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Abstract. Holst term represents an interesting addition to the Einstein-

Cartan theory of gravity with torsion. When this term is present the contact

interactions between vector and axial vector fermion currents gain an extra

parity-violating component. We re-derive this interaction using a simple rep-

resentation for the Holst term. The same representation serves as a useful basis

for the calculation of one-loop divergences in the theory with external fermionic

currents and cosmological constant. Furthermore, we explore the possibilities

of the on-shell version of renormalization group and construct the equations for

the running of dimensionless parameters related to currents and for the effective

Barbero-Immirzi parameter.

MSC: 81T15, 83D05 11.10.Gh, 04.50.Kd

PACS: 04.20.-q 98.80.-k

Keywords: Barbero-Immirzi parameter, Einstein-Cartan theory, Renormal-

ization group.

1 Introduction

Einstein-Cartan theory attracts growing interest (see, e.g., [1], [2], [3] and references therein)

because it represents a simplest possible extension of General Relativity (GR) related to

the introduction of torsion field. The presence of torsion enables one to enrich the theory

further by implementing the Holst term [4], which emerge naturally in the framework of loop

quantum gravity [5, 6, 1, 7]. This parity-violating term should attract a special interest since
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it can, in principle, yield some measurable observables for detecting quantum gravity. In

order to better understand this point let us remember that in the Einstein-Cartan theory

torsion becomes relevant only in the presence of fermion currents. After being integrated out,

torsion provides contact interactions between such currents. Obviously, the main possibility

for the Holst term, in this respect, is related to the generation of parity-violating contact

interaction between vector and axial vector fermion currents. The first purpose of the

present communication is to present a very simple derivation of the Holt term in terms of

irreducible components of the torsion tensor. We show that the new term is the simplest

possible parity-violating scalar, and hence the Barbero-Immirzi parameter [8, 9] can be seen

as an extra non-minimal parity-violating extension of the Einstein-Cartan action. Using

this new form we recalculate the contact interaction between fermion currents depending

on Barbero-Immirzi parameter and meet perfect correspondence with the previous results

of other authors [10, 6, 1].

The main motivation for the Barbero-Immirzi parameter is related to Quantum Gravity

(QG), so it is natural to see what can be the role of such term in the loop corrections. Since

quantum GR and also quantum Einstein-Cartan theory is not renormalizable, this issue can

not be addressed in the conventional framework of perturbative quantum field theory for the

metric and torsion. The existing publications in this direction use very different approaches.

The first of them is based on the functional renormalization group [11]. This powerful

method is essentially non-perturbative, and in case of QG there is no perturbative limit, at

least in the case of quantum GR. At the same time, there is a known difficulty related to

the gauge-fixing dependence of the results of the functional renormalization group applied

to gauge theories [12, 13] (see also many other references therein). In fact, the gauge-fixing

dependence in this theory persists on-shell [13] and leads to the gauge dependent S-matrix

and possibly all other relevant observables. One can expect that the same strong gauge

dependence will take place also in the case of QG, and this creates certain difficulty for the

physical interpretation of the results of this approach.

Another possibility is to rely on the renormalization group equations extracted from the

quadratic one-loop divergences. This is technically possible, however the ambiguities which

one usually meets in such a formulation are very strong and even go beyond the gauge fixing

ambiguities. This aspect of QG has attracted significant interest recently, and the net result

is that these ambiguities are generally uncontrollable (see, e.g., [14] and further references

therein). For the Einstein-Cartan theory with the Barbero-Immirzi parameter this scheme

was applied recently in [15], where the previous results for the one-loop divergences in the

quantum GR with interacting fermion currents [16] have been used.

In the present work we use the third possibility for the quantum Einstein-Cartan theory.

It is well-known that the pure quantum GR is renormalizable on-shell at the one-loop level
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[17]. This enables one to consider, for instance, the reduced on-shell version of renormal-

ization group for the Newton constant and cosmological term [18]. Let us note that this

approach can be extended to become more informative when the calculations are performed

on the special background such as deSitter space [19], but our intention here is to follow

a more simple method of [18]. A very nice feature of this approach is that the renormal-

ization group equation for the dimensionless combination of the cosmological and Newton

constants is gauge-fixing independent and, in this sense, is well defined. Of course, the

on-shell renormalization group can not be seen as a completely consistent method, but it is

a useful starting point to deal with the QG theory.

The on-shell one loop renormalization group has been generalized for the case of the

Einstein-Cartan theory in [20], in the theory with an external axial vector current. It was

shown that the theory remains on-shell renormalizable at first loop in the presence of such

current and quantum torsion. Here we intend to generalize these considerations in two ways,

namely by including an additional vector current and also by incorporating the Holst term.

We shall analyze to which extent the on-shell renormalizability can be preserved in such a

theory and also consider the on-shell renormalization group to the extent it is possible.

