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Abstract

Dirac’s wave equation for a point electron in the electromagnetic Kerr–Newman spacetime is
studied in a zero-gravity limit; here, “zero-gravity” means G → 0, where G is Newton’s con-
stant of universal gravitation. The zero-G limit studied here eliminates the troublesome Cauchy
horizon of the Kerr–Newman spacetime and also its physically problematic acausal region of
closed timelike loops. While the gravitational features of the Kerr–Newman manifold vanish as
well when G→ 0, the limit retains the nontrivial topology associated with its ring singularity of
radius |a|, and its electromagnetic Appell–Sommerfeld fields with charge Q and ADM magnetic
dipole moment Qa. Moreover, one readily obtains (Q, I)-generalizations of this electromagnetic
zero-G Kerr–Newman (zGKN) spacetime with same charge Q but with magnetic dipole mo-
ments Iπa2, where I is the equivalent electric current supported on a ring of radius |a| in R3

which produces the same magnetic dipole moment in the far field multipole expansion. Dirac’s
equation for a point electron in such spacetimes is commented on, too. The following results
are obtained: First, by adapting an argument of Winklmeier–Yamada for the Dirac equation
of a point electron in the outer region of the Kerr–Newman black hole spacetime, combined
with a perturbation argument, it is shown that the formal Dirac Hamiltonian on the static
spacelike slices of the maximal analytically extended zGKN spacetime is essentially self-adjoint.
Next, with the help of an operator which anti-commutes with the Dirac Hamiltonian of a point
electron in any (Q, I)-generalization of the zGKN spacetime, it is shown that the spectrum of
any self-adjoint extension is symmetric about zero for any charge and magnetic dipole moment.
Then, exploiting the Chandrasekhar–Page–Toop separation-of-variables technique for Dirac’s
equation on a general Kerr–Newman spacetime it is shown that the Dirac operator on the
zGKN spacetime has a continuous spectrum with a gap about zero that contains a point spec-
trum. The point spectrum is associated with time-periodic normalizable solutions, representing
bound states of Dirac’s point electron in the electromagnetic field of the ring singularity of the
zGKN spacetime.

c©2014. The authors.
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1 Introduction

In 1976 Chandrasekhar [11, 10], Page [25], and Toop [36] showed that Dirac’s equation for a point
electron in the Kerr–Newman spacetime separates essentially completely1 in oblate spheroidal
coordinates. Although this remarkable discovery enabled detailed mathematical studies of the
behavior of a Dirac electron in a charged, rotating black hole spacetime [20, 5, 14, 15, 16, 17, 3, 39,
40, 4] (see also [12] for neutral rotating black holes), there are perplexing conceptual issues which
await clarification. Beside those that hark back to the enigmatic meaning of Dirac’s equation in
Minkowski spacetime, see Thaller [34], serious new issues arise because of the physically somewhat
questionable character of the Kerr–Newman solution, unveiled by Carter [8].

Namely, the maximal analytical extension of the stationary axisymmetric Kerr–Newman space-
time has a very strong curvature singularity on a timelike2 cylindrical surface whose cross-section
with constant-t hypersurfaces is a circle; here, t is a coordinate pertinent to the asymptotically
(at spacelike ∞) timelike Killing field that encodes the stationarity of the “outer regions” of the
Kerr–Newman spacetime. This circle is commonly referred to as the “ring” singularity. The re-
gion near the ring is especially pathological since it harbors closed timelike loops.3 Carter [8] also
showed that the maximal analytically extended Kerr–Newman manifold is “cross-linked through
the ring.”4 This non-trivial topology survives the vanishing-charge5 limit of the Kerr–Newman
manifold, which yields the maximal analytic extension [6] of Kerr’s solution [21] to Einstein’s vac-
uum equations (Rµν = 0), cf. [19]. Carter furthermore showed that this topology also survives the
vanishing-mass6 limit of the Kerr manifold, which yields an otherwise flat vacuum spacetime con-
sisting of two static spacetime ends which are cross-linked through the ring. This vanishing-mass
limit of the Kerr manifold coincides with the vanishing-mass limit of the family of static vacuum
spacetimes discovered, and completely described, a few years earlier by Zipoy [41]. Since Zipoy
seems to have been the first to discover this non-trivial topology in exact spacetime solutions to
Einstein’s vacuum equations, we henceforth will refer to it as the Zipoy topology.

In the black-hole sector of their parameter space the Kerr–Newman spacetimes also have a
Cauchy horizon and an event horizon. From the “safe perspective of an observer at spatial infinity”
the ring singularity, the acausal region, and the Cauchy horizon are invisible, being “hidden” behind
the event horizon, and no exotic or even objectionable physics would ever seem to happen: a Dirac
spinor wavefunction initially supported outside the event horizon will either keep spreading within
the outer region or eventually (as t → ∞) accumulate (in parts or wholly) at the event horizon,
see [16, 17]. However, mathematical (and theoretical) physicists may also want to study the
spinor wave function in other coordinates designed to “follow it across the event horizon,”7 yet

1In contrast to the familiar separation-of-variables results for, say, the Laplacian in a rectangular box or a cylinder
or a sphere, Chandrasekhar, Page, and Toop obtained a system of ODEs for functions of only one variable each, but
each of these ODEs is coupled to another one through some shared parameters.

2In a limiting sense of course, since the metric is singular on this surface.
3The timelike ring singularity of the Kerr–Newman manifold is itself the limit of closed timelike loops, for which

reason it is not possible to interpret this singular source of the stationary and axisymmetric Kerr–Newman electro-
magnetic fields outside of the event horizon as a “rotating charged ring.”

4The complement of a wedding ring in ordinary three-dimensional Euclidean space is topologically non-trivial,
too, but “looping through the ring once brings you back to where you began;” in a spacelike slice of the maximal
analytically extended Kerr–Newman spacetime “you need to loop through the ring twice to get back to square one.”

5By “charge” we mean the usual charge parameter in the solution.
6By “mass” we mean the usual mass parameter in the solution.
7When the analogous study was carried out by Oppenheimer and Snyder [24] for classical gaseous matter undergo-

ing gravitational collapse it leveled the ground for building our modern understanding of the physics of gravitational
collapse, involving the formation of black holes and their singularities. Poetically speaking their work revealed that
there is more physics in general relativity than meets the (distant observers) eye.
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it is neither clear how to continue in a “physically correct” manner beyond the Cauchy horizon8

nor what to make of the acausal region of closed timelike loops, nor how to correctly handle the
timelike singularity. Moreover, if one inquires into the “physics beyond the event horizon,” one
has the option of allowing the support of the initial spinor wave function to be spread over both
asymptotically flat ends, or some other parts of the maximal analytically extended Kerr–Newman
spacetime. It is not so clear which options (if any) are physically reasonable and which ones are
science fiction, although astrophysicists can argue for the “physical black hole spacetime,” i.e. the
part of the maximal analytically extended Kerr–Newman spacetime which is the asymptotic limit
of the topologically simple spacetime of a charged, rotating star collapsing into a black hole [30].

The horizons are absent in the hyper-extremal parameter regime. Even though the absence of
the Cauchy horizon is a welcome simplification, this regime is rarely studied because the absence
of the event horizon renders the singularity “naked,” and the (weak) cosmic censorship hypothesis,
according to which “nature abhors naked singularities” [26, 27], has (unfortunately) discouraged
physicists from investigating spacetimes with naked singularities. Yet once a piece of a Dirac
spinor wave function has crossed the event horizon of a Kerr–Newman black hole it is no longer
shielded from possible harm done by the spacetime singularity — viz., inside the event horizon the
singularity is naked —, and so one may as well study the effects of naked singularities directly. Be
that as it may, the hyper-extremal regime retains the closed timelike loops which according to the
standard interpretation of general relativity turn the entire manifold into a causally vicious set,
something that many physicists (including the authors) would regard as physically suspicious.

A strategy to rid the Kerr–Newman manifold from its Cauchy horizon, and all its other acausal
aspects, is to take a zero-gravity limit, which means taking G → 0, where G is Newton’s con-
stant of universal gravitation. This would be quite uninteresting if the zero-G limit of the Kerr–
Newman manifold would simply yield a Minkowski spacetime decorated with the electric field of
a point charge and the magnetic field of a point dipole, as one might be tempted to guess from
the asymptotically flat ends of the Kerr–Newman spacetime. However, as shown by one of us in
the accompanying paper [32], the zero-gravity limit of the maximal analytically extended Kerr–
Newman spacetime yields a static, flat, yet two-leafed, cross-linked spacetime which is decorated
with Appell–Sommerfeld [2, 29] electromagnetic fields9 whose sources appear to be certain “finite
charge and current distributions” supported by the one-dimensional ring.10 Although the gravita-
tional (viz.: curvature) aspects of the Kerr–Newman manifold, its event horizon included, vanish
in this limit too, one does retain the topological, the singular, and all the electromagnetic aspects
of the spacetime. Studies of the Dirac equation for a point electron in this zero-G Kerr–Newman
(zGKN) spacetime will therefore illuminate the role of the topological and electromagnetic aspects
of the Kerr–Newman manifold in regard to the relativistic quantum mechanics of the electron.

In this paper we study the Dirac equation for a point electron in static, electromagnetic, flat
spacetimes with Zipoy topology which include the zGKN spacetimes as special case, but which in
general can sport any Sommerfeld fields one wants. We will consider Sommerfeld fields which differ

8If instead of the Cauchy problem one studies t-periodic solutions, then one can continue across the Cauchy and
the event horizons using a weak matching procedure [14, 15]. However, Finster et al. [14, 15] found that no t-periodic
solutions exist which are normalized over a constant-t slice of the “physical black hole spacetime;” see main text.

9The zero-G limit of the electromagnetic Kerr–Newman fields yields fields originally discovered by Appell [2],
who obtained them from the Coulomb potential of a point charge by a complex translation of the charge’s position.
Appell noticed that the fields change sign when looping once through the ring, but did not conclude — apparently
— that they live naturally on a topologically nontrivial space. Sommerfeld [29] seems to have been first to introduce
“branched Riemann spaces,” three-dimensional analogues of topologically non-trivial Riemann surfaces, to which
we will refer as Sommerfeld spaces, and to construct electromagnetic fields (harmonic functions) on them, which in
general we will call Sommerfeld fields. Eventually Evans [13] and his students [23], [1] laid their rigorous foundations.

10Strictly speaking, the ring singularity is not part of the manifold; it’s rather a ring “defect.”
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from the Appell–Sommerfeld fields only in a single number, the ratio Iπa2/Qa of their magnetic
dipole moment to the magnetic dipole moment of the Appell–Sommerfeld fields of same charge Q;
here, |a| is the radius of the ring singularity. By constructing an operator that anti-commutes with
the pertinent Dirac Hamiltonian we show that the spectrum of any of its self-adjoint extensions
is symmetric about zero; this result holds for arbitrary (Q, I). All other results are obtained for
Dirac’s electron in the zGKN spacetime (Iπa2/Q|a| = 1): by adapting an argument of Winklmeier–
Yamada for the Dirac equation of a point electron in the outer region of the Kerr–Newman black
hole spacetime, we show that our formal Dirac Hamiltonian is essentially self-adjoint on a complete
spacelike slice of the maximal analytically extended, static zGKN spacetime. Then we exploit
the Chandrasekhar–Page–Toop separation-of-variables theorem for Dirac’s equation on a general
Kerr–Newman spacetime, and the Prüfer transform, to show that the self-adjoint Dirac operator
has a continuous spectrum with a gap about zero that contains a pure point spectrum associated
with time-periodic L2 spinor fields, representing bound states of Dirac’s point electron in the
electromagnetic field of the ring singularity of the zGKN spacetime.

In the next section we formulate our main results about the Dirac equation for a point electron
in the zGKN spacetime; one result is valid also for a Dirac electron in static, flat spacetimes having
Zipoy topology featuring electromagnetic Sommerfeld fields of arbitrary Iπa/Q-ratio. In sections
3, 4, 5, 6, 7, and 8 we prove our main theorems about the spectrum. In section 9 we conclude with
a list of interesting questions left unanswered by this work.

2 Formulation of the main results

We begin by formulating the Dirac equation for a point electron in electromagnetic, static, flat
spacetimes with Zipoy topology which generalize zero-G Kerr–Newman spacetimes to zero-G Kerr
spacetimes equipped with Sommerfeld fields of arbitrary Iπa/Q-ratio. We then state our main
theorems about the spectrum of the pertinent Dirac operators.

2.1 Dirac’s equation for a point electron on zero-G Kerr spacetimes equipped
with electromagnetic Sommerfeld fields of arbitrary Iπa/Q-ratio

2.1.1 Zero-G Kerr spacetimes

Our limit G → 0 of the maximal analytic extension of the well-known Kerr family of stationary,
axisymmetric spacetime solutions of Einstein’s vacuum equations yields a one-parameter family
of static, flat, but topologically nontrivial spacetimes11 (M,g) which consist of two “cross-linked
leafs.” Explicitly, let C ≡ {(t, r, θ, ϕ) : t ∈ R, r ∈ R, θ ∈ [0, π], ϕ ∈ [0, 2π)} denote a rectangular
“four-dimensional cylinder,” and let S ≡ {(t, r, θ, ϕ) : t ∈ R, r = 0, θ = π/2, ϕ ∈ [0, 2π)} ⊂ C denote
a rectangular “two-dimensional slab” in C. Then C \ S is a covering chart of oblate spheroidal
(Boyer–Lindquist, or BL) coordinates12 for this spacetime, with line element13

ds2
g = dt2 −

(
r2 + a2

)
sin2 θ dϕ2 − r2 + a2 cos2 θ

r2 + a2

(
dr2 +

(
r2 + a2

)
dθ2
)

; (1)

here, a2 > 0 is the only parameter of these spacetimes, and we have set the speed of light c = 1.

11We note that Zipoy [41] found a large class of static, axisymmetric, flat but topologically nontrivial solutions to
the Einstein vacuum equations which in their zero-G limit coincides with the zero-G Kerr spacetime family.

12It is unfortunate that the notation (t, r, θ, ϕ) for the spacetime coordinates is somewhat overused in the relativity
literature, for instance meaning also Schwarzschild coordinates on the outer region of that spacetime, but of course
also just standard spherical coordinates of Minkowski spacetime. All standard non-spherical (t, r, θ, ϕ) coordinate
systems reduce to standard spherical coordinates of Minkowski spacetime near “r =∞,” which is perhaps part of the
original rationale for choosing this notation. Note that in BL coordinates r takes both positive and negative values.

