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Abstract

It has been shown by various authors that gravo magnetic field can produce lensing
effect. The effect of such a gravitational body with magnetic monopole on the trajectory
of light ray is discussed in this paper. The light deflection angle has been calculated in
the present works, considering upto fourth order terms. Schwarzschild light deflection
angle can be obtained from this expression, by setting magnetism equals to zero. How-
ever, for a hypothetical massless, magnetic monopole the light deflection angle does not
reduce to zero.

1 INTRODUCTION

One of the most important predictions of general relativity is deflection of light ray in
presence of gravitational mass. Three factors that effect the trajectory of light ray are
gravitational mass, rotation and charge. The first order contribution of mass on the path
of light ray was calculated by Einstein himself. After Einstein, higher order contribution of
mass towards light deflection angle was calculated by Keeton and Petters [1]. Recently, Iyer
and Petters [2] calculated it for strong field and found that under weak field approximation
their expression matches with that of Keeton and Petters [1].
The light deflection angle for a rotating mass (Kerr mass) was calculated by Iyer and Hansen
[3, 4]. Later, Bozza [5] obtained the lensing formula and calculated all other components
related to lensing. Azzami et. al [6, 7] calculated two individual components (parallel
and perpendicular to equatorial plane) of light deflection angle in quasi-equatorial regime.
Dubey and Sen have used Kerr [8] and Kerr-Newman [9] geometry, to show how gravita-
tional redshifts are affected as photon is emitted from various latitudes. Chakraborty and
Sen [10] have recently obtained the light deflection angle for a charged, rotating body in
the equatorial plane and showed how deflection angle changes with charge. Chakraborty
and Sen [11] obtained the off equatorial light deflection angle for Kerr geometry. Hasse and
Pelrick [12] worked on the lensing by Kerr-Newman mass (charged, rotating) using Morse
theory and showed that infinite number of images formed by such body. Eiroa et al [13]
worked on Reissner-Nordström (charged, static) mass and calculated light deflection angle
in both strong and weak deflection limit.
On the other hand some authors have used material medium approach where the gravita-
tional effect on light ray was calculated by assuming some effective refractive index assigned
to the medium through which light is propagating. With similar approach Atkinson [14]
studied the trajectory of light ray near a very massive, static and spherically symmetric
star. Fischback and Freeman [15] calculated the second order contribution to gravitational
deflection by a static mass using the same method. Sen [16] used this method to calculate
the gravitational deflection of light without any weak field approximation. Similar method
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was used in earlier past by Balaz [17] to calculate the change in the direction of polarization
vector of electromagnetic wave passing close to a rotating body. Recently Roy and Sen
[18] calculated the trajectory of a light ray in Kerr field using the same material medium
approach.
All the above mentioned works were done by considering three factors (mass, electric charge
and rotation), but various authors showed that not only these three factors but also mag-
netism can influence space-time curvature i.e. path of light ray. In the year of 1963, New-
man, Tamburino and Unti [19] first introduced the concept of ”generalized Schwarzschild
metric”. This metric contains one arbitrary parameter in addition to the mass generally
known as NUT factor or gravomagnetic mass. In the same year Misner [20] studied the
”generalized Schwarzschild metric” and called it as NUT (named after Newman, Tamburino
and Unti) space-time. According to him this line element has a Schwarzschild-like singular-
ity, but this singularity is not observed in the curvature tensor i.e there exists no curvature
singularity. The presence of cross term ”dtdϕ” shows, that this space has a strength of
gravomagnetic monopole [21]. Lensing effect of this type of body was studied by Nouri-
Zonoz and Lynden-Bell [22]. They showed that the presence of NUT factor change the
observed shape, size and orientation of a source, but they did not show the effect of such
body on light deflection angle.
On the other hand Kerr-Taub-NUT (KTN) line element represents the solution of Einstein’s
field equation for a rotating body with non zero magnetic mass [23]. Wei et al. [24] studied
numerically the quasi-equatorial lensing by the stationary, axially-symmetric black hole in
KTN space-time in the strong field limit. Abdujabbarov et al. [25] studied the electro-
magnetic fields in the KTN space time and in the surrounding spacetime of slowly rotating
magnetized NUT star and obtained analytical solutions of Maxwell equations. Chakraborty
and Majumdar [26] derived the exact LenseThirring precession frequencies for Kerr, KTN
and Taub-NUT space-times.
In this present work, we studied the NUT line element and obtained the light deflection
angle for such space-time geometry which is a function of mass and the NUT factor. We
also studied the variation of the light deflection angle as a function of NUT factor. For zero
NUT factor our result reduces to well known Schwarzschild light deflection angle.

