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The Weyl-Cartan Gauss-Bonnet gravity
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In this paper, we consider the generalized Gauss-Bonnet action in 4-dimensional Weyl-Cartan
space-time. In this space-time, the presence of torsion tensor and Weyl vector implies that the
generalised Gauss-Bonnet action will not be a total derivative in four dimension space-time. It will
be shown that the higher than two time derivatives can be removed from the action by choosing
suitable set of parameters. In the special case where only the trace part of the torsion remains, the
model reduces to GR plus two vector fields. One of which is massless and the other is massive. We
will show that there exists a region in parameter space where the model is free from tachyon and
Ostrogradski instabilities.

PACS numbers: 04.50.Kd, 04.20.Fy

I. INTRODUCTION

In 1918 Weyl proposed a new geometry to unify elec-
tromagnetism with Einstein’s general relativity [1]. In
Riemanian geometry one has a priori condition that the
length of a vector should not change during the parallel
transportation. In the Weyl geometry, this assumption is
dropped and so a parallel transported vector has different
length and direction with respect to the original vector.
The gravitational theory which is built on the Weyl ge-
ometry is known as the Einstein-Weyl gravity [1]. In
Einstein-Weyl gravity the connection is no longer metric
compatible, so, the covariant derivative of the metric is
not zero. Instead one has the relation

∇̃µgνρ = Qµνρ, (1)

where the tensor Qµνρ is symmetric with respect to its
last two indices. Weyl proposed the special case Qµνρ ∝
wµgνρ for his theory where wµ is the Weyl vector. One
of the important consequences of this geometry is that
the unit vector changes through parallel transportation.
Suppose that the length of an arbitrary vector field Aµ is
l. During the parallel transportation, the variation of the
length of Aµ can be written in terms of the Weyl vector
as

dl = lwµdx
µ. (2)

For a closed curve, the length of the vector Aµ changes
as

l → l −
∫

S

lWµνdS
µν , (3)

where S is the area of the closed curve, dSµν is the in-
finitesimal element of the surface, and

Wµν = ∂µwν − ∂νwµ, (4)
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is called the Weyl’s length curvature which is the same as
the electromagnetic field strength. This implies that one
has the freedom to choose the unit length at each point,
which is the Weyl gauge freedom [1]. A variety of works
have been done in the Weyl geometry including the cos-
mology [2], relations to scalar-tensor [3] and teleparallel
theories [4].

One can also restrict the form of Weyl vector to be a
derivative of a scalar as wµ = ∂µφ [5]. In this case the
length curvature Wµν vanishes and one can then define
a fixed unit length at each point. We note that the unit
length varies at different points. The resulting theory is
known as the Weyl integrable theory [6].

Another generalization of Einstein gravity can be pro-
posed by assuming existence of an assymetric connection
on the space-time manifold. The first attempt for this
purpose is due to Eddington in 1921 in order to general-
ize the Einstein’s general relativity to get some insights
about microscopic Physics [7]. The major attempt in this
way was done by Cartan in 1922 where he defined the
torsion tensor as the antisymmetric part of the general
connection [8]. The theory based on this assumption is
called the Einstein-Cartan theory. Cartan believed that
the torsion tensor should be related in some way to the
angular momentum of the matter content of the universe.
So, the torsion should vanish in the absence of matter [8].
In Einstein-Cartan theory the metric and torsion tensors
are considered as independent dynamical variables. The
energy-momentum tensor of a massive spin particle is in
general asymmetric. So, one can not consider the spin
massive particle as a source in Einstein’s general relativ-
ity. This is the main motivation for the use of Einstein-
Cartan theory to consider the gravity theory of a mas-
sive spin particle [9]. Many works have been done in
the context of torsion theories, including the teleparallel
theories [10], and the combinations of Weyl and Cartan
space-times [11, 12].

There is another way to generalize the Einstein’s gen-
eral relativity, by adding to the Ricci scalar, some other
higher order combinations of the Riemann tensor and its
contractions, as in f(R) gravity theories [13, 15]. An-
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other attempt was done by Kretschmann [14] in 1917 by
introducing the action of the form

SK =

∫

d4x
√
−gRµνρσR

µνρσ, (5)

instead of the Einstein-Hilbert action. The above action
has higher than second order time derivatives of the met-
ric in its field equation and hence contains ghost insta-
bilities. It turns out that the unique combination of two
Riemann tensors and its contractions which leads to at
most second order time derivatives in the field equation
is of the form