The paper is organized as follows. In Sect. 2, the classical consideration of the Einstein-

Cartan theory with the Holst term and two (vector and axial vector) currents is presented.

The derivation of one-loop divergences and analysis of the on-shell renormalizability of

the theory is described in Sect. 3. Sect. 4 contains the consideration of the on-shell

renormalization group in the theory. Finally, in the last section we draw our conclusions

and discuss possible perspectives for a future work.

2 Simple representation for the Holst term

In what follows we shall use the notations of [21],1 but will first reproduce the main formulas,

for the convenience of the reader. The total action of gravity, including Einstein-Cartan and

Holst terms has the form

SEC + SH = − 1

κ2

∫
d4x

√−g R̃ − 1

2γ κ2

∫
d4x

√−g εαβµν R̃αβµν , (1)

where G = κ2/16π is Newton constant, also 16π/κ2 = M2
P . γ is the Barbero-Immirzi

parameter. The scalar curvature is R̃ = gαµgβν R̃αβµν and R̃αβµν is the curvature tensor

depending on the metric gαβ and torsion T α
·βγ . This curvature is defined on the basis of

asymmetric connection

Γ̃α
βγ − Γ̃α

γβ = T α
·βγ 6= 0 . (2)

1One can use this reference and also many other sources, e.g., [22, 23, 24] for the introduction to different

aspects of gravity with torsion.
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Assuming that covariant derivative with torsion satisfies the metricity condition ∇̃µgαβ = 0,

one can easily derive the relation between affine connection and Christoffel symbol Γα
βγ,

Γ̃α
βγ = Γα

βγ +Kα
· βγ . (3)

Here the contorsion tensor is

Kα
·βγ =

1

2

(
T α

·βγ − T α
β·γ − T α

γ·β

)
. (4)

The corresponding relations for curvature tensor and scalar with torsion have the form

R̃λ
· ταβ = Rλ

· ταβ +∇αK
λ
·τβ −∇β K

λ
·τα +Kλ

·γαK
γ
·τβ −Kλ

·γβK
γ
·τα , (5)

R̃ = R + 2∇λKτ
·λτ −K λ

τλ ·
Kτγ

· · γ +KτγλK
τλγ , (6)

where the quantities without tildes are Riemanian, without torsion.

One can introduce three irreducible components of torsion as follows:

vector trace Tβ = T α
· βα , (7)

axial vector trace Sν = ǫαβµνTαβµ , (8)

tensor part qα
·βγ , (9)

when the last one satisfies the conditions qα
·βα = 0 and ǫαβµνqαβµ = 0.

The generic torsion can be easily expressed as

Tαβµ =
1

3
(Tβ gαµ − Tµ gαβ)−

1

6
εαβµν S

ν + qαβµ . (10)

Now, replacing (10) into (4) and (6) we arrive at 2

R̃ = R− 2∇αT
α − 2

3
TαT

α +
1

2
qαβγq

αβγ +
1

24
SαS

α . (11)

Finally, repeating the same operation with (5) and then with the integrand of the Holst

term, we arrive at the relation, which was already reported in [10],

εαβµν R̃αβµν = − 2

3
Sα Tα = − 2

3
S · T . (12)

In the last formula we have introduced a condensed notation with dot for the contraction

of two vectors. This notation will be used a lot in what follows.

One can see that the Holt term is rather simple in the representation (12). This term

is nothing else but the simplest possible term violating parity. In fact, this term was not

introduced as a non-minimal structure in the early works on quantum effects in gravity

2We correct a misprint in the coefficient of T 2 term in [21].
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with torsion [25, 20] only because there was no interest to violate parity. For instance, the

non-minimal structure ϕ2SαTα becomes relevant in the scalar sector if the parity-breaking

nonminimal terms ψ̄γαSαψ or ψ̄γαγ5Tαψ are introduced. In this case the Holst term

can be easily obtained as part of the induced action (extended Einstein-Cartan) of gravity

with torsion, e.g., it can result from some phase transition scheme, including spontaneous

symmetry breaking.

In order to better understand the effect of the Holst term, let us include vector V µ and

axial vector Aµ fermion currents,

V µ = η2〈ψ̄γµψ〉 and Aµ = η1〈ψ̄γµγ5ψ〉 . (13)

Let us note that the presence of non-minimal parameters η1,2 is the condition of consistency

of the theory at the quantum level, especially if scalar fields and Yukawa interactions of

these fields with fermions are present [25] (see also [26] and [21] for extended discussions of

this issue). For the sake of compactness of notations in the quantum part of the work, it is

better to introduce also rescaled currents Jµ = −κ2Aµ and W µ = −κ2V µ, such that the

total action becomes

St = SEC + SH +

∫
d4x

√−g
(
V · T + A · S

)
(14)

= − 1

κ2

∫
d4x

√
−g

{
R + 2Λ− 2

3
T 2 +

1

2
q2 +

1

24
S2 − 1

3γ
S · T + S · J + T ·W

}
,

where we also used compact notations S2 = SµS
µ, T 2 = TµT

µ and q2 = qµντq
µντ .