13Note our sign convention of (+,−,−,−) for the metric.
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The static, axisymmetric character of these zero-G Kerr spacetimes is manifest in (1). Also,
since r ∈ R occurs strictly quadratically in (1), it is clear that the manifold consists of two “con-
joined identical twins.” To exhibit their flatness, and in the process also the topological nontrivial
juncture, we introduce cylindrical coordinates (t, %, z, ϕ) on Minkowski spacetime R1,3, with the
same (t, ϕ) as in Boyer–Lindquist coordinates, and with the cylindrical coordinates (%, z) related
to the elliptical coordinates (r, θ) by

% =
√
r2 + a2 sin θ, z = r cos θ. (2)

In cylindrical (t, %, z, ϕ) coordinates the metric takes the familiar form for flat Minkowski spacetime

ds2
g = dt2 − d%2 − %2dϕ2 − dz2, (3)

except that the map (2) makes it plain that the chart C \ S will be mapped into two copies
of Minkowski spacetime which are “doubly conjoined,” in a smooth yet crossing manner, at the
interior of the set S. The metric g given by the line element (1) has a singularity at S, which
is the singularity of the spacetime, not in the spacetime.The set S is the boundary of a timelike
open solid cylinder; the cross section at any instant t of this cylindrical surface is a translate of the
ring R0 ≡ {(t, r, θ, ϕ) : t = 0, r = 0, θ = π/2, ϕ ∈ [0, 2π)}, for which reason one speaks of a “ring
singularity.” The points on the ring are conical singularities for the metric, meaning that the limit
as the radius goes to zero of the ratio of the circumference to radius of a small circle centered at a
point of the ring and lying in a meridional plane ϕ =const. is 4π instead of 2π. See [32] for details.

The key topological features of this manifold can easily be visualized. Namely, although the
fixed timelike planes {(t, r, θ, ϕ) : t = t0, ϕ = ϕ0} cannot be embedded into R3, each such plane
can be immersed in it, the immersion consisting of two Euclidean half planes, stacked up upon
each other, then cut along a line segment of length |a| orthogonal to the planes’ boundaries “with
scissors,” then smoothly “cross-glued” at the cut such that the “upper” and “lower” sheets are
cross-linked like an × along the cut, while remaining like ‖ beyond the cut; the singular endpoint
of the ×-line is not part of the two-sheeted manifold. Shown in Fig.1 are the ring singularity and
the part {r ∈ (−1, 1), θ ∈ (0, π)} of a constant-azimuth section (slightly curved, for the purpose of
visualization) of the two-sheeted static spacelike slice of the zero-G Kerr spacetime.

Figure 1: An illustration of the Zipoy topology.

We can view M as a bundle over the base manifold R1,3 \ S (mildly abusing notation), with
the projection map Π :M→ R1,3 \ S being Π(t, r, θ, ϕ) = (t, %, z, ϕ). The fiber over a point in the
base consists of two points, degenerating into one point at each “ring”

Rt0 = {(t, r, θ, ϕ) | t = t0, r = 0, θ = π/2, 0 ≤ ϕ ≤ 2π}. (4)

5



The pullback of the Minkowski metric η under Π endowsM with a flat Lorentzian metric g = Π∗η,
whose line element is given in (1).

2.1.2 Zero-G Kerr-Newman spacetimes

The spacetime (M,g) introduced above can be decorated with any static electromagnetic Sommer-
feld field F = dA, satisfying the flat space Maxwell equations locally but respecting the topologi-
cally nontrivial character of the spacetime. The zero-G limit of the maximal analytical extension
of the Kerr–Newman family14 of stationary axisymmetric solutions to the Einstein-Maxwell equa-
tions, written in BL coordinates, yields precisely the zero-G Kerr (zGK) spacetime decorated with
a particular electromagnetic Sommerfeld field, the Appell–Sommerfeld field, whose four-potential
one-form reads

A = − r

r2 + a2 cos2 θ
(Qdt−Qa sin2 θ dϕ). (5)

Here, Q is the total charge “seen from infinity” in one of the two sheets, defined by computing
the electric outward flux through a spherical surface surrounding the ring singularity in that sheet.
The field F is singular on the same ring Rt as is the metric, while for r very large positive its
electric and magnetic components approach, respectively, the asymptotics of an “electric monopole
field in R3 of a charge Q” and a “magnetic dipole field in R3 of dipole moment Qa;” for −r very
large positive, in the other sheet, these electric monopole and magnetic dipole fields correspond to
a charge −Q and magnetic dipole moment −Qa.

Remark 2.1. It may be tempting to speculate whether the magnetic dipole moment Qa can be
interpreted as due to a “gyrating charged ring,” with a the angular momentum per unit mass
“of the singularity,” as has been attempted for Kerr–Newman spacetimes. Moreover, since Kerr–
Newman spacetimes have a gyromagnetic ratio Q/M =: gKNQ/2M (in units with c = 1), amounting
to a g-factor gKN = 2 (see [8]), and since the KN parameters (M,Q, a) are independent of G, and
so is the KN gyromagnetic ratio, one could be tempted to assign the zGKN spacetime the same
gyromagnetic ratio of Q/M and g-factor of 2. However, since M does not show in the zGKN
metric, such an assignment would be reasonable only if there were no other way to construct
zGKN than taking the zero-G limit of KN. Yet this is not the case: as already pointed out in
footnote 11, the underlying spacetime manifold of zGKN can be obtained as zero-G limit of either,
the stationary family of Kerr spacetimes — having both an ADM mass MK and ADM angular
momentum J = MKa —, or a static family of Zipoy spacetimes — having an ADM mass MZ but
no ADM angular momentum; note also that MZ 6= MK in general. This (say) zGZ spacetime can
now be equipped with an arbitrary Sommerfeld field, in particular: the Appell–Sommerfeld field
of zGKN, without being logical compelled to interpret its magnetic moment Qa as being due to a
“gyrating ring of charge Q” with angular momentum per unit mass a; this will become even more
clear in the next subsection. So it’s better to refrain from assigning zGKN any spacetime g-factor.
For a careful analysis of the ring sources of the electromagnetic zGKN fields, see [32].

2.1.3 Generalizations of zGKN spacetimes to arbitrary charge and current.

Since the electric and magnetic components of Maxwell’s vacuum equations decouple in the zero-G
limit, to decorate the zero-G Kerr spacetime with a generalization of the electromagnetic Appell–
Sommerfeld field F = dA having electric charge Q and current I, all that needs to be done is to

14We recall that for fixed G > 0 (and speed of light c) the Kerr–Newman family is a three-parameter family of
electrovac spacetimes, the parameters being ADM mass (energy) M(> 0), ADM angular momentum J = Ma ∈ R,
and total charge Q ∈ R, all defined in a single asymptotic end. Note that in units where c = 1 the angular momentum
per unit mass a has physical dimension of length; equivalently, of time.
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replace the magnetic dipole moment Qa in formula (5) by Iπa2, thus

A = − r

r2 + a2 cos2 θ
(Qdt− Iπa2 sin2 θ dϕ). (6)

Again, electric charge Q and magnetic dipole moment Iπa2 are as “seen” from spacelike infinity
in one sheet; viewing from spacelike infinity in the other sheet one “sees” −Q and −Iπa2.

Remark 2.2. The Sommerfeld field (6) makes it plain that the zGKN spacetimes are but a spe-
cial one-parameter subfamily in a two-parameter family of qualitatively similar spacetimes with
arbitrary charge Q and magnetic moment Iπa2 (given a). The ease with which this result was
accomplished stands in stark contrast to the difficulties in generalizing the Kerr–Newman family
to electromagnetic spacetimes with a magnetic moment different from Qa.

2.1.4 The Dirac equation on electromagnetic spacetimes: Cartan’s frame method

In arbitrary cordinates (xµ) (with c = 1 and ~ = 1), the Dirac equation for a spin-1/2 electron
of empirical rest mass m and charge −e < 0 interacting (through minimal coupling) with an
electromagnetic field F = dA in a spacetime (M,g) reads

γ̃µ(−i∇µ + eAµ)Ψ +mΨ = 0; (7)

here ∇ is the covariant derivative (on spinors) associated to the spacetime metric g, and (γ̃µ)3
µ=0

are Dirac matrices associated to this metric, i.e. satisfying

γ̃µγ̃ν + γ̃ν γ̃µ = 2gµν14×4, (8)

while the Aµ are the pertinent components of the electromagnetic potential, A = Aµdx
µ.

Using Cartan’s frame method (see [7] and refs. therein) one can express the above covariant
derivative on spinors in terms of standard derivatives:

γ̃µ∇µ = γµeµ +
1

4
Ωµνλγ

λγµγν (9)

Here {eµ}3µ=0 is a Cartan frame, i.e. an orthonormal frame of vectors spanning the tangent space
at each point of the spacetime manifold. We thus have

(eµ)ν(eλ)κgνκ = ηµλ. (10)

On the one hand, it follows that
γ̃µ = (eν)µγν , (11)

where the γν are Dirac gamma matrices for the Minkowski space, satisfying γνγµ + γµγν =
2ηµν14×4. On the other hand, let {ωµ}3µ=0 denote the dual frame to {eµ}, i.e. the orthonor-
mal basis for the cotangent space at each point of the manifold that is dual to the basis for the
tangent space:

ωµ
(
eν
)

= eν
(
ωµ
)

= δνµ. (12)

Then the Ωµνλ are by definition the Ricci rotation coefficients of the frame {ωµ}3µ=0, defined in the
following way: Let the one-forms Ωµ

ν satisfy

dωµ + Ωµ
ν ∧ ων = 0. (13)

7



This does not uniquely define the Ωµ
ν . However, there exists a unique set of such 1-forms satisfying

the extra condition
Ωµν = −Ωνµ, (14)

where the first index is lowered by the Minkowski metric: Ωµν := ηµλΩλ
ν . Since {ωµ} forms a basis

for the space of 1-forms, we then have Ωµν = Ωµνλω
λ, which defines the rotation coefficients Ωµνλ.

The Dirac equation (7) on a spacetime (M,g) with an electromagnetic 4-potential A can thus
be written in the following form:

γµ
(
eµ + Γµ + ieÃµ

)
Ψ + imΨ = 0; (15)

here, the Γµ are connection coefficients,

Γµ :=
1

4
Ωνλµγ

νγλ =
1

8
Ωνλµ[γν , γλ], (16)

and the Ãµ are the components of the potential A in the ωµ basis, i.e. A = Ãµω
µ, or,

Ãµ := (eµ)νAν . (17)

2.1.5 Frame formulation of the Dirac equation on zero-G Kerr spacetimes featuring
electromagnetic Appell–Sommerfeld fields with arbitrary Iπa/Q-ratio

As explained in section 2.1.1, the single chart C\S of oblate spheroidal coordinates (t, r, θ, ϕ) covers
the whole zero-G Kerr spacetime (M,g), and in section 2.1.2 we saw that in these coordinates
the electromagnetic Appell–Sommerfeld one-form A is everywhere on (M,g) given by the simple
formula (6). It is therefore only natural that one would like to write Dirac’s equation (7) in these
coordinates as well, in the hope of achieving at least some partial separation of variables.15

However, unlike Cartesian coordinates (xµ) in Minkowski spacetime, oblate spheroidal coordi-
nate derivatives do not give rise to an orthonormal basis for the tangent space at each point of a
zero-G Kerr spacetime. Thus, to bring (7) into the Cartan form (15) using oblate spheroidal co-
ordinates, one also needs to construct a suitable Cartan frame. Following Chandrasekhar [11, 10],
Page [25], Toop [36] (see also Carter-McLenaghan [9]), we introduce a special orthonormal frame
{eµ}3µ=0 on the tangent bundle TM which is adapted to the oblate spheroidal coordinates in order
for the Dirac equation to take a comparatively simple form.

We begin by introducing a Cartan (co-)frame {ωµ}3µ=0 for the cotangent bundle16:

ω0 :=
∆

|ρ|
(dt− a sin2 θ dϕ), ω1 := |ρ|dθ, ω2 :=

sin θ

|ρ|
(−adt+ ∆2dϕ), ω3 :=

|ρ|
∆
dr, (18)

with the conventional abbreviations

∆ :=
√
r2 + a2, ρ := r + ia cos θ. (19)

Let us denote the oblate spheroidal coordinates (t, r, θ, ϕ) collectively by (yν). Let gµν denote the

coefficients of the spacetime metric (1) in oblate spheroidal coordinates, i.e. gµν = g
(

∂
∂yµ ,

∂
∂yν

)
.

One easily checks that written in the {ωµ} frame, the spacetime line element is

ds2
g = gµνdy

µdyν = ηαβω
αωβ, (20)

15The idea of using special frames adapted to a coordinate system in order to separate spinorial wave equations in
those coordinates goes back to Kinnersley [22] and Teukolsky [33].

16This particular frame is called a canonical symmetric tetrad in [9].
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where
η = diag(1,−1,−1,−1) (21)

is the Minkowski metric in rectangular coordinates. This shows that the frame {ωµ}3µ=0 is indeed
orthonormal. With respect to this frame the electromagnetic Sommerfeld potential (6) becomes
A = Ãµω

µ, with

Ã0 = −Q r

|ρ|∆
− (Q− Iπa)

a2r sin2 θ

∆|ρ|3
, Ã1 = 0, Ã2 = − (Q− Iπa)

ar sin θ

|ρ|3
, Ã3 = 0. (22)

Remark 2.3. We observe that for Q = Iπa, all but one of the quantities Ãµ vanish, and the
non-vanishing one, Ã0, reduces to −Qr/|ρ|∆.

