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I. INTRODUCTION

In a modern theory of quantum gravity (LQG) the Wilson loops play crucial role in the con-

struction of the auxiliar Hilbert space. In the euclidean version kinematical space is given by

HLQG = L2(X, dµ), whereX is the space of classes of Ashtekar-Barbero-Immirzi connection up to

gauge transformation of diffeomosphisms and localSO(3). Since the LQG works with partially

solved gauge freedom only partial Dirac observables can be quantized on the spaceHLQG. This

may produce several, perhaps hypothetical, problems like absence of the crucial geometrical and

physically measurable objects like metric tensor, (co)frames, or curvature in a final picture. Of

course they can not be represented on the physical Hilbert space given by solution of all con-

strains, but the question is whether such representation exists and if the answer is affirmative how

it is related to the standard Lorentzian1 loop approach. The construction of such representation

is the key point of this article, the question of the relationwith standard LQG is kept for future

research at this moment, but if there is any relation with LQG, then one may expect that it should

be found after solving spatial diffeomorphism plus Lorentz constrains.

The article is organizes as follows. In the section II the results of previous works2,3 are sum-

marized. The point version of the phase space is quantized inthe section IV. These results are

used with help of ideas of von Neumann construction of infinity-dimensional tensorial product

(summarized in section V) in construction of wanted representation in section VI.

II. PHASE SPACE OF EINSTEIN-CARTAN THEORY

Einstein-Cartan theory is a gauge theory where local Poincaré group plays a role of gauge

symmetry4,5,6. Full configuration space of Einstein-Cartan theory is given by orthonormal coframe

ea (a, b, . . . = 0, 1, 2, 3) and metric-compatible connection̂Aab = −Âba. The hat overÂab means

that associated covariant derivative operatorD̂, is acting on the spacetime manifoldM. Similar

for d̂. ”Hat-free” objectsAab, d,D are reserved for objects acting on the spatial sectionΣ. We are

assuming thatΣ is compact orientable manifold, e.g. torus, and variablesea andÂab are globally

defined. The second assumption is motivated by the Geroch’s condition7 which guarantees the

existence of the global spinor structure over the manifolfM. Let R̂a
b be the curvature of the
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connectionD̂ then action of the Einstein-Cartan theory can be written in the form

S =
∫

M

−
1

32πκ
εabcdη

bb̄R̂a
b̄ ∧ ec ∧ ed, (1)

whereκ is Newton’s constant (c=1). We are using spatial negative signature of the metric, i.e.

(ηab) = diag(+1,−1,−1,−1). Equations of the motion given by the action (1) are

0 =
1

8πκ
εabcdec ∧ D̂ed = −

1
8πκ

(

T̂c
ab + T̂d

daδ
c
b − T̂d

dbδ
c
a

)

Σ̂c, (2)

0 = −
1

16πκ
εabcdR̂bc∧ ed = −

1
8πκ

Ĝc
aΣ̂c, (3)

where the torsion components are given by

D̂ea = T̂a =
1
2

T̂a
bce

b ∧ ec,

3-volume forms

Σ̂a =
1
3!
εabcdeb ∧ ec ∧ ed,

andĜa
b is the Einstein tensor

Ĝa
b = R̂ca

cb −
1
2

R̂cd
cdδ

a
b,

R̂ab =
1
2

R̂ab
cdec ∧ ed.

Equation (2) implies that connection̂D is torsion-free and together with metricity ofD̂ we have

thatD̂ is geometrical connection. Equations (3) are Einstein equations of General Relativity.

Let us summarize the results given by previous work3 for the Dirac-Hamiltonian formulation.

(3+1)-decomposition of basic variables are given by expressions (α, β, . . . = 1, 2, 3 are spatial

coordinate indices)

ea = λadt + Ea = λadt + Ea
αdxα, (4)

Âab= Λabdt + Aab. (5)

It is useful for our purposes to decompose even the vector frameea into tangential and time parts

ea = λa∂t + Ea = λa∂t + Eα
a∂α. (6)

It should be noted thatλa , ηabλ
a. We hope that this notation is not confusing since if we need

to in/de-crease indices then it will be explicitly written using metric tensor. Variablesλa, λa, Ea
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andEa are not independent and we can express vector coefficients by using the covectors via well

known formula for inverse matrix

eλa =
∂ e
∂λa

, (7)

eEαa =
∂ e
∂Ea

α

, (8)

where

e=
1
3!
εabcdε̄

αβγλaEb
αEc

βE
d
γ (9)

is determinant of matrix (λa,Ea
α). It is easy to see thatλaλb or Ea

b = Ea(Eb) are projections to time

or spatial subspaces ofTΣM, respectively.

