the tetrad and connection are the

torsion T λ
µν and the curvature Rµν

λτ . We use the geometrized system of units in which 8πG = 1, c = 1, start from

the action

S =

∫

d4x
√−g

[(

1

2
R+ αR2 + βRµνR

µν + γT µ
νρT µ

νρ

)

+ Lm

]

, (1)

where Lm denotes the Lagrangian of the source matter including baryonic matter, cold dark matter and radiation, α

and β are two parameters with the dimension of [L]
2
, γ is a dimensionless parameter. The vales of α, β and γ can be

determined by experiment and observational data. The terms 1
2R and γT µ

νρT µ
νρ represent weak gravity, while αR2

and βRµνR
µν represent strong gravity with the dimensionless strong gravity constant α and β according to Hehl et

al [6].

The variational principle yields the field equations for the tetrad eI
µ and the connection ΓIJ

µ [12]:

Rνµ − 1

2
gνµR = Tνµ + T(g)νµ, (2)

and

T ν
τνδ

µ
λ − T ν

λνδ
µ
τ + T µ

ντδ
ν
λ = eIλe

J
τ

(

sIJ
µ + s(g)IJ

µ
)

, (3)

where T νµ := eIµ∂ (
√−gLm) /∂eI

ν and sIJ
µ := ∂ (

√−gLm) /∂ΓIJ
µ are energy-momentum tensor and spin tensor of

the source matter, respectively, while

T(g)νµ = −α (4Rνµ − gνµR)R− β (2Rρ
νRρµ + 2RρσRνρµσ − gνµRρσR

ρσ)

+γ
(

4∂τe
Iλ (eIνT µλ

τ − eIλT µν
τ ) + 4∂τT µν

τ + gνµT
λ
ρσT λ

ρσ − 4T λ
ντT λµ

τ
)

, (4)
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and

s(g)IJ
µ = −4α

(

e[I
νeJ]

τΓµ
ντR+ e[J

µeI]
ν
(

Γλ
λνR− ∂νR

)

+ e[I
νeJ]

µReKτ∂νeK
τ
)

−4βeJ
λ
(

eI
[µ∂νRλ

ν] + eI
[νRλ

µ]eKτ∂νeK
τ + eI

τΓ[ν
ντRλ

µ] + eI
[νRτ

µ]Γτ
νλ

)

−4γeIνeJ
τT νµ

τ , (5)

are the energy-momentum and the spin of this kind of ”geometric dark energy” corresponding to the terms αR2 +

βRµνR
µν + γT µ

νρT µ
νρ in (1). Note that the energy-momentum tensor T νµ of type (0, 2) should not be confused

with the torsion tensor T λ
µν of type (1, 2). If α = β = γ = 0, these equations become the field equations of

Einstein-Cartan-Sciama-Kibble theory. Furthermore, for T λ
µν = 0 we come back to General Relativity.

For the spatially flat Friedmann-Robertson-Walker (FRW) metric

gµν = diag
(

−1, a (t)
2
, a (t)

2
, a (t)

2
)

, (6)

the non-vanishing torsion components with holonomic indices are given by two functions, the scalar torsion h and the

pseudoscalar torsion f [8],[14]:

Tij0 = a2hδij , Tijk = 2a3fǫijk, i, j, k, ... = 1, 2, 3. (7)

The equations (2) and (3) yields the cosmological equations

H2 =
1

3
(ρ+ ρg) , (8)

2
·
H +3H2 = − (p+ pg) , (9)

(β + 6α)
( ··
H +

··
h
)

+ 6 (β + 4α) (H + h)
·
H +(5β + 18α) (H + h)

·
h −4 (β + 3α) f

·
f

+3 (β + 4α)hH2 + (5β + 18α)h2H + 2 (β + 3α)h3 − 2 (β + 3α) hf2 +
1

4
h+

1

2
s01

1 = 0, (10)

and

f{2 (β + 6α)
( ·
H +

·
h
)

+ 6 (β + 4α)H2 + 2 (5β + 18α)Hh

+(β + 3α)
(

4h2 − 4f2
)

− 4γ +
1

2
} − 1

2
s12

3 = 0, (11)

where H =
·
a (t) /a (t) is the Hubble parameter,

·
H= dH/dt, while

ρg = −6Hh− 3h2 + 3f2

+12 (3α+ β)
( ·
H +

·
h −Hh− h2 + f2

)( ·
H +

·
h +2H2 + 3Hh+ h2 − f2

)

−6γ
(

h2 + 4f2
)

, (12)

and

pg = 4Hh+ h2 − f2

+4 (3α+ β)
( ·
H +

·
h −Hh− h2 + f2

)( ·
H +

·
h +2H2 + 3Hh+ h2 − f2

)

−2γ
(

2
·
h +8Hh+ h2 + 4f2

)

, i = 1, 2, 3, (13)
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are the density and the pressure of the geometric dark energy. (12) and (13) indicate that the geometric dark energy

is just the gravitational field itself described by h, H and f . The source matter is a fluid characterized by the energy

density ρ = T00, the pressure p = Tij (i = j) and the spin sIJ
µ. (8) and (9) lead to

··
a

a
= −1

6
(ρ+ ρg + 3p+ 3pg) . (14)

It is easy to see that when α = β = γ = 0 and h = f = 0, (8), (9) and (14) reduce to the Friedmann cosmology.

