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Mathisson-Papapetrou-Tulczyjew-Dixon (MPTD) equations in ultra-relativistic
regime and gravimagnetic moment.
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MPTD-equations in the Lagrangian formulation correspond to the minimal interaction of spin
with gravity. Due to the interaction, in the Lagrangian equations instead of the original metric g
emerges spin-dependent effective metric G = g + h(S). So we need to decide, which of them the
MPTD-particle sees as the space-time metric. We show that MPTD-equations, if considered with
respect to original metric, have no physically admissible solutions: acceleration of the particle grows
up to infinity as its speed approximates to the speed of light. If considered with respect to G, the
theory is consistent. But the metric now depends on spin, so there is no unique space-time manifold
for the Universe of spinning particles: each particle probes his own three-dimensional geometry. This
can be improved by adding a non-minimal interaction, and gives the modified MPTD-equations with
reasonable behavior within the original metric.

Equations of motion of a rotating body in a curved
background formulated usually in the multipole approach
to description of the body [1–8]. We consider MPTD-
equations [31] , which describe the motion in pole-dipole
approximation, in the form studied by Dixon (for the
relation of the Dixon equations with those of Papapetrou
and Tulczyjew see p. 335 in [4] as well as the recent works
[7, 8]):

∇Pµ = −1

4
Rµ

ναβS
αβẋν ≡ −1

4
θµν ẋ

ν ,

∇Sµν = 2P [µẋν], SµνPν = 0. (1)

They are widely used now in computations of spin ef-
fects in compact binaries and rotating black holes [9–16],
so our results may be relevant in this framework. In the
multipole approach, xµ(τ) is called representative point
of the body, antisymmetric spin-tensor Sµν(τ) is asso-
ciated with inner angular momentum, vector Pµ(τ) is
called momentum.

In the present work we discuss behavior of MPTD-
particle in ultra-relativistic limit, when speed of the par-
ticle approximates to the speed of light. Since we are in-
terested in the influence of spin on the trajectory of a par-
ticle, we eliminate the momenta from MPTD-equations,
thus obtaining a second-order equation for the represen-
tative point xµ(τ). To achieve this, we compute deriva-
tive of the spin supplementary condition, ∇(SµνPν) = 0,
and take into account that P 2 and SµνSµν turn out to be

constants of motion of the equations (1), say
√
−P 2 = k

and S2 = β. Then the derivative reads

Pµ =
k√

−ẋGẋ
(T̃ ẋ)µ, T̃ µ

ν = δµν − 1

8k2
(Sθ)µν , (2)
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where appeared the matrix G constructed from the
”tetrad field” T̃ as follows:

Gµν = gµν + hµν(S) ≡ gαβ T̃
α
µT̃

β
ν . (3)

Since this is composed from the original metric gµν plus
(spin and field-dependent) contribution hµν , we call G
the effective metric produced along the world-line by in-
teraction of spin with gravity.
Substitution of the expression (2) into (1) yields equa-

tions without Pµ, modulo the constant of motion k. Be-
fore we begin the analysis of the resulting equations, we
point out how they can be obtained from variational
problem for vector model of spin, see [17] for details.
Consider the relativistic spinning particle described by

position xµ(τ) and by vector ωµ(τ) attached to the point
xµ. The spin-tensor in our model is a composite quantity
constructed from ωµ and its conjugated momentum πµ =
∂L
∂ω̇µ

as follows:

Sµν = 2(ωµπν − ωνπµ) = (Si0 = Di, Sij = 2ǫijkSk). (4)

Here Si is three-dimensional spin-vector and Di is dipole
electric moment [18]. The spinning particle in flat space
is described by the Lagrangian action [19]

S = − 1√
2

∫

dτ

√

m2c2 − α

ω2

×
√

−ẋNẋ− ω̇Nω̇ +
√

[ẋNẋ+ ω̇Nω̇]2 − 4(ẋNω̇)2. (5)

The matrix Nµν = ηµν − ωµων

ω2 is the projector on the
plane orthogonal to ων : Nµνω

ν = 0. The double square-
root structure in the expression (5) seem to be typical for
the vector models of spin [20, 21]. In the spinless limit,
α = 0 and ωµ = 0, the expression (5) reduces to the stan-
dard Lagrangian of relativistic particle, −mc

√

−ẋµẋµ.
Let us shortly enumerate some properties of the spinning
particle. The Lagrangian depends on one free parameter

α which determines the value of spin. The value α = 3~2

4

http://arxiv.org/abs/1509.05357v1
mailto:alexei.deriglazov@ufjf.edu.br
mailto:wguzman@cbpf.br


2

corresponds to a spin one-half particle. L is invariant un-
der reparametrizations as well as under local spin-plane
symmetry [22], the latter acts on ω and π but leaves S
invariant. So only S is an observable quantity. Canonical
quantization of the model yields the Dirac equation [23].
At last, the model admits interaction with an arbitrary
electromagnetic [24] and gravitational [25] fields.
The minimal interaction with gravity is achieved by

covariantization of the formulation (5), that is we replace
ηµν → gµν , and usual derivative by the covariant one,

ω̇µ → ∇ωµ = dωµ

dτ
+ Γµ

αβ ẋ
αωβ .

