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We consider the most general torsional completion of gravity and electrodynamics with Dirac
spinorial matter fields, showing that continuity and consistency constrain torsion to be completely
antisymmetric and the model to be parity-invariant and described by either the least-order derivative
model or the renormalizable model.

INTRODUCTION

One of the fundamental principles that is to be con-
sidered when establishing a theory is the requirement of
studying the most general situation possible.

Despite the fact that in some circumstances special
cases might be tackled, these toy models have only the
purpose of getting rid of unimportant details when one
aims to have a quick insight into the most important
properties of a system; but no theory will ever be taken
seriously if arbitrary restrictions are placed upon it.

Generality was for instance the reason that moved Ein-
stein in searching for what would be then called Einstein
gravitation: as he felt uneasy with the fact that only
inertial frames were used, he sought for a theory that
could be invariant for the most general transformation
between systems of reference and in doing so he realized
that the most general theory had room enough to host the
gravitational field; mathematically, the generalization of
derivatives up to the covariant derivatives demanded the
introduction of the connection, a geometrical quantity
inside which gravitational information could be stored.

Nevertheless, despite the attribute general to this the-
ory, the general theory of relativity is not the most gen-
eral theory of relativity that can be written: this theory
is the most general in the sense that in it the transfor-
mations between systems of coordinates and the met-
ric properties of the systems of coordinates are the most
general, but the connection of the spacetime is not the
most general at all; to find the most general connection
of the spacetime one may not employ a bottom-up ap-
proach, starting from the trivial connection and building
further generalizations, but one must employ a top-down
approach, starting from the most general connection to
eventually decompose it in simpler parts.

So far as we can tell, the most complete discussion
about the most general connection and its decomposi-
tion is in reference [1]: in this paper, it is presented the
fact that the most general connection is decomposable in
terms of the simplest connection, the symmetric metric
connection of Einstein gravity, plus two additional ten-
sors, one being a combination of the covariant derivatives
of the metric tensor and the other being the antisymmet-

ric part in the two lower indices of the connection itself.
The former of these two parts, the combination of the

covariant derivative of the metric, vanishes if the covari-
ant derivatives of the metric vanish themselves, and there
are reasons for this to be so; essentially, the argument is
that because the metric tensor is used to raise and lower
tensorial indices, and that this must be possible also for
tensors that are covariant derivatives of some other ten-
sor, then the only way in which can unambiguously been
done is by requiring that the covariant derivatives of the
metric vanish, or as it is also said, that the connection
be metric-compatible: in other words, the condition of
metric-compatibility of the connection is simply the most
general requirement that we can ask if we want that,
whether we have tensors or derivatives of tensors, the
procedure that allows us to move indices up and down
leave the information content unaffected. If this were not
the case, then a tensor that can be written in two differ-
ent configurations of indices might happen to be constant
in one but not constant in the other; as the difference be-
tween different configuration of indices, whether upper or
lower, is genuinely man-made and as such all configura-
tions must bear the same information, which is not the
case if a tensor is both constant and not constant.

Conversely, for the latter of the two parts we have dis-
cussed above, that is the antisymmetric part in the two
lower indices of the connection, there is no reason for it to
vanish, although admittedly arguments in the past have
been brought in support of this assumption; we are not
going to present here the list of these arguments, which
can be found for instance in [2], and it will be enough to
notice that basically they are all related to the principle
of equivalence: as it was discussed in [3], the vanishing of
the antisymmetric part of the connection is a sufficient
condition for the implementation of the Einsteinian prin-
ciple of equivalence. The argument is this: the principle
of equivalence requires that it is always possible to find a
system of reference in which locally the gravitational field
can be vanished, and because Weyl theorem states that it
is always possible to find a system of coordinates in which
in the neighborhood of a point the symmetric part of the
connection can be set equal to zero, then the symmetric
part of the connection is what encodes the gravitational
information; the antisymmetric part of the connection
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is called Cartan torsion tensor, and if torsion vanishes
then the connection is symmetric, which is a sufficient
condition in order to have the principle of equivalence
implemented, and consequently gravity geometrized.

Nevertheless, if for the geometrization of gravitation
we want a condition that is sufficient as well as neces-
sary then we do not need to go so far as to require that
torsion be equal to zero since it is enough to require its
complete antisymmetry; if torsion is non-zero but com-
pletely antisymmetric, the connection is not symmetric
but it has a single symmetric part, so the gravitational
field can unambiguously be represented by the symmet-
ric part of the connection and therefore geometrized, and
the principle of equivalence can still be implemented, as
it has been discussed in [4, 5]. Additionally, we do not
know whether the principle of equivalence is valid in the
quantum domain [6, 7]; then we cannot be sure that the
principle of equivalence be valid at all possible scales and
therefore torsion would be unconstrained in general.

So we have that either the principle of equivalence is
not valid and torsion is general, or the principle of equiv-
alence is valid and torsion is constrained to be completely
antisymmetric: both ways of the dilemma indicate that
torsion is non-zero, and therefore it provides non-trivial
contributions to the most general connection.

It is important to remark that when the connection
in its most general form is constrained as to be metric-
compatible then the system of coordinates in which lo-
cally the connection vanishes and the metric flattens are
the same; on the other hand, we have just discussed
how the complete antisymmetry of torsion would ensure
the existence of a single symmetric part of the connec-
tion that can be vanished: thus a metric-compatible con-
nection with a completely antisymmetric torsion ensures
that there exists a unique symmetric part of the connec-
tion that can be vanished together with the flattening
of the metric in the same point of the same system of
coordinates. This point was the starting point for a com-
plementary discussion, based on the analysis of light-cone
structures and free-fall paths, carried on in [8, 9].

Therefore, if we base our argument on the requirement
of staying in the most general case compatible with what
we know about the properties of the spacetime, the tor-
sional completion of gravity seems to be inevitable.

There are other reasons to justify the precise form of
the connection we have chosen to employ.