(8) and (9) correspond to the Friedmann equation and the Raychaudhuri equation respectively, while (14) is the

acceleration equation, which represent the Einstein frame of the theory.

Since the spin orientation of particles for ordinary matter is random, the macroscopic spacetime average of the spin

vanishes, we suppose sIJ
λ = 0, henceforth. Then, the equation (11) has the solutions

f = 0, (15)

and

f2 =
(β + 6α)

2 (β + 3α)

( ·
H +

·
h
)

+
3 (β + 4α)

2 (β + 3α)
H2 +

(5β + 18α)

2 (β + 3α)
Hh+ h2

− γ

(β + 3α)
+

1

8 (β + 3α)
. (16)

The solution (15) has been investigated in [12]. We concentrate on the equation (16) now. Differentiating (16) gives

f
·
f=

β + 6α

4 (β + 3α)

( ··
H +

··
h
)

+
3 (β + 4α)

2 (β + 3α)
H

·
H +

5β + 18α

4 (β + 3α)

·
H h+

5β + 18α

4 (β + 3α)
H

·
h +h

·
h .

Substituting it and (16) into (10) gives (when s01
1 = 0)

2hγ = 0,

and then

h = 0. (17)

In this case (8), (9), (12), (13) and (16) lead to

12 (3α+ β)
( ·
H +f2

)( ·
H +2H2 − f2

)

− 3H2 + 3f2 − 24γf2 + ρ = 0,

4 (3α+ β)
( ·
H +f2

)( ·
H +2H2 − f2

)

+ 2
·
H +3H2 − f2 − 8γf2 + p = 0,

(β + 6α)
·
H +3 (β + 4α)H2 − 2 (β + 3α) f2 − 2γ +

1

4
= 0,

which further give

f2 =
Λ

24γ
+

ρ

24γ
+

3 (4α+ β)− 16γ (3α+ β)

48βγ
(ρ− 3p) +

(3α+ β) (4α+ β)

24γβ
(ρ− 3p)

2
, (18)
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H2 =
(1− 8γ)

24γ
Λ +

ρ

24γ
− (8γ − 1) (4α+ β)

16γβ
(ρ− 3p) +

(3α+ β) (4α+ β)

24γβ
(ρ− 3p)2 , (19)

·
H =

16γ − 1

24γ
Λ− ρ

24γ

−3 (4α+ β)− 8γ (18α+ 5β)

48βγ
(ρ− 3p)− (3α+ β) (4α+ β)

24γβ
(ρ− 3p)

2
, (20)

where

Λ =
3 (1− 8γ)

4β
, (21)

is the geometric cosmological constant coming from the terms βRµνR
µν+γT µ

νρT µ
νρ in (1). One finds that the higher

order derivative
··
H and

·
f in (10) disappear, whereas in [8] and [9] some restrictions on indefinite parameters have to

be imposed in order to exclude higher order derivatives. We note that although we do not introduce a cosmological

constant Λ in the action (1), it automatically emerges in these equations. In (18) the pseudoscalar torsion f is a

function of ρ and p rather than a constant, in contrast to [5]. It should be noted that although (8) and (9) have the

same form as the Friedmann equations, the solutions (19) and (20) are different. The reason is that in (8) and (9) ρg

and pg are functions of H ,
·
H, h,

·
h, and f as indicated by (12) an (13). In other words, this is a different model from

the ΛCDM model essentially.

(12) and (13) become now

ρg =
(1− 8γ)

8γ
Λ +

(1− 8γ)ρ

8γ
+

3 (1− 8γ) (4α+ β)

16βγ
(ρ− 3p) +

(3α+ β) (4α+ β)

8βγ
(ρ− 3p)

2
, (22)

pg = − (1 + 8γ)

24γ
Λ− (8γ + 1)ρ

24γ
− 3 (4α+ β)− 8βγ

48βγ
(ρ− 3p)− (3α+ β) (4α+ β)

24βγ
(ρ− 3p)

2
, (23)

which mean that the geometrical dark energy includes the cosmological constant Λ but can not be identified with it.

The cosmological constant Λ is really a constant determined by β and γ as indicated by (20) while the geometrical

dark energy ρg is a function of the density ρ and the pressure p of the matter. The cosmological constant problem and

the coincidence and fine tuning problem are relieved naturally, as shown in the next section.

Substituting (22) and (23) into (14) yields

··
a

a
=

Λ

3
+

3α+ β

3β
(ρ− 3p) . (24)

Furthermore, (18), (19), (20) and (24) mean that the vacuum universe has the torsion

f2
vac =

Λ

24γ
, (25)

the curvature

Rvac = 6
·
H +12H2 − 3f2 =

Λ

8γ
. (26)

and the acceleration
( ··
a

a

)

vac

=
Λ

3
. (27)

This means that the cosmological constant is nothing but the intrinsic torsion or curvature of the vacuum universe.
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III. The state equation of the geometrical dark energy

(22) and (23) gives the state equation of the dark energy:

wg =
pg
ρg

=
−2 (1 + 8γ)βΛ− 2 (8γ + 1)βρ− (3 (4α+ β)− 8βγ) (ρ− 3p)− 2 (3α+ β) (4α+ β) (ρ− 3p)2

6 (1− 8γ)βΛ + 6 (1− 8γ)βρ+ 9 (1− 8γ) (4α+ β) (ρ− 3p) + 6 (3α+ β) (4α+ β) (ρ− 3p)
2 . (28)

The source matter includes ordinary baryon matter, dark matter and radiation:

ρ = ρm + ρr, pm = 0, p =
1

3
ρ

r
. (29)

The equation (8) can be written as

Ω = Ωr +Ωm +Ωg = 1,

where

Ωm :=
ρm
3H2

,Ωr :=
ρr
3H2

,Ωg :=
ρg
3H2

, (30)

are the dimensionless density parameters of the matter, the radiation and the geometrical dark energy, respectively.