2 NUT LINE ELEMENT AND GEODESIC EQUATIONS

The NUT line element given by Misner as follows [20],

ds2 = f(r)(cdt− 2l cos ϑdϕ)2 − f(r)−1dr2 − (r2 + l2)(dϑ2 + sin2 ϑdϕ2) (1)

where f(r) = 1 − 2(mr+l2)
l2+r2

and 2l is the strength of the gravomagnetic monopole with the

dimension of length, generally known as NUT factor or gravomagnetic mass and m = GM
c2

,
further G, M, c are the gravitational constant, mass of the gravitating body and free space
speed of light respectively.
For a static body, every plane passing through the center can be considered as equatorial
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plane. So we can consider ϑ = π
2 and with this assumption the new modified line element

is,
ds2 = f(r)c2dt2 − f(r)−1dr2 − (r2 + l2)dϕ2 (2)

Lagrangian(S) of such a system is given by [24, page: 96],

2S = gµν
dxµ

dτ

dxν

dτ
(3)

Here τ represents the affine parameter. Thus,

2S = f(r)c2ṫ2 − f(r)−1ṙ2 − (r2 + l2)ϕ̇2 (4)

where dot (.) indicates differentiation with respect to τ . Let E and L be the angular
momentum and energy of the light ray. Then following [1], we can write from equation (4)

∂S

∂(cṫ)
= E

and

−∂S

∂ϕ̇
= L

The above implies,

cṫ =
E

f(r)
(5)

ϕ̇ =
L

r2 + l2
(6)

For null geodesic, ds2 = 0, but, ds2 = gµνdx
µdxν . So, gµνdx

mudxν = 0
or,

gµν
dxµ

dτ

dxν

dτ
= 0

But from equation (4),

gµν
dxµ

dτ

dxν

dτ
= 2S

So,
2S = 0 (7)

Therefore, the Lagrangian for null geodesic is zero. Thus using equation (4) we can write,

f(r)c2ṫ2 − f(r)−1ṙ2 − (r2 + l2)ϕ̇2 = 0 (8)

Using equation (5) and (6) in equation (8), we can write:

E2

f(r)
− ṙ2

f(r)
− L2

r2 + l2
= 0
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or,

ṙ2 = E2 − L2f(r)

r2 + l2

or,

ṙ2 = E2 − L2(r2 − 2mr − l2)

(r2 + l2)2

It can be shown that the impact parameter b = L
E

[27, page: 123]. So the above equation
can be written as,

ṙ2 =
L2

(r2 + l2)2
[
r4

b2
+

l2

b2
(l2 + 2r2)− (r2 − 2mr − l2)]

or,

ṙ =
L

r2 + l2

√

r4

b2
+

l2

b2
(l2 + 2r2)− (r2 − 2mr − l2) (9)

r obtains a local extremum for the closest approach r0. Therefore, we can write:

ṙ|r=r0 = 0

Thus,from equation (9), we can have

r40
b2

+
l2

b2
(l2 + 2r20)− (r20 − 2mr − l2) = 0

or,
r20
b2

= − l2

b2
(2 +

l2

r20
) + (1− 2m

r0
− l2

r20
) (10)

Equations (5), (6) and (9) represent the geodesic equations of light ray.