Next, let the frame of vector fields {eµ} be the dual frame to {ωµ}. Thus {eµ} yields an
orthonormal basis for the tangent space at each point in the manifold:

e0 =
∆

|ρ|
∂t +

a

∆|ρ|
∂ϕ, e1 =

1

|ρ|
∂θ, e2 =

a sin θ

|ρ|
∂t +

1

|ρ| sin θ
∂ϕ, e3 =

∆

|ρ|
∂r . (23)

Next, the anti-symmetric matrix
(
Ωµν

)
=
(
ηµλΩλ

ν

)
is computed to be

(Ωµν) =


0 −Cω0 −Dω2 Dω1 −Bω3 −Aω0 −Bω2

0 Dω0 + Fω2 −Eω1 − Cω3

(asym) 0 −Bω0 − Eω2

0

 , (24)

with

A :=
a2r sin2 θ

∆|ρ|3
, B :=

ar sin θ

|ρ|3
, C :=

a2 sin θ cos θ

|ρ|3
, D :=

a cos θ∆

|ρ|3
, E :=

r∆

|ρ|3
, F :=

∆2 cos θ

|ρ|3 sin θ
. (25)

With respect to this frame on a zero-G Kerr spacetime the covariant derivative part of the
Dirac operator (7) can be expressed with the help of the operator

O := γ̃µ∇µ =

(
0 l′ + m′

l + m 0

)
, (26)

where

l :=
1

|ρ|

(
D+ L−
L+ D−

)
(27)

and

l′ :=
1

|ρ|

(
D− −L−
−L+ D+

)
, (28)

with
D± := ±∆∂r +

(
∆∂t +

a

∆
∂ϕ

)
, L± := ∂θ ± i

(
a sin θ ∂t + csc θ∂ϕ

)
, (29)

while

m :=
1

2

[
(−2C + F + iB)σ1 + (−A+ 2E + iD)σ3

]
=

1

2|ρ|

(
r
∆ + ∆

ρ̄ cot θ + ia sin θ
ρ̄

cot θ + ia sin θ
ρ̄ − r

∆ −
∆
ρ̄

)
(30)
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and

m′ :=
1

2

[
(2C − F + iB)σ1 + (A− 2E + iD)σ3

]
= −m∗, (31)

where the σk are Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (32)

We note that the principal part of |ρ|O has an additive separation property:

|ρ|
(

0 l′

l 0

)
=
[
γ3∆∂r + γ0

(
(∆∂t +

a

∆
∂ϕ

)]
+
[
γ1∂θ + γ2(a sin θ∂t + csc θ ∂ϕ)

]
, (33)

where the coefficients of the two square-bracketed operators are functions of only r, respectively
only θ. Moreover, it is possible to transform away the lower order term in O, so that exact
separation can be achieved for |ρ|O. Namely, let

χ(r, θ) :=
1

2
log(∆ρ̄ sin θ). (34)

It is easy to see that
m = lχ, m′ = l′χ̄. (35)

Let us therefore define the diagonal matrix

D := diag(e−χ, e−χ, e−χ̄, e−χ̄) (36)

and a new bispinor Ψ̂ related to the original Ψ by

Ψ = DΨ̂. (37)

Denoting the upper and lower components of a bispinor Ψ by ψ1 and ψ2 respectively, it then follows
that

(l + m)ψ1 = (l + m)(e−χψ̂1) = e−χ [l− lχ+ m] ψ̂1 = e−χlψ̂1, (38)

and similarly
(l′ + m′)ψ2 = e−χ̄l′ψ̂2. (39)

We now put it all together. We set

R := diag(ρ, ρ, ρ̄, ρ̄) (40)

and note that |ρ|D−∗D = R while D−∗γµD = γµ. Thus, setting Ψ = DΨ̂ in (7) and left-multiplying
the equation by the diagonal matrix D′ := |ρ|D−∗ we conclude that Ψ̂ solves a new Dirac equation(

|ρ|γµ(eµ + ieÃµ) + imR
)

Ψ̂ = 0. (41)

Finally, let us compute the Hamiltonian form of (41). Let matrices Mµ be defined by

|ρ|γµeµ = Mµ∂µ. (42)

Thus in particular
M0 = ∆γ0 + a sin θ γ2. (43)
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We may thus rewrite (41) as

M0∂tΨ̂ = −
(
Mk∂k + ie|ρ|γµÃµ + imR

)
Ψ̂, (44)

so that, defining

Ĥ := −i(M0)−1
(
Mk∂k + ie|ρ|γµÃµ + imR

)
, (45)

we can now rewrite the Dirac equation (41) in Hamiltonian form:

i∂tΨ̂ = ĤΨ̂. (46)

Remark 2.4. We note that for Q 6= Iπa the quantity |ρ|γµÃµ is a function of both r and θ, and
unlike the other terms in the Dirac equation (41) it does not separate into a sum of two terms
each depending only on one of these variables. It follows that the Dirac equation will not be exactly
separable on spacetimes with a magnetic moment different from Qa.

Even for Q = Iπa when |ρ|γµÃµ reduces to |ρ|γ0Ã0 = −(Qr/∆)γ0, which is a function of only
r, the separation of variables Ansatz does not yield a system of ordinary differential equations which
can be solved one at a time, unlike the situation for the familiar Dirac equation for the spectrum
of hydrogen in Minkowski spacetime.

2.1.6 A Hilbert space for Ĥ

In order to decide what is the correct inner product to use for the space of bispinor fields defined
on the zGKN spacetime, we pause to consider the action for the original Dirac equation (7), which
should be obtainable from this equation upon left-multiplying it by the conjugate bispinor Ψ,
defined as

Ψ := Ψ†γ0, (47)

and integrating the result on the spacetime. Thus, using oblate spheroidal coordinates,

S[Ψ] =

∫
dt

∫
Σt

Ψ†γ0 [γ̃µ∇µΨ + . . . ] dµΣt , (48)

where dµΣt
= |ρ|2 sin θdθdϕdr is the volume element of Σt, the spacelike t = constant slice of

zGKN. It follows that the natural inner product for bispinors on Σt needs to be

〈Ψ,Φ〉 =

∫
Σ

Ψ†γ0γ̃0ΦdµΣ =

∫ 2π

0

∫ π

0

∫ ∞
−∞

Ψ†MΦ|ρ|2 sin θdθdϕdr, (49)

with

M := γ0γ̃0 = γ0e0
νγ

ν =
∆

|ρ|
α0 +

a sin θ

|ρ|
α2. (50)

Here, α2 is the second one of the three Dirac alpha matrices in the Weyl (spinor) represenation,
viz.

αk = γ0γk =

(
σk
−σk

)
, k = 1, 2, 3; (51)

for notational convenience, we have also set

α0 =

(
12×2

12×2

)
(52)
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for the 4× 4 identity matrix.
Now, let Ψ = DΨ̂ and Φ = DΦ̂, with D as in (36). Then we have

〈Ψ,Φ〉 =

∫ 2π

0

∫ π

0

∫ ∞
−∞

Ψ̂†M̂ Φ̂dθdϕdr, (53)

where

M̂ := α0 +
a sin θ

∆
α2. (54)

The eigenvalues of M̂ are λ± = 1± a sin θ
∆ , both of which are positive everywhere on this space with

Zipoy topology. (Note that λ− → 0 on the ring, which is not part of the space time but at its
boundary.) We may thus take the above as the definition of a positive definite inner product given
by the matrix M̂ for bispinors defined on the rectangular cylinder17 Z := R× [0, π]× [0, 2π] with
its natural measure:

〈Ψ̂, Φ̂〉M̂ :=

∫
Z

Ψ̂†M̂ Φ̂dθdϕdr. (55)

The corresponding Hilbert space18 is denoted by H, thus

H :=
{

Ψ̂ : Z → C4 | ‖Ψ̂‖2
M̂

:= 〈Ψ̂, Ψ̂〉M̂ <∞
}
. (56)

After these preparations we are now ready to state our main results.

2.2 Statement of the Main Theorems

Our results about the symmetry of the spectrum are valid for the Dirac Hamiltonian on a static
spacelike slice of the zero-G Kerr spacetime decorated with Sommerfeld fields of arbitrary charge
Q and current I. The essential self-adjointness, and location of essential and point spectra, are
stated only for the Dirac Hamiltonian on a static spacelike slice of the zGKN spacetime; however,
we conjecture that these results are and hold for the more general Hamiltonian.

In the ensuing four sections we will prove the following Theorems about Ĥ.

2.2.1 Symmetry of the spectrum of the Dirac Hamiltonians

We shall find an operator which commutes with any self-adjoint extension of the formal Dirac
operator Ĥ on H, with the help of which we prove:

THEOREM 2.5. Let any self-adjoint extension of the formal Dirac operator Ĥ on H be denoted
by the same letter. Suppose E ∈ spec Ĥ. Then −E ∈ spec Ĥ.

Note that the above result holds for any self-adjoint extension of Ĥ, whatever Q and I are.

2.2.2 Essential self-adjointness of the Dirac Hamiltonian on zGKN

By adapting an argument of Winklmeier–Yamada, we shall prove:

THEOREM 2.6. For Q = Iπa, i.e., for zGKN, the operator Ĥ is e.s.a. on H.

17Note that Z is the t = const. section of C.
18Note that H is not equivalent to standard L2(Z) whose inner product has the identity matrix in place of M̂ .
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2.2.3 The continuous spectrum of the Dirac Hamiltonians on zGKN

THEOREM 2.7. For Q = Iπa the continuous spectrum of Ĥ on H is R \ (−m,m).

2.2.4 The point spectrum of the Dirac Hamiltonian on zGKN

With the help of the Chandrasekhar–Page–Toop formalism to separate variables, and the Prüfer
transform, we will be able to control the point spectrum for the zGKN Dirac Hamiltonian:

THEOREM 2.8. For Q = Iπa the point spectrum of Ĥ on H is nonempty and located in (−m,m);
the end points are not included.

This completes the formulation of our main results. We next turn to their proofs. The proofs
of our main theorems are distributed over four sections corresponding to the various aspects of the
spectrum, i.e. symmetry, essential self-adjointness, continuous spectrum, and point spectrum.

3 Proof of Theorem 2.5 (Symmetry of the energy spectrum)

Suppose E ∈ R is an eigenvalue of Ĥ. Then there exists Ψ̂ ∈ H such that

ĤΨ̂ = EΨ̂. (57)

Suppose one can find a bounded linear, or conjugate-linear, operator Ĉ : H→ H that anti-commutes
with Ĥ, i.e. [

Ĉ, Ĥ
]
+

= ĈĤ + ĤĈ = 0. (58)

It is then easy to see that −E must also be an eigenvalue of Ĥ, since

ĤĈΨ̂ = −ĈĤΨ̂ = −ĈEΨ̂ = −EĈΨ̂. (59)

This argument can be extended to show the symmetry of other parts of the spectrum. (See e.g.
Glazman [18], p. 205.)

Let K̂ : H → H denote the complex conjugation opertor K̂Ψ̂(x) = Ψ̂∗(x), and let Ŝ : H → H
denote the operator (ŜΨ̂)(x) = Ψ̂(ς(x)) where ς :M→M is the sheet swapping map,

ς(r, θ, ϕ) = (−r, π − θ, ϕ). (60)

We claim that the operator Ĉ : H→ H given by Ĉ := γ0K̂Ŝ, viz.

(ĈΨ̂)(x) = γ0Ψ̂∗(ς(x)), (61)

anti-commutes with Ĥ.
To prove the claim, first note that γ0 = β anti-commutes with all three αk matrices. Recall

that
Ĥ(x) = M̂−1H (62)

and

H := −iα3∂r +
1

∆

(
−iα1∂θ − iα2 csc θ ∂ϕ

)
− ia

∆2
α0∂ϕ +

m

∆
γ0R+

e|ρ|
∆

(
Ã0(x)α0 + Ã2(x)α2

)
. (63)

Now

M̂−1 =
∆2

|ρ|2

(
α0 − a sin θ

∆
α2

)
. (64)
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Thus, keeping in mind that α2 = −α2, we find that

ĈM̂−1 = γ0M̂−1 ◦ ςK̂Ŝ =
∆2

|ρ|2
γ0

(
α0 +

a sin θ

∆
α2

)
K̂Ŝ =

∆2

|ρ|2

(
α0 − a sin θ

∆
α2

)
γ0K̂Ŝ = M̂−1Ĉ.

(65)
So we only need to check that Ĉ anti-commutes with H.

It is enough to check that each term in H goes through an odd number of sign changes (either
one or three) as the three operators K̂, Ŝ, and multiplication by γ0, filter through that term.
Recalling that the potential A is anti-symmetric with respect to sheet swap: Ãµ ◦ ς = −Ãµ, this
becomes obvious for most terms in H. Only the term involving R requires some care. We first
check that R ◦ ς = −R and that γ0R = Rγ0. Then

Ĉγ0R = γ0γ0R ◦ ςK̂Ŝ = −γ0γ0RK̂Ŝ = −γ0Rγ0K̂Ŝ = −γ0RĈ, (66)

establishing the anti-commutation property. The proof of Theorem 2.5 is complete.
For the proof the remaining statements in this paper we rely on the fact that the Dirac equation

of a point electron in zGKN separates into four (coupled) ordinary differential equations, each of
which depends on only one of the four oblate spheroidal coordinates, with the coupling being
effected through shared parameters in the equations. This is carried out in the next section before
we resume with proving our claims.

4 Proof of Theorem 2.6 (Essential self-adjointness (Q = Iπa)

We now show that the Dirac Hamiltonian Ĥ is essentially self-adjoint on H; recall that H is equipped
with the inner product (55).

We observe that M0 = ∆γ0M̂ , so we may rewrite (45) as

Ĥ = M̂−1γ0

(
−i
∆
Mk∂k + e

|ρ|
∆
γµÃµ +

m

∆
R

)
= M̂−1H, (67)

where

H := M +
1

∆
N + P + Q, (68)

with

M := −iα3∂r (69)

N := −iα1∂θ − iα2 csc θ∂ϕ (70)

P := −i a
∆2

α0∂ϕ +
m

∆
γ0R (71)

Q := e
|ρ|
∆
γ0γµÃµ . (72)

Thus,

〈Ψ̂, ĤΦ̂〉M̂ =

∫
Z

Ψ̂HΦ̂dθdϕdr. (73)

Evidently, H is Hermitian symmetric on the Hilbert space L2(Z;C4) with its natural inner product

(Φ̂, Ψ̂) =

∫
Z

Φ̂†Ψ̂dθdϕdr. (74)
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It is furthermore easy to see that Ĥ is e.s.a. on H if and only if H is e.s.a. on L2(Z;C4).
We shall first prove that H is e.s.a. on L2(Z;C4) when Q = Iπa, i.e. for a Dirac point electron

in zGKN. Then we will extend this result to small (Q − Iπa)e using a Hardy-type estimate and
perturbation theory.

THEOREM 4.1. For Q = Iπa the operator H is e.s.a. on L2(Z;C4).

Proof. Let us write
H = H0 + Q. (75)

Here, H0 is the free Hamiltonian. We will first show that H0 is essentially self-adjoint; this proof is
an easy adaptation of the method first employed by Winklmeier and Yamada [40]. We will then
conclude essential self-adjointness of H by using a perturbation argument.

To this end, let us consider the decomposition with respect to the azimuthal angle ϕ of the
Hilbert space L2(Z;C4) into partial wave subspaces L2([0, π]× R, dθdr):

L2(Z;C4) = ⊕κ∈Z+ 1
2

(
L2
κ([0, π]× R, dθdr)

)4
(76)

corresponding to the expansion of a bispinor field Ψ̂ ∈ L2(Z;C4) given by

Ψ̂(r, θ, ϕ) =
∑

κ∈Z+ 1
2

eiκϕΨ̂κ(r, θ). (77)

The reason κ needs to be half of an odd integer is that a spinor needs to change sign upon a 2π
rotation about any axis, and therefore we need to have

lim
ϕ→2π

Ψ̂ = − lim
ϕ→0

Ψ̂. (78)

Let H0
κ := H0

∣∣
L2
κ
. Then H0

κ = Sκ + ∆−1Tκ + Bκ, with

Sκ = −iα3∂r, Tκ = −iα1∂θ + α2κ csc θ =

(
tκ 0
0 −tκ

)
, Bκ =

aκ

∆2
α0 +

m

∆
γ0R. (79)

We note that Bκ is a symmetric bounded multiplication operator on L2
κ; in fact,

‖Bκ‖L∞ ≤ |κ/a|+m, (80)

so that the task of showing e.s.a.-ness of H0
κ reduces to showing e.s.a.-ness of H′κ := Sκ + ∆−1Tκ.