Suppose

α = −β
2
. (31)

(22), (23) and (24) become

ρg =
1− 8γ

8γ
Λ +

(1− 8γ) ρr

8γ
− 1− 8γ

16γ
ρm +

β

16γ
ρ2m, (32)

pg = −1 + 8γ

24γ
Λ− (1 + 8γ)ρ

r

24γ
+

1− 8γ

48γ
ρm − β

48γ
ρ2m, (33)

wg =
pg
ρg

=
−2 (1 + 8γ)Λ− 2 (1 + 8γ)ρ

r
+ (1− 8γ) ρm − βρ2m

6 (1− 8γ)Λ + 6 (1− 8γ)ρ
r
− 3 (1− 8γ)ρm + 3βρ2m

. (34)

and

··
a

a
=

Λ

3
− 1

6
(ρ− 3p) =

Λ

3
− 1

6
ρm. (35)

(30) and (19) give

Ωm =
16γρm

2 (1− 8γ)Λ + 2ρr + (24γ − 1) ρm + βρ2m
, (36)

Ωg =
2 (1− 8γ)Λ + 2 (1− 8γ)ρr − (1− 8γ)ρm + βρ2m

2 (1− 8γ)Λ + 2ρr + (24γ − 1)ρm + βρ2m
. (37)

From the observed data

ρcrit = 1.88h2 × 10−29gcm−3 = 7. 2402× 10−58cm−2,

Ωm = 0.3,Ωr = 1. 8035× 10−4Ωm (38)

wg = −1, (39)
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using (31), (34) and (36) we can determine the parameters

α = −4. 1969× 1056cm2,

β = 8. 3937× 1056cm2,

γ = 0.0 576. (40)

Then (21), (25), (26) and (27) give

Λ = 4. 8179× 10−58cm−2, (41)

f2
vac = 3. 4852× 10−58cm−2, (42)

Rvac = 1. 0456× 10−57cm−2, (43)

and
( ··
a

a

)

vac

= 1. 606× 10−58cm−2 = 1. 4425× 10−37s−2. (44)

The value given by (41) can be compared with the observed datum

Λ(obs) = 8πGρ
(obs)
Λ = 8πG

(

10−12GeV
)4 ∼ 8πG× 2× 10−10erg/cm3 = 4. 1574× 10−58cm−2.

Since

ρr =
ρr
a4
, ρr = ρr,a=1,ρm =

ρm
a3
, ρm = ρm,a=1,

using (40) and

ρm = 0.3ρcrit, ρr = 1. 8035× 10−4ρm

the state equation of the dark energy (34) can be written as

wg (a) =
pg
ρg

=
−0. 78766− 6. 4044× 10−5a−4 + 6. 5538× 10−2a−3 − 2.216× 10−2a−6

0. 87221 + 7. 0919× 10−5a−4 − 0. 19661a−3 + 6. 6481× 10−2a−6
, (45)

or

wg (z) =
−0. 78766− 6. 4044× 10−5 (1 + z)

4
+ 6. 5538× 10−2 (1 + z)

3 − 2.216× 10−2 (1 + z)
6

0. 87221+ 7. 0919× 10−5 (1 + z)
4 − 0. 19661 (1 + z)

3
+ 6. 6481× 10−2 (1 + z)

6 . (46)

Figure 1 plots the evolution history of wg(a) given by (45).

In observation and experiments it is conventional to phrase constraints or projected constraints on w(z) in terms

of a linear evolutional model [15]:

w(a) = w0 + wa(1− a) = wp + wa (ap − a) ,
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FIG. 1: The evolution of wg(a).

where w0 is the value of w at z = 0 (a = 1), and wp is the value of w at a ”pivot” redshift zp. For typical data

combinations, zp ≈ 0.5. To this end we give the linear approximation of (45). When a = 1,

wg0 = −1,

and

dwg

da
|a=1 = 0. 19936, (47)

so we have

wg (a) = wg0 +
dwg

da
|a=1 (a− 1) = −1− 0. 19936 (1− a) . (48)

When zp = 0.5, a = 2
3 ,

wgp = −0. 84781, (49)

and

dwg

da
|a= 2

3
= −0. 7653, (50)

then we have

wgp (a) = wgp +
dwg

da
|p
(

a− 2

3

)

= −0. 8478+ 0. 7653

(

2

3
− a

)

. (51)

Using (35) and ρm = ρm/a
3, one finds that when

a = atrans =

(

2βρm
3 (1− 8γ)

