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Abstract

We discuss the quantum dynamics of the Dirac fermion particle in a gauge gravitational field.

The minimal as well as the Pauli-type nonminimal coupling of a fermion with external fields is

studied, bringing into consideration the notions of the translational and the Lorentz gravitational

moments. The anomalous gravitomagnetic and gravitoelectric moments are ruled out on the basis

of the covariance arguments. We derive the general Foldy-Wouthuysen transformation for an

arbitrary configuration of the gauge gravitational field without assuming it weak. Making use of

the Foldy-Wouthuysen Hamiltonian for the Dirac particle coupled to magnetic field in a noninertial

reference system, we analyze the recent experimental data and obtain bounds on the spacetime

torsion.
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I. INTRODUCTION

Poincaré gauge theory of gravity is a natural extension of Einstein’s general relativity

(GR) theory based on the gauge-theoretic ideas; see a comprehensive review in [1–4]. The

geometrization of the gravitational physics using the principles of covariance and equivalence

is similar to the geometrization of the three physical interactions (electromagnetic, weak

and strong) using the Yang-Mills type of approach. There is a difference though in that the

Standard Model deals with the fundamental symmetry groups acting in the internal spaces,

whereas the gravity has to do with the symmetry of the spacetime.

The group of the local spacetime translations (diffeomorphisms) plays the central role

in GR. This manifests in the well known fact [5] that the gravitational field couples to the

corresponding translational Noether current – the energy-momentum tensor. On the other

hand, the high energy physics is based on the Poincaré group which is a semidirect product

of the translation group times the Lorentz group. The fundamental particles are classified by

mass and spin which arise in the representation theory of the Poincaré group. The Noether

theorem gives rise to the two currents, in accordance with the semidirect structure of the

Poincaré group: the energy-momentum tensor (translational current) and the tensor of spin

(rotational current). In the gauge theories of the Yang-Mills type, the principle of the local

symmetry relates the existence of the gauge fields to the corresponding Noether currents. In

the gauge-theoretic framework, there exists a natural extension of GR based on the Poincaré

group, with the energy-momentum and spin currents as the sources of the gravitational field

[6–9]. The spacetime geometry is then characterized by a nontrivial torsion which is coupled

to spin current, along with the metric coupled to the energy-momentum current.

Theory of gravity with torsion has a long history going back to 1922 when E. Cartan came

up the first gravitational model [10]. Later it attracted much of attention in the attempts to

construct the unified field theories (with the notable efforts of Weyl, Einstein, Eddington, and

Schrödinger among others [11]). Another important step was the development of physical

models of elastic media with microstructure by Cosserats, Kroener et al [12]. The modern

understanding of the torsion and of its relation to the gravitational physics was achieved in

the framework of the Poincaré gauge theory [2–4, 6–8]. The Einstein-Cartan gravitational

theory [1, 9] is the closest viable extension of GR. It is consistent with experiments on

the macroscopic scales and, in particular, with all classical gravity tests within the Solar
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System. A possible deviation from the GR due to the contact spin-torsion interaction is

only expected at the very high densities during the early stages of universe’s evolution or on

the microscopic scales in the very high energy particle experiments.

The post-Riemannian geometry of spacetime can be probed with the help of detectors

built of the matter with microstructure. The classical point particles with spin and spinning

continuous media (fluids) were extensively studied in this context [13–17]. The analysis

of the equations of motion of extended bodies [18, 19] has shown that the torsion can be

measured only when the matter possesses intrinsic spin. Mechanically rotating gyroscopes

do not feel the torsion when matter couples minimally to the gravitational field; there is

however a loophole for the nonminimal coupling case [20]. In the efforts to detect the

spacetime torsion, the polarized material bodies and media are systematically used in the

recent experiments [21, 22].

On the cosmological scales, the modern observations can be used to place limits on the

possible torsion effects [23] which may qualitatively modify the early stage of universe’s

evolution [24–26]; for an overview of cosmology with spin and torsion see [27].

The general discussion of the spin-torsion classical and quantum effects can be found in

Ref. [28]; see Ref. [29] for a more recent review.

In the present paper we consider the quantum dynamics of a fermion Dirac particle, taking

into account possible spin-torsion coupling in the framework of the Poincaré gravity. Earlier

this problem was analyzed for special gravitational field configurations in the semiclassical

approximation [30–35]. Here we generalize our previous results [36–42] obtained for the

dynamics of fermion spin in an arbitrary torsionless gravitational field.

The structure of the paper is as follows. In Sec. II we recall the basic facts about the

gauge-theoretic approach to gravity and describe in full detail the coupling of a fermion

Dirac particle to the electromagnetic and the Poincaré gauge gravitational field. The Foldy-

Wouthuysen transformation is performed in Sec. III for an arbitrary spacetime geometry

with the curvature and torsion. The possible nonminimal coupling of the Dirac particle to

the Poincaré gauge field is discussed in Sec. IV, where we demonstrate the importance of

the Gordon decomposition of the Noether currents. We then specialize in Sec. V to the

dynamics of a Dirac fermion particle in the magnetic field in a rotating reference frame. In