For the general-covariant phase-space quantities ẋµ,
Pµ = ∂L

∂ẋµ − Γβ
αµω

απβ and Sµν , the variational problem
(5) yields the dynamical equations (here G is given by

(3) with T̃ µ
ν = δµν − 1

8m2c2
(Sθ)µν)

Pµ =
mc√
−ẋGẋ

(T̃ ẋ)µ, ∇Pµ = −1

4
θµν ẋ

ν ,

∇Sµν = 2P [µẋν] , (6)

as well as the constraints

SµνPν = 0, P 2 + (mc)2 = 0, S2 = 8α. (7)

For the latter use, we also present the first-order (Hamil-
tonian) action of the theory
∫

dτ pµẋ
µ + πµω̇

µ −
[

λ1

2

(

P 2 + (mc)2 + π2 − α

ω2

)

+λ2(ωπ) + λ3(Pω) + λ4(Pπ)] . (8)

Comparing (6) and (7) with MPTD-equations (1) and
(2), we conclude that all the trajectories of MPTD-
equations with given integration constants k and β are
described by our spinning particle with mass m = k

c
and

spin α = β
8 . By the way, we demonstrated that MPTD-

equations correspond to the minimal interaction of the
spinning particle with gravity.
Lagrangian form of the equations reads

∇

[

T̃ µ
ν ẋ

ν

√
−ẋGẋ

]

= − 1

4mc
θµν ẋ

ν , (9)

∇Sµν =
1

4mc
√
−ẋGẋ

ẋ[µ(Sθẋ)ν] , (10)

Sµ
ν ẋ

ν − 1

8(mc)2
(Sθẋ)µ = 0 . (11)

All the subsequent discussion will be around the factor
ẋGẋ, where appeared the effective metricGµν . The equa-
tion for trajectory (9) became singular for the particle’s
velocity which annihilates this factor, ẋGẋ = 0. Perform-
ing technical computations, we include all the factors into
the expression for reparametrization-invariant derivative
D ≡ 1√

−ẋGẋ

d
dτ
, representing (9) in the form

DDxµ = fµ(Dx, S,R) . (12)

The singularity determines behavior of the particle in
ultra-relativistic limit. To clarify this point, two com-
ments are in order.

1. Consider the standard equations of spinless particle
interacting with electromagnetic field in the physical-

time parametrization xµ(t) = (ct,x(t)),
(

ẋµ

√
c2−v

2

).

=
e

mc2
Fµ

ν ẋ
ν , then the factor is just c2 − v2. Rewriting

the equations in the form of second law of Newton we
find an acceleration. For the case, the longitudinal accel-

eration reads a|| = va = e(c2−v
2)

3

2

mc3
(Ev), that is the fac-

tor, elevated in some degree, appears on the right hand
side of the equation, and thus determines the value of
velocity at which the longitudinal acceleration vanishes,

a||
v→c−→ 0. In resume, for the present case the singularity

implies that during its evolution in external background,
the particle can not exceed the speed of light c.
2. In a curved space we need to be more careful since
the three-dimensional geometry should respect the coor-
dinate independence of the speed of light. The notions
for time interval, distance and velocity can be done ac-
cording the known procedure [26]. For the events xµ

and xµ + dxµ in curved space gµν , the three-dimensional
quantities are

dt = − g0µdx
µ

c
√
−g00

,

dl2 =

(

gij −
g0ig0j

g00

)

dxidxj ≡ γij(x
0,x)dxidxj . (13)

Then three-velocity vector v is vi =
(

dt
dx0

)−1 dxi

dx0 or, sym-

bolically, vi = dxi

dt
. With these definitions, the four-

interval acquires the form similar to special relativity:
gµνdx

µdxν = −dt2
(

c2 − vγv
)

, and a particle (photon)
with propagation law ẋgẋ = 0 has the speed equal to c.
To define an acceleration of a particle in the three-

dimensional geometry, we need the notion of a constant
vector field (or, equivalently, the parallel-transport equa-
tion). The three-dimensional vector field with compo-
nents vi along a curve xi(x0) is called constant, if this
obeys [27] ∇0v

i + 1
2 (v∂0γγ

−1)i = 0. Here the covariant
derivative is defined with help of three-dimensional met-
ric γij(x