As usual in the Einstein-Cartan theory, torsion is not dynamical field and can be inte-

grated out. The dynamical equations for different components of torsion have the form

−4

3
T α − 1

3γ
Sα +W α = 0 ,

1

12
Sα − 1

3γ
T α + Jα = 0 , (15)

qαβγ = 0 .

According to the last equation we will not consider the component qαβγ further. The first

two equations can be easily solved in the form

T α =
3γ

1 + γ2

(
Jα +

γ

4
W α

)
,

Sα =
3γ

1 + γ2

(
W α − 4γJα

)
. (16)

One can observe that the presence of parity-violating parameter γ leads to the mixing

between vector and axial vector currents. In principle, this mixing may have some strong

5



phenomenological consequences, and it would be interesting to explore its consequences in

particle physics. Such investigation could lead to the upper bounds of certain combinations

of the Barbero-Immirzi parameter γ and the non-minimal parameters η1,2, introduced in

(13). However, in the present work our purpose is not phenomenology, instead we shall

focus our attention on more formal aspects of the theory, related to QG.

The dynamical equation for the metric in the theory (14) leads to the on-shell relations

Rµν = Dµν − gµν

(
Λ+

1

2
S · J +

1

2
T ·W

)
, (17)

where we introduced a useful notation

Dµν =
2

3
TµTν −

1

24
SµSν +

1

6γ

(
SµTν + SνTµ

)
and also D = Dµ

µ . (18)

Finally, replacing (16) into (17), after some algebra we arrive at the on-shell relations

Rµν

∣∣∣
on−shell

= −Λgµν +
3γ

1 + γ2

(
2γJ2 − γ

8
W 2 − J ·W

)
gµν

+
3γ

1 + γ2

[γ
8
WµWν − 2γJµJν +

1

2

(
WµJν +WνJµ

)]
(19)

and

R
∣∣∣
on−shell

= − 4Λ +
3γ

1 + γ2

[
6γJ2 − 3γ

8
W 2 − 3W · J

]
. (20)

Finally, for the total action (14) on-shell we obtain

St

∣∣∣
on−shell

= − 1

κ2

∫
d4x

√−g
{ 3γ

1 + γ2

(
4γJ2 − 2J ·W − γ

4
W 2

)
− 2Λ

}
. (21)

A simple observation concerning this action is as follows. In the limit γ → ∞ the mixed

term with (J · W ) goes to zero. This is of course a natural feature, because this parity-

violating term is only due to the presence of the Holst term. This detail is an illustration

of the possible effects of the Holst term on the interaction between the two vector currents.

3 One-loop divergences off- and on-shell

The divergences must be calculated on the basis of the off-shell action (14). We shall treat

gµν , Sα and Tα as quantum fields while W α and Jα will be taken as external sources.

The Gaussian path integrals over Sα and Tα do not generate divergences, because the

corresponding bilinear forms are c-number operators. This means that integrations over

these variables is greatly simplified. Let us see this in more details.
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Consider the background field method for the action (14) and shift the field variable into

background and quantum parts according to

gµν → g′µν = gµν + κhµν , Sµ → S ′

µ = Sµ + κσµ , Tµ → T ′

µ = Tµ + κtµ . (22)

The one-loop effective action depends on the bilinear in respect to the quantum fields

hµν , σµ, tµ part of the action. Since we are going to work with on-shell quantities, the

choice of the gauge fixing is irrelevant. For the sake of simplicity we consider

Sgf = − 1

2θ

∫
d4x

√
−g χµχ

µ , where χµ = ∇λh
λ
µ −

ω

2
∇µh (23)

and chose the gauge fixing parameters in a way that leads to the minimal bilinear form of

the action, namely θ = ω = 1.

The expansion performs as usual (see, e.g., [26] for details) and after some algebra we

arrive at

S
(2)
t + Sgf = −

∫
d4x

√
−g

{
hµν

[ 1
4

(
δµν,αβ −

1

2
gµνgαβ

)
� +

1

2
Rµανβ

+
1

2
gνβ Rµα − 1

4

(
gµνRαβ + gαβRµν

)

− 1

4

(
δµν,αβ −

1

2
gµνgαβ

)(
R + 2Λ− 2

3
T 2 +

1

24
S2 − 1

3γ
S · T + S · J + T ·W

)

− 1

96

(
gµνSαSβ + gαβSµSν)−

2

3
gµαTνTβ +

1

6
(gµνTαTβ + gαβTµTν

)

