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A torsional completion of gravity for Dirac matter fields and its
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In this paper, we consider the torsional completion of gravitation for an underlying background
filled with Dirac fields, applying it to the problem of neutrino oscillations: we discuss the effects of
the induced torsional interactions as corrections to the neutrino oscillation mechanism.
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I. INTRODUCTION

The problem of neutrino oscillations stems from the
fact that known thermonuclear fusion taking place in so-
lar processes predicts the number of neutrinos reaching
earth but only a considerably smaller fraction of them is
observed in our detectors. Pontecorvo has been the first
who theorized that such conversion may occur whenever
the leptonic numbers are not conserved if neutrinos were
massive and with non-degenerate masses: the mechanism
relies on the fact that mass and flavour eigenstates do not
coincide, and each wave-packet of a given flavour eigen-
state is the superposition of all the wave-packets of mass
eigenstates, so that the wave-packets may have interfer-
ence, and a phase acquires a shift [1–3]. Apart from this,
there are mechanisms in which neutrino oscillations may
occur even in the zero-mass limit if there are external in-
teractions of specific type, as discussed by Mikheyev and
Smirnov and by Wolfenstein [4, 5]. As a consequence of
this one may well wonder whether this MSW mechanism
for neutrinos might also occur in the material vacuum.

In the standard wisdom of the MSW mechanism neu-
trino oscillations are due to external interactions with
surrounding matter and therefore by construction they
are absent in vacuum, but if it were possible to have neu-
trinos with self-interactions then, even if we define the
vacuum as the absence of external interactions, never-
theless there would never be a complete vacuum for any
self-interacting field. And thus one may investigate an
intrinsic MSW mechanism for self-interacting neutrinos.

The torsional completion of gravity is the theory that
we obtain whenever we do not constrain the most gen-
eral metric-compatible connection to be symmetric in the
two lower indices in holonomic basis, yielding a geometry
that is endowed with torsion as well as curvature, called
Cartan-Riemann geometry; when this theory is applied
to Dirac spinors, torsion couples to the spin density in
the same way in which curvature couples to the energy
density of the Dirac matter field, giving the well known
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Sciama-Kibble-Einstein theory. Within such a SKE the-
ory the Dirac matter field equation can be written in a
way that is formally equivalent to the Dirac matter field
equation in presence of Nambu–Jona-Lasinio potentials
for every fermionic field. To have a comprehensive review
of all these results1 and a general introduction see [13].

So the torsional completion of gravity for a geome-
try hosting Dirac matter fields provides an induced spin-
contact interaction for spinor fields: this gives the oppor-
tunity to have self-interacting neutrinos mixing accord-
ing to an intrinsic MSW mechanism. As a matter of fact,
there have been efforts to employ the SKE theory with
Dirac fields to describe left-handed massless neutrino os-
cillations [14, 15], but these attempts were affected by
a misconception that hindered research in SKED theory
for long, namely the problem of the torsion constant.

The torsion constant problem is the belief that the tor-
sional constant must be positive and small because it is to
be the Newton constant, but this misunderstanding only
occurs when field equations are derived from an action
that is the simplest of all; when instead the most general
action is considered, it is not difficult to prove that there
are a total of four constants, that is the Newton constant
for the gravitational field plus three additional constants
corresponding to the three irreducible decompositions of
the torsion tensor [16, 17]. In those papers we have stud-
ied least-order derivative dynamics for the most general
geometry, but we have not focused on the Dirac matter
field in order to see what happens for the most general
coupling of this spinor, which is what we will do here.

We had found that of the three irreducible components
of torsion only the completely antisymmetric dual of an
axial vector is excited by the spin density tensor and that

1 From a historical perspective, it was Cartan who first recog-
nized the role of torsion, also called Cartan tensor, and together
with the Riemann curvature, they justify the name of Cartan-
Riemann geometry [6–9], while Sciama and Kibble were the first
who wrote the field equations coupling torsion to the spin density
in the same way in which Einstein wrote the field equations cou-
pling curvature to energy, and so we talk about Sciama-Kibble-
Einstein theory [10, 11]; Nambu–Jona-Lasinio potentials should
be Heisenberg potentials [12], but tradition has stuck and for the
sake of simplicity we will adhere to it in this paper.
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there is an additional term for each flavour of the spinor
that can be added to the action: so of the three constants
of torsion coming from geometry there will remain only
one but there will be one additional constant for each
spinor that contributes to the torsion-spin coupling.