)
1
3

= 0. 60859, (52)

ztrans = 0.64314, (53)

the expansion of the universe transforms from deceleration to acceleration. Using (37) one can compute that when

a = 0. 75817, z = 0. 31897,Ωg = 0.5, (54)

the universe transforms from the matter dominating phase into the dark energy dominating phase. In a flat ΛCDM

universe with ( Ωm, ΩΛ) = (0.3, 0.7) acceleration begins at z = 0.67, while dark energy doesn’t dominate the energy

density of the universe until z = 0.33 [16].
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IV. An exact analytic solution of cosmological equation

The equation (19) can be solved in two cases as follows. In the radiation dominated era

ρr =
ρr
a4
, ρr = ρr,a=1 = const, pr =

1

3
ρr,

(19) reads

H2 =
(1− 8γ)

2

32γβ
+

ρr
24γa4

, (55)

and can be rewritten

da

dt
= a

√

(1− 8γ)2

32γβ
+

ρr
24γa4

. (56)

Its integration gives

ln

(

a2 +

√

a4 +
4βρr

3 (1− 8γ)2

)

− ln

√

4βρr

3 (1− 8γ)2
=

(1− 8γ)

2
√
2γβ

t, (57)

or

a =

(

βρr

3 (1− 8γ)
2

)
1
4
√

(

e
(1−8γ)

2
√

2γβ
t − e

− (1−8γ)

2
√

2γβ
t
)

=

(

βρr

3 (1− 8γ)
2

)
1
4
√

2 sinh
(1− 8γ)

2
√
2γβ

t. (58)

In the matter dominated era

ρm =
ρm
a3
, ρm = ρm,a=1 = const, p = 0,

(19) reads

H2 =
(1− 8γ)

2

32γβ
+

12α+ 5β − 24γ (4α+ β)

48γβ

ρm
a3

+
(3α+ β) (4α+ β)

24γβ

ρ2m
a6
, (59)

and then

da

dt
= a

√

(1− 8γ)2

32γβ
+

12α+ 5β − 24γ (4α+ β)

48γβ

ρm
a3

+
(3α+ β) (4α+ β)

24γβ

ρ2m
a6
. (60)

Its integration gives

ln

(√

a6 + 2
12α+ 5β − 24γ (4α+ β)

3 (1− 8γ)
2 ρma

3 +
4 (3α+ β) (4α+ β)

3 (1− 8γ)
2 ρ2m + a3 +

12α+ 5β − 24γ (4α+ β)

3 (1− 8γ)
2 ρm

)

− ln

(√

4 (3α+ β) (4α+ β)

3 (1− 8γ)2
ρ2m +

12α+ 5β − 24γ (4α+ β)

3 (1− 8γ)2
ρm

)

= 3
(1− 8γ)√

32γβ
t, (61)
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and then

a = {1
2

(√

4 (3α+ β) (4α+ β)

3 (1− 8γ)
2 ρ2m +

12α+ 5β − 24γ (4α+ β)

3 (1− 8γ)
2 ρm

)

e
3(1−8γ)

4
√

2γβ
t

−12α+ 5β − 24γ (4α+ β)

3 (1− 8γ)
2 ρm

+
36α+ 13β − 48γ (1 + 4γ) (4α+ β)

18 (1− 8γ)
4 βρm

(√

4 (3α+ β) (4α+ β)

3 (1− 8γ)
2 +

12α+ 5β − 24γ (4α+ β)

3 (1− 8γ)
2

)−1

e
− 3(1−8γ)

4
√

2γβ
t} 1

3 .(62)

In the case (40), equations (58) and (62) become

a = 0. 67617
√

2 sinh 2. 7417× 10−29t, (63)

and

a =
(

0. 17801e4.1125×10−29t − 9. 8074× 10−2e−4. 1125×10−29t − 7. 9934× 10−2
)

1
3

, (64)

where the time t is in cm. This is a new exact analytic cosmological solution which resembles but differs from the

ΛCDM solution [17].

Now we can evaluate the age of the universe using (40), (57) and (61). In the radiation dominating era z & 3000

[17], we have the equation

ln

(

a2 +

√

a4 +
4βρ

3 (1− 8γ)
2

)

− ln

√

4βρ

3 (1− 8γ)
2 =

(1− 8γ)

2
√
2γβ

t.

Choosing z = 3000, then a = 1/3001, this equation gives

t = 3. 298× 1023cm = 3. 4895× 105Y ears. (65)

In the matter dominating era z . 3000, we have the equation

ln

(√

1 + 2
(24γ − 1)

3 (1− 8γ)
2βρa

3
2 +

2

3 (1− 8γ)
2 (βρ)

2
+ a32 +

(24γ − 1)

3 (1− 8γ)
2βρ

)

− ln

(√

1 + 2
(24γ − 1)

3 (1− 8γ)
2 βρa

3
1 +

2

3 (1− 8γ)
2 (βρ)2 + a31 +

(24γ − 1)

3 (1− 8γ)
2βρ

)

= = 3
(1− 8γ)√

32γβ
(t2 − t1) ,

Choosing

z1 = 3000, a1 =
1

3001
,

z2 = 0, a2 = 1,

we have

t2 − t1 = 1. 6383× 1028cm = 1. 7334× 1010Y ears = 17.334Gy. (66)
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V. Perturbation theory

In order to discriminate lots of dark energy models, it is interested to seek the additional information other than

the background expansion history of the universe [18]. Now we discuss the dynamics of linear perturbations and the

structure growth of universe.