Sec. VI we use the theoretical findings to obtain the new bounds on the spacetime torsion

from the experimental data. Finally, we summarize our conclusions in Sec. VII.
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Our main conventions and notations are the same as in Refs. [8, 40–42]. In particu-

lar, the world indices are labeled by Latin letters i, j, k, . . . = 0, 1, 2, 3 (for example, the

local spacetime coordinates xi and the holonomic coframe dxi), whereas we reserve Greek

letters from the beginning of the alphabet for tetrad indices, α, β, . . . = 0, 1, 2, 3 (e.g., the

anholonomic coframe ϑα). Furthermore, spatial indices are denoted by Latin letters from

the beginning of the alphabet, a, b, c, . . . = 1, 2, 3. In order to distinguish separate tetrad

indices we put hats over them. We use the standard symbols ∧ and ∗ to denote the ex-

terior product and the Hodge duality operator, respectively. The metric of the Minkowski

spacetime reads gαβ = diag(c2,−1,−1,−1); the totally antisymmetric Levi-Civita tensor

ηαβµν has the only nontrivial component η0̂1̂2̂3̂ = c. For the Dirac matrices as well as for the

gauge-theoretic notions and objects (including electrodynamics) we use the conventions of

Bogolyubov-Shirkov [43].

II. SPIN-TORSION COUPLING IN POINCARÉ GAUGE GRAVITY

Let us give a brief summary of the corresponding gauge-theoretic formalism, without

going into the subtleties of constructing the gauge theory for the Poincaré group (technical

details can be found in Refs. [2–4, 6–8]).

At first, we recall the essential points of the Yang-Mills theory. Let ΦA denote the matter

field, and G is the N -parametric symmetry group. Under its action, the field transforms

covariantly

δΦA = εI(ρI)
A
BΦ

B. (2.1)

Here (ρI)
A
B, are the generators in the corresponding representation of G (with I, J,K =

1, . . . , N ; the range of the indices A,B,C, . . . is not important). When the infinitesimal param-

eters εI are constant, the derivatives transform covariantly δ ∂iΦ
A = εI(ρI)

A
B∂iΦ

B. However,

for the local symmetry with εI = εI(x) one needs the gauge field AI
i to define

DiΦ
A = ∂iΦ

A − AI
i (ρI)

A
BΦ

B. (2.2)

This covariant derivative transforms homogeneously, δ DiΦ
A = εI(ρI)

A
BDiΦ

B, provided the

gauge field potential changes δAI
i = ∂iε

I + f I
JKε

JAK
i under group’s action. The structure

constants f I
JK determine the Lie algebra of the gauge group G, so that the generator

commutator reads (ρJ )
A
C(ρK)

C
B − (ρK)

A
C(ρJ)

C
B = f I

JK(ρI)
A
B.
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The gauge potential gives rise to the gauge field strength tensor

Fij
I = ∂iA

I
j − ∂jA

I
i − f I

JKA
J
i A

K
j , (2.3)

from which the Yang-Mills type Lagrangian is constructed as a quadratic invariant.

Specializing to gravity theory, we now identify the gauge symmetry group G with the

10-parametric Poincaré group. As a semidirect product of the group of translations times

the Lorentz group, it is conveniently parametrized by the set (εα, εαβ = −εβα), hence we

have for the multi-index I = α, [αβ]. The corresponding Poincaré gauge potentials

AI
i =

(
eαi , Γi

αβ = −Γi
βα

)
(2.4)

are then naturally interpreted as the coframe (tetrad) and the local Lorentz connection,

respectively. They introduce the covariant derivative for the matter fields

DαΦ
A = eiα

(
∂iΦ

A − 1

2
Γi

βγ(ρβγ)
A
BΦ

B

)
. (2.5)

Here (ρβγ)
A
B = −(ργβ)

A
B are the generators of the Lorentz transformations, and the factor

1/2 removes the double counting in the sum over skew-symmetric objects.

The Poincaré gauge field strength tensors, using the Yang-Mills pattern (2.3), read

Tij
α = ∂ie

α
j − ∂je

α
i + Γiβ

αeβj − Γjβ
αeβi , (2.6)

Rij
αβ = ∂iΓj

αβ − ∂jΓi
αβ + Γiγ

βΓj
αγ − Γjγ

βΓi
αγ . (2.7)

The anholonomic (Greek) indices are raised and lowered with the help of the Minkowski

metric gαβ. We identify the translational gauge field strength (2.6) and the rotational gauge

field strength (2.7) with the torsion and curvature tensors, respectively. The first two terms

on the right-hand side of (2.6) form the anholonomity object Cij
α = ∂ie

α
j − ∂je

α
i . It is not a

tensor under the local gauge group. The “mixed” form of (2.6) is explained by the semidirect

product (not direct product) structure of the Poincaré group.

In view of the skew symmetry of the connection, we can verify that the covariant derivative

of the metric vanishes, Digαβ = 0. One can solve the algebraic equation (2.6) with respect

to the connection (hint: perform cyclic permutation of indices) to find explicitly

Γiαβ = Γ̃iαβ −Kiαβ . (2.8)
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Here the Riemannian connection is denoted by the tilde, and the post-Riemannian contortion

tensor is determined by the torsion,

Γ̃iαβ =
1

2
(Cαβi − Ciαβ + Ciβα) , (2.9)

Kiαβ =
1

2
(Tαβi − Tiαβ + Tiβα) . (2.10)

The Greek and Latin indices are converted into each other by means of the coframe: for

example, Cαβ
i = ejαe

k
βe

i
γCjk

γ. In particular, we thus find the components of the metric with

respect to the local coordinate basis: gij = eαi e
β
j gαβ. Hence the spacetime interval

ds2 = gijdx
idxj = gαβϑ

αϑβ (2.11)

is equivalently written either in terms of the holonomic coframe dxi or in terms of the

anholonomic one ϑα = eαi dx
i.