After the most general action is given, we will see what
are the implications for the neutrino oscillations.

II. SKED THEORY

In this paper, we take (1+3)-dimensional spacetimes
filled with 1

2
-spin spinor fields, and all these fields will be

coupled in terms of least-order derivative field equations.
All definitions we will employ hereafter are given in ref-

erences [18–21], but for the sake of simplicity we will give
all that is needed to fix our convention in the following.

In [22, 23] we argued that torsion Qρµν is completely
antisymmetric and thus it is considered to be completely
antisymmetric here too: this is no loss of generality
because torsion is always completely antisymmetric for
Dirac fields in minimal coupling since for Dirac spinors
the spin is completely antisymmetric and in least-order
derivative field equations their coupling is algebraic.

From the metric tensor we define the completely an-
tisymmetric pseudo-tensor ερµνα with which the com-
pletely antisymmetric torsion can be written according
to the expression 6Qρµν = ερµναW

α in terms of an axial
vector called axial vector torsion: and once again such a
procedure is achieved without any loss of generality.

From the most general connection we can define the
curvature tensor Gρ

ηαν while analogously from the Levi-
Civita connection it is possible to define the torsionless
curvature tensor Rρ

ηαν and as the most general connec-
tion can be decomposed in terms of the Levi-Civita con-
nection plus torsion similarly the curvature tensor can be
decomposed in terms of the torsionless curvature tensor
supplemented by specific torsional contributions.

The curvature tensor has a single independent contrac-
tion chosen as Gρ

ηρν =Gην with Gηνg
ην =G and also the

torsionless curvature tensor has a single independent con-
traction given by Rρ

ηρν =Rην with Rηνg
ην=R which are

known as Ricci curvature tensor and scalar and torsion-
less curvature tensor and scalar, respectively.

Finally, we introduce γa known as Clifford matrices
because they verify 2Iηij={γi,γj} known as Clifford al-
gebra, and {γi, [γj,γk]}=4iεijkqπγ

q as the relationship
implicitly giving π as the parity-odd matrix2 used to ob-
tain the two chiral projections of the spinor field itself.

In terms of the spinorial connection we can define the
spinorial covariant derivatives Dµ and from the torsion-

2 This matrix was historically introduced to study five dimensional
extensions and it was indicated as a gamma matrix with an index
five, but such a notation has no meaning in four dimensions and
therefore we prefer to adopt a matrix with no index.

less spinorial connection it is possible to define the tor-
sionless spinorial covariant derivative ∇µ as usual.

Because of the fact that the torsionful curvatures and
covariant derivatives can be decomposed in the corre-
sponding torsionless curvatures and covariant derivatives
plus torsional contributions and spinors can be decom-
posed in their two chiral projections then we can employ
either the full or the decomposed form in the action.

As it is well known, the original SKED theory for a
Dirac particle is built on the Lagrangian given by

L=G− i
2
(ψγµDµψ−Dµψγ

µψ)+mψψ (1)

or equivalently decomposed according to

L=R+ 1

24
W 2+ 1

8
ψγµπψWµ−iψγ

µ
∇µψ+mψψ (2)

whose variation with respect to torsion yields

Wµ=− 3

2
ψγµπψ (3)

which can be plugged back into the Lagrangian giving

L=R−iψγµ
∇µψ−

3

32
ψγµπψψγµπψ+mψψ (4)

showing that the torsionally-induced spin-contact inter-
action has a coupling constant that is positive and at the
Planck scale and therefore such non-linear potential is re-
pulsive and small; this circumstance comes from the fact
that the torsion constant is assumed to be the Newton
constant, and in turn this comes from the fact that the
initial Lagrangian is assumed to contain the curvature
alone, namely the simplest Lagrangian: instead the most
general Lagrangian must include torsion contributions.