Consider the most general theory given when gravity
is taken together with electrodynamics. The geometrical
background is endowed with three fundamental quanti-
ties, given by the torsion and the curvature, beside the
gauge potential; on the other hand, in the Wigner clas-
sification, general matter fields are known to be char-
acterized by three quantum numbers, that is spin and
mass, beside the electric charge, and hence the quan-
tum theory of these fields will stipulate that there be
three conserved quantities for matter, namely the spin
and energy, beside the gauge currents: the requirement
of metric-compatibility suppresses a covariant derivative

of the metric that otherwise would have been a geomet-
rical quantity to which could couple no known conserved
quantity, while torsion can couple to the spin much in
the same way in which in Einstein gravity the curvature
couples to the energy, and similarly in electrodynamics
gauge potentials are coupled to gauge currents.

Moreover, consider the fact that of all possible mat-
ter fields with spin, the only one known in nature is the
Dirac spinor field. The Dirac spinor has a spin that is
completely antisymmetry, and as a consequence it would
perfectly fit into a scheme in which torsion is completely
antisymmetric too; conversely, the complete antisymme-
try of torsion imposes the complete antisymmetry of the
spin, allowing the Dirac field only [10, 11].

But if we abolish torsion from the beginning there is
no way in which the spin can be coupled.

Once torsion is not neglected in gravity, it is well known
that it does not couple to electrodynamics, but it cou-
ples to the the fermionic matter, rendering the matter
field equations non-linear, with interesting phenomenol-
ogy arising, such as for instance a dynamical version of
the Pauli principle, as discussed in [12] and [13].

For quite a time however, there has been the common
misconception that torsion would couple to the spin with
the same strength with which curvature couple to energy,
that is in terms of such small a constant that albeit tor-
sion is present nonetheless all its effects can be neglected
for practical purposes; to understand the roots of this
misconception, we recall that while without torsion the
field equations can be obtained by varying with respect to
the metric the Lagrangian given by the torsionless Ricci
scalar R in presence of torsion the field equations are
obtained by varying with respect to the torsion and the
metric a Lagrangian that is given by the torsionfull Ricci
scalar G and here lies the problem; the Sciama-Kibble
completion of Einstein theory, the one that is based on
the scalar G as Lagrangian, is only the most straight-
forward but not the most general: in general, torsion
should not only be present as included implicitly inside
the curvature but also explicitly in quadratic terms, so
that actually the most general Sciama-Kibble comple-
tion of Einstein theory is given by G+Q2 as Lagrangian,
where the notation for Q2 formally means that one has
to consider all squared-torsion terms that are allowed.

In general, there are a total of three irreducible decom-
positions of torsion [14]; correspondingly, there are three
independent torsion-squared terms, and thus three addi-
tional coupling constants [15]. In general none of these
coupling constants is forced to be the Newton constant,
and the corresponding effects not necessarily negligible.

In particular, for the Dirac field, torsion is completely
antisymmetric, then there is a single additional term and
hence only one additional constant [16].

One of the most important features of this non-linear
field equations is that negative-energy fermions are not
permitted solutions: in this context negative-energy
fermions do not appear in the first place [17].

The fact that only positive-energy fermions are allowed
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is tightly connected to the fact that the time-reversal
discrete transformation is not a symmetry when non-
linearities are present in the field equations [18].

Eventually, focusing on the Dirac field alone, the prob-
lem of allowing the most general parity-violating torsion
terms has been considered, and for the single Dirac field
solved, in reference [19]; the problem of finding the most
general parity-even interaction between torsion and Dirac
fields has been solved in [20]. A discussion on the intrigu-
ing situation for which the torsionally-induced non-linear
interactions seems to mimic the effects due to quantum
corrections has been done in [21] and references therein.

More general and comprehensive reviews have been
written in past and recent times [22, 23], also with con-
formal symmetry and quantum effects [24] and with ex-
tensive discussions about open problems [25].

The problem of whether torsion is to be taken in its ut-
most generality or not, as when it is completely antisym-
metric, has consequences on the type of fields allowed.

And it is the problem that we are going to investigate
in some detail along the course of this paper.

FOUNDATIONS

The first thing we will specify is that we will work in the
simplest space, that is the (1+3)-dimensional spacetime.

In such a spacetime, we will have both a differential
structure and a metric structure, the former given in
terms of the most general covariant derivativeDµ defined
in terms of the most general connection, the latter given
in terms of the most general metric gµν which is also used
to raise and lower tensorial indices: as anticipated in the
introduction, we will assume that the covariant derivative
of the metric vanishes Dαgµν =0 so that the procedure of
raising and lowering indices can be extended to indices
in derivative tensors unambiguously; so the most gen-
eral covariant derivative can be decomposed in terms of
the simplest covariant derivative ∇µ defined in terms of
the simplest connection, entirely written in terms of the
metric gµν alone: of course ∇αgµν=0 by construction.

Such a decomposition is best seen in terms of their
respective connections, since they decompose as

Γα
µν=Λα

µν+K
α
µν (1)

in which we have that Γα
µν is the most general connection

and Λα
µν = 1

2g
ρα(∂µgνρ+∂νgµρ−∂ρgµν) is the simplest

connection written in terms of the metric while we have
that Kα

µν =
1
2 (Q

α
µν+Q

α
µν +Q α

νµ ) is called contorsion
and it is given in terms of the torsion tensor; we notice
that the torsion is the antisymmetric part in the two
lower indices of the connection and as such there is no
torsion associated to the metric connection. The torsion
tensor can be further decomposed according to the form

Qρµν =
1
6W

αεαρµν+
1
3 (Vνgρµ−Vµgρν)+Tρµν (2)

where Tρµν =Qρµν−
1
6W

αεαρµν−
1
3 (Vνgρµ−Vµgρν) is the

non-completely antisymmetric irreducible tensorial part

given in terms of Wα=Qρµνε
ρµνα as the axial vectorial

part and Vν=Q
ρ
ρν as the trace vectorial part of torsion.