A. Dirac particle in Poincaré gravitational field

Let Ψ be a Dirac spinor field. The corresponding generators of the Lorentz group are

well known:

(ραβ) = − i

2
σαβ , σαβ =

i

2
(γαγβ − γβγα) . (2.12)

The four Dirac matrices γα, α = 0, 1, 2, 3, satisfy the standard anticommutation condition

γαγβ + γβγα = 2gαβ. In addition to the local Poincaré symmetry, we assume the local U(1)

(phase) symmetry, which is responsible for the electromagnetic gauge field Ai. Accordingly,

the total covariant derivative (2.5) reads

DαΨ = eiα

(
∂iΨ− iq

~
AiΨ+

i

4
Γi

βγσβγΨ

)
, (2.13)

where, making use of (2.2), we took into account that the generator of a 1-dimensional

Abelian U(1) group is (ρ) = i. The conventional q/~ factor (where q has the dimension

of the electric charge) is needed to provide the correct dimension for the electromagnetic

potential Ai and for the (Maxwell) field strength Fij = ∂iAj − ∂jAi.

The dynamics of a fermion particle with spin 1/2 and mass m minimally coupled to the

Poincaré gauge gravitational and electromagnetic field is described by the invariant action

I =

∫
d4xL, L =

√
−g L (2.14)

7



where the Lagrangian reads

L =
i~

2

(
ΨγαDαΨ−DαΨγ

αΨ
)
−mcΨΨ. (2.15)

The Dirac conjugate spinor is Ψ = Ψ†β, and its covariant derivative reads

DαΨ = eiα

(
∂iΨ+

iq

~
AiΨ− i

4
Γi

βγΨσβγ

)
, (2.16)

B. Hermitian Hamiltonian for the Dirac fermion

Let xi = (t, xa) be the local coordinates on the spacetime manifold.

The study of the dynamics of the Dirac particle in an arbitrary Poincaré gauge field

(eαi ,Γi
αβ) can be simplified for a convenient parametrization of the gravitational variables.

We describe the translational gauge potential (coframe eαi ) in the Schwinger gauge e 0̂a = 0

(also e 0â = 0), a = 1, 2, 3, as follows:

e 0̂i = V δ 0
i , eâi =W â

b

(
δbi − cKb δ 0

i

)
, a = 1, 2, 3. (2.17)

We assume that the functions V and Ka, as well as the components of the 3×3 matrix W â
b

may depend arbitrarily on t, xa.

One straightforwardly verifies that the coframe (2.17) gives rise to a general form of the

spacetime line element (2.11)

ds2 = V 2c2dt2 − δ
âb̂
W â

cW
b̂
d (dx

c −Kccdt) (dxd −Kdcdt). (2.18)

This is a well known Arnowitt-Deser-Misner (ADM) parametrization of the metric; the

off-diagonal metric components g0a = Ka/V 2c are related to the effects of rotation.

The components of rotational gauge potential (local Lorentz connection Γi
αβ) are assumed

to be completely arbitrary functions of t, xa, too.

A direct check shows that the Schrödinger equation derived from the action (2.14) has a

non-Hermitian Hamiltonian. To avoid this difficulty, we define a new wave function by

ψ =

(
1

c

√
−ge0

0̂

) 1

2

Ψ. (2.19)

Substituting the coframe (2.17) into (2.13), (2.16) and (2.14), we rewrite the fermion action

as

I =
1

2

∫
dtd3x

[
i~

(
ψ†∂tψ − ∂tψ

†ψ
)
− ψ†Hψ + (Hψ)†ψ

]
. (2.20)
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Here the Hermitian Hamiltonian reads

H = βmc2V + qΦ+
c

2

(
πb F b

aα
a + αaF b

aπb
)

+
c

2
(K · π + π ·K) +

~c

4
(Ξ·Σ−Υγ5) , (2.21)

where the kinetic 3-momentum operator πa = −i~∂a − qAa = pa − qAa accounts of the

interaction with the electromagnetic field Ai = (−Φ, Aa), and we denoted

F b
a = VW b

â, Υ = V ǫâb̂ĉΓ
âb̂ĉ
, Ξa =

V

c
ǫâb̂ĉ

(
Γ0̂b̂ĉ + Γ

b̂ĉ0̂ + Γ
ĉ0̂b̂

)
. (2.22)

As usual, αa = βγa (a, b, c, · · · = 1, 2, 3) and the spin matrices Σ1 = iγ 2̂γ 3̂,Σ2 = iγ 3̂γ 1̂,Σ3 =

iγ 1̂γ 2̂ and γ5 = iα1̂α2̂α3̂. Boldface notation is used for 3-vectors K = {Ka}, π = {πa}, α =

{αa}, Σ = {Σa}.
As a result, from the action (2.20) we derive the Schrödinger equation for the Dirac

fermion particle in an arbitrary Poincaré gauge field (eαi ,Γi
αβ):

i~
∂ψ

∂t
= Hψ. (2.23)

C. Spin-torsion coupling

In order to make the coupling of spin and torsion explicit, we now use the decomposition

of the connection into the Riemannian and post-Riemannian parts (2.8)-(2.10). Substituting

(2.8) into (2.22), we find

Υ = Υ̃ + V cŤ 0̂, Ξâ = Ξ̃â − V Ť â. (2.24)

The tilde, as usual, denotes the Riemannian quantities

Υ̃ = V ǫâb̂ĉΓ̃
âb̂ĉ

= −V ǫâb̂ĉC
âb̂ĉ
, Ξ̃â =

V

c
ǫ
âb̂ĉ

Γ̃0̂
b̂ĉ = ǫ

âb̂ĉ
Qb̂ĉ, (2.25)

which are constructed in terms of the following auxiliary objects:

Q
âb̂

= gâĉW
d
b̂

(
1

c
Ẇ ĉ

d +Ke∂eW
ĉ
d +W ĉ

e∂dK
e

)
, (2.26)

C
âb̂

ĉ =W d
âW

e
b̂
∂[dW

ĉ
e], C

âb̂ĉ
= g

ĉd̂
C
âb̂

d̂. (2.27)

The dot ˙ denotes the derivative with respect to the coordinate time t. As we see, C
âb̂

ĉ = −C
b̂â

ĉ

is the reduced anholonomity object for the spatial triad W â
b.
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The non-Riemannian parts in (2.24) are constructed from the components of the axial

torsion vector

Ť α = − 1

2
ηαµνλTµνλ, (2.28)

where ηαµνλ is the totally antisymmetric Levi-Civita tensor.

As a result, we can explicitly identify the spin-torsion coupling

− ~cV

4

(
Σ·Ť + cγ5Ť

0̂
)
, (2.29)

which comes from the last terms of the Dirac Hamiltonian (2.21). As usual, Ť = {Ť a}.

III. FOLDY-WOUTHUYSEN TRANSFORMATION FOR DIRAC PARTICLE

Let us consider the purely gravitational case first and drop the terms depending on the

electromagnetic field. In order to reveal the physical contents of the Schrödinger equation

(2.23), we need to go to the Foldy-Wouthuysen (FW) representation. We can apply a general

method for constructing the FW transformation developed in Ref. [44] to the exact Dirac

Hamiltonian (2.21).

Omitting the technical details (see [40–42]) we then find for the FW Hamiltonian:

HFW = H(1)
FW +H(2)

FW +H(3)
FW . (3.1)

The three terms read, respectively,

H(1)
FW = βǫ′ +

~c2

16

{
1

ǫ′
,
(
2ǫcaeΠe{pb,Fd

c∂dF b
a}+Πa{pb,F b

aΥ̃}
)}

+
~mc4

4
ǫcaeΠe

{
1

T ,
{
pd,Fd

cF b
a∂bV

}}
, (3.2)

H(2)
FW =

c

2
(Kapa + paK

a) +
~c

4
ΣaΞ̃

a

+
~c2

16

{
1

T ,
{
Σa{pe,F e

b},
{
pf ,

[
ǫabc(

1

c
Ḟ f

c −Fd
c∂dK

f +Kd∂dF f
c)

− 1

2
F f

d

(
δdbΞ̃a − δdaΞ̃b

)]}}
}
, (3.3)

H(3)
FW =

~

2
ΣaΩ(T )

a . (3.4)
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Here the curly brackets { , } denote anticommutators and we introduced the operators

Ω(T )
a = − c

2
V δabŤ

b̂ + β
c3

8

{
1

ǫ′
, {pb,F b

aV Ť
0̂}
}

+
c2

16

{
1

T ,
{
{pe,F e

b},
{
pf ,F f

dV (δ
dbŤ â − δdaŤ b̂)

}}}
, (3.5)

ǫ′ =

√
m2c4V 2 +

c2

4
δac{pb,F b

a}{pd,Fd
c}, T = 2ǫ′

2
+ {ǫ′, mc2V }. (3.6)

The first two terms (3.2) and (3.3) determine the dynamics of the Dirac fermion on the

Riemannian spacetime manifold, whereas (3.4) with (3.5) gives the general description of

the contribution of torsion field to the FW Hamiltonian. In the absence of torsion, we

recover the previous results [36–42].

The equation of spin motion is obtained from the commutator of the FW Hamiltonian

with the polarization operator Π = βΣ:

dΠ

dt
=
i

~
[HFW ,Π] = Ω×Π. (3.7)

As a special case, let us consider the flat Minkowski metric with V = 1, Ka = 0,W â
b = δab .

The spin precesses under the action of the torsion with the angular velocity Ω = Ω(T ), where

Ω(T ) = − c

2
Ť + β

c3

8

{
1

ǫ′
,
{
p, Ť 0̂

}}
+
c

8

{
c2

ǫ′(ǫ′ +mc2)
,
({

p2, Ť
}
−

{
p, (p · Ť )

})}
. (3.8)

For slow nonrelativistic particles, this reduces to the earlier results of [30–35].

IV. NONMINIMAL COUPLING: COVARIANT DIRAC-PAULI EQUATION

The conventional covariant Dirac equation disregards the anomalous magnetic moment

and the electric dipole moment. Experimental search of the dipole moments of leptons and

proton [45–47] (in particular in the study of physics beyond the Standard Model) encom-

passes towards the extensions of this equation, admitting a nonminimal coupling to the

electromagnetic field. Taking into account the efforts to check the validity of the funda-

mental equivalence principle for particles with mass and spin (see Refs. [48–59], e.g.), it

is necessary to investigate the possible nonminimal coupling to the gravitational field. For

example, a possible violation of Einstein’s equivalence principle can be manifest in the spin

coupling to the Earth’s rotation. In Ref. [60], the bound on the anomalous gravitomagnetic

moment (AGM) has been obtained from the re-analysis of the earlier experimental data.
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In order to develop a theoretical framework for the discussion of these issues, we consider

here the covariant extension of the Dirac equation by going beyond the minimal coupling

principle which is encoded in Eq. (2.13).