The inclusion of torsion contributions is such that the
torsionless curvature and the torsional terms are inde-
pendent, and consequently two constants appear, so that
even if one is assumed to be the Newton constant the
other is still undetermined, and the Lagrangian is

L=R+ 1

128k
W 2+ 1

8
ψγµπψWµ−iψγ

µ
∇µψ+mψψ (5)

whose variation with respect to torsion yields

Wµ=−8kψγµπψ (6)

plugged back into the Lagrangian to give

L=R−iψγµ
∇µψ−

1

2
kψγµπψψγµπψ+mψψ (7)

showing that the torsionally-induced spin-contact inter-
action has a coupling constant that is yet to be deter-
mined indeed: in [16, 17] we have studied this Lagrangian
and we have discussed how under our hypotheses this
is the most general in the geometric sector and in the
the material sector as well; however, if we were to make
the inventory of all possible terms we would witness that
there is the term ψγµπψWµ that could still be added to
account for the interaction of geometry and matter.

When this term is included after the decomposition
of the torsionful covariant derivatives into torsionless co-
variant derivatives and torsional terms its effect results

2



into shifting the constant of the torsion-spin interaction
by a generic amount, and then the Lagrangian becomes

L=R+ 1

128k
W 2− a

8
ψγµπψWµ−iψγ

µ
∇µψ+mψψ (8)

whose variation with respect to torsion gives

Wµ=8kaψγµπψ (9)

plugged back into the Lagrangian furnishing

L=R−iψγµ
∇µψ−

1

2
ka2ψγµπψψγµπψ+mψψ (10)

showing that in the effective interaction the two constants
merge into a single constant, and nothing changes with
respect to the case above; this situation is due to the fact
that the Lagrangian is that of a single spinor field.

In the case of two spinor fields the Lagrangian is

L=R+ 1

128k
W 2− a1

8
ψ1γ

µπψ1Wµ−
a2

8
ψ2γ

µπψ2Wµ −

−iψ1γ
µ
∇µψ1−iψ2γ

µ
∇µψ2+m1ψ1ψ1+m2ψ2ψ2(11)

whose variation with respect to torsion gives

Wµ=8k(a1ψ1γ
µπψ1+a2ψ2γ

µπψ2) (12)

plugged back into the Lagrangian furnishing

L=R−iψ1γ
µ
∇µψ1−iψ2γ

µ
∇µψ2 −

− 1

2
ka2

1
ψ1γ

µπψ1ψ1γµπψ1 −

− 1

2
ka2

2
ψ2γ

µπψ2ψ2γµπψ2 +

+m1ψ1
ψ1+m2ψ2

ψ2 −

−ka1a2ψ2γ
µπψ2ψ1γµπψ1 (13)

showing that in the effective interactions the three con-
stants merge into two independent constants [24].

It is now quite straightforward obtaining the extension
to a generic number n of spinorial fields: in general there
would be n terms of type ka2iψiγ

µπψiψiγµπψi as self-
interactions of the spinor field and 1

2
n(n − 1) terms of

type 2kaiajψiγ
µπψiψjγµπψj with i 6= j as symmetric

mutual interactions between different spinor fields.

III. NEUTRINO OSCILLATIONS

In this section we employ (13) neglecting gravity.
Including the relative phases that arise from the fact

that flavour basis and mass basis do not coincide we may
focus on the contributions that mix flavours obtaining
that the mixing Hamiltonian for three flavours is

H=
∑

ij νi(Uij−kaiajγ
µπνiνjπγµ)νj (14)

where the Latin indices run over the three labels asso-
ciated to the three different flavours of neutrinos, and
the matrix Uij − kaiajγ

µπνiνjπγµ is the combination
of the constant matrix Uij describing kinematic phases

that arise from the mass terms as usual plus the field-
dependent matrix kaiajγ

µπνiνjπγµ describing the dy-
namical phases that arise from the torsionally-induced
non-linear potentials we have introduced in this model.