− 1

6γ
gµα(SνTβ + SβTν) +

1

12γ

(
gµνSαTβ + gαβSµTν

)
+

1

24
gµαSνSβ

]
hαβ

+
1

24
gµνσµσν −

2

3
gµνtµtν − 1

6γ

(
σµg

µνtν + σνg
µνtµ

)

+ hµν
[
− 1

12
Sµσν +

4

3
Tµtν +

1

3γ

(
Sµtν + Tµσν)

]
+

[ 1

24
gαβ Sµσ

µ (24)

− 2

3
gαβTµt

µ − 1

6γ
gαβ

(
T µσµ + Sµtµ

)
+

1

2
gαβ σµJ

µ +
1

2
gαβ tµW

µ
]
hαβ

}
,

where δµν,αβ = (1/2) (gµαgνβ + gµβgνα). A relevant observation is that the path integral

over σν and tµ has the form

I =

∫
dtµ dσν exp

{
i
[ 1
2
(σµ tµ)(K

µν)

(
σν
tν

)
+ (σµ tµ)

(
aµ

bµ

)]}
, (25)

where Kµν is a c-matrix and aµ, bµ form a column depending on the background fields. This

non-derivative Gaussian integration gives

I = exp

{
− i

2
(aµ bµ)(Kµν)

−1

(
aν

bν

)}
. (26)
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This is the same result which one could obtain just using the classical equations of motion

for the two components of torsion σν and tµ. Since our intention is to calculate the on-shell

effective action, it means that we can simply ignore path integrals over σν and tµ. That

means there is no need to perform the shift of Sν and Tµ in (22), instead one can directly use

corresponding classical equations of motion in the result of the integration over quantum

metric hµν .

Finally, the relevant part of the bilinear expansion is

S
(2)
t + Sgf = −

∫
d4x

√−g hµν
{1

4

(
δµν,αβ −

1

2
gµνgαβ

)
�+

1

2
Rµανβ +

1

2
gνβ Rµα

− 1

4
(gµνRαβ + gαβRµν)−

1

4

(
δµν,αβ −

1

2
gµνgαβ

)
X +

1

4
Yµν,αβ

}
hαβ , (27)

where

X = R + 2Λ− 2

3
T 2 +

1

24
S2 − 1

3γ
S · T + S · J + T ·W (28)

and

Yµν,αβ =
1

6
gµαSνSβ −

1

24
(gµνSαSβ + gαβSµSν)−

8

3
gµα TνTβ +

2

3
(gµν TαTβ + gαβ TµTν)

− 2

3γ
gµα(SνTβ + SβTν) +

1

3γ
(gµνSαTβ + gαβSµTν) . (29)

Furthermore, the equation (27) can be rewritten as

S
(2)
t + Sgf = −

∫
d4x

√
−g hµν

(1
4
Kµν,αβ �+

1

4
Mµν,αβ

)
hαβ (30)

= − 1

4

∫
d4x

√
−g hµν Kµν,αβ

[
δαβ,ρσ �+ Π̂αβ,

ρσ] h
ρσ ,

where

Π̂αβ,ρσ = 2Rρασβ + 2gσβ Rρα −
(
gρσ Rαβ + gαβ Rρσ

)
(31)

+
1

2
gρσgαβR− δρσ,αβX + Yρσ,αβ −

1

2
gρσ Yρσ,αβ g

µν ,

and

K−1
µν,αβ = Kµν,αβ = δµν,αβ −

1

2
gµνgαβ . (32)

The one-loop contribution is given by the standard expression

Γ(1) =
i

2
Tr ln

{
K̂ · (�̂+ Π̂)

}
− i Tr ln Ĥghost . (33)

The ghost part does not depend on torsion or external currents, hence the corresponding

contribution will be identical to the standard one for Einstein gravity [17]. Let us, therefore,
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concentrate on the first term in (33). As far as Tr ln K̂ = Tr ln K̂µν,αβ does not contribute

to the divergences, they depend only on the matrix Π̂αβ,
ρσ and also on the contribution of

the Faddeev-Popov ghosts.

The practical calculation of divergences follows the standard scheme [17] and we will

avoid boring the reader with the details. The result for the divergent part of the one-loop

effective action can be conveniently expressed via the tensor quantity (18) and has the

following final form:

Γ̄
(1)
div = − 1

ε

∫
d4x

√
−g

{
53

45
E +

7

10
R2

µν +
1

60
R2 + 8DµνD

µν − 2D2

+
26

3
R
(
Λ +

1

2
S · J +

1

2
T ·W

)
+ 20

(
Λ +

1

2
S · J +

1

2
T ·W

)2
}
,

where E = R2
µναβ − 4R2

µν +R2 is the Lagrangian density of the Gauss-Bonnet term (Euler

density). Finally, ε = (4π)2(n − 4) is the parameter of dimensional regularization. Let us

remark that (34) is relatively simple due to some unexpected cancellations, for example of

the DR, DµνR
µν and a few other possible structures.

