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Abstract

We propose a modified gravitational action containing besides the Einstein-
Hilbert term some quadratic contributions resembling the Yang-Mills lagrangian
for the spin connections. We outline how a propagating torsion arises and we
solve explicitly the linearised equations of motion on a Minkowski background.
We identify among torsion components six degrees of freedom: one is carried
by a pseudo-scalar particle, five by a tachyon field. By adding spinor fields, we
point out how only the pseudo-scalar particle couples directly with fermions and
we evaluate the associated coupling constant, which is suppressed by the ratio
between fermion and Planck masses.
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1. Introduction

As pointed out by the Einstein-Cartan theory [1, 2], it is possible to imple-
ment a local symmetry in the description of the space-time by using the tetrad
formalism. In such a formulation, a local basis of tangent space is introduced
and the theory is characterised by a local Lorentz rotation symmetry.

In his seminal paper [3], Utyiama proposed a method to introduce gauge
fields associated with Lorentz transformations; he showed that these fields are
nothing more than the spin connections ωIJ

µ corresponding to a physical gauge
symmetry as the space-time description is unaffected by a Lorentz rotation of
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the tetrads. Indeed, this interpretation of spin connections as gauge fields of
the Lorentz group (LGT) is not physically well-grounded in the Einstein-Cartan
theory, since in this framework the spin connections do not include propagating
degrees of freedom: they depend on tetrad fields and (algebraically), in the
theory coupled with fermions, on the spin density too [4–8].

A revised paradigm for this question is given by Poincaré gauge theory of
gravity (PGT) [9–14], where vierbein are identified with the gauge fields cor-
responding to the translational part of the Poincaré group. Hence, the grav-
itational interaction follows from the local extension of the invariance under
Poincaré transformations.

However, also PGT presents some internal difficulties, since the two gauge
fields, the spin connections and the tetrads, are not independent from each
other. This is due to the fact that an infinitesimal Lorentz rotation cannot be
distinguished from an infinitesimal translation [15].

In this work, we show how it is possible, by modifying the Einstein-Cartan [2]
action, to obtain intrinsically propagating gauge fields associated with the local
Lorentz group. Our purpose is to consider quadratic terms in curvature tensor
with strong analogies with the free Yang-Mills terms for the Lorentz group.

From the equations of motion, we deduce that in this theory the torsion ten-
sor is generally non trivial (also in vacuum). We solve in vacuum the equations
of motion of the linearised theory on a Minkowskian background. We outline
that torsion owns an intrinsically dynamical behaviour and, by dividing into
irreducible components, we show that the propagating degrees of freedom are
represented by a pseudo-scalar massive field and a tachyonic field. An interest-
ing feature of this analysis is that the fields are massive and their masses are
fixed by the coupling constant γ for the Yang-Mills term. Such Yang-Mills term
is the only viable quadratic modification providing a non-trivial contribution to
the equations of motion, determining the main difference of this theory with the
Einstein-Cartan one.

By studying the interaction with spinor fields, it comes out that only the
pseudo-scalar field couples with fermions. In this case, the spin connections
receive a contribution sourced by the fermion field, but the resulting interaction
is very weak, since it is suppressed by the large value of the Planck mass.

The paper is structured as follows. In section 2 we give a brief introduction
of PGT. In section 3 we present the new action, we evaluate the corresponding
equations of motion and eventually we solve on a Minkowskian background the
linearised theory in section 4. Here we find that the spin connections include
propagating degree of freedom, solving the non propagating nature of the spin
connections in LGT [4–6, 11, 16]. In section 5 we include in this model spinor
fields characterizing their contribution to the spin connections; we also estimate
the phenomenological impact of this theory by considering its possible contri-
bution on the muon gyro-magnetic moment. Brief conclusions follow in section
6.
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2. Poicaré Gauge theory of Gravity

The strong analogy between gauge theories and the space-time description
in terms of tetrads suggests the proposal to connect the torsion tensor with the
Poincaré gauge symmetry of the space-time [4, 5, 11, 17]. Such a Poincaré gauge
theory (PGT) [4, 7–17, 22, 23] can be resumed by tracing two different points
of view: the gauge approach and the geometrical one [6, 22, 23].