SGB =

∫

d4x
√
−g(RµνρσR

µνρσ − 4RµνR
µν +R2), (6)

which is called the Gauss-Bonnet term. In four space-
time dimensions, this term can be written as a total
derivative, and can be dropped from the field equations
[15]. This leads to the conclusion that in 4D, the Rie-
manian geometry together with the condition of stability
has a unique candidate for the gravitational action, which
is the Einstein-Hilbert action.
In non-Riemanian geometries such as Weyl and Cartan

geometries, the above conclusion is no longer true and
the Gauss-Bonnet term will not become total derivative.
In [16] the Gauss-Bonnet combination was obtained in
the context of Weyl geometry, and it turns out that the
remaining term in 4D is the Weyl vector kinetic term

SGB ∝
∫

d4x
√
−gFµνF

µν . (7)

It is the aim of the present paper to generalize the above
argument to the case of Weyl-Cartan space-time. Simi-
lar to the Einstein-Weyl space-time, in the Weyl-Cartan
space-time the Gauss-Bonnet term will not be a total
derivative. The theory is not in general Ostrogradski
stable. In order to have a stable theory one should con-
strain the parameter space of the model as we will do in
the next section.
The Weyl-Cartan model has also been considered in

the context of Weitzenboch gravity in [11]. The authors
have added the kinetic terms for the Weyl vector and the
torsion tensor by hand, using the trace of torsion tensor.
We will see in this paper that considering the Gauss-
Bonnet action can produce automatically all the kinetic
terms of [11]. It is worth mentioning that the theory
[11] has a potential ghost, noting that in the Weitzen-
boch gravity the torsion has some relation to the Ricci
scalar, and as a result the torsion kinetic term has more
than second time derivatives. However, the present pa-
per is free from the aforementioned instability due to
the absence of the Weitzenboch condition. One should
note that the torsion self-interaction term ∇µT∇µT with
T = T µTµ and Tµ = T ν

µν , in [11] can not be produced in
the present context, because it is fourth order in the tor-
sion and second order in derivatives. In order to produce
such term one should consider the higher order Lovelock
terms in the action.

The present theory in general may have some tachyon
instabilities but the analysis is very complicated because
of the appearance of the torsion tensor. In section II the
generalized Gauss-Bonnet action in Weyl-Cartan space-
time is introduced and shown that the higher than two
time derivatives are removed in the action. In section III
we will consider a restricted form for the torsion tensor
and obtain the healthy region of the parameter space in
which all instabilities are removed.

II. THE MODEL

The Weyl geometry proposal induces a new vector
which results in non-metricity of the connection i.e.
∇̄µgαβ 6= 0 where ∇̄µ is the covariant derivative with
respect to Weyl connection. Mathematically, the Weyl
geometry has a special form of non-metricity i.e.

∇̄µgνσ = 2wµgνσ, (8)

where wµ is the Weyl vector. So the Weyl connection can
be obtained as

Γ̄λ
µν =

{

λ
µ ν

}

+Qλ
µν , (9)

where

Qλ
µν = gµνw

λ − δλµwν − δλνwµ (10)

and
{

λ
µ ν

}

is the Christoffel symbol. In addition one may
generalize the above connection by adding the effects of
the torsion into it as

Γλ
µν =

{

λ
µ ν

}

+Qλ
µν + Cλ

µν . (11)

Note that the third term is named contorsion tensor de-
fined as

Cλ
µν = T λ

µν − gλβgσµT
σ
βν − gλβgσνT

σ
βµ, (12)

where we have defined the torsion tensor T λ
µν as

T λ
µν =

1

2

(

Γλ
µν − Γλ

νµ

)

. (13)

It is easy to show that the additional torsion does not
affect the non-metricity relation i.e. the relation (8) is
still valid. By using the metric one can build Cλµν =
gλσC

σ
µν which is antisymmetric with respect to its two

first indices by having in mind that the torsion tensor is
antisymmetric with respect to its down indices in T σ

µν .
We define the curvature tensor as

Kλ
µνσ = ∂νΓ

λ
µσ − ∂σΓ

λ
µν + Γα

µσΓ
λ
αν − Γα

µνΓ
λ
ασ.