3 LIGHT DEFLECTION ANGLE

The light deflection angle can be in general expressed as [28, page: 188]

α = 2

∫

∞

r0

(
dϕ

dr
).dr − π (11)

Now using equation (6) and (9), we write:

dϕ

dr
=

ϕ̇

ṙ
=

1
√

r4

b2
+ l2

b2
(l2 + 2r2)− (r2 − 2mr − l2)

or,
ϕ̇

ṙ
=

1
√

r4

b2
+ l2r2

b2
(2 + l2

r2
)− r2(1− 2m

r
− l2

r2
)

(12)
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Substituting equation (12) in (11) we have,

α = 2

∫

∞

r0

dr
√

r4

b2
+ l2r2

b2
(2 + l2

r2
)− r2(1− 2m

r
− l2

r2
)
− π (13)

Let us introduce a new variable x = r0
r
. So,

dx = −r0dr

r2

or,
dx

r0
= −dr

r2

the limits will change as’, when r −→ ∞, then x −→ 0 and when r −→ r0, then x −→ 1.
Using these limits in above equation we have,

α = 2

∫ 1

0

dx

r0

√

1
b2

+ l2x2

b2r20
(2 + l2x2

r20
)− x2

r20
(1− 2mx

r0
− x2l2

r20
)
− π

Let us substitute h = m
r0
, n2 = l2

r20
and n̂2 = l2

b2
. So the above equation can be written as:

α = 2

∫ 1

0

dx
√

r20
b2

+ n̂2x2(2 + n2x2)− x2(1− 2hx− n2x2)
− π (14)

Now after substituting the expression of
r20
b2

= − l2

b2
(2+ l2

r20
)+ (1− 2m

r0
− l2

r20
) = −n̂2(2+n2)+

(1− 2h− n2) from equation (10) in equation (14), we get:

α = 2

∫ 1

0

dx
√

−n̂2(2 + n2) + (1− 2h− n2) + n̂2x2(2 + n2x2)− x2(1− 2hx− n2x2)
−π (15)

re-arranging equation (15) we have,

α = 2

∫ 1

0

dx
√

(1− x2)− 2h(1− x3)− n2(1− x4)− 2n̂2(1− x2)− n2n̂2(1− x4)
− π

or,

α = 2

∫ 1

0

dx
√
1− x2

√

1− 2h (1−x2)
(1−x3) − n2(1 + n̂2)(1 + x2)− 2n̂2

− π

or,

α = 2

∫ 1

0

dx
√
1− x2

√

1− 2h (1−x3)
(1−x2)

√

1− n2 (1+n̂2)(1+x2)

1−2h
(1−x2)

(1−x3)

√

√

√

√

1− 2n̂2

[1−2h
(1−x3)

(1−x2)
][1−

n2(1+n̂2)(1+x2)

1−2h
(1−x3)

(1−x2)

]

− π
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or,

α = 2

∫ 1

0

dx√
1− x2

[1− 2h
(1 − x3)

(1 − x2)
]−

1
2 [1− n2(1 + n̂2)(1 + x2){1 − 2h

(1− x3)

(1− x2)
}−1]−

1
2

[1− 2n̂2{1− 2h
(1− x3)

(1− x2)
}−1{1− n2(1 + n̂2)(1 + x2)(1 − 2h

1− x3

1− x2
)−1}−1]−

1
2 − π

For weak deflection limit l,m ≪ ro, b, in other words we can write, h, n, n̂ ≪ 1. So
the above equation can be expanded in Taylor series in terms of both h, n and n̂. In the
following we retain terms upto fourth order only. We further write:

α = 2

∫ 1

0

dx√
1− x2

[1 + h
1− x3

1− x2
+

3

2
(h

1− x3

1− x2
)2

+
5

2
(h

1− x3

1− x2
)3 +

35

8
(h

1 − x3

1 − x2
)4][1 +

n2

2
(1 + x2) + n2h(1 + x2)

1− x3

1− x2

+2n2h2(1 + x2)
(1 − x3)2

(1 − x2)2
+ n2n̂2(1 + x2) +

3

8
n4(1 + x2)2][1 + n̂2 + 2hn̂2 (1− x3)

(1− x2)

4n̂2h2
(1− x3)2

(1− x2)2
+ n̂2n2(1 + x2) +

3

2
n̂4]− π

Multiplying term by term taking up to fourth order of h, n and n̂ we get,

α = 2

∫ 1

0

dx√
1− x2

[1 + h
1− x3

1− x2
+

3

2
h2

(1− x3)2

(1− x2)2
+

5

2
h3

(1− x3)3

(1− x2)3

+
35

8
h4

(1− x3)4

(1− x2)4
+

n2

2
(1 + x2) +

3

2
n2h(1 + x2)

1− x3

1− x2
+

15

4
n2h2(1 + x2)