2.1. Gauge approach

If we perform a global Poincaré transformation in the space-time

xµ → x′µ = xµ + ǫ̃µνx
ν + ǫ̃µ, (1)

ǫ̃µν and ǫ̃µ being infinitesimal parameters characterizing space-time rotations
and translations, respectively, the fermion field correspondingly experiences a
transformation under its Poincaré group representation:

ψ(x) → ψ′(x) =

(
1 +

1

2
ǫ̃µνMµν + ǫ̃µPµ

)
ψ(x), (2)

where Mµν and Pµ are the generators of the Poicaré algebra. As far as the
transformation is global, assuming that the matter lagrangian depends only
on the spinor field and its derivatives, L = L(ψ, ∂ψ), one can find the usual
conserved currents (energy-momentum tensor and angular momentum tensor)
and Noether charges.

If we consider (1) as a local transformation, some connections have to be
implemented on the space-time in order to restore the spinor Lagrangian invari-
ance. The associated gauge fields are f I

µ and A IJ
µ and the associated generators

Pµ and ΣIJ . The covariant derivative is defined as

DIψ = fµ
I Dµψ = fµ

I (∂µ +Aµ)ψ = fµ
I

(
∂µ +

1

2
A IJ

µ ΣIJ

)
ψ. (3)

As usual the commutators of covariant derivatives is proportional to the field
strengths [24, 25], i.e.

fK
µ f

L
ν [DK , DL]ψ =

1

2
F IJ
µν ΣIJψ − F I

µν DIψ, (4)

where F IJ
µν and F I

µν are the Lorentz and the translation field strengths,
respectively.

In [11] it is shown the inadequacy of Special Relativity to describe the be-
haviour of matter fields under local Poicaré transformations. Matter fields are
characterised by the rigidity condition, in other words the global Poicaré trans-
formations preserve the distances between events and the relative orientation
of neighbouring matter fields (as a rigid body). It must be equivalent if we
compare field amplitudes at nearby points and then we transform the result
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with a global Poincaré transformation, or whether we compare the two trans-
formed amplitudes at the corresponding points. If not so, it would be possible
to distinguish experimentally between two reference frames. Nonetheless, this
is just the case for local transformations. It means that special relativity is not
the adequate framework where we can demand such a rigidity condition in the
framework of a gauge theory [11]. For this reason, the space-time needs two
compensating field to restore this invariance. The surprising feature of such
emerging fields is their geometrical nature.

2.2. Geometrical approach

The Cartan space-time [2] is characterised by a connection Γ ρ
µν compatible

with the metric, i.e.

∇ρgµν = ∂ρgµν − Γ σ
ρµ gσν − Γ σ

ρν gµσ = 0, (5)

and a non trivial torsion tensor T ρ
µν = Γ ρ

µν − Γ ρ
νµ , such that

Γ ρ
µν = Γ̄ ρ

µν −K ρ
µν , (6)

Γ̄ ρ
µν being the Christoffel symbols, while K ρ

µν is the contortion tensor [4, 8].

Choosing a set of orthonormal vector fields eIµ (the tetrads) as a basis for the
local tangent space, one has to define the covariant derivative as follows

Dµψ = (∂µ + ωµ)ψ =

(
∂µ +

1

2
ω IJ
µ ΣIJ

)
ψ. (7)

Analogously to (6), the spin connection ω IJ
µ can be written as a term depending

on the tetrads eIµ and a torsion contribution: [4, 8]

ω IJ
µ = ω̄ IJ

µ +K IJ
µ ,

K IJ
µ = eIνeJρK

ρ
µν = −eIνeJρ

(
T ρ
µν − T ρ

ν µ + T ρ
µν

)
. (8)

In this framework the gauge fields eIµ represent the map from the coordinate

basis to the tetradic one. Moreover, ω IJ
µ must be connected to the local Lorentz

transformation of the vector basis. The torsion dynamic is described by the
action

LT = ATIJKT
IJK +B TIJKT

JKI + C T K
IK T IL

L. (9)

A, B and C being some parameters, while the space-time indexes of the torsion
tensor have been projected into those of the tangent space via the tetrads,
T K
IJ = eµI e

ν
Je

K
ρ T

ρ
µν , and eventually raised or lowered via Minkowsky metric.