In terms of the most general connection alone it is pos-
sible to define the Riemann curvature tensor given by

Gρ
ηµν =∂µΓ

ρ
ην−∂νΓ

ρ
ηµ+Γρ

σµΓ
σ
ην−Γρ

σνΓ
σ
ηµ (3)

according to the usual definition: it is possible to write
it in the form Gσηρν in which it is antisymmetric in both
the first and second couple of indices, so with one inde-
pendent contraction Gρ

ηρν =Gην which itself has a con-
traction given by Gηνg

ην =G and they are called Ricci
curvature tensor and scalar. With the simplest metric
connection the Riemann metric curvature tensor is

Rρ
ηµν =∂µΛ

ρ
ην−∂νΛ

ρ
ηµ+Λρ

σµΛ
σ
ην−Λρ

σνΛ
σ
ηµ (4)

in an analogous way: in the form Rσηρν it is antisym-
metric in both the first and second couple of indices and
it is symmetric for a switch between the first and second
couple of indices, its contraction Rρ

ηρν =Rην itself has
a contraction that is given by Rηνg

ην =R and they are
called Ricci metric curvature tensor and scalar, as usual.

Consequently, we have the decomposition given by

Gρ
ηµν=R

ρ
ηµν+∇µK

ρ
ην−∇νK

ρ
ηµ+K

ρ
σµK

σ
ην−K

ρ
σνK

σ
ηµ (5)

in which the most general Riemann tensor is given in
terms of the Riemann metric tensor and the contorsion.

Equivalently, it is possible to pass from this coordinate
formalism into the Lorentz formalism, in which the co-
variant derivative Dµ is defined in terms of the most gen-
eral spin-connection, and the metric is written according
to the expression gαν =ξ

a
αξ

b
νηab in terms of the orthonor-

mal tetrad fields ξσa and Minkowskian matrix ηab used to
raise and lower Lorentz indices: in the Lorentz formal-
ism we have to assume that the covariant derivative of
tetrads fields vanishDαξ

j
µ=0 in order to have the passage

from the coordinate formalism to the Lorentz formalism
be unambiguous and that the covariant derivative of the
Minkowskian matrix vanish Dαηij = 0 in order to have
that the raising and lowering of Lorentz indices in deriva-
tive tensors be unambiguously defined as before.

These two conditions of compatibility are expressed as

Γb
jµ=ξ

α
j ξ

b
ρ(Γ

ρ
αµ + ξkα∂µξ

ρ
k) (6)

and Γbj
ν =−Γjb

ν showing that the spin-connection Γbj
ν

is written in terms of the connection Γα
µν and the tetrad

fields and that the spin-connection is antisymmetric in
the two Lorentz indices compatibly with the requirement
of Lorentz invariance, as we are about to see.

In the equivalent Lorentz formalism from the spin-
connection we may define the Riemann curvature tensor

Ga
bµν =∂µΓ

a
bν−∂νΓ

a
bµ+Γa

σµΓ
σ
bν−Γa

σνΓ
σ
bµ (7)

similarly as before: also its symmetries are as above.
As a consequence we have the relationship

Gabµν =ξ
ρ
aξ

η
bGρηµν (8)
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showing that the Riemann curvature is Lorentz formal-
ism is just the Riemann curvature in coordinate formal-
ism after the index renaming, as it is to be expected.

The passage from coordinate formalism to Lorentz for-
malism is important because in this way it is possible to
express the most general coordinate transformation law
without any loss of generality into the special Lorentz
transformation law, whose specific form makes it explic-
itly writable in terms of given representations, the real
one but also the complex one, and when the represen-
tation is complex then fields have to be complex, and
a new differential structure has to be given in terms of
the gauge-covariant derivative Dµ defined in terms of the
gauge-connection, as usual in gauge theories.

From the gauge-connection alone it is possible to define
the tensor given by Fµν as the Maxwell strength, as usual.

Of all Lorentz group’s complex representations we will
be interested in the simplest one, that is the one corre-
sponding to the 1

2 -spin representation.
The differential structure is given by the most gen-

eral spinorial covariant derivative Dµ defined in terms
of the most general spinorial connection and addition-
ally we have to introduce the γa matrices belonging to
the Clifford algebra {γi,γj} = 2Iηij from which we may
define the matrices σij = 1

4 [γi,γj ] as the antisymmet-
ric matrices belonging to the complex Lorentz algebra,
called spinorial algebra, and these matrices are such that
the relationship {γa,σbc}= iεabcdπγ

d implicitly defines
the projection matrix π that will be used to define the
left-handed and right-handed irreducible chiral decompo-
sitions of the spinor field: here the compatibility condi-
tions read Dµγj = 0 and they are automatically given.

Such conditions can equivalently be expressed as

Γµ = 1
2Γ

ab
µσab + iqAµI (9)

showing that the most general spinorial connection Γµ

can be written in terms of the Lorentz-valued spin-
connection Γab

µσab so that the antisymmetry of the spin-
connection that is supposed to encode the Lorentz struc-
ture does so because the Lorentz complex representa-
tion is given in terms of matrices that are antisymmetric
themselves plus an abelian term ieAµ that now may be
identified to the gauge field that is described in terms of
the gauge-connection: it is intriguing that the most gen-
eral spinorial connection contains the room to host ex-
actly the tetrad fields as well as one abelian gauge poten-
tial, because in the interpretation that will follow quite
naturally we will have that the tetrad fields are what con-
tains the gravitational information and the abelian gauge
potential is what represents the electrodynamic force.

Finally, from the spinorial connection alone it is possi-
ble to define the spinorial version of the Riemann tensor

Gµν =∂µΓν−∂νΓµ+ΓµΓν−ΓνΓµ (10)

again in the same fashion: it is of course antisymmetric.
Eventually, we have the decomposition given by

Gµν =
1
2G

ab
µνσab+iqFµνI (11)

showing that the most general spinorial curvature is writ-
ten in terms of the Lorentz-valued Riemann curvature
plus the Maxwell strength: as before here too we may ap-
preciate the fact that the most general spinorial curvature
contains the contribution of the gravitational curvature
as well as the electrodynamic strength, and in such a de-
scription the gravitational and electrodynamic fields fit
together so well that it is tempting to regard the present
circumstance as a geometrically-inspired unification.