Now H′κ is block-diagonal:

H′κ =

(
h′κ 0
0 −h′κ

)
, h′κ := −iσ3∂r + ∆−1tκ, tκ := −iσ1∂θ + σ2κ csc θ. (81)

Thus it is enough to show h′κ is e.s.a. We do so by showing that ker(h′κ ± i) = {0}: Suppose

ψ̂κ ∈
(
L2
κ([0, π]× R, dθdr)

)2
satisfies

h′κψ̂κ = ±iψ̂κ. (82)

As observed in [40], it is possible to decompose (82) with respect to the eigenspaces of the operator

aκ := W tκW
−1 = −iσ2∂θ + κ csc θσ1, (83)

where

W :=

(
0 1
i 0

)
. (84)

The operator aκ has pure point spectrum and a complete set of eigenfunctions. More precisely, one
has the following result [38] (here quoted from [40]):
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THEOREM 4.2. (Winklmeier, 2006) For all κ ∈ Z+ 1
2 the operator aκ with domain (C∞c ((0, π)))2

is essentially self-adjoint in (L2((0, π), dθ))2. Its closure (denoted again by aκ) is compactly invert-
ible and its spectrum consists of simple eigenvalues only, given by

λκn := sgn(n)
(
|κ| − 1

2 + |n|
)
, n ∈ Z∗ = Z \ {0}, (85)

with corresponding normalized eigenfunctions {gκn}n∈Z∗ forming a complete orthonormal set in
(L2((0, π), dθ))2. Moreover,

λκ−n = −λκn, gκ−n = −σ3g
κ
n. (86)

We can therefore write
ψ̂κ(r, θ) =

∑
n∈Z∗

ξn(r)gκn(θ), (87)

with functions ξn ∈ L2(R, dr). Hence, performing a similarity transform on (82) with W and
projecting on the spans of gκn and gκ−n we obtain the following system (see [40] for details):(

λκn
∆ i∂r
i∂r −

λκn
∆

)(
ξn
ξ−n

)
= ±i

(
ξn
ξ−n

)
(88)

However the operator in the above eigenvalue problem Cκ = iσ1∂r + λκn
∆ σ3 is clearly e.s.a., since λκn

∆
is bounded, hence ξn = ξ−n = 0.

This completes the proof of essential self-adjointness of H0.
Consider now the term Q = e |ρ|∆ γ

0γµÃµ coming from the electromagnetic potential. It can be
rewritten as Q = −eQV1 − e(Q− Iπa)V2, where

V1 :=
r

∆2
α0, V2 :=

ar sin θ

∆|ρ|2
M̂. (89)

The first term, V1, is clearly bounded, whereas the second one, V2, blows up on the ring. However,
since by hypothesis we restrict ourselves to the case Q = Iπa, the V2 term is absent from Q, and
essential self-adjointness of H follows easily from that of H0 and the boundedness of eQV1.

The proof of Theorem 4.1 is complete.

5 Chandrasekhar–Page–Toop separation-of-variables (Q = Iπa)

When Q = Iπa the Dirac equation (46) for the bispinor Ψ̂ allows a clear separation also for the
remaining r and θ derivatives (commonly referred to in the literature as “radial” and “angular”
derivatives, even though r is not a radius and θ is not an angle, except at infinity). Thus, when
Q = Iπa the Dirac equation (46) becomes

(R̂+ Â)Ψ̂ = 0, (90)

where

R̂ :=


imr 0 D− + ieQ r

∆ 0
0 imr 0 D+ + ieQ r

∆
D+ + ieQ r

∆ 0 imr 0
0 D− + ieQ r

∆ 0 imr

 , (91)

Â :=


−ma cos θ 0 0 −L−

0 −ma cos θ −L+ 0
0 L− ma cos θ 0
L+ 0 0 ma cos θ

 , (92)
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where D± and L± have been given in (29). Once a solution Ψ̂ to (90) is found, the bispinor
Ψ := DΨ̂ solves the original Dirac equation (7).

5.0.5 The Chandrasekhar Ansatz

Assume now that a solution Ψ̂ of (90) is of the form

Ψ̂ = eiEt−iκϕ


R1S1

R2S2

R2S1

R1S2

 , (93)

with Rk being complex-valued functions of r alone, and Sk real-valued functions of θ alone. Let

~R :=

(
R1

R2

)
, ~S :=

(
S1

S2

)
. (94)

Plugging the Chandrasekhar Ansatz (93) into (90) one easily finds that there must be λ ∈ C such
that

Trad ~R = E ~R, (95)

Tang ~S = λ~S, (96)

where

Trad :=

(
d− −m r

∆ − i
λ
∆

−m r
∆ + i λ∆ −d+

)
(97)

Tang :=

(
−ma cos θ −l−

l+ ma cos θ

)
(98)

The operators d± and l± are now ordinary differential operators in r and θ respectively, with
coefficients that depend on the unknown E, and parameters a, κ, and eQ:

d± := i
d

dr
± −aκ+ eQr

∆2
(99)

l± :=
d

dθ
∓ (aE sin θ − κ csc θ) (100)

The angular operator Tang in (96) is easily seen to be essentially self-adjoint on (C∞c ((0, π), sin θdθ))2

and in fact is self-adjoint on its domain inside (L2((0, π), sin θdθ))2 (e.g. [31, 3]) with purely point
spectrum λ = λn(am, aE, κ), n ∈ Z \ 0. Thus in particular λ ∈ R. It then follows that the radial
operator Trad is also essentially self-adjoint on (C∞c (R, dr))2 and in fact self-adjoint on its domain
inside (L2(R, dr))2.

Suppose ~R = (R1, R2)T ∈ (L2(R))2 is a nontrivial solution to Trad ~R = E ~R, with E ∈ R. Then

dR1

dr
− i
(
E − aκ− eQr

∆2

)
R1 +

1

∆
(imr − λ)R2 = 0

−dR2

dr
− i
(
E − aκ− eQr

∆2

)
R2 +

1

∆
(imr + λ)R1 = 0.

Multiply the first equation by R̄1 and the second equation by R̄2, add them and take the real part,
to obtain

d

dr

(
|R1|2 − |R2|2

)
= 0. (101)
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Thus the difference of the moduli squared of R1 and R2 is constant, hence zero since they need to
be integrable at infinity. I.e.,

|R1| = |R2| := R. (102)

Let Rj = ReiΦj for j = 1, 2. Multiply the first equation by R̄2, multiply the complex conjugate of
the second equation by R1, and add them to obtain

d

dr

(
R1

R̄2

)
= 0. (103)

Thus the ratio R1/R̄2, and hence the sum of the arguments Φ1 + Φ2 must be a constant, say δ.
Thus R1 = R̄2e

iδ. Since multiplication by a constant phase factor is a gauge transformation for
Dirac bispinors, we can replace Ψ̂ with Ψ̂′ = e−iδ/2Ψ̂ without changing anything. The spinor thus
obtained has the same form as (93), now with R′1 = R̄′2. Thus without loss of generality we can
assume δ = 0 and R1 = R̄2.

This motivates us to set

R1 =
1√
2

(v − iu), R2 =
1√
2

(v + iu) (104)

for real funcions u and v. Consider the unitary matrix

U :=
1√
2

(
−i 1
i 1

)
. (105)

A change of basis using U brings the radial system (95) into the following standard (Hamiltonian)
form

(Hrad − E)

(
u
v

)
=

(
0
0

)
, (106)

where

Hrad :=

 m r
∆ + γr+aκ

∆2 −∂r + λ
∆

∂r + λ
∆ −m r

∆ + γr+aκ
∆2

 , (107)

(cf. [35], eq (7.105)) with
γ := −eQ < 0. (108)

6 Proof of Theorem 2.7 (Continuous spectrum of Ĥ on zGKN)

Following Weidmann [37] we now prove the theorem about the continuous spectrum of Ĥ. Recall
the partial wave decomposition (76). Let Ĥκ denote the restriction of Ĥ to L2

κ. From the Chan-
drasekhar separation (93) and equation (95) it follows that the spectrum of Ĥκ coincides with that
of Trad, which coincides with that of Hrad since these last two are unitarily equivalent. Further-
more, the spectrum of Ĥ equals the union of the spectra of Ĥκ. Thus in order to prove the claim
about the essential spectrum, it suffices to show that it holds for Hrad regardless of the values of
κ and λ.

Since Hrad is a radial Dirac operator, one can then use results that are particular to one
dimension. One such result is due to Weidmann [37]:
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THEOREM. Let P and J be matrices such that Hrad = J∂r + P . Suppose P can be written as
P1 + P2 in such a way that each component of P1 is integrable in [R,∞) for some R > 0, P2 is of
bounded variation on [R,∞) and

lim
r→∞

P (r) =

(
a 0
0 b

)
, a > b.

Then every self-adjoint extension of h has a purely absolutely continuous spectrum in (−∞, a] ∪
[b,∞).

Using this result, our claim is established by noticing that the hypotheses on P are satisfied,
and

lim
r→∞

P (r) =

(
m 0
0 −m

)
Proof of Theorem 2.7 is complete.

7 Proof of Theorem 2.8 (Point spectrum of Ĥ on zGKN)

By the remarks at the beginning of Section 6, we are interested in the eigenvalues E and square-
integrable eigenfunctions in L2(R, dr)2 of the operator Hrad. One complication is that in our case
the radial Hamiltonian Hrad depends on the unknown eigenvalues λ of the angular operator Tang
in (96), which in turn depend on the energy E. Since the angular operator is the same as the
one on Kerr and Kerr-Newman spacetime studied in [31, 3], and since it is known that for a given
value of E there is a largest negative eigenvalue λ = Λ(E), our strategy is to show the existence,
for a given value of λ < 0, of a smallest positive eigenvalue E = E(λ) for Hrad, and then set up
an iteration that converges to a pair (E, λ) for which both the radial (95) and the angular (96)
have L2 solutions, thereby establishing the existence of a “positive ground state” for the full Dirac
Hamiltonian; note that by the symmetry of the spectrum there also exists a “negative ground
state.”

7.1 The Prüfer transform

Consider the equations (106) and (96) for unknowns (u, v) and (S1, S2). Let us define new unknowns
(R,Ω) and (S,Θ) via the Prüfer transform [28]

u =
√

2R cos
Ω

2
, v =

√
2R sin

Ω

2
, S1 = S cos

Θ

2
, S2 = S sin

Θ

2
. (109)

Thus

R =
1

2

√
u2 + v2, Ω = 2 tan−1 v

u
, S =

√
S2

1 + S2
2 , Θ = 2 tan−1 S2

S1
. (110)

As a result, R1 = −iReiΩ/2 and R2 = iRe−iΩ/2. Hence Ψ̂ can be re-expressed in terms of the
Prüfer variables, thus

Ψ̂(t, r, θ, ϕ) = R(r)S(θ)ei(Et−κϕ)


−i cos(Θ(θ)/2)e+iΩ(r)/2

+i sin(Θ(θ)/2)e−iΩ(r)/2

+i cos(Θ(θ)/2)e−iΩ(r)/2

−i sin(Θ(θ)/2)e+iΩ(r)/2

 , (111)
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and we obtain the following equations for the new unknowns

d

dr
Ω = 2

mr

∆
cos Ω + 2

λ

∆
sin Ω + 2

aκ+ γr

∆2
− 2E, (112)

d

dr
lnR =

mr

∆
sin Ω− λ

∆
cos Ω. (113)

Similarly,

d

dθ
Θ = −2ma cos θ cos Θ + 2

(
aE sin θ − κ

sin θ

)
sin Θ + 2λ, (114)

d

dθ
lnS = −ma cos θ sin Θ−

(
aE sin θ − κ

sin θ

)
cos Θ. (115)

To simplify the analysis of these systems and reduce the number of parameters involved, we will
henceforth set m = 1. Note that this is always possible by defining the constants a′ = ma,
E′ = E/m, and a change of variable r′ = mr.

7.2 The realm of L2 solutions

We note that in both of the above systems, when a solution to the first equation is known, the
second equation in the system can be solved by quadrature. Moreover, the requirement that R and
S be L2 functions of their argument determines what boundary values the solutions to the Ω and
Θ equations should have. More precisely,

PROPOSITION 7.1. Any bispinor Ψ̂ of the form (111) constructed from solutions of (112),
(113), (114), (115), with κ ≥ 1

2 , E > 0 and λ < 0, belongs to the Hilbert space H provided

lim
r→−∞

Ω(r) = −π + cos−1(E), lim
r→∞

Ω(r) = − cos−1(E), (116)

and
Θ(0) = 0, Θ(π) = −π. (117)

Proof. It is straightforward to compute that for a Ψ̂ of the form (111),

‖Ψ̂‖2
M̂

= 2

∫ 2π

0

∫ π

0

∫ ∞
−∞

R2(r)S2(θ)

(
1 +

a sin θ

∆
sin Θ(θ) sin Ω(r)

)
drdθdϕ

= 4π

[∫ ∞
−∞

R2dr

∫ π

0
S2dθ + a

∫ ∞
−∞

R2 sin Ω
dr

∆

∫ π

0
S2 sin Θ sin θdθ

]
≤ 8π‖R‖2L2‖S‖2L2 ,

and thus Ψ̂ ∈ H provided R ∈ L2(R, dr) and S ∈ L2((0, π), dθ).
Now (114) can be written as a smooth dynamical system in the (θ,Θ) plane by introducing a

new independent variable τ such that dθ
dτ = sin θ. Then, with dot representing differentiation in τ ,

we have, {
θ̇ = sin θ

Θ̇ = −2a sin θ cos θ cos Θ + 2aE sin2 θ sin Θ− 2κ sin Θ + 2λ sin θ
(118)

Identifying the line Θ = π with Θ = −π, this becomes a dynamical system on a closed finite cylinder
C1 = [0, π]× S1. The only equilibrium points of the flow are on the two circular boundaries: Two
on the left boundary: S− = (0, 0), N− = (0, π); two on the right: S+ = (π,−π) and N+ = (π, 0).
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The linearization of the flow at the equilibrium points reveals that S− and S+ are hyperbolic
saddle points (with eigenvalues {1,−2κ} and {−1, 2κ} respectively), while N− is a source node
(with eigenvalues 1 and 2κ) and N+ is a sink node (with eigenvalues −1 and −2κ). The α-limit
set of the orbit of any point in the interior of the cylinder must necessarily be either S− or N−,
and likewise its ω-limit set can only be either N+ or S+. The only possible boundary values for
Θ(θ) are therefore 0 and ±π at each endpoint of the interval 0 ≤ θ ≤ π. The boundary values
(117) correspond to a heteroclinic orbit connecting the two saddles S− and S+. Suppose such a
saddle connection exists. Since the eigendirection corresponding to the unstable manifold of S− is
v1 = (κ+ 1

2 , λ− a)T and the stable manifold of S+ has the same eigendirection, it follows that for
the said saddle connection, we have

dΘ

dθ |θ=0

=
dΘ

dθ |θ=π
=
λ− a
κ+ 1

2

=: δ < 0. (119)

Thus Θ = δθ+o(1) as θ → 0 and Θ = −π+ δ(θ−π)+o(1) as θ → π. Consider now the S equation
(115). By the above,

d

dθ
lnS =

{
κ
θ + o(1) as θ → 0
κ
θ−π + o(1) as θ → π

(120)

Integrating in θ we thereby conclude that S ∼ |θ|κ for θ small and S ∼ |π − θ|κ for θ near π.
Therefore S is integrable on (0, π) and indeed it belongs to Lp((0, π), dθ) for any p ≥ 1.