Indeed, this is the most general Lagrangian generating equations of motion for
the torsion with derivatives up to second order only (as shown in [16]).

Comparing the gauge approach with the geometrical one, it is natural to
identify the gauge field A IJ

µ with the spin connection ω IJ
µ and the gauge field

corresponding to translations f I
µ with the component of the tetrad field eIµ. By

these identifications, the equations of motions for the Einstein-Cartan action
induce an algebraic relation between torsion tensor and the spin density [4–6],
which results into non-propagating gauge field ω IJ

µ .
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3. Lagrangian formulation

The attempt to extend the General Relativity formalism through a change in
the Einstein-Hilbert action must be consistent with all the experimental obser-
vations constraining the theory. Moreover, by analogy with usual field theories,
the equations of motion must contain derivatives up to the second order.
The simplest example of a modifications is the introduction of topological terms,
which do not affect the equations of motions.

Here, we consider a Lagrangian containing at most second derivatives of
fields, scalar under parity and reducing to General Relativity in some limit.
According with this hypotheses, our Lagrangian formulation reads

S[e, ω] = − 1

2χ

∫
d4x e(R IJ

µν eµI e
ν
J+

+ γ Rµν
IJ R

IJ
µν + β ηµνρσǫIJKLR

IJ
µν R KL

ρσ ), (10)

where R IJ
µν is the Riemann tensor

R IJ
µν = ∂µω

IJ
ν − ∂νω

IJ
µ + ω IK

µ ω J
νK − ω IK

ν ω J
µK , (11)

while χ = 8πG and γ, by the analogy with Yang-Mills lagrangian, is a positive
coupling constant (this requirement ensures that the theory is ghost-free). In
what follows, β will play no role since it multiplies a topological term.

In the first order formalism, the spin connections ωIJ and the tetrads eI

fields are treated as independent. The equations of motion follow from the
variation of the action (10) with respect to these independent sets of variables,
i.e.:

Dµ

[
e e

[µ
I e

ν]
J + 2 γ eRµν

IJ

]
= 0 (12)

RK
ρ − 1

2

(
R+ γ R IJ

µν Rµν
IJ

)
eKρ + 2 γ Rµν IJ R

νIJ
ρ eKµ = 0. (13)

While Einstein-Cartan theory in vacuum is equivalent to General Relativity
[2, 4, 5, 11, 16], the present theory is always characterized by a non trivial torsion
tensor due to the second term on the left-hand side of (12). In fact, the first
term in (12) is proportional to the torsion [5, 17], while the second corresponds
to the equation of motion of a free Yang-Mills theory. Hence, this is a promising
scheme for a theory wherein torsion is characterised by independent degrees of
freedom.

4. Linearised theory on minkowskian background

The system of equations (12) and (13) is non-linear both in tetrads and in
spin connection fields. Let us now investigate the linearised field equations with
respect to the torsion field on a Minkowskian background, by fixing the tetrads
as follows

eIµ(x) = δIµ. (14)

5



This particular choice provides an identification between space-time and internal
indexes and a significant simplification of the dynamical problem: torsion-free
spin connections vanish (ω̄IJ

µ = 0 and ωIJ
µ = KIJ

µ ) and the Riemann tensor can
be written as

R IJ
µν = 2 ∂[µK

IJ
ν] + ◦(K2). (15)

The system of equations (12) and (13) becomes at the linear order

Dµ

(
δ
[µ
I δ

ν]
J + 4 γ ∂[µK

ν]
IJ

)
= 0 (16)

R J
ρ = 2 eµI ∂[µK

IJ
ρ] = 0. (17)