With these definitions, the commutator of spinorial co-
variant derivatives of the spinor field is given by

[Dµ,Dν ]ψ=Qρ
µνDρψ+Gµνψ (12)

in terms of the torsion and both curvatures identically.
This introduction of the general setting that will con-

stitute the underlying background of the paper served
to settle the basic notation and conventions we will em-
ploy throughout the present article; although this has
been done to render this paper somewhat self-contained,
a more extensive exposition of the geometry can be found
for instance in reference [21] and references therein.

A. Background Geometry

Now that the background geometry has been defined,
we may proceed to study the dynamics of the geometry
and the matter it will contain, which is done by assign-
ing the dynamical action or equivalently the dynamical
Lagrangian for the system we want to study.

In general, the action or the Lagrangian may contain
up to an infinite number or terms, but this of course
means that there will correspondingly be an infinite num-
ber of parameters to tune and in turn this diminishes the
predictive power: to avoid this, one has to determine the
Lagrangians by fixing them to a limited number of con-
tributions, and this is done with some assumptions.

One such assumption is having the Lagrangian at the
least-order derivative possible, that is having the con-
tributions limited to those that have the lowest order
of derivatives: from a theoretical perspective, lowest or-
der of derivatives means fewest integration constants that
will have to be chosen in looking for solutions; with this
assumption, of all possible theories those that are picked
are Einstein gravitation and Maxwell electrodynamics.

It would appear that this principle seems to possess a
certain degree of viability, since it selects the two most
successful theories ever established in physics; but on the
other hand, there may be doubts cast on it, for the fact
that Einstein gravity does not have some of the features
modern physics would demand, such as renormalizability.

As an alternative, one may then require the Lagrangian
to be renormalizable, that is the contributions are lim-
ited to those that have 4-dimension of mass in the kinetic
term and 4-dimension of mass and lower for interacting
terms in general: theoretically, having up to 4-dimension
of mass means that when we scale the model as to reach
higher energies, the kinetic terms will still be the most
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relevant contributions; with this assumption, of all pos-
sible theories those that are picked are various models of
extended gravity together with Maxwell electrodynamics.

Despite the fact that the requirement of renormaliz-
ability demands for the replacement of Einstein gravity
with one of its possible extensions, nevertheless we know
of no such extension that is also free of problems: for
instance, it is well known that higher-order theories of
gravitation have problems of unitarity and, although in
the context of second-order theories of gravitation there
may be symmetries protecting these theories from being
non-unitary [26, 27], nevertheless these results have never
been proven a general second-order theory of gravity and
let alone in higher-order theories of gravity, and so far
as we can tell there is not a single problem-free extended
model of gravity that is viable at present.

The assumption of least-order derivative gives rise to
Einstein gravity, which is not renormalizable; the require-
ment of renormalizability prompts the search for an ex-
tension of gravity, which nevertheless is yet to be found.

If we wish to discriminate between these two hypothe-
ses, a first thing we may notice is the fact that a theory at
the least-order derivative is characterized by the smallest
number of constants; the requirement of renormalizabil-
ity does not have the same degree of theoretical value
because limiting the Lagrangians to 4-dimension of mass
so that high energy regimes the kinetic terms will still be
the most relevant contributions is meaningful only if high
energy regimes are always such that kinetic terms are the
most relevant contributions, but this may not always be
the case: the whole idea relies on the belief that at short
distances the physical properties must be like those al
large distances, which may be false; on the other hand, it
is true in general the smallest number of constants makes
a given model the most predictive possible.

However, we would like to introduce yet another re-
quirement, one which might be more comprehensive than
the two just discussed. We already stressed in general
torsion is present and it couples to the curvature in such
a way that the field equations for gravity contain torsion
contributions and the field equations for torsion contain
curvature contributions; and while the field equations for
gravity are sourced by energy the field equations for tor-
sion are sourced by spin. But there is no perfect sym-
metry between the roles of energy and spin, and whereas
there all fields have an energy density not all fields have
spin density: if the spin density tends to be smaller, tor-
sion has to be smaller as well, but if in the spin-torsion
field equations there are curvatures, they will not neces-
sarily vanish; the spin-torsion field equations will remain
constraints on the curvature, not identically verified.

In this sense then, a theory with torsion may always be
taken in the torsionless limit, but in this limit, it may be
such that the curvature will be constrained in a way that
is not always verified, and therefore we will speak of non-
continuity: in reference [28] we have started to discuss
the non-continuity of specific gravitational models.

In the next section of the present paper, we will recall

the concepts that have been first exposed in the above
reference, and then proceed to deepen the investigation.

1. Torsion-curvature crossed terms

To begin our discussion, the first step is to consider
the most general Lagrangian that can be assigned for a
system describing the torsional completion of gravitation
in order to study the general continuity of the dynamics.

As it is clear from (1-2), we may always separate metric
and torsion and decompose the latter in three irreducible
parts, and as it is clear from (5), all of these parts will
have mutual interactions between one another, and as a
consequence, there is no loss of generality in treating all
these quantities in their split form, and accounting for all
interactions as well: we have then the Riemann metric
curvature Rαµρσ and the three irreducible parts of tor-
sion given by Tρµν , Wα and Vν which have to be taken
in all possible combinations, which have to be contracted
in all indices configurations in order to give rise to all
possible scalar terms; furthermore, it is known that for
the curvature tensor we have the validity of the condition
given by Rρ

σµν+R
ρ
νσµ+R

ρ
µνσ≡0 and the Bianchi iden-

tities ∇µR
ν
ισρ+∇σR

ν
ιρµ+∇ρR

ν
ιµσ≡0 while for the non-

completely antisymmetric irreducible tensorial decompo-
sition of the torsion tensor we have the constraint that
is given by Tρµν +Tµνρ+Tνρµ = 0 whose contraction is
given according to T µνρεαβµν =− 1

2T
ρµνεαβµν itself with

its own contraction T ρµνεαρµν = 0 by construction, and
these are the set of identities needed to reduce all possible
scalars to the core of independent scalar terms.