Consider next the Ω equation (112). It can also be rewritten as a smooth dynamical system
on a cylinder, in this case by setting τ := r

a as new independent variable, as well as introducing a
new dependent variable

ξ := tan−1 r

a
= tan−1 τ (121)

Then, with dot again representing differentiation in τ , (112) is equivalent to{
ξ̇ = cos2 ξ

Ω̇ = 2a sin ξ cos Ω + 2λ cos ξ sin Ω + 2γ sin ξ cos ξ + 2κ cos2 ξ − 2aE
(122)

Once again, identifying Ω = −π with Ω = π turns this into a smooth flow on the closed finite
cylinder C2 := [−π

2 ,
π
2 ] × S1. The only equilibrium points of the flow are on the two circular

boundaries. For E ∈ [0, 1) there are two equilibria on each: S− = (−π
2 ,−π + cos−1E) and N− =

(−π
2 , π−cos−1E) on the left boundary, and S+ = (π2 ,− cos−1E) andN+ = (π2 , cos−1E) on the right

boundary. S∓ are non-hyperbolic (degenerate) saddle-nodes, with eigenvalues 0 and ±2a
√

1− E2,
while N− is a degenerate source-node and N+ a degenerate sink-node19. The boundary values
(116) correspond to a heteroclinic orbit connecting S− and S+.

Suppose such a saddle connection exists, and consider the R equation (113). As r → ±∞, we
will then have

d

dr
lnR ∼ −sgn(r)

√
1− E2 (123)

so that integrating in r we will obtain

R(r) ∼ e−|r|
√

1−E2
as r → ±∞ (124)

which ensures that R is integrable at infinity. Since the right-hand-side of the R equation is smooth
in Ω and r, and Ω itself is smooth, it follows that R ∈ Lp(R, dr) for all p ≥ 1.

19For E = 1 each S,N pair coalesces into one degenerate equilibrium: N1
− = (−π

2
,±π) and N1

+ = (π
2
, 0) with both

eigenvalues being zero.
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7.3 Existence of heteroclinic orbits connecting the two saddles

From the proof of Proposition 7.1 it is evident that in order to establish the existence of an
eigenfunction for the Dirac Hamiltonian of a point electron in the zGKN spacetime, we need to
show that there exists a pair (E, λ) such that both dynamical systems (118) and (122) have a
saddle-saddle connecting orbit for those values of E and λ. We call this type of orbit a saddle
connector for the corresponding flow. We pave the road for our proof by recalling some general
facts of flow on a cylinder.

7.3.1 Flow on a finite cylinder

Let C := [x−, x+] × S1 be a finite cylinder. We denote its universal cover by C̄ := [x−, x+] × R,

with coordinates (x, y), and fix a fundamental domain C̃ := [x−, x+] × [−π, π) in C̄. Consider the
flow Φt on C̄ given by the dynamical system{

ẋ = f(x)
ẏ = g(x, y)

(125)

where the dot represents differentiation with respect to a formal “time” parameter τ , the functions
f and g are smooth, and g is 2π-periodic in y: g(x, y) = g(x, y+ 2π). Let us moreover assume that
f satisfies

f(x−) = f(x+) = 0, f(x) > 0 ∀ x ∈ (x−, x+) (126)

while g satisfies

g(x−, y) = 0 =⇒ y ∈ {n−, s−}, g(x+, y) = 0 =⇒ y ∈ {n+, s+} (127)

where −π ≤ s− < n− ≤ π and −π ≤ s+ < n+ ≤ π. These assumptions imply that the following
four distinct points in C are equilibrium points for the flow:

N± := (x±, n±), S± := (x±, s±). (128)

We shall further assume that the flow does not have any non-wandering points other than the
above four equilibria.

The following assumptions fix the character of the four equilibrium points:

f ′(x−) ≥ 0, f ′(x+) ≤ 0, f ′′(x±) 6= 0 (129)

(where by f ′(x±) we mean the left derivate at x+ and the right derivative at x−), and

Dyg(x−, n−) > 0, Dyg(x−, s−) < 0, Dyg(x+, n+) < 0, Dyg(x+, s+) > 0, (130)

where Dyg is the y-derivative of g(x, y). Thus N− is a (source) node, N+ a (sink) node, and S± are
saddle points. These will be hyperbolic if f ′(x±) 6= 0, and non-hyperbolic (degenerate) otherwise.

Later on, in order to have a well-defined notion of index for certain distinguished orbits on C,
we will also assume that the locations of the equilibria on the boundary of the cylinder are not
arbitrary, but are subject to the single condition

s− − n− = n+ − s+ (mod 2π) (131)

(This is a condition on g(x, y). Although we will not pursue this approach here, under this condition
(125) can be viewed as a flow with two equilibrium points on a 2-torus.)
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For a point p ∈ C, let O(p) denote the flow orbit through p. Since C is compact, all orbits are
complete, meaning they exist for all s ∈ R, and since the flow is autonomous, two orbits are either
disjoint or they coincide. The orbit of an equilibrium point consists of only one point, namely the
equilibrium itself. The ω-limit of any other orbit in C can be either N+ or S+, and the α-limit
likewise can only be either N− or S−. All these facts are easy consequences of the existence and
uniqueness theorem for ODEs.

7.3.2 Connecting orbits and corridors

Given a flow on C as in the above, there are two distinguished orbits in the interior of the cylinder:
Let W− denote the unique orbit of the flow whose α-limit point is the saddle S−, and let W+

denote the unique orbit whose ω-limit point is the saddle S+. In the hyperbolic case (f ′(x±) 6= 0)
the uniqueness is immediate because W− is the unstable manifold of S− and W+ is the stable
manifold of S+. In the non-hyperbolic case f ′(x±) = 0 the orbits W± are center manifolds for the
corresponding saddle-nodes S±. Recall that center manifolds may be non-unique, but in our case
the uniqueness is assured because the equilibrium points are on the boundary of the domain, so
the relevant part of the center manifolds are on the “saddle side” of the equilibrium, and not on
the “node side” (see Figure 2). If W+ and W− intersect, they must coincide, and the resulting

Figure 2: Flow near a saddle-node. The node part lies outside of the domain of concern.

orbit will connect the two saddle points, i.e. it will be the saddle connector we are after. Let us
therefore assume that they are disjoint. The ω-limit of W− must then necessarily be N+, and the
α-limit of W+ must be N−.

On the other hand the assumptions we have made about the flow imply that there are also two
orbits of the flow on the left boundary of the cylinder connecting N− with S−, call them (N−S−)±,
with + denoting the counterclockwise one (when viewed from a point on the cylinder’s axis and to
the left of the cylinder), and similarly two joining S+ with N+, called (S+N+)±. Consider therefore
the following collection of six heteroclinic orbits

H := {(N−S−)±,W±, (S+N+)±}. (132)

The cylinder C is divided into two invariant regions K1 and K2, called corridors, by these orbits:
C = K1 ∪ H ∪ K2. We would like to distinguish one of these two corridors. We do so as follows:
Consider the lifting of the flow to the universal cover C̄. Let S̃− denote the unique copy of the
node S− that lies in the fundamental domain C̃, and let W̃− be the unique orbit in C̄ whose α-limit
point is S̃−. The ω-limit point of this orbit is thus some copy of the node N+, call itN̄+, which
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has coordinates (x+, n+− 2πk+) for some k+ ∈ Z. Similarly, let S̃+ denote the unique point in the

preimage of S+ under the covering map that lies in the fundamental domain C̃ and let W̃+ denote
the unique orbit whose ω-limit point is this S̃+. Let N̄− = (x−, n−+ 2πk−), k− ∈ Z be the α-limit

point of W̃+. By definition the corridor K1 is the open domain in C̄ whose boundary contains the
two orbits W̃− and W̃+.

We note that in C̄ only one of the two corridors will have both of these orbits on its boundary,
so this is the distinguishing feature of K1.

We orient the boundary of K1 (which is a closed simple curve) in such a way that the orientation

induced on W̃− coincides with the direction of the flow on that orbit.
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Figure 3: The corridor K1 in C and in C̄.

Furthermore, in the universal cover C̄, using the well-orderedness of R it is possible to speak of
W̃+ as being situated “above” or “below” W̃−. It is evident that the boundary of the corridor K1

is oriented clockwise if W̃+ is below W̃−, and counterclockwise if it is the other way around. see
Figure 3.

7.3.3 Parameter-dependent flows

Suppose that the function g in (125) depends smoothly on a parameter µ ∈ I where I is an open
interval in R (It’s enough for the µ-dependence to be C1). Thus the flow is now{

ẋ = f(x)
ẏ = gµ(x, y)

(133)

By the implicit function theorem, the locations of the equilibria S±, N± also depend –in a C1

fashion– on µ, so long as the non-deneneracy conditions (130) are satisfied.
We need to make certain assumptions about the µ-dependence of the flow regarding its mono-

tonicity, and the topology of its nullclines:
Monotonicity We will only consider parameter-dependent flows for which the function gµ(x, y)

is monotone non-increasing in µ.
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Assumption (M): For all (x, y) ∈ C̄, we have

∂

∂µ
gµ(x, y) ≤ 0. (134)

This assumption in particular implies a corresponding monotonicity for the orbits of the flow
(133):

LEMMA 7.2. Let Oµ = {(x(τ), yµ(τ)}τ∈R be a complete orbit of (133). Then

µ1 < µ2 =⇒ yµ1(τ) ≥ yµ2(τ) for all τ ∈ R. (135)

Proof. Easy! (will fill in later)

Topology of nullclines Consider the subset of the cylinder C defined by

Γ := {(x, y) ∈ C | gµ(x, y) = 0}. (136)

Thus Γ is the zero level-set of gµ. Since gµ is smooth, Γ is a curve (or collection of curves) in C.
These curves are referred to as the y-nullclines of the flow (125). They have the property that any
orbit of the flow that crosses them must have a horizontal tangent at the crossing point. Moreover,
Γ divides C into two regions, thus C = Γ ∪N ∪ P, where

N := {(x, y) ∈ C | gµ(x, y) < 0}, P := {(x, y) | gµ(x, y) > 0}. (137)

Thus the y coordinate of (the lift to the universal cover of) any orbit must decrease in N and must
increase in P.

Evidently, Γ must include all the singular points of the flow: S± ∈ Γ, N± ∈ Γ.
It may happen that as µ crosses a critical value µc ∈ I, the topology of the nullclines undergoes

a dramatic change. This is indeed the case for the flows that we are studying in this paper. We
introduce an assumption that amounts to having some control on this change in nullcline topology:

Assumption (A): There exists a µc ∈ I such that Γ, the zero level-set of gµc has a saddle
point at some interior point of C. In particular, for µ < µc, the sets N and P are both connected,
and Γ is the union of two disjoint curves Γ = Γu ∪ Γd, with N−, S+ ∈ Γd and S−, N+ ∈ Γu. On
the other hand for µ > µc, N is connected, while P has two connected components Pl and Pr,
each being a convex subset of C. Moreover, Γ is the union of two disjoint curves Γ = Γl ∪ Γr, with
N−, S− ∈ Γl and S+, N+ ∈ Γr; see Figure 4.

7.3.4 Winding number of orbits and corridors

Assuming (131), let

w0 :=
s+ − n−

2π
=
n+ − s−

2π
. (138)

Given any orbitO = {(xo(τ), yo(τ)) | τ ∈ R} of the flow (125), the following quantity is well-defined:

w(O) = w0 −
1

2π
(yo(∞)− yo(−∞)) = w0 −

1

2π

∫ ∞
−∞

gµ(xo(τ), yo(τ))dτ (139)

In particular for the two distinguished orbits W̃± this is easily calculated to be

w(W̃−) = w0−
1

2π
(n+−2πk+−s−) = k+ w(W̃+) = w0−

1

2π

(
s+ − (n− + 2πk−)

)
= k− (140)
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Figure 4: Change in the topology of nullclines: µ < µc (left) and µ > µc (right)

and is therefore an integer. We call these the winding numbers, of W− and W+, respectively.
On the other hand it is easy to see that these two must in fact be equal. The reason is that, since

W̃− goes from S̃− = (x−, s−) to N̄+ = (x+, n+ − 2πk+), there are two copies of it in the universal
cover that go from (x−, s− + 2πk+) to (x+, n+) and from (x−, s− + 2π(k+ − 1)) to (x+, n+ − 2π).

Since n+ − 2π < s+ < n+, these two copies of W̃− must sandwich any orbit that goes into S̃+, in

particular W̃+. Thus the α-limit point of W̃+ has to be (x−, n− + 2πk+), and therefore k+ = k−.

Definition 7.3. The winding number of the corridor K1 is the common value of the winding
numbers of W̃±.

Figure 4 shows a corridor of winding number zero when µ < µc (left) and one of winding number
equal to one for µ > µc (right).

7.3.5 Continuity argument for existence of saddle connectors

As the parameter µ varies, the two distinguished orbits W̃±, and hence the corridor K1 that they
form will also vary. Let K1(µ) denote the corresponding corridor for parameter value µ (if it exists).
Since the winding number w(K1(µ)) is integer-valued, if K1 varies continuously with respect to µ,
its winding number would have to remain constant. It is however possible that for some value of µ
the two orbits W̃± coincide and the corridor K1(µ) disappears, leaving a saddle connector behind
(for which the winding number will not be an integer). We would like to show that this is the only
way for the winding number of K1(µ) to be different for two different values of the parameter µ.
In other words:

PROPOSITION 7.4. Suppose there exist two values µ0 < µ1 in the interval I for each of which
a non-empty corridor K1 of finite winding number exists, and such that

w(K1(µ0)) ≤ 0 and w(K1(µ1)) ≥ 1. (141)
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Then there exists µs ∈ (µ0, µ1) such that the flow (133) with µ = µs has a saddle connector S(µs),

whose lift to the universal cover C̄ connects the saddle-node S̃− to the saddle-node S̃+.

Proof. Let a(µ) denote the signed area of K1(µ), defined via Green’s theorem:

a(µ) =

∮
∂K1(µ)

(−y)dx =

∫ x+

x−

(
y+
µ − y−µ

)
dx. (142)

Here y±µ are the y-components of the orbits W̃±, thought of as functions of x (which is always
possible since x(τ) is a monotone increasing function of flow parameter τ .) The following facts
about a(µ) are easily verified:

1. a(µ) > 0 if and only if w(K1(µ)) ≥ 1.

Proof: Since W̃+ and W̃− cannot intersect without coinciding, it is clear from (142) that

a(µ) > 0 if and only if W̃+ is above W̃−, which is equivalent to S̃+ = (x+, s+) being above
N̄+ = (x+, n+ − 2πk) where k = w(K1(µ)). Since n+ > s+ we must have k ≥ 1.

2. a(µ) < 0 if and only if w(K1(µ)) ≤ 0.