To characterize the solution we firstly solve equation (16) and then we check if
these solutions also solve the condition (17).
Expanding the covariant derivative in (16), we obtain the equation

�KSIJ − ∂S∂LK
L
IJ +

1

2γ

[
−K L

L [I ηJ]S +K[IJ]S

]
= 0, (18)

where KSIJ = eµSKµ IJ = δµS Kµ IJ . Hence, we have to solve the following
system of equations






�KSIJ − ∂S∂µK
µ
IJ + 1

2γ (−K L
L [I ηJ]S +K[IJ]S) = 0

∂S(−K L
L [I ηJ]S +K[IJ]S) = 0

∂[µK
µJ

ρ] = 0,

(19)

where the second condition comes from (18) by acting with ∂S . In order to find
the solutions of (19), we now decompose the contortion tensor in its irreducible
components.

4.1. Irreducible components of the contortion tensor

Torsion can be decomposed into three irreducible tensors [18–20] (a multidi-
mensional decomposition can be found in [21]). In this paragraph we decompose
in a similar manner the contortion tensor and we show how this decomposition
clarifies the nature of its propagating degrees of freedom.
We can write the contortion tensor as follows:

KSIJ = ΩSIJ + tSIJ + qSIJ . (20)

where we have isolated the totally-antisymmetric (or pseudo-trace) contortion
part ΩSIJ , i.e.

ΩSIJ = K[SIJ] = −1

6
ǫSIJKS

K , (21)

the axial-vector SK = ǫKSIJKSIJ having four independent components, and
the trace part tSIJ

tSIJ =
1

3
(ηSIKJ − ηSJKI) , (22)
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with KI = KS
SI having also four independent components. The last term in

(20) tensor is traceless and its totally-antisymmetric part vanishes, thus the
following conditions hold

qSIJ = qS[IJ] (23)

q[SIJ] = 0 (24)

qSIS = 0, (25)

from which it follows that there are sixteen independent components in qSIJ ,
thus reconciling the total number of independent components with that of the
contortion tensor, which is twenty-four.

4.2. Dynamic properties of the irreducible tensors

Let us now investigate the implications of (19) for each irreducible tensor in
(20). As soon as ΩIJK is concerned, let us note that the condition ∂SΩSIJ = 0

implies ∂[µΩ
µJ

ρ] = 0, thus we get from (19)

{
�ΩSIJ − ∂S∂

KΩK IJ + 1
2γ ΩSIJ = 0

∂SΩSIJ = 0.
(26)

The second condition in (26) rewrites through (21)

ǫSIJK∂
[SSK] = 0 (27)

and if the spacetime manifold is simply-connected it implies that SK = ∂KΩ,
for some pseudo-scalar field Ω(x). The first condition becomes

�Ω+
1

2γ
Ω = 0, (28)

which is the Klein-Gordon equation for a field with mass m = 1/2γ. Therefore,
the totally-antisymmetric component of the contortion tensor carries one degree
of freedom in the form of a massive pseudo-scalar field.
Similarly, from the second equation in (19), we get the following condition for
tSIJ (22)

∂S tSIJ = ∂IKJ − ∂JKI = 0, (29)

the only possible solution in a simply-connected manifold being KI = ∂Iψ. The
other equations become

{
�ψ + 1

2γ ψ = 0

δJρ�ψ − 2∂ρ∂
Jψ = 0

(30)

and they admit only the trivial solution ψ = 0 (this can be seen by multiplying
the third condition times δρJ). Finally, the system (19) for the last part of the
contortion tensor reduces to





� qSIJ − 1
2γ qSIJ = 0

∂S qSIJ = 0

∂S qIJS = 0.

(31)
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From the first equation we see how qSIJ describes the propagation of a tachyon
particle. The other conditions can be solved by fixing the frame in which the
four-momentum kµ = (0, 0, 0, 1/

√
2γ) and by requiring qSIJ to vanish when one

of the index S, I, J = 3 (this can be easly seen in Fourier space). Given these
conditions, the total number of independent components within qSIJ is five.