The resulting Lagrangian, obtained as the sum of these
scalar terms, will be distinguish in three classes: the first
class includes the least-order derivative models and it is
the 2-dimensional mass model; then there will be the
renormalizable 4-dimensional mass model; finally there
will be all the remaining n-dimensional mass models.

Now, let us start the discussion about the possibility
that a given Lagrangian yield field equations that dis-
play non-continuity, whose underlying mechanics works
as it follows: if in the Lagrangian there appears a term
that is linear in the torsion tensor, then upon varying
the Lagrangian the torsion-spin field equations will be
formally written in the form of a combination of deriva-
tives of torsion and possibly curvatures plus a spurious
term without any torsion in it equals to the spin den-
sity of the system: in the limit in which both the spin
density and torsion tend to vanish, the spin-torsion field
equations will remain in the form of the spurious term
equals to zero, which is a constraint that is in general
not necessarily verified; consequently, if we want no such
circumstance, we must have a spin-torsion field equation
that contains no spurious term; hence in the Lagrangian
there must be no linear torsion term whatsoever.

To begin our analysis, let us consider the least-order
derivative model: the 2-dimensional mass model is char-
acterized by a Lagrangian that can only contain one cur-
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vature and five square-torsion according to the form

L=R+ATρµνT
ρµν+BWνW

ν+CVµV
µ +

+LT ρ
µνTρηαε

µνηα+MWµV
µ (13)

where the Newton constant is normalized to unity and
with five torsional constants; terms that are linear in tor-
sion are only divergences of vectorial parts of torsion

∆L=U∇µW
µ+Z∇µV

µ (14)

and therefore dropped as irrelevant. Consequently, we
have that in the most general case continuity is ensured.

The following step consists in proceeding to the analy-
sis of the renormalizable model: the 4-dimensional mass
model is characterized by a Lagrangian that can only con-
tain squared-curvature, quartic-torsion, products of cur-
vatures and squared-torsion, derivatives of cubic-torsion,
second-derivatives of squared-torsion, and derivatives of
products between curvature and torsion; terms that are
linear in torsion are the derivatives of products between
curvature and torsion, and it is possible to see that the
independent contractions are the derivatives of the Ricci
curvature scalar times the trace and axial vectorial parts
of torsion according to the combination given by

∆L=K∇αRW
α+E∇αRV

α (15)

and nothing else at all. In order for this contribution to
disappear, because of the independence of the two terms,
then each single term must vanish, and since we want to
maintain continuity, then this has happen regardless the
derivatives of the Ricci curvatures; we would also like to
avoid arbitrary tunings of the parameters, so that we are
not going to require their vanishing unless some principle
justifies this assumption: although parity-evenness may
be invoked to have K vanished, there is no known prin-
ciple for which E should vanish too and then we have to
insist that V α=0 as well. When this is done, we acknowl-
edge that continuity is preserved in the case in which
no tuning is assumed when we require parity-evenness
and irreducibility of torsion: irreducibility of torsion and
parity-evenness are together necessary and sufficient con-
ditions for the most general model to have continuity.

The case of further models is easy: the n-dimensional
mass models for n that is larger than 4 are characterized
by Lagrangians with all possible terms; consequently,
terms that are a derivative of curvature times a curvature
times the non-completely antisymmetric tensorial part of
torsion such as ∇ρRανR

σνT ρα
σ and a derivative of cur-

vature times a curvature times the axial vectorial part of
torsion such as ∇ρRανR

ν
π Wκε

κραπ are parity-even and
yet they do no vanish unless in addition we require the
constraints Tπση=0 and Wι=0 as well. What this means
is that for continuity to be preserved if no tuning is as-
sumed the parity-evenness and irreducibility of torsion
are no longer enough and one has to go so far as to re-
quire the vanishing of the whole torsion, which is against
the possibility to provide the coupling to spin also for

systems that have such coupling; hence there is no way
in which the most general model may be continuous.

We may now summarize our results: 2-dimensional
mass models are continuous; 4-dimensional mass models
are continuous if and only if they are invariant under par-
ity and torsion is irreducible; n-dimensional mass models
are not continuous. Thus continuity allows only two mod-
els: either the one described by least-order derivative La-
grangians, or the one with irreducible torsion and parity-
invariance described by renormalizable Lagrangians.

2. Abelian gauge fields

Next we shall proceed to the discussion about general
Lagrangians that can be assigned for electrodynamics.

A first point that needs to be clarified is the fact that
in presence of torsion there is a generalization of the co-
variant derivatives of tensors that might in principle cre-
ate problems in electrodynamics: for example, the defini-
tion of the Maxwell tensor is given as the strength of the
gauge-connection Fµν = ∂µAν−∂νAµ and, if we see this
definition as the curl of the gauge-connection, because
we would like to stay in the most general case, then we
should take the curl of the most general covariant deriva-
tives Fµν =DµAν−DνAµ=∂µAν−∂νAµ+Q

ρ
νµAρ which

is not gauge invariant precisely because of the presence
of the torsion tensor; it would seem that in this case our
argument of generality has failed, but to a closer look it
is possible to see that instead this apparent contradiction
is based on the fact that we have decided to interpret the
strength as the curl of the gauge-connection, but this is
not the correct interpretation that should be given, since
the correct interpretation is to see the strength as the
commutator of the gauge-covariant derivatives, in terms
of which the most general definition of strength is exactly
the one given by Fµν =∂µAν−∂νAµ because none of its
generalizations would maintain Fµν as to be the commu-
tator of the gauge-covariant derivatives. Hence, Cauchy
identities ∇µFσρ+∇σFρµ +∇ρFµσ ≡ 0 are unchanged,
and similarly as above they will be needed to reduce all
possible scalars to the core of independent scalar terms.

The absence of torsion within the definition of the cur-
vature for the gauge-connection does not mean that there
is no interaction between torsion-gravity and electrody-
namics, and to show that in fact there can be torsional in-
teractions in electrodynamics we study the most general
model for electrodynamics: the 2-dimensional mass mod-
els cannot be defined; the least-order derivative model
coincides with the renormalizable one and it is included
in the class of the 4-dimensional mass model.