Proof: Similar to above.

3. a(µ) = 0 if and only if K1(µ) = ∅.
Proof: From the definition (142) it is clear that the only way for a(µ) to be zero is for the

two orbits W̃+ and W̃− to coincide.

4. a(µ) is a continuous function of µ for all µ ∈ [µ0, µ1].

Proof: Let ε > 0 be given. For µ, µ′ ∈ [µ0, µ1] and ξ > 0 small enough, we have

|a(µ′)− a(µ)| =

∣∣∣∣∫ x+

x−

(
y+
µ′ − y

+
µ

)
−
(
y−µ′ − y

−
µ

)
dx

∣∣∣∣
≤

∫ x−+ξ

x−

|y+
µ′ |+ |y

+
µ |dx+

∫ x+−ξ

x−+ξ

∣∣∣y+
µ′ − y

+
µ

∣∣∣ dx+

∫ x+

x+−ξ
|y+
µ′ |+ |y

+
µ |dx

+

∫ x−+ξ

x−

|y−µ′ |+ |y
−
µ |dx+

∫ x+−ξ

x−+ξ

∣∣∣y−µ′ − y−µ ∣∣∣ dx+

∫ x+

x+−ξ
|y−µ′ |+ |y

−
µ |dx

= I + II + III + IV + V + VI.

By Lemma 7.2 the functions y±µ are monotone in µ, thus for all τ ∈ R we have

|y±µ (τ)| ≤ max{|y±µ0
(τ)|, |y±µ1

(τ)|}

Thus is particular, using the continuity of orbits of (133) in the flow parameter τ , for x near
the boundary points x± and all µ ∈ [µ0, µ1] we have |y±µ (x)| ≤ C, where C > 0 is a constant
depending only on y±µ0

(x±) and y±µ1
(x±), or in other words, on the finite winding numbers of

the corridors K1(µ0) and K1(µ1). Thus, given ε, we may choose ξ small enough (depending
on ε) such that I, III, IV and VI are all less than ε/6.

Fixing ξ in this way, by continuous dependence of orbits of the flow (133) on the parameter µ
(and since we are on a compact interval in the flow parameter τ), it is possible for δ > 0 to be
chosen small enough (depending on ε and ξ,) such that |µ′−µ| < δ implies |y+

µ′(x)−y+
µ (x)| <

(x+ − x−)−1ε/6 for all x ∈ [x− + ξ, x+ − ξ]. Therefore II < ε/6. Similarly, V < ε/6 as well,
and we are done.
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Having established the above properties for the signed area a(µ), the standard continuity ar-
gument can now be applied: By assumption we have a(µ0) < 0 and a(µ1) > 0. Thus by the
Intermediate Value Theorem there exists µs ∈ (µ0, µ1) such that a(µs) = 0, which is equivalent
to the existence of a connector. Since the corridors K1(µ) by definition always have S̃± on their
boundary, the saddle connector also has to go from S̃− to S̃+.

We will use this proposition to establish the existence of saddle connectors for both the Θ (118)
and the Ω (122) equations. In each case we need to show that the flow satisfies the assumptions
we have made in this subsection about the flow on a cylinder (133).

7.3.6 Existence of saddle connectors for the Θ equation

For simplicity we are only going to consider the case κ = 1
2 . To see that (118) is a flow on a cylinder

of the type we have considered in the above, we make the following identifications: x = θ, y = Θ,
x− = 0, x+ = π. We have

f(θ) = sin θ, g(θ,Θ) = −2a sin θ cos θ cos Θ +
(
2aE sin2 θ − 1

)
sin Θ + 2λ sin θ.

Therefore, the equilibria are at

S− = (0, 0), N− = (0, π) S+ = (π,−π), N+ = (π, 0);

all of these are hyperbolic. Condition (131) is clearly satisfied: s− − n− = −π and n+ − s+ = π.
Here we make a note of the fact, easily verified, that the Θ flow (118) possesses a discrete

symmetry: Let O = (θ(τ),Θ(τ)) be any orbit of the flow (118). Then O′ = (π− θ(−t), π−Θ(−t))
is also an orbit of (118). This is simply due to the fact that

f(θ) = f(π − θ), g(θ,Θ) = g(π − θ, π −Θ).

This symmetry will prove useful in constructing corridors of given winding number for the flow.
Next we check that the assumptions we made in the previous subsection about the topology of
nullclines hold in the case of (118).

7.3.7 Topology of the nullclines

Let T := tan(Θ/2). Then,

gE,λ(θ,Θ) =
1

1 + T 2

(
2 sin θ(λ− a cos θ)T 2 + 2(2aE sin2 θ − 1)T + 2 sin θ(λ+ a cos θ)

)
=:

q(T )

1 + T 2

where q is a quadratic polynomial in T , whose discriminant we calculate to be

∆q := (2aE sin2 θ − 1)2 − 4λ2 sin2 θ + 4a2 sin2 θ cos2 θ.

Setting τ := − cot θ we thus obtain

∆q =
δq(τ)

(1 + τ2)2
, δq(τ) = τ4 + 2(1− 2aE + 2a2 − 2λ2)τ2 + (1− 2aE)2 − 4λ2

Therefore δq is a quartic polynomial which is quadratic in s = τ2. The discriminant of δq(s) is

∆δq = λ4 + 2a(E − a)λ2 + a2(a2 − 2aE + 1) = (λ2 + a(E − a))2 + a2(1− E2)
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which is always positive. Thus δq(s) = 0 will always have two roots, which will be of opposite signs
if |λ| ≥ 1

2 − aE. In that case there exists s1 = τ2
1 > 0 such that ∆q(±τ1) = 0, and ∆q(τ) < 0

for τ ∈ (−τ1, τ1). It follows that the quadratic equation q(T ) = 0 will have two roots so long as
|t| > τ1, it will have repeated roots when t = ±τ1, and no roots when |t| < τ1.

If on the other hand |λ| < 1
2−aE ≤

1
2 then the roots of δq(s) = 0 will be of the same sign. Since

the sum of these roots will be 4(λ2 − a2 − (1
2 − aE)) it is easy to see that both will be negative,

thus they will not correspond to real roots of δq. Therefore ∆q > 0 and hence q(T ) = 0 will always
have two roots. Thus the critical value of the parameter λ (thinking of the other parameters a and
E as given and fixed) is

λc := −1

2
+ aE.

Now any zero of q will be a zero of g, and thus will give us a point on the nullcline Γ. In
addition, g may also have a zero at Θ = 0 or ±π, where T = ±∞. For g to be zero there we need
the coefficient of T 2 in q to vanish, i.e. either sin θ = 0, which will give us the equilibrium points,
or cos θ = λ/a which is impossible so long as

λ < −a.

Under this condition therefore, the nullclines have the topology we assumed in the previous sub-
section, with λ playing the role of the parameter µ, i.e., given a ∈ (0, 1

2), E ∈ [0, 1], λ ∈ (−∞,−a)
and λc as in the above, the topology of Θ-nullclines for the flow (118) changes across λ = λc in the
manner described in assumption (A). Figure 5 shows Maple plots of the Θ-nullclines for values of
λ below and above the critical value.

Figure 5: Θ nullclines for λ = −0.4 (left) and λ = −0.9 (right), with a = 0.1, E = 0.95.

7.3.8 Explicit solutions of the Θ equation

One easily verifies that given a ∈ [0, 1
2), there is an explicit solution of (114), for E = 1 and

λ = −1 + a, namely
Θ0(θ) = −θ.

This furthermore generates a saddle connector for (118): S0 := (θ0(τ),Θ0(θ0(τ)) where θ0(τ) is the
unique solution to the ODE θ̇ = sin θ with θ(−∞) = 0 and θ(∞) = π.

This solution will help us get the iteration started.
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7.3.9 Existence of corridors with unequal winding number

Throughout this section, a will be a fixed number in [0, 1
2). The following two propositions will

start things off:

PROPOSITION 7.5. Given E ∈ [0, 1] and λ ≤ λl := −1 − a the flow (118) has a corridor
K1(E, λ) with w(K1) ≥ 1.

Proof. The linearization of the flow at S− gives us eigenvalues λ1 = 1, λ2 = −1 and a corresponding

set of eigenvectors is v1 =

(
1

λ− a

)
and v2 =

(
0
1

)
. The orbitW−, being the unstable manifold

of S− is tangent to the unstable direction v1, therefore the slope of W− at S− is dΘ
dθ |W−(S−) =

λ − a < 0. The slope of W+ at S+ is similarly calculated, and it turns out to be the same
dΘ
dθ |W+(S+) = λ − a. On the other hand, since λl < λc, we have Γ = Γl ∪ Γr. S− is a terminal
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Figure 6: Existence of corridor with w(K1) ≥ 1

point of the curve Γl, on which gE,λ(θ,Θ) = 0, hence the slope of Γl at S− can be calculated from
implicit function theorem to be

dΘ

dθ

∣∣∣∣
Γl

(S−) = −
∂θgE,λ
∂ΘgE,λ

(S−) = 2(λ− a) < λ− a.

Same is true for the slope of Γr at S+, as can be easily verified. Thus W− starts off inside N ,
which is connected, and its initial slope is λ− a < −1 for λ < −1 + a. Consider the diagonal line
segment S−S+, on which Θ = −θ. Let us compute the slope of orbits that cross this line, and
compare it to the slope of the line:

gE,λ(θ,−θ)
f(θ)

− (−1) = −2a sin θ(cos θ + E sin θ) + 2λ+ 2 ≤ 0 for λ ≤ −1− a.

Thus S−S+ acts as a “barrier”, not allowingW− to cross it from below to above. Hence the ω-limit
of W− cannot be (π, 0). The first possible terminal point is then (π,−2π), hence w(W−) ≥ 1.
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PROPOSITION 7.6. Suppose that for some E ∈ (0, 1] and some λ ≤ λ0 := −1 + a, the flow
(118) has a saddle connector SΘ(E, λ) whose lift to the universal cover of the cylinder goes from
S̃− = (0, 0) to S̃+ = (π,−π). Then, for all E′ ∈ [0, E), there exists a corridor K1(E′, λ) of winding
number w(K1) = 0 for (118).

Proof. Let S(E, λ) = (θ(τ),ΘE,λ(τ)). Since SΘ =W− =W+, by the calculation done in the proof
the previous Proposition, the graph of ΘE,λ is entirely contained in N , thus it has to be monotone
decreasing, and thus sin ΘE,λ(τ) ≤ 0 for all τ .
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Figure 7: trapped region R and the corridor with zero winding number.

Consider the region R in C̄ whose boundary consists of the following three curves: (i) From S−
to S+ along ΘE,λ. (ii) From S+ to N+ along the right boundary, and (iii) from N+ to S− along a
horizontal line segment. We claim that R is a trapped region for (118) at parameter values (E′, λ)
provided E′ < E. Since (ii) is always an orbit, and (iii) is entirely contained in N , this only needs
to be checked for (i). We have

gE′,λ(θ,ΘE,λ) = gE,λ(θ,ΘE,λ) + 2a(E′ − E) sin2 θ sin ΘE,λ ≥ Θ̇E,λ

which shows that the new flow crosses the old solution from left to right. Thus R is trapped and
since W− starts in R, it must terminate in Ñ+ = (π, 0), so that w(W−) = 0.

Setting E0 = 1 and λ0 = −1 +a, let S0 := S(E0, λ0) denote the explicit solution found in 7.3.8.
For all E1 ∈ (0, 1), the above two propositions, together with the following immediate corollary of
Proposition 7.4, establish the existence of a saddle connector S1 := S(E1, λ1) for (118), for some
λ1 ∈ (λl, λ0):

COROLLARY 7.7. Let E ∈ [0, 1] be fixed. Suppose that there exists λ1 < λ2 < 0 such that the
flow (118) has corridors K1(E, λ1) and K1(E, λ2) with w(K1(E, λ2)) = 0 and w(K1(E, λ1)) ≥ 1.
Then there is a λ ∈ (λ1, λ2) such that (118) has a saddle connector SΘ(E, λ) going from (0, 0) to
(π,−π).
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Proof. Proposition 7.4 applies, with −λ playing the role of the parameter µ.

Proceeding iteratively, suppose that given En ∈ [0, 1] a saddle connector SΘ
n = SΘ(En, λn)

has been found for (118), for some λn < λ0. In the next subsection we shall see how the newly-
found λn can be used to prove the existence of a saddle connector for the Ω flow (122), namely
SΩ
n := SΩ

n (En+1, λn) for some En+1 ∈ (0, 1). Coming back to the Θ flow then, a new saddle
connector SΘ

n+1 needs to be found with the updated energy En+1, given that a saddle connector
SΘ
n (En, λn) already exists. Since En+1 can be on either side of En, in addition to Prop. 7.6 we also

need the following:

THEOREM 7.8. Given any a ∈ [0, 1
2) and E ∈ [0, 1], there exists a unique

λ = Λ(E) ∈ [−1− a,−1 + a]

such that (118) has a saddle connector S(E, λ) going from (0, 0) to (π,−π). Moreover, Λ is an
increasing C1 function, and ∂Λ

∂E < a.

Proof. If E = 1 then λ = −1 + a works and S = S0 = (θ,−θ). For E < 1 existence is guaranteed
by Prop. 7.6, Prop. 7.5, and Corollary 7.7. To prove uniqueness, suppose that for a given E, there
are two saddle connectors S(E, λ) and S ′(E, λ′), with λ′ > λ. Let ΘE,λ and ΘE,λ′ denote the
corresponding Θ-components of S and S ′, respectively. For θ ∈ (0, π),

gE,λ′(θ,ΘE,λ) = gE,λ(θ,ΘE,λ) + 2(λ′ − λ) sin θ > Θ̇E,λ.

Thus orbits of the (E, λ′) flow can only cross S from below to above. On the other hand, since
S ′ is a saddle connector, near S− it coincides with W−(E, λ′), and near S+ it coincides with W+.
Thus from the linearizartion of the flow at S±,

dΘE,λ′

dθ

∣∣∣∣
S±

= λ′ − a > λ− a.

Therefore S ′ must be above S near S− and below it near S+, so S ′ would have to cross S from
above to below, which is a contradiction, unless they coincide.

Given E then, let Λ(E) denote the unique value of λ for which a saddle connector S(E, λ) exists.
The fact that Λ is continuously differentiable (in fact analytic), and the bound on the derivative,
have already been shown in [38] and [3] using analytic perturbation theory. Here we give a simple
proof of monotonicity of Λ which also establishes the bound on the derivative:

Given E ∈ [0, 1] let λ = Λ(E) and let (θ(τ),ΘE(τ)) denote the unique (modulo translations in
τ) saddle connector for (118) whose existence we have established. Let u := ∂ΘE

∂E . By differentiating
the Θ equation in (118) with respect to E we obtain an equation for u:

du

dτ
= P (τ)u+Q(τ),

{
P := 2a sin θ cos θ sin ΘE + (2aE sin2 θ − 1) cos ΘE

Q := 2a sin2 θ sin ΘE + 2 dΛ
dE sin θ.