A. Anomalous magnetic moment and electric dipole moment

In simple terms, the minimal coupling means that a gauge field enters the matter La-

grangian only via the covariant derivatives of the matter field. The nonminimal coupling is

featured by the presence of explicit “Pauli terms” proportional to the gauge field strength.

Let us discuss the electromagnetic interaction first. As one knows, the nonminimal term

µ′

2c
FijΨσ

ijΨ, (4.1)

added to the Dirac Lagrangian (2.15), accounts for the possible anomalous magnetic moment

(AMM) of a fermion particle coupled directly to the electromagnetic field strength tensor

Fij = ∂iAj − ∂jAi.

Noticing that σij = eiαe
j
βσ

αβ, we conclude that physically important are the anholonomic

components of the field Fαβ = eiαe
j
βFij . Introduce now the dual tensor by Gαβ =

1

2
ηαβµνF

µν .

The Lagrangian (2.15), modified by nonminimal coupling terms

µ′

2c
FαβΨσ

αβΨ+
δ′

2
GαβΨσ

αβΨ (4.2)

describes the general case of a fermion with AMM and an electric dipole moment (EDM).

The two coupling parameters have the dimension [µ′] = [q~/2m] of the magnetic dipole

(nuclear magneton), and [δ′] = [q l] of the electric dipole (charge times length), respectively.

Taking into account the nonminimal coupling (4.2), we find from (2.15) an extended

Schrödinger equation with a modified Hamiltonian

H = βmc2V + qΦ+
c

2

(
πb F b

aα
a + αaF b

aπb
)
+
c

2
(K · π + π ·K)

+
~c

4
(Ξ·Σ−Υγ5)− β (Σ ·M+ iα ·P) . (4.3)

Here we defined (in terms of the electric Ea = Fâ0̂ and magnetic Ba =
1

2
ǫâb̂ĉF

b̂ĉ
fields)

M
a = V (µ′Ba + δ′Ea) , Pa = V (cδ′Ba − µ′Ea/c) . (4.4)
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B. Gordon decomposition of Noether currents

Before we turn to the analysis of the structure of the possible nonminimal coupling of a

Dirac fermion to the Poincaré gauge field, it is instructive to recall the Gordon decomposition

of the Noether currents [61–66].

For the sake of maximal clarity, let us consider the dynamics of a free Dirac particle

for which the Lagrangian (2.15) reduces to LD =
i~

2

(
Ψγαeiα∂iΨ− ∂iΨγ

αeiαΨ
)
− mcΨΨ,

with the trivial coframe eiα = δiα. This model, as it is well known, is invariant under the

group U(1) of the phase transformations of the wave function and under the Poincaré group

of motion of the underlying flat Minkowski spacetime. These symmetries give rise, via

the Noether theorem, to the three dynamical currents: the electromagnetic current, the

canonical energy-momentum tensor, and the spin tensor, respectively,

J i = qΨγiΨ, (4.5)

Σα
i =

i~

2

[
Ψγi∂αΨ− (∂αΨ)γiΨ

]
, (4.6)

Sαβ
i =

~

4
Ψ(γiσαβ + σαβγ

i)Ψ. (4.7)

These dynamical currents satisfy the conservation laws

∂iJ
i = 0, ∂iΣα

i = 0, ∂iSαβ
i = Σαβ − Σβα. (4.8)

The form of the last conservation law (of the total angular momentum) reflects the structure

of the Poincaré group as a semidirect product of translations times the Lorentz group.

A remarkable feature of the Dirac dynamical currents is that one can decompose them

into two pieces, namely, into the convective and polarizational parts as follows:

J i =
c

J
i + ∂jM

ij , (4.9)

Σα
i =

c

Σα
i + ∂jM̌α

ij , (4.10)

Sαβ
i =

c

Sαβ
i + ∂jMαβ

ij + M̌αβ
i − M̌βα

i. (4.11)

For the electromagnetic current (4.9) this was noticed by Gordon [61] shortly after Dirac

established his relativistic wave equation for a spin 1/2 particle, and later [62–66] this decom-

position was demonstrated for the particles of any spin and generalized for the gravitational

currents (4.10) and (4.11).
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The convective parts
c

J
i,

c

Σα
i,

c

Sαβ
i turn out to be the Noether currents (corresponding to

U(1) and Poincaré symmetries) for the convective Lagrangian LC =
~
2

2mc
∂jΨ∂jΨ− mc

2
ΨΨ.

It is worthwhile to notice that the field equation for LC coincides with the squared Dirac

equation �Ψ− m2c2

~2
Ψ = 0.

The polarizational currents (4.9)-(4.11) are expressed in terms of the dipole moments

M ij =
q~

2mc
ΨσijΨ, (4.12)

Mα
ij =

i~2

4mc

(
Ψσij∂αΨ− ∂αΨσ

ijΨ
)
, (4.13)

Mαβ
ij =

~
2

8mc

(
ΨσijσαβΨ+Ψσαβσ

ijΨ
)
, (4.14)

and the modified moment M̌α
ij = Mα

ij + eiαMk
jk − ejαMk

ik. The complex structure of the

Gordon decompositions (4.10) and (4.11) is again related to the semidirect product nature

of the Poincaré group.

The physical interpretation of the moments (4.12)-(4.14) is crystal clear: these are

Ampére dipoles generated by the matter currents [67] that carry electric charge, gravitational

translational charge (mass) and gravitational rotational charge (spin), respectively. As we

can see, the corresponding generators of U(1) and Poincaré groups explicitly determine the

structure of the respective dipole moment.