The construction of the Lagrangian will have to adhere
to the requisite of continuity; we require the spin-torsion
field equation to contain no spurious term, and hence the
Lagrangian to contain no linear torsion term.

As it was anticipated, the least-order derivative is the
renormalizable model: the 4-dimensional mass model is
characterized by a Lagrangian that can only contain two
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strengths, products of one strength and two irreducible
parts of torsion, and derivatives of strength times one
irreducible part of torsion; terms that are linear in torsion
are the derivatives of strength times one irreducible part
of torsion, whose independent contractions are given by

∆L=J∇αF
µνTαρσεµνρσ+K∇αF

ανWν +

+E∇αFµνT
αµν+F∇αF

ανVν (16)

and nothing else more. As it was before, this contribution
disappears when each single term vanishes: again parity-
evenness may be invoked to set J and K equal to zero,
and then Tαµν = 0 and V α =0 too. Thus, continuity is
preserved in the case in which no tuning is assumed if we
require parity-evenness and the presence of only the axial
vectorial part of torsion: an axial vectorial part of torsion
and parity-evenness are together necessary and sufficient
conditions for the most general model to be continuous.

Although in principle torsion might have affected elec-
trodynamics we have seen that this is not the case, but
conversely electrodynamics has left a mark on torsion,
as the electrodynamic 4-dimensional mass model is con-
tinuous if and only if electrodynamics is invariant under
parity and torsion is the completely antisymmetric dual
of an axial vector. There is one model with completely
antisymmetric torsion and parity-conservation described
by least-order derivative renormalizable Lagrangians.

B. Material Content

So far we have extensively discussed and thoroughly
investigated the theory of torsional-gravitation with elec-
trodynamics; the next and last step is that of introducing
the general Lagrangian for Dirac spinorial matter fields.

As we may always separate the left-handed and right-
handed semi-spinorial chiral projections, it is easier to
start with them: hence, given the left-handed and right-
handed semi-spinors ψL and ψR as the two chiral projec-
tions, then ψL = 1

2 (I−π)ψ and ψR = 1
2 (I+π)ψ are the

two ways in which we may get the reconstruction of the
full spinor ψ which we will eventually employ in order to
have a more compact notation in further developments.

The inventory of all possible terms is quick: the least-
order derivative model is the renormalizable model and
it has contributions up to the 4-dimensional mass terms

L=A i
2

[

ψLγ
µ
∇µψL −∇µψLγ

µψL

]

+

+Z i
2

[

ψRγ
µ
∇µψR −∇µψRγ

µψR

]

+

+CψLγ
µψLVµ+HψLγ

µψLWµ +

+Sψγµ
RψRVµ+XψRγ

µψRWµ −

−βψLψR − β∗ψRψL (17)

where A, Z and C, H , S, X are real while β is complex
and all these parameters have still to be undetermined.

Because left-handed and right-handed semi-spinorial
chiral projections must both have positive-defined energy

then their kinetic terms must have the same sign, so that
it is possible through a rescaling of ψL and ψR to set the
parameters A and Z equal to unity and therefore we may
write the Lagrangian equivalently in the compact form

L= i
2

(

ψγµ
∇µψ −∇µψγ

µψ
)

+

+KψγµπψWµ+Fψγ
µψWµ +

+EψγµψVµ+Jψγ
µπψVµ −

−mψψ−ibψπψ (18)

where E, F , J , K and m and b are real parameters.
As it is clear, the non-completely antisymmetric irre-

ducible tensorial part of torsion is absent and there is
parity-invariance in the kinetic term although there is
no definite parity in the potential terms, and as already
said this model has the least-order derivative Lagrangian
which is also the renormalizable Lagrangian.

CONSEQUENCES

In the previous sections, we have discussed what hap-
pens when a model taking into account the torsional com-
pletion of gravitation with electrodynamics and Dirac
fields is investigated under the requirement of continu-
ity in the general case in which no arbitrary tuning is
imposed, and we have found that there are only two
possible circumstances: one in which for torsion-gravity
there are 2-dimensional mass terms and for electrody-
namics there are 4-dimensional mass terms with com-
pletely antisymmetric torsion and parity-invariance, and
for the Dirac matter field there are up to 4-dimensional
mass terms; another in which for torsion-gravity there are
4-dimensional mass terms with irreducible torsion and
parity-invariance and for electrodynamics in which there
are 4-dimensional mass terms with completely antisym-
metric torsion and parity-invariance, and for the Dirac
matter field there are up to 4-dimensional mass terms.

Then because when the torsion is restricted to have
complete antisymmetry in one sector of the theory so it
is restricted in the entire theory, we will take torsion to be
the completely antisymmetric dual of an axial vector, and
as a consequence of this constraint all parity-odd terms
in principle allowed in the 2-dimensional mass model of
torsion-gravity disappear: so the two models may be con-
densed together into the single Lagrangian as given by

L=NRαµR
αµ+PR2+SRανW

αW ν+URWνW
ν +

+X(∇αWν−∇νWα)(∇
αW ν−∇νWα) +

+Y∇αWν∇
αW ν+H |WνW

ν |
2
−

−kR+BWνW
ν− 1

4F
ανFαν +

+ i
2

(

ψγµ
∇µψ −∇µψγ

µψ
)

+

+KψγµπψWµ+Fψγ
µψWµ−mψψ−ibψπψ (19)

where N , P , S, U , X , Y , H , B, K, F , k, m, b are real,
and for N=P =S=U=X=Y =H=0 we have the sim-
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plest least-order derivative Lagrangian while otherwise
we have the most general renormalizable Lagrangian.

This Lagrangian yields field equations whose consis-
tency in terms of the amount of degrees of freedom and
the character of propagation is to be checked with the
method presented in [29] by Velo and Zwanziger.