(143)

Let

U(τ1, τ2) := e
−

∫ τ2
τ1

P (τ)dτ
.

Thus we have

U(τ2, τ1) =
1

U(τ1, τ2)
, U(τ1, τ2)U(τ2, τ3) = U(τ1, τ3).
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Solving the first-order linear ODE (143) for u we obtain

u(τ) = U(τ, τ1)u(τ1) +

∫ τ

τ1

U(τ, τ ′)Q(τ ′)dτ ′. (144)

Note that P and Q are bounded functions of τ and

lim
τ→−∞

P (τ) = −1, lim
τ→∞

P (τ) = 1.

Therefore, for any fixed τ ,

U(τ, τ1)→ 0 as τ1 → −∞, U(τ, τ1)→ 0 as τ1 →∞.

Moreover u(±∞) = 0. For any finite τ from (144) we thus obtain two equivalent expressions for
u(τ). For example, setting τ = 0,

u(0) =

∫ 0

−∞
U(0, τ ′)Q(τ ′)dτ ′ = −

∫ ∞
0

U(0, τ ′)dτ ′.

Thus in particular

0 =

∫ ∞
−∞

U(0, τ ′)Q(τ ′)dτ ′ = 2a

∫
R
U(0, τ ′) sin2 θ(τ ′) sin ΘE(τ ′)dτ ′ + 2

dΛ

dE

∫
R
U(0, τ ′) sin θ(τ ′)dτ ′

Therefore
dΛ

dE
= a

∫
R U(0, τ ′) sin2 θ(τ ′) (− sin ΘE(τ ′)) dτ ′∫

R U(0, τ ′) sin θ(τ ′)dτ ′
≥ 0.

We have already shown that ΘE(τ) ∈ (−π, 0) and θ(τ) ∈ (0, π) for all τ . Thus the numerator in
the above fraction is strictly less than the denominator, hence

0 ≤ ∂Λ

∂E
< a (145)

7.3.10 Existence of saddle connectors for the Ω equation

We now show that the flow (122) also satisfies all the hypotheses we had made about flows on a
cylinder. Once again, for simplicity we are only going to consider the case κ = 1

2 . The situation is
somewhat more complicated than what we have done in the above for the Θ equation, due to the
presence of an extra parameter, namely γ, which breaks the symmetry that was present for the Θ
flow, as well as the fact that the equilibria of the Ω flow are degenerate (non-hyperbolic).

Let us make the identifications x = ξ and y = Ω. Thus x− = −π/2, x+ = π/2, and we now
have

f(ξ) = cos2 ξ, gE,λ(ξ,Ω) = 2a sin ξ cos Ω + 2λ cos ξ sin Ω + 2γ sin ξ cos ξ + cos2 ξ − 2aE

Therefore, for E ∈ [0, 1),

s− = −π + cos−1(E), n− = π − cos−1(E), s+ = − cos−1(E), n+ = cos−1(E),

where by cos−1 we mean the principal branch of the arccosine, 0 ≤ cos−1 x ≤ π, and

S± = (±π
2 , s±), N± = (±π

2 , n±)
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as before. We note that this time, all the equilibria are non-hyperbolic, since f ′(±π/2) = 0, and
that for γ = 0, there is a discrete symmetry: f(−ξ) = f(ξ) and g|γ=0

(−ξ, π − Ω) = g|γ=0
(ξ,Ω),

which is broken when γ is turned on.
Also in the case E = 1 there is a further degeneracy: the two equilibria on each side coalesce

into one singular point with both eigenvalues equal to zero. For these type of singular points center
manifolds can be non-unique, so that the distinguished orbits W± and the index theory we have
developed for the corridor they form, are not directly relevent to this case.

We now check the hypotheses about the topology of the nullclines.

7.3.11 Topology of the null-clines

Let T := tan(Ω/2). Then

gE,λ(ξ,Ω) =
2q(T )

1 + T 2
,

where

q(T ) :=
(
γ sin ξ cos ξ + 1

2 cos2 ξ − aE − a sin ξ
)
T 2 + 2λ cos ξT

+
(
γ sin ξ cos ξ + 1

2 cos2 ξ − aE + a sin ξ
)
.

Thus q is a quadratic polynomial in T with coefficients that are functions of ξ. The discriminant
of q is

∆q(ξ) := λ2 cos2 ξ − (γ sin ξ cos ξ + 1
2 cos2 ξ − aE)2 + 4a2 sin2 ξ.

Let τ := tan ξ. Thus −∞ < τ <∞, and

∆q(τ) =
p(τ)

(1 + τ2)2

with

p(τ) := a2(1−E2)τ4 + 2γaEτ3 +
(
λ2 − γ2 + a2 + 2a(1

2 − aE)
)
τ2− 2γ(1

2 − aE)τ + λ2− (1
2 − aE)2.

Consider first the case 0 ≤ E < 1. Then p is an irreducible quartic in τ . Let us write it as
p(τ) =

∑4
j=0 cjτ

j . Suppose that

a ∈ [0, 1
2), γ ∈ (−1

2 , 0), λ < −1
2 . (146)

It then follows that

c4 > 0, c3 < 0, c2 > 0, c1 > 0, c0 > 0.

By Descartes’ Rule of Signs, then, p(τ) has either two or no real positive roots, and either two
or no real negative roots, counting multiplicity. For a more accurate root count, one needs to use
the discriminant of the quartic. Since the discriminant theory for general quartics is somewhat
complicated, here we opt for a simpler analysis by estimating p from above and below with two
reducible quartics. To this end, first we note that p(τ) = Q(τ)− (q1(τ))2 with

Q(τ) = λ2 + (λ2 + a2)τ2 + a2τ4, q1(τ) = 1
2 − aE + γτ − aEτ2.

Thus on the one hand, by completing the square,

Q(τ) =

(
aτ2 +

λ2 + a2

2a

)2

− (λ2 − a2)2

4a2
≤ (q+

2 (τ))2, q+
2 (τ) := aτ2 +

λ2 + a2

2a
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and on the other hand,

Q(τ) ≥ λ2 + 2|λ|aτ2 + a2τ4 = (q−2 (τ))2, q−2 (τ) = aτ2 + |λ|

Thus we have upper and lower bounds for p in terms of factorizable quartics Q±(τ):

Q−(τ) :=
(
q−2 (τ)

)2 − (q1(τ))2 ≤ p(τ) ≤
(
q+

2 (τ)
)2 − (q1(τ))2 =: Q+(τ)

Figure 8: The bounding quartics: Q+ and p (left), p and Q− (right) for parameter values a = 0.1,
γ = −0.2, λ = −0.9, E = 0.978.

Consider first the upper quartic Q+. We have Q+ = (q+
2 + q1)(q+

2 − q1) = q+q− where q± are
two quadratic polynomials. It is clear that if q+ has any real roots, they will be positive, and if q−

has any roots, they will be negative (recall that we are assuming γ < 0). The discriminants of q±

are computed to be
∆± := γ2 − 2(1∓ E)

(
λ2 + a2 ± a(1− 2aE)

)
.

Similarly, Q− = (q−2 + q1)(q−2 − q1) = q̃+q̃− where q̃± are two quadratics, and once again, any
real roots of q̃+ must be positive and any real root of q̃−, negative. The discriminants of q̃± are

∆̃± = γ2 − 2(1∓ E)(−2aλ± a(1− 2aE)) ≥ ∆±

It thus follows that there are two subsets of the (a, γ, λ) parameter space (146) that are of interest:
(R1) where both ∆̃+ and ∆̃− are negative; and (R2) where ∆+ > 0 and ∆̃− < 0. For parameter
values in the region (R1) the quartic Q− will have no real zeros, and will be always positive, while
for those in (R2) the quartic Q+ will have exactly two positive roots and no negative root.

Let us fix a, γ, λ as in (146). We find that the range (R1) corresponds to 0 ≤ E ≤ El, where

El(λ) :=


1
2a

[
λ− a+ 1

2 +
√

(λ+ a+ 1
2)2 + γ2

]
0 < −γ ≤

√
2a(−2λ− 1)

1
2a

[
−λ+ a+ 1

2 −
√

(λ+ a− 1
2)2 + γ2

] √
2a(−2λ− 1) < −γ ≤

√
2a(−2λ+ 1)

0
√

2a(−2λ+ 1) < −γ < 1
2

while range (R2) corresponds to Eh < E ≤ 1, with

Eh(λ) =
1

4a2

[
λ2 + 3a2 + a−

√
(λ2 − a2 + a)2 + 4a2γ2

]
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Note that 0 < Eh < 1 and 0 ≤ El < Eh for all values of a, γ, λ as in (146).
For E > Eh, therefore, since Q+ has two positive roots, the quartic p(τ) must also have at least

two roots, one of which will definitely be positive. Thus by the Rule of Signs, p(τ) has exactly
two positive roots. We call them τ1 and τ2, and p(τ) < 0 for τ1 < t < τ2. It follows that the
quadratic q(T ) will have two roots for t /∈ [τ1, τ2], double roots at τ1 and at τ2, and no real roots
for τ ∈ (τ1, τ2).

For E ∈ [0, El] since Q− has no real roots, p cannot have any either. Thus p is always positive
and q(T ) = 0 will have two roots for all τ ∈ R.

Combining these two, one concludes that a critical value for the energy E = Ec(a, γ, λ) exists,
Ec ∈ (El, Eh), such that assumption (A) is satisfied, with the role of parameter µ played by E.

Figure 9: Ω-nullclines for parameter values E = 0.8 (left) and E = 0.93 (right), with a = 0.1,
γ = −0.4, and λ = −0.9.

7.3.12 Existence of corridors with unequal winding number

Throughout this section, a will be a fixed number in [0, 1
2) and γ a fixed number in (−1

2 , 0). The
following two propositions help us get started:

PROPOSITION 7.9. Given λ ≤ −1 + a there exists Ē ∈ (Eh(λ), 1) such that for all E ∈ [Ē, 1)
the corridor K1(E, λ) of the flow (122) has winding number greater than or equal to one.

Proof. We compute the slope of solution orbits that cross the following line in C̄

L := {(ξ,Ω) ∈ C̄ | − π
2 ≤ ξ ≤

π
2 , Ω = π

2 − cos−1E − ξ}

and compare it to the slope of L. Note that L passes through Ñ− and S̃+. We have

gE,λ(ξ,Ω)

f(ξ)
− (−1) = 2

(
1− (a− λ)E + [

√
1− E2(a− λ) + γ] tan ξ

)
(147)

Consider first the case λ = −1 + a. Let

ξ0(E) := tan−1 1− E
−γ −

√
1− E2

↘ 0 as E ↗ 1.
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For ξ ≥ ξ0(E), the slope of any orbit of the flow crossing L is less than (i.e. more negative than)
the slope of L. Hence on the portion of L where ξ ≥ ξ0 orbits can only cross L from above to
below.

On the other hand, suppose λ < −1 + a. Let

Em := max

{
1

a− λ
,

√
1− γ2

(a− λ)2
, Eh(λ)

}
∈ (Eh, 1)

For E ∈ (Em, 1) we have ξ0(E) ∈ (−π
2 , 0). Let

η0 :=

{
cos−1E λ < −1 + a
cos−1E + ξ0(E) λ = −1 + a

We note that η0 → 0 as E → 1. Let us consider the horizontal line

L′ := {(ξ,Ω) ∈ C̄ | − π
2 ≤ ξ ≤

π
2 , Ω = π

2 − η0}

We compute the slope of orbits crossing L′:

h(ξ) := gE,λ(ξ, π2 − η0) = 2a sin ξ sin η0 + 2λ cos ξ cos η0 + 2γ sin ξ cos ξ + cos2 ξ − 2aE.

Clearly

h(ξ) ≤ 2a(sin η0 − E) + |γ|+ 2λ cos ξ cos η0 + cos2 ξ

≤ 2a(sin η0 − E) + |γ|+ 2λ cos η0 + 1

→ −2a+ |γ|+ 2λ+ 1 as E → 1

≤ |γ| − 1 < 0

Thus there exists E sufficiently close to 1 such that h(ξ) < 0 for ξ ∈ (−π
2 ,

π
2 ).
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Figure 10: Construction of a barrier
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Let γ be the curve in C consisting of two line segments: From (−π
2 ,

π
2 −η0) along the horizontal

line L′, upto the intersection point of L and L′, and then from there along L to S̃+. The curve γ
provides a barrier for the flow: no orbit can cross it from the region below γ into the region above
γ. Let W̃− be the unstable manifold af S̃−. Thus W̃− must stay below γ, and as a result the
ω-limit of W− cannot be Ñ+ so therefore its winding number is not zero or negative.

PROPOSITION 7.10. Given λ ≤ −1 + a and E ∈ [0, El(λ)] the corridor K1(E, λ) of the flow
(122) has winding number equal to zero.

Proof. Once again we find a barrier that prevents W− from going down: Let us compute the slope
of orbits crossing the line

L = {(ξ,Ω) | Ω = ξ − π
2 }

and compare it to the slope of this line.

j(ξ) := gE,λ(ξ, ξ − π
2 )− cos2 ξ = 2a(1− E)− 2(λ+ a) cos2 ξ + 2γ sin ξ cos ξ.

Thus j(±π/2) = 2a(1− E) > 0. Any interior minimum of j must be achieved at a critical point:

j′(ξ0) = 0 =⇒ ξ0 = 1
2 tan−1 γ

λ+ a
> 0.

However we have

j(ξ0) = 2a(1−E)− (λ+ a)− (λ+ a) cos 2ξ0 + γ sin 2ξ0 = 2a(1−E)− 2(λ+ a)3

(λ+ a)2 + γ2
> 2a(1−E).
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Figure 11: Barrier for zero winding number

Thus j(ξ) > 0 for all ξ ∈ (−π
2 ,

π
2 ). It follows that the slope of any orbit crossing the line is

greater than the slope of the line. Thus orbits cannot cross this line from above to below. In
particular, the orbit W− starts at S̃−, which is above this line. Hence W− cannot end at any
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copy of the node N+ other than Ñ+, so its winding number cannot be positive. Since the region
N is connected, once W− leaves P and enters N , its Ω must decrease, hence W− cannot end at
any copy of the node N+ that is higher than Ñ+ either, and therefore the winding number of W−
cannot be negative, hence w(W−) = 0.

Let λ0 = −1 + a. The above two propositions, in conjunction with the following immediate
corollary of Proposition 7.4, establish the existence a saddle connector SΩ

0 (E1, λ0) forthe flow (122),
for some E1 ∈ (0, 1):

COROLLARY 7.11. Let λ ≤ −1+a be fixed. Suppose that there exists 0 ≤ E1 < E2 < 1 such that
the flow (122) has corridors K1(E1, λ) and K1(E2, λ) with w(K1(E1, λ)) = 0 and w(K1(E2, λ)) ≥ 1.
Then there is an E ∈ (E1, E2) such that (122) has a saddle connector S(E, λ).

Proof. Proposition 7.4 applies, with E playing the role of the parameter µ.