One can generalize these observations to the curved spacetime [62–66]. Qualitatively, this

amounts to the replacement of the partial derivatives by the covariant ones in the equations

above. However, the important point is that the form of the dipole moments (4.12)-(4.14)

remain the same for any spacetime geometry.

C. Poincaré gravitational moments

We are now in position to discuss the possible form of the nonminimal coupling of a Dirac

fermion to the Poincaré gauge gravitational field. The key is provided by the Pauli term

(4.1) which has the transparent structure of a product of the electromagnetic field strength

times the electromagnetic moment (4.12): ∼ FijM
ij .

Therefore, taking into account the existence of a dipole moment (4.12)-(4.14) for every

symmetry generator, we come to a natural conclusion that possible nonminimal coupling to

the Poincaré gauge follows the same electrodynamical pattern. Namely, the corresponding
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gravitational Pauli type terms have the same product structure of the translational gauge

field strength (2.6) times the translational moment (4.13) plus the rotational gauge field

strength (2.7) times the rotational moment (4.14): ∼ Tij
αMα

ij +Rij
αβMαβ

ij .

Explicitly, in addition to (4.1) the possible covariant gravitational nonminimal coupling

terms read as follows

ρ′

2
Tij

α
(
ΨσijDαΨ−DαΨσ

ijΨ
)
+
τ ′

2
Rij

αβΨ
(
σijσαβ + σαβσ

ij
)
Ψ. (4.15)

The two new coupling parameters have the same physical dimension [ρ′] = [τ ′] = [~l] (spin

times length).

We can simplify the second term in (4.15) by making use of the Dirac algebra to

− τ ′RΨΨ+ iτ ′P Ψγ5Ψ, (4.16)

where R = Rij
αβejαe

i
β is the curvature scalar, and P = Rαβγδη

αβγδ is the pseudoscalar of

the Riemann-Cartan curvature. When the torsion is zero, the nonminimal coupling (4.15)

reduces to −τ ′R̃ΨΨ. This is a typical curvature dependent term which arises naturally in

the squared Dirac equation.

It is worthwhile to mention that the field-theoretic models with the nonminimal coupling

of the type (4.15) were discussed not only in the framework of the Poincaré gauge theory

[28, 50] but also in the context of the search of the possible signatures of the Lorentz-violating

effects [68–70].

D. On gravitomagnetic and gravitoelectric moments

There is a formal analogy between gravitational and electromagnetic phenomena known

as the gravitoelectromagnetism [71–73] that can be established for the weak gravitational

fields. In the Riemannian framework of Einstein’s GR (no torsion), it was observed in Ref.

[41] that the squared Dirac equation features – in the weak field approximation – a common

effect that is produced on the spin by the electromagnetic and the gravitational (or inertial)

fields via the term σαβ (qFαβ/c+mΦαβ), where Φαβ =
{
πi,Γi αβ

}
/(2m). In the semiclassical

approximation, πi = mU i, and Φαβ coincides with the spin transport matrix in a gravita-

tional field (see [40] and [74]). Making this observation, one could expect that a Dirac

particle may have a nontrivial gravitomagnetic moment along with the magnetic moment.
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The theoretical analysis [60] established a strong bound on the anomalous gravitomagnetic

moment from experiment [75].

However, such weak-field considerations are not covariant. The electromagnetic field

strength Fij is tensor and hence σαβFαβ = σijFij is invariant under arbitrary coordinate

and Lorentz frame transformations. In contrast, the local Lorentz connection Γi αβ is not

a tensor, hence σαβΦαβ is not an invariant object. An attempt to extend σαβΦαβ via the

identity [41]

gij(~2DiDj + πiπj) =
~m

2

[
σαβΦαβ − ~

8m

(
2Γi

αβΓi
αβ + iεαβµνΓi

αβΓi µνγ5
)]

(4.17)

also fails since both sides are non-covariant in view of the non-covariance of πi.

We thus conclude that the anomalous gravitomagnetic moment is not allowed in the co-

variant Dirac-Pauli theory with a nonminimal coupling of a fermion to the Poincaré gauge

gravitational field. This demonstrates a limited nature of analogies between gravitational

and electromagnetic interactions observed in the weak-field approximation. The same con-

clusion is valid for the anomalous gravitoelectric moment. It is worthwhile to recall that the

analysis of the gravitational form-factors of Dirac fermions by Kobzarev and Okun [76] (see

also [77, 78]) have shown that the anomalous gravitomagnetic and gravitoelectric moments

should be strictly zero.

For the Riemann-Cartan geometry, the terms (4.15) open a different possibility for a non-

minimal coupling of the Poincaré gauge gravitational field with the gravitational moments

of a fermion particle.

V. SPIN-1/2 PARTICLE IN MAGNETIC FIELD AND ROTATING FRAME

In the next section we will estimate the possible effects of the spacetime torsion on the

basis of the experimental data for the cold neutrons and atoms affected by the gravitational

field of the rotating Earth. Here we provide the necessary theoretical framework for this

analysis. The reference frame rotating with the angular velocity ω is given by [79]

V = 1, W â
b = δab , Ka = − (ω × r)a

c
. (5.1)

Substituting this into the Hamiltonian (2.21), we find the Schrödinger description of a

Dirac particle in the uniform magnetic field B and rotating frame

H = βmc2 + cα · π − ω · λ− ~

2
ω ·Σ− ~c

4

(
Ť 0̂cγ5 + Ť ·Σ

)
. (5.2)
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Here λ = r × π = −π × r and the torsion effects are included.