A. Cosmological perturbations of gravitational potentials and the torsion

The perturbed equations can be derived by straightforward and tedious calculations, following the approach of

[19]. The computer software Maple has been applied to work out the lengthy calculations. We focus on the scalar

perturbations, since they are sufficient to reveal the basic features of the theory, allowing for a discussion of the growth

of matter overdensities. The perturbed vierbein reads

e0µ = δ0µ (1 + φ) , eaµ = aδaµ (1− ψ) ,

eµ0 = δµ0 (1− φ) , eµa =
1

a
δµa (1 + ψ) . (67)

in which we have introduced the scalar modes φ and ψ as functions of t. This induces a metric perturbation of the

known form, namely

ds2 = a2(η)[−(1 + 2φ)dη2 + (1 − 2ψ)γijdx
idxj ], (68)

in the longitudinal gauge and the conformal time η.

In order to preserve the global homogeneity and isotropy of the spacetime the perturbations are assumed to be

small. It has been proved [6] that only two scalar torsion modes h and f are physically acceptable and no-ghosts. On

the basis of the above theoretical tests (e.g., ”no-ghosts” or ”no-tachyons”), we use (7) to give the linear perturbation

of the nonvanishing torsion components

δTij0 = δija
2δh, δTijk = 2ǫijka

3δf, i, j, k, ... = 1, 2, 3.

In the case (16), h = 0, we have

δTij0 = 0, δTijk = 2ǫijka
3ξ, i, j, k, ... = 1, 2, 3. (69)

where ξ = δf .

The unperturbed field equation (2) can be written as

Gµ
ν = T µ

ν + T(g)
µ
ν ,

where Gµ
ν is the Einstein tensor, T µ

ν is the energy-momentum of the ordinary matter and the radiation, T(g)
µ
ν is

the energy-momentum of the ”geometric dark energy” given by (4). The equations of motion for small perturbations

linearized on the background metric are

δGµ
ν = δT µ

ν + δT(g)
µ
ν . (70)
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For scalar type metric perturbations with a line element given in (68) (in conformal time), the perturbed field equations

can be obtained following the approach of [19].

The cosmic fluid includes radiation, baryonic matter and dark matter, ρm = ρb + ρd, we have

ρ = ρm + ρr = ρb + ρd + ρr, p = pr =
1

3
ρr. (71)

Since

ρb ∝
1

a3
, ρr ∝ 1

a4
, (72)

we suppose

ρd ∝ 1

an
. (73)

Then we have

ρr = rρb, ρd = vρb, (74)

where

r ∝ a−1, v ∝ a3−n. (75)

The equation

δG0
0 = −δρ− δρg (76)

takes the form

2a−2
(

3H (Hφ+ ψ′)−∇2ψ
)

+

(

3 (1− 8γ)

16βγ
+

12α+ 5β − 16γ (3α+ β)

8βγ
(1 + v) ρb +

(3α+ β) (4α+ β)

4γβ
(1 + v)2 ρ2b

)

ψ

= −1 + r + v

3γ
ρbδ −

12α+ 5β − 72αγ − 20βγ

8βγ
(1 + v) ρbδ −

(3α+ β) (4α+ β)

2βγ
(1 + v)

2
ρ2bδ, (77)

where the growth of the baryonic matter density perturbation δ := δρb/ρb, H := a′/a = aH , prime denotes derivative

with respect to the conformal time η.

The equation

δGi
j = (δpr + δpg) δ

i
j , (78)

reads

−2a−2{
[

(

2H′ +H2
)

φ+Hφ′ + ψ′′ + 2Hψ′ +
1

2
∇2 (φ− ψ)

]

δij −
1

2
∂i∂j (φ− ψ)}+ 2

(

f2ψ + fξ
)

δij

= {1
3
rρbδ −

(8γ + 1) (1 + r + v)

24γ
ρbδ +

8βγ − 3 (4α+ β)

48βγ
(1 + v) ρbδ

− (3α+ β) (4α+ β)

12βγ
(1 + v)2 ρ2bδ}δij , (79)
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where i = 1, 2, 3.

The equation

G0
i = R0

i

= T 0
i − 4αR0

iR− β
(

2Rρ0Rρi + 2RρσR0
ρiσ

)

+γ
(

4eI
0∂ν

(

eIλT iλ
ν
)

− 4eKτT i
0ν∂νeK

τ − 4T λ0
τT λi

τ
)

, (80)

yields

2a−2 [Hφ+ ψ′],i − a−1 (8γ − 1− 4α (1 + r + v) ρb)ψ
′
,i − 2a−1

(

1 +
4

3
r + v

)

ρbV,i

−4βa−1{ (8γ − 1) (4γ + 1)

16βγ
− 12α+ 5β − 8γ (3α+ 2β)

24βγ
(1 + v) ρb

− (3α+ β) (4α+ β)

12γβ
(1 + v)2 ρ2b}Hφ,i + 8βa−1Hf2ψ,i + 8a−1Hfξ,i

= 0. (81)

In commoving orthogonal coordinates, the three-velocity of baryonic matter vanishes, V i
b = 0 [20]. For the potential

V of the three-velocity field of the dark matter, the perturbed conservation law

δ (∇µT
µ
ν +∇µTg

µ
ν) = 0, (82)

leads to the equation

·
V ,i +

(

4
3

·
r +

·
v

1 + 4
3r + v

+H

)

V,i = 0, (83)

when ν = i.