C. Consistent Propagation

Just above we have given what, under the requirement
of continuity, is the Lagrangian in its most general form

L=NRαµR
αµ+PR2+SRανW

αW ν+URWνW
ν +

+X(∇αWν−∇νWα)(∇
αW ν−∇νWα) +

+Y∇αWν∇
αW ν+H |WνW

ν |
2
−

−kR+BWνW
ν− 1

4F
ανFαν +

+ i
2

(

ψγµ
∇µψ −∇µψγ

µψ
)

+

+KψγµπψWµ+Fψγ
µψWµ−mψψ−ibψπψ (20)

containing a set of 13 free parameters in total.
Now we will show how with the Velo-Zwanziger anal-

ysis the number of independent parameters is reduced.
First we notice that for the least-order derivative La-

grangian, there is no dynamical term in the torsion field
equations and no such analysis that can be performed.

In the renormalizable Lagrangian varying with respect
to the axial vector torsion gives the field equations

2(2X+Y )∇2W ν−4X∇ν∇αW
α −

−2(S+2X)RανWα−2URW ν−4HW 2W ν −

−2BW ν=Fψγνψ+Kψγνπψ (21)

which is in fact a field equation because one may solve
for the second-order time derivative of every component
of the axial vector torsion; its divergence is given by

2Y∇2∇αW
α−2[(S−Y )Rαν+4HWαW ν ]∇νWα −

−2(UR+2HW 2+B)∇νW
ν −

−(S−Y +2U)∇αRW
α=∇ν

(

Fψγνψ+Kψγνπψ
)

(22)

which develops a third-order time derivative of the tem-
poral component of the axial vector torsion, and therefore
the system of field equations is not well defined, unless
we require Y =0 hold as a constraint on the parameter.

When this is done, we find the field equation

4X(∇2W ν−∇ν∇αW
α)−

−2(S+2X)RανWα−2URW ν−4HW 2W ν −

−2BW ν=Fψγνψ+Kψγνπψ (23)

which is no longer a true field equation because the
second-order time derivative of the temporal component
of the axial vector torsion never appears; however, its
divergence is now given according to the expression

−2[SRαν+4HWαW ν ]∇νWα −

−2(UR+2HW 2+B)∇νW
ν −

−(S+2U)∇αRW
α=∇ν

(

Fψγνψ+Kψγνπψ
)

(24)

which has no second-order time derivative of the tempo-
ral component of the axial vector torsion and therefore it
is a true constraint: hence it is possible to substitute the
constraint (24) back into the field equation (23) getting

4X∇2W ν+4X [2(UR+2HW 2+B)]−1 ·

·∇ν [2[SRαµ+4HWαWµ]∇µWα +

+(S+2U)∇αRW
α

+∇µ

(

Fψγµψ+Kψγµπψ
)

]−

−8X∇ν(UR+2HW 2) ·

·[2(UR+2HW 2+B)]−2 ·

·[2[SRαµ+4HWαWµ]∇µWα +

+(S+2U)∇αRW
α

+∇µ

(

Fψγµψ+Kψγµπψ
)

]−

−2(S+2X)RανWα−2URW ν−4HW 2W ν −

−2BW ν=Fψγνψ+Kψγνπψ (25)

which is again a true field equation because the second-
order time derivative of every component of the axial
vector torsion is present, so that the number of indepen-
dent field equations corresponds to the number of physi-
cal degrees of freedom consistently. To see what happens
about the propagation, we have to consider in this field
equation only the highest-order derivatives, and after the
substitution i∇α → nα the characteristic equation is

(UR+2HW 2+B)n2+SRανnαnν +

+4H |Wαnα|
2=0 (26)

and field equations (25) cease to be causal when the char-
acteristic equation (26) allows n2>0 to occur: in the case
in which torsion is small, and in which also curvature is
small, then the characteristic equation becomes

Bn2+SRανnαnν≈0 (27)

and as we have no information about Rαν acausality may
occur, unless S=0 holds as constraint, but even then, in
the same approximation in which torsion is small, but in
the complementary approximation in which curvature is
large, the characteristic equations becomes

URn2+4H |Wαnα|
2≈0 (28)

and as we have no information about R acausality may
occur, unless U=0 holds as constraint; then, in the case
in which torsion is large, the characteristic equation is

2HW 2n2+4H |Wαnα|
2≈0 (29)

and because the axial vector torsion cannot have only
one degree of freedom then W 2 cannot be time-like and
causality may occur, unless H=0 holds as a constraint.

We may finally summarize: in the least-order deriva-
tive model N =P =S=U =X =Y =H =0 are imposed
by definition of the model we are considering, with no
need of further analysis; in the renormalizable model tor-
sion is dynamical and relevant at all scales, so that there
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are field equations that can be studied and it is possible
to assume the validity of the approximations we have con-
sidered getting Y =S=U =H =0 as the most stringent
constraints that are possible. As a consequence, we will
assume that N=P =X=0 for the least-order derivative
Lagrangian as Y =S=U=H=0 will be assumed for the
renormalizable Lagrangian in the most general case.

D. Effective Interaction

In this discussion, we have seen that the most general
Lagrangian is constrained in 4 of its parameters as

L=NRαµR
αµ+PR2 +

+X(∇αWν−∇νWα)(∇
αW ν−∇νWα) +

−kR+BWνW
ν− 1

4F
ανFαν +

+ i
2

(

ψγµ
∇µψ −∇µψγ

µψ
)

+

+KψγµπψWµ+Fψγ
µψWµ−mψψ−ibψπψ (30)

containing only 9 free parameters still undetermined.
We may proceed to study the effective interactions.
The most interesting case is the one given by the least-

order derivative Lagrangian because variation respect to
the axial vector torsion yields the field equation

−2BW ν=Kψγνπψ+Fψγνψ (31)

which is an algebraic constraint that can be used to have
torsion substituted in terms of the spin of the spinorial
field so that when the spinor field is rearranged in terms
of the identity ψγνψψγ