The HamiltonianH is given by sum of the first class constraints

π(N)=
∫

Σ

πaNa, (10)

R(µ)=
∫

Σ

1
16πκ

εabcdµ
aRbc∧ Ed =

∫

Σ

µaRa, (11)

T(Λ)=
∫

Σ

−
1

32πκ
εabcdDΛ

ab∧ Ec ∧ Ed =

∫

Σ

−
1

16πκ
εabcdΛ

ab∧ Ec ∧DEd =

∫

Σ

1
2
ΛabTab, (12)

whereNa, µa, Λab play role of Lagrange multipliers,πa is a conjugate momentum toλa, D is

SO(η) connecion overΣ defined for all vector-formsva via

Dva = dva + Aabηbc∧ va (13)

andRab = dAab+ ηcdAac∧ Adb is a curvature ofD.

Symplectic structure is given by Dirac brackets

{E(Q),G(K) }∗ =
∫

Σ

Qa ∧Ka,

{W(λ) , π(N) }∗ =
∫

Σ

WaNa
(14)

where only the non-trivial brackets are explicitly written. We have used smeared variables in (14)

given by

E(Q)=
∫

Σ

Qa ∧ Ea,

G(K)=
∫

Σ

Ga ∧Ka =

∫

Σ

−
1

16πκ
εabcdKa ∧ Abc∧ Ed

W(λ)=
∫

Σ

Waλ
a,
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whereQa, Ka, Wa are smearing forms andGa is a canonical momentum conjugated toEa. Since

Ga has only twelve degrees of freedom(DOFs) per a point the restof Aab with eighteen DOFs per

point should be established by the second class constrain given by Hamilton-Dirac procedure

Sab=
1

8πκ
E(aEb)

c ∧DEc = 0. (15)

In addition let us assume that the orthonormal coframeea is future and righthand oriented, then

the configuration space is given by the infinity-dimensionalmanifold

Conf = {(λa,Ea); e> 0, ηabλ
aλb > 0, λ0 > 0, q < 0},

whereq = ηabEa ⊗ Eb is a spatial metric tensor. The cotangent bundleT∗Conf forms our phase

space with symplectic structure given by (14).

Here our overview of classical results is finished and we can start to build the quantum formu-

lation.

III. QUANTUM PRELIMINARIES

Before we start to construct Hilbert space of Einstein-Cartan theory let us focus our attention

to the following simple excersice well known from the quantum mechanics of the particle moving

on the half line. Canonical variables of this system arex and p, wherex is a position of the

particle on the half linex > 0 andp is its canonical momentum. We can naively represent them

onH = L2(R+, dx) as̺(x) = x, ̺(p) = −i∂x. The operators̺(x) and̺(p) are symmetric but̺(p)

can not be extended into the selfadjoint operator onH . In order to see this let us compute its

deficiency indicesnε, whereε = ±1. Equations

− i∂xψ
(ε) − iεψ(ε) = 0

have solutions

ψ(ε) = A(ε)e−εx.

Solutionψ(+1) belongs to the spaceL2(R+, dx) while ψ(−1) is not square integrable function onR+.

Sincen+ = 1 andn− = 0 we haven+ , n−. Thus we can not construct the selfadjoint extenstion

of the operator−i∂x. Hence if one wants to describe the quantum particle on the half line then one

has to choose different set of basic variables. The first observation is thatR
+ is a groupGL+(R).
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Invariant measure onGL+(R) is ωGL+(R) =
dx
x hence the good candidate for the ”momentum”

operator is given by̺(xp) = −ix∂x. Indeed, the operator̺(xp) is symmetric onL2(R+, dx
x ).

〈ψ2|̺(xp)ψ1〉 =

∫

R+

dx
x

(ψ2)(−ix∂xψ1) =
∫

R+

dx
x

(−ix∂xψ2)ψ1 = 〈̺(xp)ψ2|ψ1〉

and its deficiency indices are determined by the following equations

− ix∂xψ
(ε) − iεψ(ε) = 0

with solutions

ψ(ε) = A(ε)x−ε,

which do not belong toL2(R+, dx
x ) if A(ε)

, 0. Hencen+ = n− = 0 and the operator̺(xp) is es-

sentially selfadjoint. The algebra of the basic variables is a space spanned on operators̺(x), ̺(xp)

with nontrivial commutator

[̺(x), ̺(xp)] = i̺ ({x, xp}) = i̺(x).