In the case (15) and (16), using (67) and (69) we obtain the perturbation of the equation (3)

2fξ =

(

1 + r + v

24γ
+

3 (4α+ β)− 16γ (3α+ β)

48βγ
(1 + v) +

(3α+ β) (4α+ β)

12γβ
(1 + v)

2
ρb

)

ρbδ. (84)

In the Fourier space k, from (77) and (79) we obtain the equations of φ and ψ,

2a−2
(

3H (Hφ+ ψ′) + k2ψ
)

+

(

3 (1− 8γ)

16βγ
+

12α+ 5β − 16γ (3α+ β)

8βγ
(1 + v) ρb + (3α+ β)

4α+ β

4γβ
(1 + v)

2
ρ2b

)

ψ

= −1 + r + v

3γ
ρbδ −

12α+ 5β − 72αγ − 20βγ

8βγ
(1 + v) ρbδ −

(3α+ β) (4α+ β)

2βγ
(1 + v)2 ρ2bδ, (85)

and

−2a−2{
[

(

2H′ +H2
)

φ+Hφ′ + ψ′′ + 2Hψ′ − 1

2
k2 (φ− ψ)

]

δij −
1

2
∂i∂j (φ− ψ)}+ 2

(

f2ψ + fξ
)

δij

= {1
3
rρbδ −

(8γ + 1) (1 + r + v)

24γ
ρbδ +

8βγ − 3 (4α+ β)

48βγ
(1 + v) ρbδ −

(3α+ β) (4α+ β)

12βγ
(1 + v)2 ρ2bδ}δij . (86)

When i 6= j, (86) leads to

φ = ψ, (87)
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agreeing with GR but in contrast to f(R) theory [21]. Then we have the equations of ψ:

2a−2
(

3H (Hψ + ψ′) + k2ψ
)

+

(

3 (1− 8γ)

16βγ
+

12α+ 5β − 16γ (3α+ β)

8βγ
(1 + v) ρb + (3α+ β)

4α+ β

4γβ
(1 + v)

2
ρ2b

)

ψ

= −1 + r + v

3γ
ρbδ −

12α+ 5β − 72αγ − 20βγ

8βγ
(1 + v) ρbδ −

(3α+ β) (4α+ β)

2βγ
(1 + v)

2
ρ2bδ, (88)

−2a−2
[(

2H′ +H2
)

ψ + ψ′′ + 3Hψ′]+ 2
(

f2ψ + fξ
)

=
1

3
rρbδ −

(8γ + 1) (1 + r + v)

24γ
ρbδ +

8βγ − 3 (4α+ β)

48βγ
(1 + v) ρbδ

− (3α+ β) (4α+ β)

12βγ
(1 + v)

2
ρ2bδ. (89)

One of the methods to measure the cosmic growth rate is redshift-space distortion that appears in clustering pattern

of galaxies in galaxy redshift surveys. In order to confront the models with galaxy clustering surveys, we are interested

in the modes deep inside the Hubble radius. In this case we can employ the quasistatic approximation on sub-horizon

scales, under which, ∂/∂η ∼ H ≪ k. Then the perturbation equations (88), (89) give

(

2a−2k2 − 3 (1− 8γ)

16βγ
− 12α+ 5β − 16γ (3α+ β)

8βγ
(1 + v) ρb − (3α+ β)

4α+ β

4γβ
(1 + v)2 ρ2b

)

ψ

=

(

1 + r + v

3γ
ρb +

12α+ 5β − 72αγ − 20βγ

8βγ
(1 + v) ρb +

(3α+ β) (4α+ β)

2βγ
(1 + v)

2
ρ2b

)

δ, (90)

and

−2a−2
[(

2H′ +H2
)

ψ + ψ′′ + 3Hψ′
]

+ 2
(

f2ψ + fξ
)

=
1

3
rρbδ −

(8γ + 1) (1 + r + v)

24γ
ρbδ +

8βγ − 3 (4α+ β)

48βγ
(1 + v) ρbδ

− (3α+ β) (4α+ β)

12βγ
(1 + v)

2
ρ2bδ. (91)

The equation (90) gives the expression of gravitational potential ψ. In the case α = −β
2 , if

a−2k2 ≫ ρb, |αρb| ≫ 1, (92)

it reduces to the Poisson equation

k2

a2
ψ = −4πGeffρbδ, (93)

where

Geff =
1

16πγ
(1 + v)

2
αρb (94)

is the effective gravitational coupling constant. In the framework of GR, Geff is equivalent to the gravitational

constant G = 1.
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B. Equation of the structure growth and its solution

Since different theoretical models can achieve the same expansion history of universe, several methods should be

used to discriminate the different models. The study on the growth of matter density perturbations may become the

useful tool due to that theories with the same expansion history can have a different cosmic growth history. The

perturbation quantities can be easily related to the cosmic observations [22].

