Kinetization of scalar field by torsion

Nikodem J. Popławski
Department of Mathematics and Physics, University of New Haven, 300 Boston Post Road, West Haven, Connecticut 06516, USA*

Abstract

We show that a scalar field without a kinetic term in the Lagrangian density, coupled to a covariant divergence of the torsion vector in the Einstein-Cartan theory of gravity, becomes kinetic in its general-relativistic equivalent formulation. Dynamical scalar fields may therefore be emergent.

The Einstein-Cartan theory of gravity [1, 2] naturally extends general relativity by including the spin angular momentum of matter. The spin-spin interaction arising in this theory [3, 4] may also remove divergent integrals in quantum field theory by providing fermions with spatial extension [5] and avoid the formation of singularities from fermionic matter in black holes and in cosmology [6]. In this theory, the Lagrangian density for the gravitational field is proportional to the Ricci scalar $R=R_{i}^{i}$ [1]:

$$
\begin{equation*}
\mathfrak{L}=-\frac{1}{2 \kappa} R \sqrt{-g}+\mathfrak{L}_{\mathrm{m}} \tag{1}
\end{equation*}
$$

where \mathfrak{L} is the total Lagrangian density, $R_{i k}=R^{j}{ }_{i j k}$ is the Ricci tensor, $R^{i}{ }_{m j k}=\Gamma_{m k, j}^{i}-\Gamma_{m j, k}^{i}+\Gamma_{l}{ }_{j} \Gamma_{m k}^{l}-\Gamma_{l k}^{i} \Gamma_{m j}^{l}$ is the curvature tensor, $\Gamma_{j k}^{i}$ is the affine connection, the comma denotes a partial derivative with respect to the coordinates, g is the determinant of the metric tensor $g_{i k}, \mathfrak{L}_{\mathrm{m}}$ is the Lagrangian density for matter, and $\kappa=8 \pi G / c^{4}$ is Einstein's gravitational constant. The metricity condition $g_{i j ; k}=0$, where the semicolon denotes a covariant derivative with respect to the affine connection, gives the affine connection $\Gamma_{i j}^{k}=\left\{{ }_{i j}{ }_{j}\right\}+C^{k}{ }_{i j}$, where $\left\{{ }_{i}{ }_{j}{ }_{j}\right\}=(1 / 2) g^{k m}\left(g_{m i, j}+\right.$ $\left.g_{m j, i}-g_{i j, m}\right)$ are the Christoffel symbols,

$$
\begin{equation*}
C_{j k}^{i}=S_{j k}^{i}+2 S_{(j k)}^{i} \tag{2}
\end{equation*}
$$

is the contortion tensor, $S^{i}{ }_{j k}=\Gamma_{[j k]}^{i}$ is the torsion tensor, () denotes symmetrization, and [] denotes antisymmetrization. The indices can be lowered with the metric tensor and raised with the contravariant metric tensor $g^{i k}$, as in general relativity [7]. The curvature tensor can be decomposed as $R_{k l m}^{i}=P_{k l m}^{i}+C_{k m: l}^{i}-C_{k l: m}^{i}+C_{k m}^{j} C_{j l}^{i}-C_{k l}^{j} C_{j m}^{i}$, where $P_{k l m}^{i}$ is the Riemann tensor (the curvature tensor constructed from the Christoffel symbols instead of the affine connection) and the colon denotes a covariant derivative with respect to the Christoffel symbols. We use the notation of [4]. The Ricci scalar can be decomposed as

$$
\begin{equation*}
R=P-4 S_{: i}^{i}-4 S^{i} S_{i}-C^{i j k} C_{k i j} \tag{3}
\end{equation*}
$$

where $P=P^{j}{ }_{i j k} g^{i k}$ is the Riemann scalar and

$$
\begin{equation*}
S_{i}=S_{i k}^{k} \tag{4}
\end{equation*}
$$

is the torsion vector.
We consider the following Lagrangian density for matter:

$$
\begin{equation*}
\mathfrak{L}_{\mathrm{m}}=\alpha S^{i} \phi_{, i} \sqrt{-g} \tag{5}
\end{equation*}
$$

where ϕ is a scalar field and α is a constant. Varying the Lagrangian density with respect to the torsion tensor and equaling this variation to zero gives the Cartan field equations:

$$
\begin{equation*}
S_{i k}^{j}-S_{i} \delta_{k}^{j}+S_{k} \delta_{i}^{j}=-\frac{\kappa}{2} s_{i k}^{j} \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
s_{i}{ }^{j k}=\frac{2}{\sqrt{-g}} \frac{\delta \mathfrak{L}_{\mathrm{m}}}{\delta C^{i}{ }_{j k}} \tag{7}
\end{equation*}
$$