In order to formulate the on-shell renormalization group, we need to use the classical

equations of motion (16), (18), (19) and (20) in eq. (34). After some algebra we arrive at

the result

Γ̄
(1)
div

∣∣∣
on−shell

= − 1

ε

∫
d4x

√
−g

{
53

45
E − 58

5
Λ2 +

81 γ4J4

(1 + γ2)2
+

81

256

γ4W 4

(1 + γ2)2

+
27

40

γ2 (43γ2 + 58)

(1 + γ2)2
W 2 · J2 +

241γ

40(1 + γ2)
(16γJ2 − γW 2 − 8W · J) Λ

− 27 γ2 (W · J)
80 (1 + γ2)2

[(
56 + 116γ2

)
(W · J) + 240γJ2 − 15γW 2

]}
. (34)

An important difference between the expressions (34) and (34) is related to the gauge fixing

dependence. The effective action (34) has a lot of ambiguity related to the choice of the

parameters θ, ω in the action (23). In fact, significant part of the terms can be modified or

even eliminated by an appropriate choice of these parameters [27]. On the other hand, there

is no such gauge dependence in the one-loop divergences for the on-shell effective action [18]

(see also more detailed consideration in [28]), so the coefficients in the action (34) do not

suffer from this ambiguity.

4 On-shell renormalization group

Our purpose is to construct the reduced on-shell version of the Minimal Subtraction renor-

malization group. We shall use dimensional regularization and hence it is necessary to
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formulate both classical on-shell action (21) and the on-shell counterterm in n space-time

dimensions. The corresponding expressions can be written in terms of the new notations

λ̃ = α1λ1 + α2λ2 + α3λ3 + α4λ4 , (35)

where

λ1 = κ2Λ , λ2 = κ2J2 , λ3 = κ2W 2 , λ4 = γ κ2(W · J) (36)

on one side and

σ̃ = Ω11λ
2
1 + Ω22λ

2
2 + Ω33λ

2
3 + Ω44λ

2
4

+ Ω12λ1λ2 + Ω13λ1λ3 + Ω14λ1λ4 + Ω23λ2λ3 + Ω24λ2λ4 + Ω34λ3λ4 (37)

on another side.

The classical action and one-loop counterterms, both on-shell (classical) have the form

St

∣∣∣
on−shell

= − 1

κ4

∫
dnx

√
−g µn−4 λ̃ , (38)

∆S(1)
∣∣∣
on−shell

=
1

ε
· 1

κ4

∫
dnx

√−g µn−4 σ̃ . (39)

The coefficients in the expressions (35) and (37) can be taken directly from eqs. (21) and

(34)

α1 = −2, α2 =
12γ2

(1 + γ2)
, α3 = − 3γ2

4(1 + γ2)
, α4 = − 6

(1 + γ2)
(40)

and

Ω11 = −58

5
, Ω12 =

482

5

γ2

(1 + γ2)
, Ω13 = −241

40

γ2

(1 + γ2)
, Ω14 = − 241

5(1 + γ2)
,

Ω22 =
81γ4

(1 + γ2)2
, Ω23 =

27

40

γ2(43γ2 + 58)

(1 + γ2)2
, Ω24 = − 81γ2

(1 + γ2)2
, (41)

Ω33 =
81

256

γ4

(1 + γ2)2
, Ω34 =

81

16

γ2

(1 + γ2)2
, Ω44 = −(378 + 783γ2)

20

1

(1 + γ2)2
.

Let us note that consistent formulation of renormalization group for both cosmological

constant and Newton constant (related to the inverse κ of the re-scaled Planck mass) is

definitely impossible since we are working in the framework of the on-shell renormalization

group. The form of the classical action (38) and the counterterms (39) indicate that there

is no possibility to study renormalization of κ in this framework, so in what follows we

will pursue only the aim of constructing the renormalization group equations for effective

10



charges λ1, λ2, λ3 and λ4, defined in (36). One can also see this method as working in the

Planck units, where all quantities become dimensionless.

The on-shell renormalized action has the form which follows from eqs. (38) and (39).

Then the on-shell one-loop divergences can be removed by means of renormalization trans-

formation

λ̃0 = µ(n−4)
(
λ̃− σ̃

ε

)
. (42)

As far as λ̃0 does not depend on µ, the last relation implies that

(n− 4)
(
λ̃− σ̃

ε

)
+

(
µ
dλ̃

dµ
− µ

ε

dσ̃

dµ

)
= 0 . (43)

Assuming that the divergent terms cancel, and using the homogeneity property of σ̃, we

arrive at the general β-function for λ̃ in n space-time dimensions,

βn
λ̃

= − (n− 4) λ̃ − σ̃

(4π)2
. (44)

Since our intention to to explore the renormalization group in n = 4, we have to take the

limit n→ 4, to arrive at the general renormalization group equation

dλ̃

dt
= µ

dλ̃

dµ
= βλ̃ = − σ̃

(4π)2
, (45)

where we introduced a useful parameter t = ln (µ/µ0).