Using (59), the equations (8) and (9) can be rewritten as

H2 =
1

3
(ρb + ρother) , (95)

·
H = −1

2
(ρb + ρother + pother) , (96)

where

ρother = ρr + ρd + ρg,

pother = pr + pg. (97)

We introduce the perturbations of ρb, ρother, pother and H [23]:

ρb −→ (1 + δ) ρb, ρother −→ ρother + δρother,

pother −→ pother + δpother, H −→ H + δH,

with

δH ≡ 1

3a
∇ · u, u = ∇V. (98)

Following the approach of [23] and [19], using (95), (96) and the perturbed conservation law

δ (∇µT
µ
ν +∇µTg

µ
ν) = 0, (99)

we obtain the equation for the growth of the baryonic matter density perturbation δ:

ρb
··
δ +

·
ρb ρother − ρb

·
ρother +

·
ρb pother − ρb

·
pother

ρb + ρother + pother

·
δ

−
(

··
ρother −3

2
ρbρb − 3 (ρother + pother) ρb −

3

2
(ρother + pother)

2

)

δ

+
2

·
ρb +2

·
ρother

ρb + ρother + pother

·
pother δ +

2
·
ρb +2

·
ρother

ρb + ρother + pother

·
ρother δ

−

( ·
ρb +

·
ρother

)2

+
( ·
ρb +

·
ρother

) ·
pother

(ρb + ρother + pother)
2 (ρother + pother) δ

+
··
δρother −2

·
ρb +2

·
ρother +

·
pother

ρb + ρother + pother

·
δρother −

·
ρb +

·
ρother

ρb + ρother + pother

·
δpother

−






3 (ρb + ρother + pother)−

( ·
ρb +

·
ρother

)2

(ρb + ρother + pother)
2 −

( ·
ρb +

·
ρother

) ·
pother

(ρb + ρother + pother)
2






(δρother + δpother)

= 0. (100)
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Up to now, the complete set of equations that describes the general linear perturbations has been obtained. It

provides enough information about the behaviors of the perturbation and can be compared with the results of the

ΛCDM model.

(71), (74) and (75) yield

·
ρb = −3Hρb,

·
ρr= −4Hρr,

·
ρd= −nHρd,

·
pr = −4

3
Hρr,

·
r = −rH, ·

v= (3− n) vH, (101)

and then (97), (22) and (23) give

ρother =
3 (8γ − 1)

2

32βγ
+

(

r + v − (8γ − 1) (1 + r + v)

8γ
− 3 (8γ − 1) (4α+ β)

16βγ
(1 + v)

)

ρb

+
(3α+ β) (4α+ β)

8βγ
(1 + v)

2
ρ2b , (102)

pother =
64γ2 − 1

32βγ
+

(

1

3
r − (8γ + 1) (1 + r + v)

24γ
+

8βγ − 3 (4α+ β)

48βγ
(1 + v)

)

ρb

− (3α+ β) (4α+ β)

24βγ
(1 + v)2 ρ2b , (103)

Using (102) and (103), by straightforward and tedious calculations, the equation (100) can be written as

(1 + r + v +A+Dρb) ρb
··
δ +M (r, v, ρb)H

·
δ +N (r, v, ρb)H

2δ +Q (r, v, ρb) δ = 0, (104)

where A, D, M (r, v, ρb), N (r, v, ρb), and Q (r, v, ρb) are given in Appendix.

Supposing

n = 3, (105)

in the case (31) and (92), i.e. when ρd ∝ a−3, β = −2α, and |αρb| ≫ 1, the equation (104) becomes

··
δ −22H

·
δ +3H2δ = 0. (106)

Introduce the logarithmic time variable

N = ln a. (107)

(106) takes the form

d2δ

dN2
− 23

dδ

dN
+ 3δ = 0,

and gives the solution

δ = δ0+a
1
2 (23+

√
517) + δ0−a

1
2 (23−

√
517)

≈ δ0+a
22. 869 + δ0−a

0. 13118, (108)

which can be compared with the result in GR[24].
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VI. CONCLUSIONS

A cosmology of Poincare gauge theory has been developed. We focus on the case including a pseudoscalar scalar

torsion function f as suggested by Baekler, Hehl and Nester [25]. The cosmic equations has been derived. The analytic

solutions has been obtained. Although we do not introduce a cosmological constant in the action it automatically

emerges in the derivation of the cosmological equations and then is endowed with intrinsic character. It is nothing

but the intrinsic torsion and curvature of the vacuum universe. The dark energy is identified with the geometry of

the spacetime. Now we are returning to the original idea of Einstein and Wheeler: gravity is a geometry [26]. The

cosmological constant puzzle and the coincidence and fine tuning problem are solved naturally. The point is that the

dark energy is the functions of the density and pressure of the cosmic fluid and includes the cosmological constant

but can not be identified with it. The analytic expressions of the state equation and the density parameters of the

matter and the geometric dark energy are derived and used to determine the values of α , β and γ. Then a theoretical

value of the cosmological constant is computed and compared with the observed datum. An analytic integral of

the cosmological equation is obtained and used to evaluate the age of the universe which can be compared with

observed data. The full equations of linear cosmological perturbations and the solutions are obtained. In addition,

the behavior of perturbations for the sub-horizon modes relevant to large-scale structures is discussed. This model

can be distinguished from others by considering the evolution of matter perturbations and gravitational potentials.

Acknowledgments The research work is supported by the National Natural Science Foundation of China

(11205078).