(14)

One can decompose the curvature tensor into four parts
as

Kλ
µνσ = Rλ

µνσ + Cλ
µνσ +Qλ

µνσ + Iλµνσ, (15)
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where the first term in the right hand side of the above
relation is the Riemann curvature tensor defined by the
Christoffel symbol and we have defined

Cλ
µνσ = ∇νC

λ
µσ −∇σC

λ
µν + Cα

µσC
λ
αν − Cα

µνC
λ
ασ,

(16)

Qλ
µνσ = ∇νQ

λ
µσ −∇σQ

λ
µν +Qα

µσQ
λ
αν −Qα

µνQ
λ
ασ,

(17)

Iλµνσ = Cα
µσQ

λ
αν +Qα

µσC
λ
αν − Cα

µνQ
λ
ασ −Qα

µνC
λ
ασ,

(18)

where ∇µ is covariant derivative with respect to the
Christoffel symbol and Iλµνσ represents interaction be-
tween non-metricity and torsion parts. It is possible to
rewrite the purely non-metricity part (17) as

1

2
Qλ

µνσ =− δλµ∇[νwσ] − δλ[σ∇ν]wµ − gµ[ν∇σ]w
λ

+ δλ[νwσ]wµ + gµ[νδ
λ
σ]w

2 + gµ[σwν]w
λ (19)

and the interaction part (18) as

1

2
Iλµνσ = −wαCαµ[σδ

λ
ν] − wαCλ

α[σgν]µ

− wλCµ[νσ] − wµC
λ
[σν]. (20)

In order to construct a higher order gravity models e.g.
Gauss-Bonnet action, one should multiply the curvature
tensor to itself. There are seven different ways to do this

KλµνσK
λµνσ,KλµνσK

µλνσ,KλµνσK
νσλµ,

KλµνσK
λνµσ,KλµνσK

νµλσ,KλµνσK
µσλν ,

KλµνσK
σλµν . (21)

One should note that if the Weyl vector and torsion ten-
sor be zero, only the first three of the above terms reduce
to the combination similar to Gauss-Bonnet term, which
we will only use them in the following. As is well-known,
the Riemann tensor has only one independent contrac-
tion.
The Weyl part of the above curvature tensor has two

independent contractions

Qλ
λµν = −4Wµν ,

Qλ
µλν = −∇µwν + 3∇νwµ + gµν∇λw

λ

+ 2wµwν − 2gµνw
2, (22)

where we have defined

Wµν = ∇µwν −∇νwµ. (23)

The contortion part of the curvature tensor has only one
independent contraction

Cλ
λµν = 0,

Cλ
µλν = ∇λC

λ
µν +∇νCµ, (24)

where we have defined Cµ = Cµν
ν .

The interaction part has also one independent contrac-
tion which can be written as

Iλλµν = 0,

Iλµλν = −wα(Cαµν + Cνµα). (25)

For the Riemann curvature tensor, we have Rλ
λµν = 0

and Rλ
µλν = Rµν where Rµν is the standard Ricci tensor.

For the contracted curvature tensor, the two independent
contractions are

Kµν ≡ Kλ
λµν , Kµν ≡ Kλ

µλν .

There are four independent combinations of them as fol-
lows

KµνK
µν , KµνKµν , KµνKµν , KµνKνµ. (26)

All the above terms are proportional to RµνRµν in the
case of zero torsion tensor and Weyl vector.
There is only one independent curvature scalar of the

tensor Kλ
µνσ which can be defined by contracting the

tensor Kµν with the metric

K = R+ 6∇µw
µ − 6w2 + 2∇λC

λ − CαCα

+ CαµλC
αλµ − 4wαCα. (27)

Let us propose the following action

S =
1

2κ2

∫

d4x
√
−gK + SG, (28)

where SG is the Gauss-Bonnet action defined as

SG =
1

2κ2

∫

d4x
√
−g

[

α1K
αβγδKαβγδ + α2K

αβγδKγδαβ

− α3K
αβγδKβαγδ − 4β1KβγKβγ − 4β2KβγKγβ

− 4β3KαβK
αβ − 4β4KαβKαβ +K2

]

. (29)

To get the standard Gauss-Bonnet terms in the absence
of torsion and non-metricity we need to impose the fol-
lowing constraints on the coefficients

α1 + α2 + α3 = 1, (30a)

β1 + β2 + β3 + β4 = 1. (30b)

We should note that the above action is the most general
action for the second order higher gravity in the Weyl-
Cartan theory which reduces to the standard Gauss-
Bonnet action in the limit of zero Weyl and torsion.
In general the above action has some terms with higher

than second time derivatives. These terms can poten-
tially produce some instabilities which are known as the
Ostrogradski ghosts. These potentially dangerous terms
can be collected as
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SG ⊃ 4