In reference [15] such a non-linear potential has been
used to show that left-handed massless neutrinos have
torsionally-induced spin-contact interactions that do give
rise to oscillations; alas we have not linked the constants
of the problem to the length because we failed to calculate
it as a consequence of the non-linearity of the problem.

In [14] however the authors deal with the non-linear
potential by taking neutrinos dense enough as to make
the torsional background homogeneous: in doing so the
nearly constant torsion background Wα can be isolated
in the Hamiltonian and as a consequence they obtain
the formula yielding the phase difference which in our
notation can be written in the following form

∆Φ≈

(

∆m2

2E
+
1

4
|W 0−W 3|

)

L (15)

having assumed W1 = W2 = 0 for convenience and ob-
taining a result that depends on the length; however in
their final comments the authors remark that the phase
difference would be negligible because torsion would be
of the order of magnitude of the Planck scale.

This is true but valid only when in the coupling equa-
tion (12) constants k and ai are chosen equal to the unity
in Planck units, that is in the simplest but not in the
most general of the models. In general models as those
considered here the constant k and ai are not equal to
unity and equation (12) yields torsion with an order of
magnitude that is not necessarily the Planck scale.

As it is clear, we can plug (12) into (15), and then per-
form some simplification: from (12) we see that the axial
vector νγµπν is proportional to the torsion dual axial
vector Wµ and in general vector νγµν is proportional to
the momentum density vector Pµ so that Fierz identities
given by νγµννγ

µπν=0 yield PµW
µ=0 and in the case

where W 1=W 2=0 then P 0W 0=P 3W 3 holds; this tells
that the momentum density and the torsion dual axial
vector have relationships defined up to some proportion-
ality factor, which can be fixed by considering the other
Fierz identities νγµννγ

µν+νγµπννγ
µπν = 0 with the

final result that if we call Pµ=(E, 0, 0,−P ) then we can
write mWµ=8kaN(P, 0, 0,−E) where we have indicated
in terms of νγµννγ

µν=N2 the matter density factor.
When these conditions are implemented, and the usual

approximation 2E|E−P |=m2 accounted for, we get

∆Φ≈
(

∆m2+2kamN
) L

2E
(16)

with the dependence on the ratio between length and
energy as expected; the phase has the usual kinematic
contribution as difference of the squared masses plus a
new dynamical contribution proportional to the neutrino
mass density distribution multiplied by the ka constant.

Neutrino masses are small and taking their density
makes them even smaller, so if ka is of the order of unity
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the second contribution would be negligible, but here the
product of the two constants is not necessarily unitary
and for large values of ka such contribution is relevant.

Moreover, not only do we have the possibility to in-
crease the strength of the torsional background in or-
der to render the torsional contribution relevant, but the
presence in our model of an additional torsion-spin cou-
pling parameter for each flavour makes these contribu-
tions adjustable for each flavour of neutrinos.

IV. CONCLUSION

In this paper, we have presented the most general ver-
sion of the SKED theory for neutrinos with three flavours,
seeing that the torsionally-induced spin-contact interac-
tions contribute to neutrino oscillations and that for three
families there are three different constants giving three
distinct oscillation phases; we have compared our results
to the ones known in literature where oscillations are due

only to neutrino masses: the comparison showed that
there is an analogous dependence on the ratio length over
energy, but while the latter contribution depends on the
difference of the squared masses the former depends on
the density of mass times the ka constant. This constant
does not necessarily need be unitary and in fact it can
be very large; moreover, the presence of the a parame-
ter means that such a constant can be different for the
diverse flavours of neutrinos. This implies that the tor-
sional contributions can be relevant, and in this case they
can be adaptable to each flavour of the neutrinos.

Of course this does not mean that such torsional con-
tributions really are relevant nor adaptable but at least
this is a possibility we can exploit. This possibility comes
from the fact that the model we have presented is the
most general for torsion minimally coupled.

With torsion in minimal coupling, fermions have self-
interactions whose presence ensures that there can never
be vacuum and an intrinsic MSW mechanism takes place
for which neutrino oscillations occur.
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