(1− x3)2

(1− x2)2

+2n2n̂2(1 + x2) +
3

8
n4(1 + x2)2 + n̂2 + 3n̂2h

(1− x3)

(1− x2)

+
15

2
n̂2h2

(1− x3)2

(1− x2)2
+

3

2
n̂4]− π (16)

Again integrating the above equation term by term we have,

α = 4h+(−4+
15π

4
)h2+(

122

5
−15π

4
)h3+(−130+

3465π

64
)h4+

3π

4
n2+(14−3π

2
)hn2+(−50+

825π

32
)h2n2

57

64
n4π + 3πn̂2n2 + πn̂2 + 12πn̂2h+ (−20 +

75π

4
)h2n̂2 +

3π

2
n̂4 (17)

This is the expression of light deflection angle due to a NUT body. If the NUT factor is set
to zero in equation (17), we find the above equation reduces to,

α = 4h+ (−4 +
15π

4
)h2 + (

122

3
− 15π

2
)h3 + (−130 +

3465π

64
)h4 (18)

This is the well known expression of light deflection angle due to Schwarzschild mass. If we
set mass is equal to zero in equation (17), the bending angle expression becomes:

α =
3π

4
n2 +

57

64
n4π + 3πn̂2n2 + πn̂2 +

3π

2
n̂4 (19)
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4 DISCUSSION OF RESULTS

The main focus of the paper is to understand how a gravomagnetic monopole influences the
geometry of space time curvature. To explain our results more clearly, we plotted bending
angle (α) against impact parameter (b) in Fig.1 for three different values of NUT factor
(n = l

r0
= 0, 0.05, 0.08), where n = 0 represents the Schwarzschild body. From the pattern

of the graph in Fig.1, it is clear that light deflection angle increases with the increase of NUT
factor. When NUT factor is zero, i.e. for Schwarzschild body, light ray gets the minimum
deflection.
As already mentioned, the NUT line element represents the exterior of a static body with
non zero magnetism. On the other hand Reissner-Nordström line element represents the
exterior of a static charged body. Both the bodies are static but have two different types of
field. Here, we would like to compare the effect of these two fields on the geometry of space
time. To fulfill this objective, we plotted light deflection angle as a function of both NUT
factor (calculated in this paper) and static charge (calculated by Eiroa et al [9]) in Fig.2
where both NUT factor and static charge have been taken in the same scale. In Fig.2 we
can see that NUT factor and static charge influence the space time geometry in opposite
direction. The presence of NUT factor increases the light deflection angle compared to zero
field Schwarzschild case. On the other hand, the presence of static charge decreases the
light deflection angle with respect to Schwarzschild body.

5 CONCLUSIONS

1. Expression for deflection of light due to a static body with non-zero gravomagnetism
has been calculated considering contributions from mass and NUT factor, considering their
effects up to fourth order terms.
2. NUT factor has a noticeable effect on the path of the light ray. When compared with
Schwarzschild expression for bending, we find that there are some extra terms in the ex-
pression for deflection, which occur due to the presence of NUT factor. If we set the NUT
factor equal to zero,deflection angle will reduce to that of Schwarzschild deflection angle.
3. Presence of NUT factor increases the deflection angle, on other hand presence of static
charge decreases the deflection angle. Thus these two parameters have opposite effect on
the space-time geometry.
4. If we set mass is equal to zero, our bending angle does not reduce to zero, i.e. the
gravomagnetism itself can influence the path of the light ray.

References

[1] Keeton, C. R. and Petters, A. O. Phys. Rev. D 72, (2005) 104006.

[2] Iyer, S. V. and Petters, A. O. Gen. Relativ. Gravit. 39, (2007) 1563-1582.

[3] Iyer, S. V and Hansen, E. C. Phys. Rev. D 80, (2009) 124023.

7



[4] Iyer, S. V and Hansen, E. C. arXiv:gr-qc/0908.0085, (2009).

[5] Bozza, V. Phys. Rev. D 67, (2003) 103006.

[6] Aazami, A. B., Keeton, C. R. and Petters, A. O. J. Math. Phys. 52 (2011) 092502.

[7] Aazami, A. B., Keeton, C. R. and Petters, A. O. J. Math. Phys. 52 (2011) 102501.