[^0]is the spin tensor of matter. The inverse relation is
\[

$$
\begin{equation*}
S_{j k}^{i}=-\frac{\kappa}{2}\left(s_{j k}{ }^{i}+\delta_{[j}^{i} s_{k] l}^{l}\right) \tag{8}
\end{equation*}
$$

\]

and its contraction gives the torsion vector:

$$
\begin{equation*}
S_{i}=\frac{1}{4} \kappa s_{i k}^{k} \tag{9}
\end{equation*}
$$

For the Lagrangian density (5), the spin tensor is

$$
\begin{equation*}
s_{i j}^{k}=\frac{\alpha}{2}\left(\delta_{i}^{k} \phi_{, j}-\delta_{j}^{k} \phi_{, i}\right) . \tag{10}
\end{equation*}
$$

Its contraction is thus

$$
\begin{equation*}
s_{i k}^{k}=-\frac{3 \alpha}{2} \phi_{, i} . \tag{11}
\end{equation*}
$$

Substituting the spin tensor and its contraction to the field equations (8) gives the torsion tensor:

$$
\begin{equation*}
S_{j k}^{i}=\frac{\alpha \kappa}{8}\left(\delta_{j}^{i} \phi_{, k}-\delta_{k}^{i} \phi_{, j}\right), \tag{12}
\end{equation*}
$$

and the torsion vector:

$$
\begin{equation*}
S_{i}=-\frac{3 \alpha \kappa}{8} \phi_{, i} \tag{13}
\end{equation*}
$$

The contortion tensor (2) is thus

$$
\begin{equation*}
C_{i j k}=\frac{\alpha \kappa}{4}\left(\phi_{, i} g_{j k}-\phi_{, j} g_{i k}\right) \tag{14}
\end{equation*}
$$

Substituting the torsion vector and contortion tensor to (11), using (3) and (5), and omitting a covariant divergence which does not contribute to the field equations, gives

$$
\begin{equation*}
\mathfrak{L}=-\frac{1}{2 \kappa} P \sqrt{-g}-\frac{3 \alpha^{2} \kappa}{32} \phi_{, i} \phi_{, k} g^{i k} \sqrt{-g} . \tag{15}
\end{equation*}
$$

The second term on the right-hand side of this equation is the Lagrangian density for matter in the general-relativistic equivalent formulation of the Einstein-Cartan theory. To obtain the Einstein field equations, the Lagrangian density (15) must be varied with respect to the metric tensor and such a variation must be equaled to zero.

The second term on the right-hand side of (15) has a form of a negative kinetic term for the scalar field ϕ. Such a phantom scalar field could be a source of dark energy [8]. Furthermore, the term $\alpha S^{i} \phi_{, i} \sqrt{-g}$ in the Lagrangian density (5) is dynamically equivalent (differs by a covariant divergence) to a term in which the field ϕ is coupled to the covariant divergence of the torsion vector and has a nonkinetic form:

$$
\begin{equation*}
\alpha S_{: i}^{i} \phi \sqrt{-g}=\alpha\left(S_{; i}^{i}-2 S^{i} S_{i}\right) \phi \sqrt{-g} . \tag{16}
\end{equation*}
$$

Therefore, a kinetic scalar field can be generated from a nonkinetic scalar field by torsion. This result suggests that dynamical scalar fields may be emergent.

Acknowledgements

I am grateful to Dan Delgado for inspiring this work.
[1] T. W. B. Kibble, J. Math. Phys. 2, 212 (1961); D. W. Sciama, in Recent Developments in General Relativity, p. 415 (Pergamon, 1962); Rev. Mod. Phys. 36, 463 (1964); Rev. Mod. Phys. 36, 1103 (1964).
[2] E. A. Lord, Tensors, Relativity and Cosmology (McGraw-Hill, 1976); F. W. Hehl, P. von der Heyde, G. D. Kerlick, and J. M. Nester, Rev. Mod. Phys. 48, 393 (1976).
[3] F. W. Hehl and B. K. Datta, J. Math. Phys. 12, 1334 (1971).
[4] N. J. Popławski, arXiv:0911.0334 arXiv:1304.0047
[5] N. J. Popławski, Phys. Lett. B 690, 73 (2010); Phys. Lett. B 727, 575 (2013).
[6] N. J. Popławski, Phys. Lett. B 694, 181 (2010); Phys. Lett. B 701, 672 (2011); Phys. Rev. D 83, 084033 (2011); Phys. Rev. D 85, 107502 (2012); arXiv:1410.3881.
[7] E. Schrödinger, Space-time Structure (Cambridge Univ. Press, 1954); L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Pergamon, 1975).
[8] S. M. Carroll, M. Hoffman, and M. Trodden, Phys. Rev. D 68, 023509 (2003); J. Kujat, R. J. Scherrer, and A. A. Sen, Phys. Rev. D 74, 083501 (2006).

[^0]: *Electronic address: NPoplawski@newhaven.edu