The next part of the work will be to extract the equations for individual effective charges

λ1, λ2, λ3 and λ4 from the single equation (45). This situation is definitely more complicated

than the one in the usual renormalizable theories, and represents a necessary element of the

more tricky scheme of the on-shell renormalization group.

The case of the parameter λ1 has been considered in the paper [18], where the on-shell

renormalization group was invented. Let us suppose that the renormalization group equation

for the cosmological constant λ1 does not depend on the presence of external currents Jµ

and W µ. Setting Jµ =W µ = 0 we get λ2,3,4 = 0 and then the eq. (45) transforms into

α1
dλ1
dt

= − 1

(4π)2
Ω11 λ

2
1 . (46)

Taking α1 and Ω11 from (40) and (41), one can immediately obtain the corresponding

equation of [18],

dλ1
dt

= − 29

5 (4π)2
λ21 , (47)
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indicating an asymptotic freedom for the dimensionless cosmological constant in the UV for

a positive cosmological constant and in the IR for a negative cosmological constant.

One can follow similar approach for another effective charge, λ2. In this case one has to

assume that when we set Λ = 0 and W µ = 0, the on-shell renormalization group equation

for the effective charge related only to Jµ does not change. Then the considerations similar

to the ones which led us to (46) and (47) provide us with the equation

dλ2
dt

= β2 = − Ω22

α2 (4π)2
λ22 = − b22λ

2
2 = − 27

4 (4π)2
γ2

(1 + γ2)
λ22 , (48)

indicating an asymptotic freedom for the dimensionless quantity λ2 in the UV, in case the

vector Jµ is time-like, and in the IR in case the same vector is space-like.

In a similar way one can obtain the equation for the third parameter

dλ3
dt

= β3 = − Ω33

α3 (4π)2
λ23 = b23λ

2
3 =

27

64 (4π)2
γ2

(1 + γ2)
λ23 . (49)

In this case we observe the asymptotic freedom for the dimensionless quantity λ3 in the

UV if vector W µ is space-like, and in the IR in case this vector is time-like. For the sake

of simplicity, we shall assume that the initial value of λ2(µ0) = λ02 is positive and that the

initial value λ3(µ0) = λ03 is negative. In this case we have asymptotic freedom for both

charges in UV and will try to explore this limit in what follows. It is important to note

that the signs of λ2 or λ3 are not limited by the arguments of stability or alike, in particular

because they correspond to the properties of external (non-dynamical) currents.

Now we can start solving a more complicated problem of formulating the on-shell renor-

malization group equation for the effective charge λ4(t) and eventually for the effective

Barbero-Immirzi parameter γ(t). By subtracting eqs. (48) and (49) with the factors α2 and

α3, from eq. (45) we obtain

α4
dλ4
dt

=
1

(4π)2
(
− σ̃ + Ω22λ

2
2 + Ω33λ

2
3

)

that directly brings us to

(4π)2
dλ4
dt

= − 1

α4

(
Ω44λ

2
4 + Ω23λ2λ3 + Ω24λ2λ4 + Ω34λ3λ4

)
. (50)

This is the renormalization group equation for the running parameter λ4(t). The β-function

here depends on λ2(t) and λ3(t), so the first impression is that one can solve eq. (50) only

after solving eqs. (48) and (49). However, the real situation is much more complicated. The

parameter λ4 is strongly related to λ2 and λ3, because all three constants are constructed

from two fermion currents, Jα and W α, via eq. (36). In fact, we have found the room

for an independent equation (50) only because λ4 depends not just on the magnitude of

12



the currents Jα and W α, but also on the angle between them and on the Barbero-Immirzi

parameter γ. In what follows we assume that the mentioned angle does not run with the

scale. This feature enables one to construct the renormalization group equation for γ.

Let us derive the renormalization group equation for the Barbero-Immirzi parameter.

For this end we return to the equations (48) and (49). Since κ is a universal constant

(inverse Planck mass), one has to assume that the external currents themselves are running

quantities, that means Jα = Jα(µ) and W α = W α(µ). By using (36), one can rewrite (48)

and (49) as

dλ2
dt

= κ2
dJ2

dt
= 2κ2Jα dJα

dt
= − Ω22λ

2
2

α2(4π)2
= β2 , (51)

dλ3
dt

= κ2
dW 2

dt
= 2κ2W α dWα

dt
= − Ω33λ

2
3

α3(4π)2
= β3 . (52)

Let us make a natural assumption that

dJα
dt

= Θ2Jα . (53)

Than it is easy to show that the

Θ2 = − Ω22 κ
2J2

2α2(4π)2
.