∫

d4x
√
−g

{(

− 2Rµν∇µCν +R∇µCµ − 2Rµν∇µwν +R∇µwµ − 2Rµν∇αC µν
α +Rαδβγ∇αCβγδ

)

+ 2(β3 + β4)

[

Rµν∇µCν + 2Rµν∇µwν +R∇µwµ +Rµν∇αC µν
α

]}

= 8

∫

d4x
√
−g(β3 + β4)

[

Rµν∇µCν +Rµν∇αC µν
α

]

, (31)

where we have dropped total derivatives in the second
equality. In the above we have used integration by parts
and contracted second Bianchi identity. Note that we
have eliminated α1 and β1 using the relations (30). As
one can see, demanding absence of Ostrogradski ghosts
imposes a constraint on the coefficients as

β3 + β4 = 0. (32)

It means the five-dimensional space for coefficients in SG

reduces to a four-dimensional space by demanding ab-
sence of instabilities.
In order to write the action SG in detail, we decompose

the action into three parts. The terms which involve only
the Weyl vector can be collected as

SW = ρ

∫

d4x
√
−gWµνW

µν , (33)

with

ρ = −4(3 + 2α2 + 2α3 − 8β4 − 8β2),

and we have dropped the total derivative terms. The
terms which involves the contortion tensor can be written
as

SC =

∫

d4x
√
−g

[

− 4RαβγδCα
ν
γCβνδ − 8RαβCγCαγβ + 8RαβCα

γδCγδβ + 2RCαβγCαγβ + 4GαβCαCβ

+ (2− 2α2)

(

∇αCβγδ ∇αCβγδ −∇αCβγδ ∇δCβγα − 4∇αCβγδ Cβ
ν
αCγνδ + CαβγCα

δ
γCβ

νµCδνµ

− CαβγCα
δνCβ

µ
νCδµγ

)

+ 4α2∇αCβγδ ∇βCαδγ − 8α2∇αCβγδ Cα
ν
βCδνγ + 2α2C

αβγCα
δνCγ

µ
βCνµδ

− 2α2C
αβγCα

δνCγ
µ
δCνµβ + (4− 4 β2)

(

∇αCα
βγ ∇δCβδγ + 2∇αCβ ∇γCβγα − 2∇αCα

βγ CδCβδγ

+ 2∇αCα
βγ Cβ

δνCδνγ − 2∇αCβ CγCβγα + 2∇αCβ Cβ
γδCγδα − CαCβCα

γδCβγδ − 2CαCα
βγCβ

δνCδνγ

+ CαβγCαγ
δCβ

νµCνµδ −
1

2
CαβCαβ

)

+ 4 β2∇αCα
βγ ∇δCγδβ + 8 β2∇αCβ ∇γCαγβ − 8 β2∇αCβ CγCαγβ

− 8 β2∇αCα
βγ CδCγδβ + 8 β2∇αCα

βγ Cγ
δνCδνβ + 8 β2∇αCβ Cα

γδCγδβ − 4 β2C
αCβCα

γδCβδγ

− 8 β2C
αCα

βγCγ
δνCδνβ + 4 β2C

αβγCαγ
δCδ

νµCνµβ − 4C2∇αCα + 4∇αCα CβγδCβδγ + C4 − 2C2CβγδCβδγ

+ CαβγCαγβC
δνµCδµν

]

, (34)

where we have defined C2 = CµC
µ and

Cµν = ∇µCν −∇νCµ. (35)

One should note that the tensor Cµν is proportional to
the tensor Tµν constructed similarly with the torsion ten-
sor. One can see that the term TµνT

µν is produced natu-

rally in this model, which is also the kinetic term assumed
in [11].
The remaining terms of the action contain a variety

of possible interactions between the Weyl vector and the
contortion tensor we can be simplified as
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SI =

∫

d4x
√
−g

[

− 8RαβγδCαγβwδ + (8 β2 − 8α2)
(

∇αCα
βγ Cβ

δ
γwδ − Cαβ Cα

γ
βwγ − CαCα

βγCβ
δ
γwδ

−∇αCα
βγ Cγ

δ
βwδ + CαCα

βγCγ
δ
βwδ − CαβγCαγ

δCδ
µ

βwµ

)

+ (4 − 4α2)
(

2∇αCβγδ Cαβδwγ

+ 2∇αCβγδ Cβδαwγ + 2CαβγCα
δ
γCβ

µ
δwµ + w2CαβγCαγβ − w2CαβγCαβγ − Cβγδ Cβδγ∇αwα

)