The generality of our solutions can be verified by counting the physical
degrees of freedom. Spin connections ω IJ

µ have 24 components, but the six

components ω IJ
0 must be removed, because of their non-dynamical character

(their time derivatives are not present in the action (10)).
Moreover the condition (17), together with Lorentz invariance, removes twelve
additional components, so that the theory is eventually characterised by six
physical degrees of freedom only.

It is easy to check that the solutions we have found contains the correct
number of physical degrees of freedom: one degree of freedom associated with
the pseudo-scalar field Ω and five degrees of freedom corresponding to qSIJ .
Therefore, the contortion tensor solving the equations of motion of the model
reads

KSIJ = −1

6
ǫSIJK ∂KΩ+ qSIJ . (32)

In the next section we will outline how only the pseudo-scalar field Ω interacts
with spinor fields, while the tachyon field decouples (at least classically), thus
suggesting that un-physical interactions do not occur.

5. Field equations in presence of spinors

In this section we investigate the role of spinor fields on the curved space-
time whose dynamic is described by the action (10).
The tetradic formalism allows a natural implementation of the Dirac algebra on
a curved space-time [31–34], so that the internal Lorentz gauge symmetry acts
on spinor fields just like Yang-Mills gauge symmetries [3, 17]. The total action
can be written as

S = Sg[e, ω] + Sm[e, ψ,Dµψ], (33)

where the spinor action reads [5, 24, 25]

Sm[e, ψ,Dµψ] =

∫
dx4 e [

i

2

(
ψ̄γµ∂µψ −

(
∂µψ̄

)
γµψ

)
+

+
1

4
ǫKIJL ω

[K IJ]ψ̄γ5γ
Lψ −mψ̄ψ]. (34)

It is worth noting that the action above contains an explicit coupling between
spinor fields and spin connections, thus spinor enters the I Cartan equation and
provides a nonvanishing contribution to torsion. We are going to solve explicitly
such an equation in the linearised theory.
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5.1. Linearised solution on a minkowskian background

In the presence of spinors equation (18) becomes

�ωSIJ − ∂S∂µω
µ
IJ +

1

2γ

[
−ω K

K [I ηJ]S + ω[IJ]S

]
= JSIJ

JSIJ =
χ

4γ
ǫSIJL ψ̄γ5γ

Lψ. (35)

The solution of (35) can be written as the homogeneous solution (32) plus K̃SIJ ,
satisfying

�K̃SIJ − ∂S∂LK̃
L
IJ +

1

2γ
K̃SIJ = JSIJ . (36)

Let us write

K̃µ IJ =

∫
d4y G KL

µν IJ (x− y)Jν
KL(y), (37)

where the kernel G KL
µν IJ is defined as the solution of the equation

(
δνµ�− ∂µ∂

ν +
1

2γ
δνµ

)
G KL

νλ IJ = −δ4(x− y)ηµλδ
K
[I δ

L
J]. (38)

We can rewrite (38) in the Fourier space, so getting
[
δνµ

(
k2 − 1

2γ

)
− kµk

ν

]
G̃ KL

νλ IJ (k) = ηµλδ
K
[I δ

L
J] (39)

and by contracting with kµ we obtain

[
kν k2 − 1

2γ
kν − k2kν

]
G̃ KL

νλ IJ (k) =

= − 1

2γ
kν G̃ KL

νλ IJ (k) = kνηνλδ
K
[I δ

L
J]. (40)

By inserting (40) in (39) one finds
(
k2 − 1

2γ

)
G̃ KL

µλ IJ k + 2γ kµkλδ
K
[I δ

L
J] = ηµλδ

K
[I δ

L
J], (41)

which can be easily solved as follows

G̃ KL
µλ IJ (k) =

(
ηµλ − kµkλ

(2γ)−1

)

k2 − (2γ)−1 + iǫ
δK[I δ

L
J]. (42)

Hence, the solution of (35) can be written as

K̃µ IJ =

∫
d4y

d4k

(2π)
4

(
ηµν − kµkν

(2γ)−1

)

k2 − (2γ)−1 + iǫ
eik(x−y) Jν

IJ(y), (43)

which gives the expression of the torsion field sourced by spinors.
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5.2. Torsion-spinor coupling