Appendix A: The growth of structures in linear perturbation theory

In the following, we give the derivation of the equation (104):

Letting

A = − (8γ − 1) (1 + r + v)

8γ
− 3 (8γ − 1) (4α+ β)

16βγ
(1 + v) ,

B = − (8γ + 1) (1 + r + v)

24γ
+

8βγ − 3 (4α+ β)

48βγ
(1 + v) ,

D =
(3α+ β) (4α+ β)

4βγ
(1 + v)

2
. (A1)

E = − (8γ − 1) ((3− n) v − r)

8γ
− 3 (8γ − 1) (4α+ β)

16βγ
(3− n) v,

F = − (8γ + 1) ((3− n) v − r)

24γ
+

8βγ − 3 (4α+ β)

48βγ
(3− n) v,

K =
(3α+ β) (4α+ β)

2βγ
(1 + v) (3− n) v,

L =
(8γ − 1)

(

(3− n)
2
v + r

)

8γ
+

3 (8γ − 1) (4α+ β)

16βγ
(3− n)

2
v, (A2)
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(89), (90) and (91) give

ρother =
3 (1− 8γ)2

32βγ
+ (r + v +A) ρb +

D

2
ρ2b ,

pother =
64γ2 − 1

32βγ
+

(

1

3
r +B

)

ρb −
D

6
ρ2b . (A3)

Then we compute

·
ρother = − (vn+ 4r)Hρb + EHρb +

K

2
Hρ2b ,

·
pother = −4

3
rHρb + FHρb −

K

6
Hρ2b , (A4)

··
ρother =

(

n2v + 16r − L− 3E
)

H2ρb

−1

2
(n+ 3)KH2ρ2b +

K

2

(3− n) v

(1 + v)
H2ρ2b

+(E − (vn+ 4r))
·
H ρb +

K

2

·
H ρ2b , (A5)

δρother = (r + v +A) ρbδ +Dρ2bδ,

δpother =

(

1

3
r +B

)

ρbδ −
D

3
ρ2bδ, (A6)

·
δρother = − (vn+ 4r)Hρbδ + (r + v) ρb

·
δ +Aρb

·
δ +Dρ

2
b

·
δ − (3A− E)Hρbδ − (2D −K)Hρ2bδ,

·
δpother = −4

3
rHρbδ +

1

3
rρb

·
δ +Bρb

·
δ −

D

3
ρ2b

·
δ − (3B − F )Hρbδ +

(

2D − K

3

)

Hρ2bδ, (A7)

and

··
δρother = (r + v + (A+Dρb)) ρb

··
δ

−2 [(nv + 4r)− 2 (E − 3A+ (K − 6D) ρb)]Hρb
·
δ

+

[

n2v + 16r + 9A− 6E − L+

(

36D − 12K +
1 + 2v

1 + v
K (3− n)

)

ρb

]

H2ρbδ

+(E − 3A− (vn+ 4r) + (K − 6D) ρb)
·
H ρbδ. (A8)

Substituting these into (100) yields (104):

(1 + r + v +A+Dρb) ρb
··
δ +M (r, v, ρb)H

·
δ +N (r, v, ρb)H

2δ +Q (r, v, ρb) δ = 0, (A9)

where

M (r, v, ρb) = − (3 + 4r + 2vn− 3v + 9A− 3B − 4E)ρb + (4K − 22D)ρ2b

+

(

− (1 + r + v +A) ρb +Dρ2b
) (

−vn− 16
3 r + E + F − 3

)

(8γ−1)(16γ−1)
16βγ +

(

1 + 4
3r + v +A+B

)

ρb +
1
3Dρ

2
b

ρb

+
− 1

3 (1 + r + v +A) ρb +
1
3Dρ

2
b

(8γ−1)(16γ−1)
16βγ +

(

1 + 4
3r + v +A+B

)

ρb +
1
3Dρ

2
b

Kρ2b , (A10)
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N (r, v, ρb) = −

·
3(8γ−1)(16γ−1)

16βγ +3Aρb +
(

D − K
2

)

ρ2b
(8γ−1)(16γ−1)

16βγ +
(

1 + 4
3r + v +A+B

)

ρb +
1
3Dρ

2
b

(

3 +
16

3
r + vn− E − F

)

ρb

+

(

−9B + 36Dρb − 3E +
1

2
(n− 19)K

)

ρb +
2 + 3v

2 (1 + v)
(3− n)Kρ2b

+

·
(8γ−1)(16γ−1)

16βγ +Aρb +
1
3

(

D − K
2

)

ρ2b
(8γ−1)(16γ−1)

16βγ +
(

1 + 4
3r + v +A+B

)

ρb +
1
3Dρ

2
b

Kρ2b, (A11)

and

Q (r, v, ρb) = +
3

2

(

(8γ − 1) (16γ − 1)

16βγ

)2

− 3

2

(8γ − 1) (16γ − 1)

16βγ
ρb

−
(

(8γ − 1) (16γ − 1)

16βγ
D +

3

2

(

1 +
4

3
r + v +A+B

)2

+
3

2

(

1 +
4

3
r + v +A+B

)

)

ρ2b

−
(

2

(

1 +
4

3
r + v +A+B

)

+
1

2

)

Dρ3b −
1

2
D2ρ4b

−3A
·
H ρbδ +

(

K

2
− 6D

)

·
H ρ2b . (A12)
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