νψ = −ψγνπψψγ
νπψ together

with identity ψγνψψγ
νπψ = 0 then the spinorial field

equations reduce to the form given by the expression

iγµ
∇µψ−

F 2
−K2

2B ψγµψγ
µψ−mψ−ibπψ=0 (32)

in which the mass-like term proportional to the param-
eter b is the only parity-odd term that is left and the
torsionally-induced non-linear potentials are identical to
those we would have had if there were no torsion but ef-
fective interactions of the Nambu-Jona–Lasinio form with
constant (F 2−K2)/B unknown [30]; for the renormaliz-
able Lagrangian the torsion field equations have form

∇α∇
[αW ν]− B

2XW
ν = F

4Xψγ
νψ+ K

4Xψγ
νπψ (33)

and they are differential, so that one cannot have torsion
substituted and the spinorial field equations remain

iγµ
∇µψ+KWµγ

µπψ+FWµγ
µψ−mψ−ibπψ=0(34)

as it is to be expected since interactions such as those de-
scribed above are not renormalizable, and therefore there
is no way they can arise within a renormalizable model.

A comparison between the two models shows that in
the infra-red approximation the renormalizable torsion
field equations (33) reduce to the least-order torsion field

equations (31) so that the same reduction happens for the
spinorial field equations (34) and (32): as expected, the
least-order model can be seen as the low-energy regime of
the renormalizable model, but with the fundamental dif-
ference that in growing with the energy the least-order
model will always remain similar to an effective model
while the renormalizable model will turn back to look
like the renormalizable model and as such a torsion bo-
son is to be expected. As a matter of fact, this can be
seen precisely as the fundamental discrimination between
the two instances, namely as we go up with the energy
the least-order derivative Lagrangian will always look like
an effective Lagrangian with no associated torsion boson
while the renormalizable Lagrangian will become the La-
grangian of a massive neutral vector boson.

DISCUSSION

So far in the paper, the torsional completion of grav-
itation with electrodynamics and Dirac fields has been
studied in the most general case although with the re-
quirement of continuity in the torsionless limit, we could
impose constraints such as the complete antisymmetry
of torsion and parity-invariance in the dynamical terms
of the action; we have also seen that with the further
requirement of having a consistent propagation, both in
terms of the amount of degrees of freedom with the cor-
rect time evolution and in view of the causality of the
propagation, we could impose additional constraints on
the terms allowed in the Lagrangian: we then had

L=NRαµR
αµ+PR2 +

+X(∇αWν−∇νWα)(∇
αW ν−∇νWα) +

−kR+BWνW
ν− 1

4F
ανFαν +

+ i
2

(

ψγµ
∇µψ −∇µψγ

µψ
)

+

+KψγµπψWµ+Fψγ
µψWµ−mψψ−ibψπψ (35)

where N = P =X = 0 were the constraints defining the
least-order derivative Lagrangian and while otherwise we
have the general renormalizable Lagrangian.

We have also discussed that the least-order model can
be seen as the low-energy regime of the renormalizable
model in which the spinor matter field equations are

iγµ
∇µψ−

F 2
−K2

2B ψγµψγ
µψ−mψ−ibπψ=0 (36)

while in the renormalizable model these are only the low-
energy limit of the general spinor matter field equations

iγµ
∇µψ+KWµγ

µπψ+FWµγ
µψ−mψ−ibπψ=0(37)

in which the axial vector torsion Wµ represents a massive
neutral vector boson: in order to discriminate between
the two instances, we may say that in the least-order
derivative Lagrangian the torsion boson has to be absent
or at least if it is present it cannot be fundamental while
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in the renormalizable Lagrangian the torsion boson must
appear as fundamental at all the possible energy scales.

The reason for which at the moment the renormaliz-
able Lagrangian tends to be favoured is that no torsion
boson has ever appeared, and the limits are being pushed
further and further [31–33]; it is true that in these pa-
pers the experiments that place stringent limits are al-
ways performed in non-relativistic environments, while
relativistic measures must be done. Nevertheless, there
is no evidence of torsion bosons at the LHC as well.

This would constitute yet another indication in the
context of torsion-gravity against the assumption of hav-
ing renormalizable Lagrangians; however, we do not see
this situation so bad: as discussed in [34], in the case of
non-minimal coupling, which is in general not renormal-
izable as it is well known, when taken in torsion-gravity,
which is not renormalizable itself, gives rise to the pecu-
liar circumstance for which the effective interactions are
renormalizable instead. This seems to point out that the
concept of renormalizability might have to be rethought
in the context of torsion-gravity; for instance, the require-
ment that gravity must be relevant even at extremely
small scales might be a prejudice coming from the fact
that we think at gravity as a force like any other force
while this is not. As the property for which some terms
ought be relevant at all scales presupposes the knowledge
of a physics that is for now precluded, renormalizability
cannot not be taken as a fundamental principle.

The fundamental idea about renormalizability is based
on the pillar for which we believe that at all scales and
thus even for small scales, the kinetic term of a field must
never be suppressed by some interaction of that field, but

this assumption is arbitrary: if it were possible to find a
regime in which a field were suppressed by its interactions
then this would merely mean that in such regime the
field would tend to vanish, which is not in contradiction
with any known fact. In fact, that locally gravity should
disappear is not only reasonable, but it is its very essence.

Insisting that at small scales gravity must be relevant
may have the same meaning of insisting that at large
scales quantum effects must be relevant.

CONCLUSION

In the present paper, we have studied torsion-gravity
with electrodynamics and Dirac fields with the aim of
staying in the most general case but we have seen that
general arguments of continuity in the torsionless limit
and consistency in time evolution and causal propaga-
tion could justify special constraints given by the fact
that torsion had to be the completely antisymmetric dual
of an axial vector and that parity-conservation had to be
a feature of the dynamical and interacting terms in a
model described by (35) with N = P = X = 0 defining
the least-order derivative Lagrangian while otherwise be-
ing the general renormalizable Lagrangian; we have also
discussed that the more general renormalizable model is
however disfavoured because it predicts a torsion massive
axial neutral vector boson which is undetected so far.

Although of course this does not mean that such a
boson cannot be found in future researches.
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