In the same way, we find

dWα

dt
= Θ3Wα , where Θ3 = − Ω33 κ

2W 2

2α3(4π)2
. (54)

Then we have two relations,

dJα
dt

= −Ω22 κ
2J2

2α2(4π)2
Jα and

dWα

dt
= −Ω33 κ

2W 2

2α3(4π)2
Wα . (55)

As far as λ4 = γκ2 (W · J), the renormalization group equation for λ4 is a consequence of

equations (55) and the running of γ, which we also want to find. In this way one can obtain

dλ4
dt

= κ2
( dγ
dt
W · J + γ Jα dWα

dt
+ γ W α dJα

dt

)
. (56)

Replacing (50) into (56) and using eqs. (55), we arrive at

(4π)2
1

γ

dγ

dt
= −Ω44λ4

α4
+ λ2

(Ω22

2α2
− Ω24

α4

)
+ λ3

(Ω33

2α3
− Ω34

α4

)
− λ2λ3
α4λ4

Ω23 . (57)

The last equation describes the renormalization group running of the Barbero-Immirzi pa-

rameter within the on-shell renormalization group scheme. In this consideration we assumed
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that the angle between the four-dimensional currents Jµ and W µ does not run with the

renormalization group scale. This is a small price to pay for the possibility to consider

renormalization group in the non-renormalizable theory such as Einstein-Cartan gravity

with the Holst term.

The problem of exploring the asymptotic behavior of the effective charges λ2,3,4(t) and

γ(t) on the basis of eqs. (48), (49), (50) and (57) turns out to be very complicated, and

unfortunately we were unable to solve it in a completely satisfactory way. Let us present

only some part of consideration, which can be useful to show what is the origin of the

difficulties.

The simplest assumption is that all four parameters λ2,3,4(t) and γ(t) have moderate

running and therefore one can work in the leading-log approximation. Then the eqs. (48)

and (49) can be easily solved for a constant γ and give

λ2(t) =
λ20

1 + b22λ20 t
, λ3(t) =

λ30
1− b23λ30 t

. (58)

In this case equation (50) can be easily cast into the form

dλ4
dt

= A(t)λ24 +B(t)λ4 + C(t) . (59)

Mathematically, (59) is a Riccati equation, which can be solved if we first get some particular

solution. In order to achieve this, we can make some simplifications. Consider an asymptotic

regime, assuming (β2/λ
0
2)t≫ 1 and (β3/λ

0
3)t≫ 1, such that, approximately,

λ2,3(t) =
l2,3
t
, where l2 =

4 (4π)2(1 + γ2)

27 γ2
and l3 = 16l2 . (60)

In this way eq. (59) becomes simpler,

dλ4
dt

= A0λ
2
4 +

B0

t
λ4 +

C0

t2
, (61)

where

A0 = − Ω44

α4 (4π)2
, B0 = −Ω24 l2 + Ω34 l3

α4 (4π)2
, C0 = − Ω23 l2 l3

α4 (4π)2
. (62)

It is quite natural to look for a particular solution of eq. (61) in the form

λ4(t) =
l4
t
, where l4 = − B0 + 1

2A0

± 1

2A0

√
(B0 + 1)2 − 4C0A0 . (63)

In case of a real r.h.s. of the last expression, one can easily show that an arbitrary particular

solution is asymptotically approaching (63). Unfortunately, a direct calculus shows that the

root in eq. (63) has only solutions with non-zero imaginary part. This feature leaves very

14



small chances to find a fixed point for the system of equations (48), (49), (50) and (57).

According to (36), the parameter λ4 can be complex only due to the complex parameter

γ. This means that the ratio between real and imaginary parts of λ4 and γ should be

identically equal. However, direct calculations show that this situation contradicts the

equations (50) and (57). This means that the system of renormalization group equations

for the effective parameters λ2,3,4(t) and γ(t) has no fixed points.

The absence of the Holst term means the limit γ → ∞ for the Barbero-Immirzi param-

eter. An inspection of the eqs. (48), (49) and (50) with Ω22 and Ω33 defined in (41) shows

that in this limit there are usual UV fixed points, which can correspond to the asymptotic

freedom in the parameters λ2(t), λ3(t) under the right choice of initial conditions. There-

fore, the role of the Holst term in the renormalization group is very strong. Our results

show that the presence of finite γ breaks down the simple form of the renormalization group

flows and leads to much complicated scale behavior which looks irregular, at least at the

present stage of investigating the problem.

In this situation a natural question to ask is whether the limit γ → ∞ for the Barbero-

Immirzi parameter is smooth. It is easy to see that in this limit we also have λ4 → ∞.