As we have seen on this simple exercise the choice of the basicvariables plays the crucial role

in the context of quantization. In the next section we will try to understand a point version of

Einstein-Cartan phase space.

IV. POINT ALGEBRA OF BASIC VARIABLES

Let us focus in this section on the introduction of a Hilbert spaceHx associated with an arbitrary

pointx in the spatial sectionΣ. We will define a point representation of the basic variablesrelated

to the canonical coordinates on the phase spaceT
∗Conf. Let us mention that all canonical variables

λa(x), Ea(x), πa(x), Ga(x) are local functions of the pointx. No derivatives, no complicated

integrals or any kind of dislocation are presented, hence wecan explore them in the single point

x. Before we start, we will introduce spacetime notation8

ea
µ = (ea

t = λ
a; ea

α = Ea
α),

pµa = (pt
a = πa; pαa = Gα

a),

Point version of cannonical momenta are given by

π̃a(x′) = πaδxx′ ,

G̃α
a(x′) = Gα

aδxx′ ,
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whereπa = π̃ad3x andGa =
1
2G̃α

aεαβγdxβ ∧ dxγ. Since we are working with the point variables,

their canonical relations are given by

{ea
µ, p

ν
b} = δ

a
bδ

ν
µ

and the phase space is defined in accordance to the Einstein-Cartan phase space asT∗conf, where

conf = {(ea
µ); e= det(ea

µ) > 0, ηabe
a
t e

b
t > 0, e0

t > 0, ηabe
a
αe

b
β < 0}.

Thanks to the positivity of the determinantewe can see thatconf ⊂ GL+(R4) ≡ GL+, anyway the

subsetconf is not a group. Now we will try to construct a representation of the basic variables. Let

us define a Hilbert spaceHx ≡H as a space of square integrable functions overconf

H = L2

(

conf,
de
e4

)

, (16)

wherede
e4 is left/right-invariant9 Haar’s measure on theGL+, which is unique up to the multiplica-

tive constant. de = de0
t de0

x . . .de3
yde3

z is Lebesgue measure on the coordinates (ea
µ) ∈ R

16 of the

spaceconf. The representation̺of ea
µ is given by trivial multiplication

̺(ea
µ)ψ(ea

µ) = ea
µψ(ea

µ).

It is well known fact that such operators can be extended intothe selfadjoint operators. The

problems occure with variablespa
µ, since the action of̺(pa

µ) = −i∂ea
µ

given by the ”unitary” trans-

formation

eiϑa
µ̺(p

µ
a)ψ(ea

µ) = ψ(ea
µ + ϑ

a
µ)

maps vectors fromH out of this space, therefore the operators̺(pµa) are not selfadjoint (they are

neither symmetric). What we can do with that? We know, thanksto the Stone’s theorem, that

every one-parametric strongly continuous unitary group isrelated to the selfadjoint operator and

vice versa. This implies that if we wish to find the selfadjoint operators for the momenta or their

functions, we need to find certain groups acting on the spaceconf. Indeed, a following statement

is valid.

Let X ⊂ Rn and dx be the Lebesgue measure onRn. If U(t) is one-parametric unitary group

acting on the Hilbert spaceH = L2 (X, gdx), whereg ≥ 0 is locally integrable function onX, and

if Φt is a continuous flow onX associated withU(t), thenU(t) is strongly continuous.
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A proof of the statement is based on the fact that functionI (t) : R→ R, defined as

I (t) =
∫

Φ∗t (K)

f dx,

is continuous, whereΦt : X × R → X is continous mapping,K is compact subset ofX and f

is locally integrable function. It is sufficient to prove that‖(1 − U(t))ψ‖ is continuous int = 0

for all ψ ∈ D, whereD is some dense subset inL2 (X, gdx), since for any convergent sequence

ψn ∈ D→ ψ0 ∈ L2 (X, gdx) we have

‖(1− U(t))ψ0‖ ≤ ‖(1− U(t))(ψ0 − ψn)‖ + ‖(1− U(t))ψn‖ ≤ 2‖ψ0 − ψn‖ + ‖(1− U(t))ψn‖.

The set of simple functions is dense inL2 (X, gdx), hence for the general simple function

f =
m

∑

i=1

fiχKi ,

wherem ∈ �, fi are complex constants,Ki ⊂ X are compacts andKo
i = Ki \ ∂Ki are mutually

disjoint, we have

‖(1− U(t)) f ‖2=
m

∑

i, j=1

∫

gdx f̄i f j

(

χKiχK j + χΦ∗t (Ki )χΦ∗t (K j ) − χΦ∗t (Ki )χK j − χKiχΦ∗t (K j )

)

=

m
∑

i=1

∫

gdx | fi |
2
(

χKi + χΦ∗t (Ki )

)

−

n
∑

i, j=1

∫

gdx f̄i f j

(

χΦ∗t (Ki )∩K j + χKi∩Φ
∗
t (K j )

)

,

what is continuous int. HenceU(t) is strongly continuous.