Applying the FW transformation to this Hamiltonian, we find

HFW = H0 +H1, (5.3)

where

H0 = βǫ− ω · λ− ~

2
ω ·Σ+

~c3

16

{
1

ǫ
,
{
π ·Π, Ť 0̂

}}
− ~c

4
Ť ·Σ

+
~c

16

{
c2

ǫ(ǫ+mc2)
,

[{
π2, Ť ·Σ

}
− 1

2

{
Σ · π, (π · Ť + Ť · π)

}]}
, (5.4)

H1 =
e~c

8

{
1

ǫ(ǫ+mc2)
,Σ× (G× π − π ×G)

}
. (5.5)

Here we take into account that q = e and denote

ǫ =
√
m2c4 + c2π2 − e~c2Σ ·B, G = B × (ω × r). (5.6)

In what follows we identify ω with the angular velocity of the Earth. Evidently, ω × r is

the particle velocity in the inertial system related to the centre of the Earth. Eq. (5.5)

describes the main correction to the Hamiltonian. Next-to-leading order corrections to H0

are of order of ~2 and, moreover, they do not depend on spin. H1 is much less than H0 and

can usually be neglected. The corrections to H0 are of the same order for Dirac particles

both in uniform and nonuniform magnetic fields.

For the actual experimental conditions we have |e~B| ≪ m2c2 in (5.5), that is the mag-

netic field is much smaller than the critical field |B| ≪ Bc = m2c2/e~. This allow us to take

into account only terms linear in the magnetic field. In this approximation,

ǫ = ǫ′ − e~c2

2ǫ′
Σ ·B = ǫ′ − µ0

γ
Σ ·B, ǫ′ =

√
m2c4 + c2π2, (5.7)

where µ0 =
e~

2m
is the Dirac magnetic moment and γ =

ǫ′

mc2
is the Lorentz factor.

Let us now consider the spin dynamics described by the precession equation (3.7). Using

the FW Hamiltonian (5.3), we then find the corresponding operator of the angular velocity

of the spin rotation:

Ω = − β
2µ0

~γ
B − ω − c

2
Ť + β

c3

8

{
1

ǫ′
,
{
π, Ť 0̂

}}

+
c

8

{
c2

ǫ′(ǫ′ +mc2)
,

[{
π2, Ť

}
− 1

2

{
π, (π · Ť + Ť · π)

}]}
. (5.8)
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Here the contribution of H1 is neglected. The resulting expression is sufficiently precise for

realistic magnetic field in the actual experiment.

For a more general case of a fermion spin-1/2 particle with a nontrivial magnetic moment

(µ′ 6= 0 and δ′ = 0) in a magnetic field and in rotating frame the dynamics is described by

the Hermitian Hamiltonian (4.3). It reads explicitly

H = βmc2 + cα · π − ω · λ− ~

2
ω ·Σ− ~c

4

(
Ť 0̂cγ5 + Ť ·Σ

)
− µ′Π ·B. (5.9)

As compared to Eq. (5.2), this equation includes the contribution of the AMM.

When the magnetic field is uniform, the FW transformation of (5.9) results in

HFW = H0 +H1 +H2, (5.10)

where H0 and H1 are defined by (5.4) and (5.5), whereas the last term is equal to

H2 = −µ′Π ·B +
µ′

4

{
c2

ǫ′(ǫ′ +mc2)
, [(B · π)(Π · π) + (Π · π)(π ·B)]

}
(5.11)

Taking this term into account, the angular velocity of spin rotation (5.8) is modified:

Ω = −ω − β

{
µ0mc

2

~ǫ′
,B

}
− 2β

µ′

~
B +

µ′

2~

{
c2

ǫ′(ǫ′ +mc2)
,
[
(B ·π)π + π(π ·B)

]}

− c

2
Ť + β

c3

8

{
1

ǫ′
,
{
π, Ť 0̂

}}
+
c

8

{
c2

ǫ′(ǫ′ +mc2)
,
[{
π2, Ť

}
−
{
π, (π · Ť )

}]}
.(5.12)

Evaluating the anticommutators in Eqs. (5.11) and (5.12), we can find the effects of a

possible non-uniformity of the magnetic field.

VI. EXPERIMENTAL BOUNDS ON SPIN-TORSION COUPLING

The theoretical analysis of the dynamics of spin underlied the discussion of possible

verifications of the Poincaré gauge gravity [80–84], see also [28, 30, 31]. As compared to

the extensive theoretical research, only few experimental studies were directly devoted to

the search of the spin-torsion coupling [22, 29, 85]. However we can use the theoretical

framework established in our paper to find observational bounds on spin-torsion coupling

from the experimental data available in the literature.

In a large class of experiments, the dynamics of freely precessing nuclear spins in a uni-

form magnetic field was investigated by making use of comagnetometers with two different

kinds of atoms in S-states. Ratios of their nuclear g-factors were either defined with a needed
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precision or measured during an experiment. More specifically, the relevant measurements

were reported [75] for the experiment with 199Hg and 201Hg atoms devoted to the search of

a hypothetical scalar-pseudoscalar interactions. The atoms were at rest. The experimental

data [75] was earlier used in [60] to derive estimates for the anomalous gravitomagnetic

moment. Here we exclude the latter from our consideration since the the anomalous gravit-

omagnetic moment cannot be introduced in a fully consistent covariant way. To determine

bounds on the spacetime torsion, we also disregard the scalar-pseudoscalar interactions and

present the spin-dependent part of the FW Hamiltonian as follows:

HFW = − (µ0 + µ′)B ·Π− ~

2
ω ·Σ− ~c

4
Ť ·Σ. (6.1)

It has been demonstrated in [86] that the classical limit of relativistic FW Hamiltonians

can be obtained by a simple replacement of quantum mechanical operators with correspond-

ing classical quantities. Therefore, the classical limit of Hamiltonian (6.1) reads

H = − gN
µN

~
B · s− ω · s− c

2
Ť · s, (6.2)

where gN is the nuclear g-factor and µN is the nuclear magneton.