+ (16 β2 − 8 β4 − 4α2 − 8)
(

CαβWαβ − 2∇αCα
βγ Wβγ + 2WαβCγCβγα − 2WαβCα

γ
βwγ + 2WαβCαwβ

)

+ (4− 4 β2)
(

CαCβwαwβ − w2C2 + w2CαβγCγ
δ
α − 2∇αCα

βγ Cγwβ − 2∇αCβ Cαwβ

+ 2CαCα
βγCβγ

δwδ + 2CαCβCα
γ
βwγ + 2wαCβ∇αCβ + 2CαCβγ

αCβ
δ
γwδ

)

− 8∇αCα
βγ ∇βwγ

+ 8∇αwγCα
γβ wβ + (8− 16α2 + 8 β2)C

αβγCαγ
δCβ

µ
δwµ + 8∇αwβ Cβ

γδCγδα − 8∇αwβ CγCαγβ

+ (16 + 8α2 − 24 β2)C
αCα

βγwβwγ + (−8− 8α2 + 16 β2)C
αβγCαγ

δwβwδ + 8α2∇αCβγδ Cαβγwδ

+ (−8 + 4α2 + 4 β2)C
αβγCα

δ
γwβwδ + (12 + 8α2 + 16 β4 − 32 β2)W

αβCαβ
γwγ − 8 β2∇αCα

βγ Cβwγ

+ (−8α2 − 8 + 16 β2)C
αβγCαγ

δCβδ
µwµ + (−8 + 16 β2)∇αCα

βγ Cβγ
δwδ + (8− 16 β2)∇αCβ Cαβ

γwγ

+ (−8α2 − 8− 16 β4 + 32 β2)W
αβCα

γδCγδβ + (−4α2 − 4 + 8 β2)C
αβγCαβ

δwγwδ

]

. (36)

It is worth mentioning that the term ∇αC
αβγWβγ con-

tains an interaction term between Weyl vector and tor-
sion tensor which was assumed in [12].
Finally, the full action of the theory can be written as

S =
1

2κ2

∫

d4x
√
−g

[

R− 6w2 − C2 + CαµλC
αλµ

− 4wαCα

]

+ SW + SC + SI . (37)

The torsion tensor can be decomposed irreducibly into

Tµνρ =
2

3
(tµνρ − tµρν) +

1

3
(Qνgµρ −Qρgµν) + ǫµνρσS

σ,

(38)

where Qµ and Sµ are two vector fields. The vector Qµ

is actually the trace of torsion over its first and third
indices. The tensor tµνρ is symmetric with respect to µ
and ν and has the following properties

tµνρ + tνρµ + tρµν = 0, gµνt
µνρ = 0 = gµρt

µνρ. (39)

One can decompose the contortion tensor according to
the above relation as

Cρµν =
4

3
(tµνρ − tρνµ) +

2

3
(Qµgνρ −Qρgµν) + ǫρµνσS

σ,

(40)

III. SPECIAL CASE FOR CONTORSTION

TENSOR

Let us assume that the contortion tensor has the fol-
lowin simple form

Cρµν = Q̂µgνρ − Q̂ρgµν , (41)

where we have assumed that tµνρ = 0 and Sσ = 0, and

we define the vector Q̂µ = 2
3Qµ.

The action can then be expanded as

S =
1

2κ2

∫

d4x
√
−g

[

R− 6w2 − 6Q̂2 + 12wαQ̂α

− 4(1 + α2 − 2)Q̂µνQ̂
µν

+ 8(2 + α2 + 2β4 − 4β2)Q̂µνW
µν

− 4(3 + 2α2 + 2α3 − 8β2 − 8β4)WµνW
µν

]

. (42)

In general the above action may have some ghost and or
tachyon instabilities. In order to examine this issue, we
first diagonalise the kinetic and potential terms for Q̂µ

and wµ with the result

S =
1

2κ2

∫

d4x
√
−g

[

R− 1

4
XµνX

µν − 1

4
YµνY

µν

− 1

2
m2XµX

µ

]

, (43)

where Xµν and Yµν are strength tensors respectively ac-
cording to vectorsXµ and Yµ which will be defined below.
As one can see from the above action, the theory contains
one massless and one massive vector field with mass

m2 =
3(A+ 2B + C)

B2 −AC
, (44)

where we have defined

A = −4− 4α2 + 8β2, (45a)

B = 8 + 8β4 + 4α2 − 16β2, (45b)