Let n ≥ 1. Suppose that given λn−1 ≤ −1 + a a saddle connector SΩ
n−1 = SΩ(En, λn−1) has

been found for (122), for some En ∈ (0, 1). In the previous subsection we saw how this newly-
found En can be used to prove the existence of a saddle connector for the Θ flow (118), namely
SΘ
n := SΘ

n (En, λn) for some λn ≤ −1+a. Coming back to the Ω flow then, given the updated value
λ = λn, a new saddle connector SΩ

n needs to be found with an updated energy En+1, given that a
saddle connector SΩ

n−1(En, λn−1) already exists. More generally, we have

THEOREM 7.12. Fix a ∈ [0, 1
2) and γ ∈ (−1

2 , 0). Then given any λ ∈ [−1 − a,−1 + a], there
exists a unique

E = E(λ) ∈ (El(λ), 1)

such that (122) has a saddle connector SΩ(E, λ). Moreover, E is a C1 function, and |∂E∂λ | <
1
a .

Proof. Existence of a saddle connector is guaranteed by Propositions 7.9 and 7.10, and Corol-
lary 7.11. To see uniqueness, suppose that there exists two saddle connectors SΩ(E, λ) and
SΩ(E′, λ) for (122) for E and E′ in (Eb(λ), 1), and suppose E < E′. Let ΩE,λ be the Ω com-
ponent of SΩ(E, λ). We have

gE′,λ(ξ,ΩE,λ) = gE,λ(ξ,ΩE,λ)− 2a(E′ − E) < Ω̇E,λ.

It thus follows that orbits of the (E′, λ) flow can only cross SΩ(E, λ) from above to below. On
the other hand, since E′ > E the equilibrium point S̃−(E′, λ) is situated below S̃−(E, λ), while
S̃+(E′, λ) is above S̃+(E, λ). Since SΩ(E′, λ) coincides with both W−(E′, λ) and W+(E′, λ) it
begins below SΩ(E, λ) and it ends above it, which is a contradiction, hence E′ = E.

Given λ, let E(λ) denote the unique value of E for which a saddle connector SΩ(E(λ), λ) =
(ξ(τ),ΩE(λ),λ(τ)) exists. We now prove that E is a C1 function: Consider the two initial value
problems for Ω±(τ), the Ω components of W±:

Ω̇± = gE,λ(ξ(τ),Ω±), Ω−(−∞) = −π + cos−1E, Ω+(∞) = − cos−1E

By standard ODE theory these two problems have unique smooth solutions Ω±E,λ(τ) which also
depend smoothly on the parameters λ and E (so long as E < 1) for any finite τ .

Next recall that W− is a saddle connector if it coincides with W+, which will be the case if
these two orbits intersect at one point, e.g. if Ω+

E,λ(0) = Ω−E,λ(0). Let us define a smooth function

Φ(E, λ) := Ω+
E,λ(0)− Ω−E,λ(0) (148)
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Let λ0 ∈ [−1 − a,−1 + a] be fixed, and set E0 = E(λ0). Then Φ(E0, λ0) = 0. By the Implicit
Function Theorem, if

∂Φ

∂E
(E0, λ0) 6= 0, (149)

then there is a neighborhood I of λ0 and a C1 function Ẽ defined on I such that Φ(Ẽ(λ), λ) = 0
for all λ ∈ I. By the uniqueness result we have already shown, we must have Ẽ = E . Thus we only
need to verify the condition (149).

For λ ∈ [−1− a,−1 + a] and E ∈ (El(λ), 1), let

u±(τ) :=
∂

∂E
Ω±E,λ(τ).

Then u± satisfy the linear ODEs

du±
dτ

= P±(τ)u± − 2a, P±(τ) := −2a sin ξ(τ) sin Ω±E,λ(τ) + 2λ cos ξ(τ) cos Ω±E,λ(τ) (150)

together with the initial conditions

u−(−∞) =
−1√

1− E2
, u+(∞) =

1√
1− E2

.

Moreover,
Φ(E, λ) = u+(0)− u−(0).

For τ1, τ2 ∈ R let

U±(τ1, τ2) := e
−

∫ τ2
τ1

P±(τ)dτ
.

Solving the ODEs (150) for u± we obtain

U±(τ1, τ2)u±(τ2) = u±(τ1)− 2a

∫ τ2

τ1

U±(τ1, τ)dτ. (151)

Note that
lim

τ→−∞
P−(τ) = −2a

√
1− E2 < 0, lim

τ→∞
P+(τ) = 2a

√
1− E2 > 0.

Thus for any fixed τ ,

U−(τ, τ1)→ 0 as τ1 → −∞, U+(τ, τ2)→ 0 as τ2 →∞.

And so, from (151) we obtain

u−(τ) = −2a

∫ τ

−∞
U−(τ, τ ′)dτ ′, u+(τ) = 2a

∫ ∞
τ

U+(τ, τ ′)dτ ′. (152)

We know that Ω+
E0,λ0

(τ) = Ω−E0,λ0
(τ) for all τ . Hence U+(τ1, τ2) = U−(τ1, τ2) =: U(τ1, τ2) and thus

∂Φ

∂E
(E0, λ0) = 2a

∫ ∞
−∞

U(0, τ ′)dτ ′ > 0

so that (149) is clearly satisfied. Since λ0 was arbitrary we have shown that E ∈ C1((−1−a,−1+a)).
We can furthermore compute the derivative of E by implicit differentiation. Let

v±(τ) :=
∂

∂λ
Ω±E,λ(τ).
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Then v± satisfy

v̇± = P±(τ)v± + 2 cos ξ(τ) sin Ω±E,λ(τ), v−(−∞) = 0, v+(∞) = 0.

Thus by a similar argument to above,

v−(τ) =

∫ τ

−∞
U−(τ, τ ′) cos ξ(τ ′) sin Ω−E,λ(τ ′)dτ ′, v+(τ) =

∫ ∞
τ

U+(τ, τ ′) cos ξ(τ ′) sin Ω+
E,λ(τ ′)dτ ′,

so that
∂Φ

∂λ
(E0, λ0) = −2

∫ ∞
−∞

U(0, τ ′) cos ξ(τ ′) sin ΩE0,λ0(τ ′)dτ ′,

and thus
dE
dλ

= − ∂Φ/∂λ

∂Φ/∂E
=

∫∞
−∞ U(0, τ) cos ξ(τ) sin ΩE,λ(τ)dτ

a
∫∞
−∞ U(0, τ)dτ

.

Moreover, clearly ∣∣∣∣∫ ∞
−∞

U(0, τ) cos ξ(τ) sin ΩE,λ(τ)dτ

∣∣∣∣ < ∫ ∞
−∞

U(0, τ)dτ.

so that ∣∣∣∣dEdλ
∣∣∣∣ < 1

a
.

7.3.13 The iteration argument

THEOREM 7.13. There exists a λ ∈ (−1 − a,−1 + a) and E ∈ (0, 1) such that (118) has a
saddle connector SΘ(E, λ) and (122) has a saddle connector SΩ(E, λ).

Proof. Set λ0 = −1 + a. For n ≥ 1 let

En := E(λn−1) ∈ (0, 1), λn := Λ(En) ∈ (−1− a,−1 + a).

Thus
En+1 = E(Λ(En)).

By Theorems 7.12 and 7.8 we have

|En+1 − En| ≤ δ|En − En−1|

where

δ := max
0≤E≤1

∣∣∣∣ dΛ

dE

∣∣∣∣ max
−1−a≤λ≤−1+a

∣∣∣∣dEdλ
∣∣∣∣ < a · 1

a
= 1

Thus by the contraction mapping theorem, the sequence En converges, and thus so does the
sequence λn. Let λ = limn→∞ λn ∈ [−1−a,−1+a] and E := limn→∞En. We must have E = E(λ)
and thus E < 1.
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8 Summary and Outlook

In this paper we have studied the Dirac equation for a point electron in static, electromagnetic,
flat spacetimes with Zipoy topology which include the zero-gravity limit of the electromagnetic
Kerr–Newman spacetimes as special case, but which in general can feature generalization of the
Appell–Sommerfeld electromagnetic fields with any charge Q and current I one wants; the zero-G
Kerr–Newman spacetimes here correspond to Q = Iπa. In contrast to similar-spirited studies of
the Dirac equation for a point electron on the Kerr–Newman spacetime, which are plagued by the
presence of a Cauchy horizon and regions of closed timelike loops, [20, 5, 14, 15, 16, 17, 3, 39, 40, 4],
our zero-G spacetimes do not possess any such physically troublesome features.

We proved with the help of an operator that anti-commutes with the pertinent Dirac Hamil-
tonian that the spectrum of any of its self-adjoint extensions is symmetric about zero; this result
holds for any charge Q and current I of the electromagnetic spacetimes. By adapting an argu-
ment of Winklmeier–Yamada for the Dirac equation of a point electron in the outer region of the
Kerr–Newman black hole spacetime, we have shown that the formal Dirac Hamiltonian is essen-
tially self-adjoint on a complete spacelike slice of the maximal analytically extended, static zGKN
spacetime. Then we exploited the Chandrasekhar–Page–Toop separation-of-variables theorem for
Dirac’s equation on a general Kerr–Newman spacetime, and the Prüfer transform, and showed
that the self-adjoint Dirac operator on the zGKN spacetime has a continuous spectrum with a gap
about zero that contains a pure point spectrum. The pure point spectrum is associated with time-
periodic L2 spinor fields, representing bound states of Dirac’s point electron in the electromagnetic
field of the ring singularity of the zGKN spacetime.

Our results are far from exhaustive. In the following we list a number of interesting open
problems which we hope will be solved in some future work.
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We begin with the Dirac point electron in zGKN spacetimes:

• Problem 1 Characterize the point spectrum of the Dirac Hamiltonian on zGKN in com-
plete detail; to the extent possible, compute it analytically, or at least numerically in some
representative situations.

Remark 8.1. We suspect that there is a countably infinite set of energy eigenvalues which
correspond in a one-to-one fashion with saddle connectors of arbitrary winding numbers
w ∈ Z. The possibility of such saddle connectors we already established, see Theorem 7.13.

• Problem 2: Discuss the generalized scattering problem for Dirac spinor fields on the zGKN
spacetimes. In particular, investigate the evolution when (part of) the Dirac spinor field
“dives” through the ring from, say, the upper to the lower sheet.

We now come to the Dirac point electron in zGK spacetimes equipped with generalization of
the Appell–Sommerfeld electromagnetic fields to arbitrary charge Q and current I:

• Problem 3: For the formal Dirac Hamiltonian on the (Q, I)-generalization of the zGKN
spacetime (given a), show that essential self-adjointness holds if the “coupling constant”
(Q− Iπa)e is small in magnitude; perhaps using a so-called Hardy–Dirac type estimate.

• Problem 4 Suppose essential self-adjointness fails if |(Q − Iπa)e| is too large. If so, what
is the sharp constant for |(Q− Iπa)e|? Determine the (Q, I)-parameter regimes (given a) in
which the Dirac Hamiltonian on a generalization of the zGKN spacetime with Sommerfeld
has several self-adjoint extensions, respectively has no self-adjoint extension. Amongst the
self-adjoint extensions, can one identify a distinguished one?

• Problem 5 In the cases of self-adjointness, characterize the spectrum of the Dirac Hamilto-
nian in complete detail; to the extent possible, compute the spectrum analytically, or at least
numerically (in particular the point spectrum) in some representative situations.

• Problem 6 The continuous spectrum of quantum physical operator families is usually very
robust. Show that Theorem 2.7 holds for the (Q, I) generalization of our Dirac operators, at
least as long as (Q− Iπa)e is small in magnitude.

• Problem 7 Same consideration as above, for Theorem 2.8; thus: Can an eigenvalue of Ĥ on
H for Q = Iπa be continuously deformed into an eigenvalue of Ĥ on H for Q 6= Iπa as long
as (Q − Iπa)e is sufficiently small in magnitude? If so, does the size of the neighborhood
of Q = Iπa into which an eigenvalue can be continued depend on the eigenvalue, or can
one have a uniform control on the spectrum w.r.t. the coupling constant (Q − Iπa)e? Is it
possible that the point spectrum disappears completely if (Q − Iπa)e becomes too large in
magnitude?

• Problem 8: Same as Problem 3, now for Dirac spinor fields on zGK equipped with gener-
alizations of the Appell–Sommerfeld fields to arbitrary Q and I.

So far our problems concern the Dirac equation on the zero-gravity limit case of the KN
spacetimes, and its generalization to arbitrary Q and I. To make contact with the existing
studies of Dirac’s electron in Kerr–Newman spacetimes, the following bifurcation problem
suggests itself:
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• Problem 9: Deform these zero-gravity spacetimes perturbatively by “switching on” G and
discuss the Dirac equation on them perturbatively as well. In particular, is it possible to per-
turb into generalizations of the Kerr–Newman spacetime with gyromagnetic ratios amount-
ing to g-factors g 6= gKN = 2, or is such a perturbation feasible only if g = gKN = 2, viz. if
Q = Iπa?

In all the above problems, the energy-momentum-stress tensor is of classical electromagnetic
nature. The Dirac spinor field does not influence the spacetime structure (in the zero-gravity
limit the electromagnetic fields do not influence the spacetime structure, either). More to the
point, Dirac’s point electron is treated as a test particle in this paper and in all the above
problems. Since test particles are only mathematical fiction, no matter how useful practically,
an obvious task is to investigate the Dirac electron not as a test particle. Thus:

• Problem 10: Treat the quantum-mechanical interaction of the Dirac electron with the ring
singularity of the zero-G Kerr–Newman spacetime symmetrically as a two-body problem.

Remark 8.2. Of course, the same problem has not even been solved yet for the simpler setting
of “Dirac hydrogen” in Minkowski spacetime; i.e., how to go beyond the traditional textbook
problem where the relativistic hydrogen problem is treated by solving the Dirac equation of
a point electron in flat Minkowski spacetime containing an infinitely massive positive point
charge (representing the proton). Typically the problem of finite mass of the proton (or
nucleus, more generally) is addressed by perturbation theory, starting from Pauli’s two-body
equation and adding “relativistic corrections” in powers of 1/c; or by perturbative QED-type
calculations. In a similar vein one may be able to take a finite “ADM mass” of the ring
singularity into account.

• Problem 12: Same as Problem 11, but now with the (Q, I) generalizations of zGKN.

• Problem 13: Same as Problems 11 and 12, but now perturbatively for G > 0.

• Problem 14: Compute the feedback of the Dirac spinor field onto the spacetime structure
perturbatively when G > 0. This amounts to the perturbative discussion of the so-called
Einstein–Dirac system for small G. In this problem the energy-momentum-stress tensor,
in addition to classical electromagnetic fiels, also involves the Dirac spinor field which now
influences the spacetime structure.

All these problems are difficult, and the amount of work needed to solve all of them can only
be handled by the involvement of many mathematical physicists. In this vein we hope that our
paper inspires some readers to join us in our pursuit. We ourselves have made some progress on
problems 3, 10, and 11, which we plan to report in forthcoming publications.
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