[8] Dubey, A. K. and Sen, A. K. Int. J. Theor. Phys. 54 (2014) 2398-2417.

[9] Dubey, A. K. and Sen, A. K. Astrophys Space Sci. 360 (2015) 29.

[10] Chakraborty, S. and Sen, A. K. Class. Quantum Grav. 32 (2015) 115011.

[11] Chakraborty, S. and Sen, A. K. arXiv:1504.03124 [gr-qc], (2015).

[12] Hasse W and Perlick V J. Math. Phys. 47, (2006) 042503.

[13] Eiroa, E. F., Romero G. E. and Torres, D. F. Phys. Rev. D 66, (2002) 024010.

[14] Atkinson, R. DE. Astron. J. 70, (1965) 8.

[15] Fishback, E. and Freeman, B. S. Phys. Rev. D 22, (1982) 12.

[16] Sen, A. K. Astrofizika 53, (2010) 4.

[17] Balazs, N. L. Phys. Rev. 110, (1958) 1.

[18] Roy, S. and Sen, A. K. Astrophys Space Sci. 360 (2015) 23.

[19] E. Newman, E. Tamburino, L. and Unti, T. J. Math. Phys. 4, (1963) 915.

[20] Misner, C. W. J. Math. Phys. 4, (1963) 924.

[21] Lynden-Bell, D. and Nouri-Zonoz, M. Reviews of Modern Physics 70, (1998) 2.

[22] Lynden-Bell, D. and Nouri-Zonoz, M. Mon. Not. R. Astron. Soc. 292, (1997) 714-722.

[23] Demianski, M. and Newman, E. T. Bulletin de lAcademie Polonaise des Sciences, XIV
(1966)653.

[24] Wei, S. W. Liu, Y. Fu, C. E. and Yang, K. JCAP 10 (2012) 53.

[25] Abdujabbarov,A. A., Ahmedov, B. J. and Kagramanova, V. G. Gen. Relativ. Gravit.
40, (2008) 2515-2532.

[26] Chakraborty, C. and Majumdar, P. Class. Quantum Grav. 31, (2014) 075006.

[27] Chandrasekhar, S., The Mathematical Theory of Blackholes (R.J. Elliot, J.A.
Krumhansl, D.H. Wilkinson, Oxford University Press, New York, 1983).

[28] Weinberg, S., Gravitation and Cosmology:Principle and Application of General Theory

of Reletivity (J. Weiley and sons. Inc. New York London Sydney Toronto, 1972).

8



 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 5  10  15  20  25  30  35  40

be
nd

in
g 

an
gl

e(
ar

cs
ec

)

impact parameter(b)/2m

n=0
n=.05
n=.08

F
igu

re
1:

B
en

d
in
g
an

gle
(arcsec)

as
a
fu
n
ction

of
im

p
act

p
aram

eter
b/2m

for
th
ree

valu
es

of
N
U
T

factor
n
=

0,0.05,0.08,
w
h
ere

n
=

0
rep

resen
ts

th
e
S
ch
w
arzsch

ild
b
o
d
y.

9



 1.74065

 1.74065

 1.74065

 1.74065

 1.74065

 1.74065

 1.74065

 1.74065

 1.74065

 0

 5
e-

07

 1
e-

06

 1
.5

e-
06

 2
e-

06

be
nd

in
g 

an
gl

e(
ar

cs
ec

)

variable

bending angle as function of charge (n) in RN geometry
Schwarzschild

bending angle as a function of NUT factor (l) NUT geometry

F
igu

re
2:

B
en

d
in
g
an

gle
(arcsec)

as
a
fu
n
ction

of
N
U
T

factor
(calcu

lated
in

th
e
p
resen

t
w
ork

)
an

d
static

ch
arge

(calcu
lated

b
y
E
iroa

et
al

[9]),
w
h
ere

b
oth

N
U
T

factor
an

d
static

ch
arge

h
ave

taken
in

th
e
sam

e
scale.

10


	1 INTRODUCTION
	2 NUT LINE ELEMENT AND GEODESIC EQUATIONS
	3 LIGHT DEFLECTION ANGLE
	4 DISCUSSION OF RESULTS
	5 CONCLUSIONS