Therefore the smooth limit concerns the ratio between the two effective parameters, p =

λ4/γ . The equation for this ratio can be easily obtained from eqs. (36), (53) and (54).

After a very small calculus we arrive at the equation

dp

dt
= − p

2 (4π)2

[
Ω22

α2

λ2(t) +
Ω33

α3

λ3(t)

]
, p(0) = p0 . (64)

Using the asymptotic estimates for γ → ∞,

Ω22 ∝ 81 , Ω33 ∝
81

256
, α2 ∝ 12 , α3 ∝ −3

4

we arrive at the solution of (64),

p(t)

p0
∝

(
1 + b22λ20 t

)
−1/2 (

1− b23λ30 t
)
−1/2

. (65)

The last formula shows that we can switch off the Barbero-Immirzi parameter smoothly and

the ratio p(t) → 0 asymptotically at t→ ∞ in the same way as the effective charges λ2(t)

and λ3(t). This shows that our hypothesis of a non-running angle between two currents is

correct in the regime of very small Holst term, at least. However, this confirmation concerns

only this special limit.

Of course, the most interesting part is the running for a finite Barbero-Immirzi parame-

ter, but in this case we could not achieve a reliable analytic estimate of the results. In this

situation one can rely only on the numerical solution for the system of equations (48), (49),
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(50) and (57). The corresponding analysis has been done, however the output shows very

strong dependence on the choice of initial conditions and after all, there is no convincing

qualitative interpretation of the results. For this reason, we decided not to bother the reader

with the technical details here. One could imagine that the situation may become different

in a more complete case when we also take the running of λ1 into account. The technically

more cumbersome analysis of this case have been performed and we saw that there are no

much changes. Qualitatively, the situation remains the same, that is there are no nontrivial

fixed points in the presence of finite Barbero-Immirzi parameter.

5 Conclusions

We have considered the Einstein-Cartan theory with an additional Holst term, which plays

an important role in loop quantum gravity [6, 1]. In classical theory this term is well-known

to identically vanish for zero torsion, it manifest itself only in the presence of fermion

currents. Following [10], we used the irreducible components of torsion to write the Holst

term in a simple form, where its parity-violating nature becomes clear.

In the main part of the paper we performed one-loop calculations in the Einstein-Cartan

theory with the Holst term, cosmological constant and two external fermion currents, namely

with vector and axial vector ones. As one should expect, the divergences do not repeat the

form of the classical action. On the other hand, the divergences have strong gauge-fixing

dependence. In pure quantum GR one can chose the gauge-fixing in such a way that

the one-loop S-matrix is becoming finite [27], however this in not the case if the matter

is present, including fermions. Indeed, one does not need to calculate explicitly gauge-

fixing dependence, it is sufficient to remember that, at the one-loop level, this dependence

disappears on the classical mass-shell in a general gauge theory [29] (see also [13] for a recent

review of the subject).

The real problem is how to extract the potentially relevant physical information from

the gauge-dependent effective action. One of the simplest possibilities has been suggested

by Fradkin and Tseytlin in [18], where the truncated, on-shell, version of renormalization

group equations has been introduced. Within this scheme one can arrive at the gauge-

invariant form of running for the dimensionless combination of the cosmological and Newton

constants. The on-shell renormalization group has been also used in the Einstein-Cartan

theory with axial vector current [20], but the situation becomes much more complicated and

interesting in the presence of the Holst term.

In is clear that the on-shell renormalization group equations have much more restricted

theoretical background than the conventional renormalization group in renormalizable the-

ories. However, even in the non-renormalizable theory such as Einstein-Cartan with the

16



Holst term we were able to establish the renormalization group equations for all dimension-

less effective charges, including cosmological constant, squares of both fermionic currents,

their mixing and finally, for the Barbero-Immirzi parameter γ. Unfortunately, the equations

which we have obtained are very complicated and do not enable us to apply standard treat-

ments. In particular, we were unable to find non-trivial UV fixed points in the theory or

establish, by means of numerical methods, some reliable form of the renormalization group

trajectories for the dimensionless effective charges.

Finally, let us present a short discussion of the perspectives to extend our results. The

set of equations which we have obtained here, can be seen as a low-energy approximation for

the renormalization group in the theory with full UV completion, which is supposed to be

renormalizable. In the present case such a complete theory should include higher derivatives

in the metric sector [30] and kinetic terms for torsion (see the discussion in [26, 21]). Only

quantum calculations in such a full theory coupled to fermions [31, 32, 26] can provide a

completely reliable form of the renormalization group equations in the theory with Barbero-

Immirzi parameter. In practise, the derivation of such equations is possible but promise

to be very involved, so we leave it for the possible future work. At the same time, certain

technical tools which we developed here will be certainly necessary for such a calculation.
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