C = −12 + 32β4 − 8α2 + 32β2 − 8α3. (45c)
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The new fileds can be related to the original fields Q̂µ

and wµ as

Xµ =
2

√

2β2 − 1

[

(αβλ+ − λ−

√

(1 − α2)(β2 − 1))Q̂µ

+ (βλ+

√

1− α2 + αλ−

√

β2 − 1)wµ

]

, (46)

Yµ = − 2
√

2β2 − 1

[

(βλ−

√

1− α2 + αλ+

√

β2 − 1)Q̂µ

− (αβλ− − λ+

√

(1− α2)(β2 − 1))wµ

]

, (47)

where we have defined

α =

[

1

2

(

1 +
A− C

√

4B2 + (A − C)2

)]
1

2

, (48)

β = −
[

1

2

(

(A+ 2B + C)
√

4B2 + (A− C)2

4B2 + (A− C)2 + 2B(A+ C)
+ 1

)]
1

2

,

(49)

and

λ2
± = −1

2

(

A+ C ±
√

4B2 + (A− C)2
)

. (50)

In order to have a ghost and tachyon free theory we
should have m2 > 0 and the new fields (46) and (47)
should be meaningful. We thus conclude that the pa-
rameters α2, α3, β2 and β4 should satisfy the relations

m2 > 0, λ2
± > 0, (51)

together with reality of square roots. In general, the
above conditions can not be solved analytically in full
four dimensional parameter space. In the following, we
will concentrate our attention to some special cases.

A. Case I: β2 = 0 = α3 and α2 = 1

In this case the the action SG reduces to

SG =
1

2κ2

∫

d4x
√
−g

[

KαβγδKγδαβ − 4KβγKβγ

+ 4β4(KαβK
αβ −KαβKαβ) +K2

]

, (52)

and the constraints (51) satisfy if

−3

2
< β4 <

1

2

(

5
√
2− 7

)

. (53)

B. Case II: β2 = 0 = α3 and β4 = 0

In this case the the action SG reduces to

SG =
1

2κ2

∫

d4x
√
−g

[

(1− α2)K
αβγδKαβγδ

+ α2K
αβγδKγδαβ − 4KβγKβγ +K2

]

, (54)

and the constraints (51) satisfy if

2

1 +
√
5
< α2 < 2. (55)

C. Case III: β2 = 0 = α3

In this case the the action SG reduces to

SG =
1

2κ2

∫

d4x
√
−g

[

(1− α2)K
αβγδKαβγδ

+ α2K
αβγδKγδαβ − 4×KβγKβγ

+ 4β4(KαβK
αβ −KαβKαβ) +K2

]

, (56)

-6 -4 -2 0 2

0

5

10

15

Β4

Α
2

FIG1: Allowed range of β4 and α2 for the action (56) to
become ghost and tachyon free theory.

In the figure we have plotted the allowed region of param-
eter space (α2,β4) in order to have a ghost and tachyon
free bi-vector theory.

IV. CONCLUSION

In this paper, we have introduced a ghost and tachyon
free modified theory of gravity by generalizing the ge-
ometry to be the Weyl-Cartan space-time. Using the
standard Einstein-Hilbert term for this geometry, the ac-
tion reduces to the Ricci scalar, plus possible mass terms
for Weyl vector and the torsion tensor. In this case no
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kinetic terms for these two new fields can be produced.
In order to make the Weyl vector and the torsion ten-
sor dynamical, one can add some kinetic terms by hand,
which was done in [11].
In this paper, in order to produce kinetic terms for the

Weyl and torsion fields, we have generalized the action to
be of Gauss-Bonnet type. In 4D Riemannian geometry
the Gauss-Bonnet term becomes a total derivative and
dropped from the action. However in the Weyl-Cartan
geometry, this term produces a bunch of interaction and
kinetic terms for Weyl and torsion fields. In the Weyl-
Cartan geometry the curvature tensor has less symme-
tries than the Riemann tensor. So one can write more
than three quadratic terms according to the curvature.
In general, the resulting action does not reduce to the

standard Gauss-Bonnet action and may have some higher
derivative instabilities. Removing the above difficulties,
one can obtain a 4-parameter family of theories, which
has no Ostrogradski instability.

For further considerations, we have studied a special
case of the theory where only the trace part of the torsion
tensor is non-zero. In this case, the theory is reduced to
general relativity plus one massive and one massless vec-
tor fields. The absence of ghost and tachyon instabilities
will reduce the parameter space of the theory which we
have obtained them for some special cases. One should
note that in the full theory one can not specify the vi-
able values of the parameter space. In this paper, we
have proved that such region exists.
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