We now consider the interaction between spin connections and spinors at
the leading order of a perturbative expansion. Hence, we substitute the vacuum
spin connections (32) into the Dirac action (34). Since spinors couples only to
the total antisymmetric part of the connection, the tachyon field qSIJ does not
interact with spinors (at least at the leading order of the perturbative expan-
sion). So the only contribution is given by the pseudo-scalar field (28) and the
spinor lagrangian reads

L =
i~c

2

[
ψ̄γµ∂µψ −

(
∂µψ̄

)
γµψ

]
− ~c

4
∂LΩ ψ̄γLγ5ψ − ~cmψ̄ψ. (44)

The interaction term can be integrated by parts, so getting

L =
i~c

2

[
ψ̄γµ∂µψ −

(
∂µψ̄

)
γµψ

]
+
i~c

2
mΩ ( ψ̄γ5ψ)− ~cmψ̄ψ, (45)

where the following relation has been used

∂L( ψ̄γ
Lγ5ψ) = 2imψ̄γ5ψ. (46)

Let us now redefine Ω as

Ω →
√

6

χ
Ω; (47)

such that it has the dimensionality of a scalar field (this can be seen from its
kinetic term), while the interaction lagrangian with spinors rewrites

Lint = i gΩ ψ̄γ5ψ, g =

√
π

3

m

Mp
, (48)

Mp being Planck mass. Therefore, the coupling constant g between spinors and
the pseudo-scalar torsion component depends on the fermion mass. However,
in view of the hierarchy between particle and Planck masses the value of g is
much smaller than the coupling constants of other interactions.

In order to estimate the possible phenomenological implications of our model,
we evaluated the contribution given by the interaction with Ω to the gyro-
magnetic moment of a lepton, finding a displacement with respect to the stan-
dard value [35]

∆a = − g2

8π2
λ2

∫ 1

0

dx
x3

(1− x)(1 − λ2x) + λ2x
, (49)

where λ = m
MΩ

and MΩ = (2γ)−1/2 is the pseudo-scalar field mass. The maxi-
mum of ∆a is reached for λ→ ∞ and it reads

|∆a| = 1

2

g2

8π2
, (50)

which is suppressed by the factor g2. For instance, for a µ particle, g ≈ 10−20

and the corresponding ∆a is several orders of magnitude below the experimental
uncertainty [36]. Therefore, we do not expect any sensible deviation to the
standard particle physics phenomenology coming from our model.
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6. Conclusions

In this work we considered a propagating torsion theory, obtained by adding
to the Einstein-Hilbert term a quadratic contribution in the curvature, which
resembles a Yang-Mills action for the spin connection. We analyzed classical
equations of motion and we solved them on a Minkowski background in the
linearised limit. Torsion is generically nonvanishing also in vacuum and it carries
five degrees of freedom, described by a pseudo-scalar field and a tachyon particle.
The latter does not couple with spinor fields, thus at least classically no un-
physical interaction takes place. On the contrary, there is an interaction between
the pseudoscalar field and spinors. However, the associated coupling constant is
suppressed by the ratio between the mass of the spinor field and Planck mass.
Therefore, no sensible deviation to the standard particle physics phenomenology
emerges from the present approach to the torsion dynamics.

This may not be the case beyond the linearised limit, when one considers
next-to-the-leading order terms in the equations of motion: nontrivial interac-
tions between torsion components are expected to occur and they may spoil
the conclusions of the present analysis. In particular, the presence of a tachyon
field is extremely dangerous, since it could induce causality violations. Hence,
the decoupling of the tachyon has to be regarded as a consistency-check for the
viability of the proposed modification of gravity.

It would also be interesting to pursue the quantization of the present model
as an effective field theory, using the results and techniques developed for non-
Abelian gauge theories.

Acknowledgment

FC is supported by funds provided by the National Science Center under
the agreement DEC-2011/02/A/ST2/00294.

References
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