Let us denote two kinds of atoms by the subscripts 1 and 2. The measured ratio of Zeeman

frequencies for transitions between neighbouring atomic levels, R = ν2/ν1, depends on the

direction of the magnetic field B and on the spin-torsion coupling. Two opposite directions

of the magnetic field were used in experiment [75]. The calculation of the difference of these

ratios for the two opposite directions (labeled by ± subsripts below) of magnetic field is

similar to the derivations done in Ref. [60] and the result reads

R+ − R− = ±1 − G
ν1

[
2f cos θ +

c

2π
|Ť | cosΘ

]
, G =

g2
g1
. (6.3)

Here θ is the angle between the direction of the magnetic field and the Earth’s rotation axis,

whereas Θ is the angle between B and the torsion Ť , f = ω/(2π) is the Earth’s rotation

frequency, and ν1 is the Zeeman frequency for atoms of the first kind. The experimental

conditions of [75] for 199Hg and 201Hg atoms correspond to the angle θ ≈ 0, and the ratio

of g-factors is G = −0.369139. Using the experimental data from [75], we then obtain the

restriction on the absolute value of the spacetime torsion:

~c

4
| Ť | · | cosΘ| < 2.2× 10−21 eV, |Ť | · | cosΘ| < 4.3× 10−14m−1. (6.4)
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In the same manner, we can re-analyze the similar experiments [88–91] where the differ-

ence of the weighted Zeeman frequencies were measured for He and Xe atoms:

|∆ω| = |ω2 − Gω1| =
∣∣∣(1− G)

(
ω cos θ +

c

2
|Ť | cosΘ

)∣∣∣ , G =
g2
g1
. (6.5)

Making use of the experimental data presented in Sec. 4.3 of Ref. [88], we can extract the

new restriction on the minimal coupling of torsion (with the g-factor ratio G = gHe/gXe =

2.75408159(20), and (1− G)ω cos θ = − 6.87263× 10−5 rad/s):

~c

2
| Ť | · |(1− G) cosΘ| < 4.1× 10−22 eV, |Ť | · | cosΘ| < 2.4× 10−15m−1. (6.6)

Equations (6.4) and (6.6) present the strong new bounds on the spacetime torsion.

VII. DISCUSSION

In this paper, we have studied the dynamics of the Dirac fermion particle in the framework

of the Poincaré gauge gravity theory. This problem is of considerable interest because

one cannot probe the possible deviations of the spacetime structure from the Riemannian

geometry with the help of the spinless matter (massive test particles or extended test bodies)

even if the latter is characterized by a macroscopic angular momentum. Only matter with

intrinsic spin is affected by the spacetime torsion [18, 19], and in this sense a Dirac fermion

appears to be a natural measuring device for the torsion experiments.

The quantum dynamics of the spin-1/2 particle minimally coupled to an arbitrary

Poincaré gauge field (eαi ,Γi
αβ) was analysed in detail in Secs. IIA-III and the Foldy-

Wouthuysen Hamiltonian was derived with no assumptions about the weakness of the

fields. This central result underlies the subsequent study of the behaviour of the spin under

the influence of the external fields (electromagnetic, inertial, Riemannian gravitational and

non-Riemannian torsion).

Possible covariant extensions of the Dirac theory to the nonminimal Pauli-type coupling

were discussed in Sec. IV, where the important role of the gravitational moments (trans-

lational and Lorentz) was clarified. They are introduced on the basis of the fundamental

Gordon decomposition technique of the Noether currents [61–66]. These gravitational mo-

ments (together with their Hodge duals) provide a regular way to construct a consistent

covariant theory of a Dirac fermion particle with an intrinsic dipole structure induced by

the physical Noether charges.
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It is worthwhile to mention that the analysis in Sec. IVD proved that the anomalous

gravitomagnetic and gravitoelectric moments cannot be introduced in a covariant way for

Dirac fermions. The earlier results of Kobzarev and Okun [76] relate the validity of the

equivalence principle to the absence of both the anomalous gravitomagnetic and the grav-

itoelectric dipole moment, defined as the formal gravitational analogs of the anomalous

magnetic moment and the electric dipole moment, respectively. This important point is

apparently under-appreciated in the literature (for example, it is not mentioned in the nice

recent review [29]). Relations obtained by Kobzarev and Okun predict equal frequencies

of the precession of all classical and quantum spins in any curved spacetimes [59]. In the

weak-field approximation, the analysis [60] of the earlier experimental data has put a bound

of about 4% on the anomalous gravitomagnetic moment. As mentioned in Ref. [29], the

experimental data by Kornack et al [87] give the restriction of 3%, whereas a stronger re-

striction of 0.9% has been obtained in Ref. [92] on the basis of the experimental data of

Ref. [88].

In Sec. VI, we have established the new strong bounds on the possible background space-

time torsion for the minimally coupled Dirac fermion. The results obtained are consistent

with the earlier estimates of the torsion derived from the Hughes-Drever type experiments

[93], and with the experimental limits found in the framework of the search of the Lorentz

symmetry violations [94].
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