0,x), with x0 considered as a parameter. This
definition guarantees that scalar product of two constant
fields does not depend on the point where it was com-
puted, d

dx0 (vγw) = 0. The deviation from a constant
velocity is an acceleration

ai =

(

dt

dx0

)−1 [

∇0v
i +

1

2
(v∂0γγ

−1)i
]

. (14)

The extra-term appeared in this equation play an essen-
tial role [27] to provide that for the geodesic motion we

have: a||
v→c−→0. For the static metric, ∂0γ = 0, our defini-

tion reduces to that of Landau-Lifshitz, see page 251 in
[26].
Let us return to the Lagrangian form (9)-(11) of

MPTD-equations. The singular factor contains the ef-
fective metric G = g + h where g is the original metric.
So we need to decide, which one of them the particle sees
as the space-time metric?



3

Let us use g to define the three-dimensional geometry
(13) and (14). Then even in static field (and with g0i = 0)
we obtain rather surprising result that the longitudinal
acceleration grows up to infinity as the particle’s speed
approximates to the speed of light (the dots state for
irrelevant for the present discussion non singular terms)

vγa =
1√

c2 − v2

vαS
ασRσνρλv

νvρ(Sθv)λ

16(mc)3
+ . . .

v→c−→ ∞ .

So MPTD-equations, if considered with respect to orig-
inal metric, have no physically admissible solutions. As
(vγa) ∼ 1

m3 , this effect could be more appreciable for
neutrino.
Let us use G to define the three-dimensional geometry

(13) and (14). In this case the expression for longitu-
dinal acceleration as a function of the force (12) can be
obtained in compact form for an arbitrary original metric

vγa =
c2 − v2

c2

[

(c2 − v2)(vγf) + (vγ)jΓ
j
abv

avb

+
1

2
(
dt

dx0
)−1(v∂0γv)

]

. (15)

For MPTD-particle f ∼ (c2 − v2)−
3

2 , so (vγa)
v→c−→ 0,

and the theory is consistent with respect to the effective
metric G. Since G is spin and field dependent quantity,
we conclude that in this picture there is no unique space-
time manifold for the Universe of spinning particles: each
particle will probe his own three-dimensional geometry.
Can we modify the MPTD-equations to obtain a the-

ory with reasonable behavior with respect to original
metric gµν? The inspection of the computation traced
above shows that the nonphysical behavior originates
from the fact that r. h. s. of the equation for preces-
sion of spin (the second equation in (1)) too singularly,
DS ∼ (c2 − v2)−1. Let us improve this behavior. As we
have seen above, MPTD-equations result from minimal
interaction of spinning particle with gravitational field.
We add a nonminimal interaction in such a way that
equation for precession of spin, DS ∼ (c2 − v2)−1, is re-
placed byDS ∼ (c2−v2)0. This improves the bad behav-
ior of MPTD equations. To achieve this, we add the non-
minimal interaction λ1

2
κ
16 (θS) ≡ λ1

2 κRαβµνω
απβωµπν

into the Hamiltonian action (8). By analogy with the
magnetic moment, the interaction constant κ is called
gravimagnetic moment [28]. The new interaction turns
out to be consistent with all the constraints of the model
for any value of κ (approximate equations with nonvan-
ishing gravimagnetic moment were discussed in [28–30]).
For the particular value κ = 1, the effective metric G
turn into the initial metric g. The Lagrangian equations
read

∇
[

m̄ẋµ

√
−ẋgẋ

]

= − 1

4m̄c
θµν ẋ

ν + . . . , (16)

∇Sµν =

√
−ẋgẋ

4m̄c
θ[µσS

ν]σ + . . . , (17)

Sµν ẋν + . . . = 0 , (18)
where appeared the radiation mass m̄ = m2 + (θS)

16c2 + . . .,
and the dots state for irrelevant for the present discus-
sion contributions due to non homogeneity of a curvature,
O(∇R). These equations can be compared with (9)-(11).
Even in homogeneous field we have modified dynamics for
both x and S. In the modified theory

1. Time interval and distance are unambiguously defined
within the original space-time metric gµν .

2. Longitudinal acceleration vanishes as v → c.

That is, contrary to MPTD-equations, the modified
theory is consistent with respect to the original metric
gµν . Hence the modified equations could be more promis-
ing for description of the rotating objects in astrophysics.

In conclusion, we note that MPTD-equations follow
from particular form assumed for the multipole repre-
sentation of a rotating body [6]. It would be interesting
to find a set of multipoles which yields the modified equa-
tions (16) and (17). Also, it would be interesting to find
the Lagrangian form of the variational problem (8) with
the nonminimal interaction introduced above.
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