Now we can try to find group(s) acting on the spaceconf. The positive linear groupGL+ is

not a good candidate, since, as before in the case ofpµa, there exists transformationg from GL+

which does not preserve the spaceconf, e.g. rotation in a plane spaned one0
t , e1

t mapse0
t → −e0

t

ande1
t → −e1

t . The problem is caused by the fact that groupGL+ ignores a metricηab. Indeed, if

we consider a Lorentz group acting onea
µ via

ea
µ →

(

eΛη
)a

b
eb
µ, (17)

where (Λη)a
b = Λ

acηcb andΛab = −Λba, then we have that eΛη(conf) ⊂ conf and even more the

transformation (17) is continuous. We can define an operator

UL(Λab)ψ(ea
µ) = ψ

((

eΛη
)a

b
eb
µ

)

, (18)
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which is, thanks to the invariance of the measurede
e4 , unitary. LetΛab be arbitrary, but fixed, then

UΛ(t) = UL(tΛab)

is the one-parametric strongly continuous unitary group and, due to the Stone’s theorem, we have

that its generator is a selfadjoint operator. We have fixed arbitraryΛab, hence we have for every

Λab its own generator.Λab has six degrees of freedom, thus there are six independent generators

Lab and we can write

UL(Λab) = ei 1
2Λ

abLab.

Let ψ(ea
µ) ∈ C∞C (conf) ⊂H , whereC∞C (conf) is the set of all∞-times differentiable functions with

compact support onconf, which is dense inH , then we can use Taylor expansion

UL(tΛab)ψ(ea
µ)=ψ

((

etΛη
)a

b
eb
µ

)

= ψ
(

ea
µ +

((

etΛη
)a

b
eb
µ − ea

µ

))

=

=ψ(ea
µ) + tΛacηcbe

b
µ∂ea

µ
ψ(ea

µ) + t2o(t, ea
µ) (19)

whereo(t, ea
µ) is someC∞-function onR × conf with compact support onconf for every t given

by Taylor’s expansion remainder. The remaindero(t, ea
µ) can be restricted for|t| < δ as|o(t, ea

µ)| ≤

MχK̄δ
, where

Kδ = ∪|t|<δKt,

Kt is a support ofo(t, ea
µ) in conf for given t. Since the closure of∪|t|<δ{t} × Kt is compact in

R × conf we have that closurēKδ is also compact inconf. Now we can compute the generator

L(Λab) = 1
2Λ

abLab as a limitt → 0

iL(Λab)ψ = lim
t→0

UL(tΛab) − 1
t

ψ.

If we use expansion (19), then we have

1
t

∥

∥

∥

∥

(

UL(tΛab) − 1
)

ψ − itL(Λab)ψ
∥

∥

∥

∥

2
=
1
t

∫

conf

∣

∣

∣tΛacηcbe
b
µ∂ea

µ
ψ + t2o(t, ea

µ) − itL(Λab)ψ
∣

∣

∣

2 de
e4
≤

≤tM2

∫

Kδ

de
e4
,

iff

L(Λab) =
1
2
ΛabLab = −iΛabηbce

c
µ∂ea

µ
= −iΛabηbcλ

c∂λa − iΛabηbcE
c
α∂Ea

α
. (20)
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Thus we have as a final conclusion that the operatorL(Λab), given by previous expression, with

domainD(L(Λab)) = C∞C (conf) is essentially selfadjoint for everyΛab.

This is not everything what the Lorentz group can show us. Letus use again (3+1)-decomposition

ea
µ = (λa,Ea

α). As we already knowλa are components of vector∂t in the frameea. Since the time

vector can be choosen arbitrary there is no reason to have tied variablesλa, Ea
α together. Hence we

can work withλa, Ea
α independently. Let us consider Lorentz group acting onλa via flow

Φλt (Λ) : (λa,Ea)→
(

λ
a
,E

a)

=
(

(etΛη)a
bλ

b,Ea
)

, (21)

then the unitary group corresponding to this flow is

Uλ
t (Λ) : ψ(λ,E)→ ψ(etΛηλ,E)

e2

ē2
, (22)

whereē is a determinant of transformed variables
(

λ
a
,E

a)

. The corresponding selfadjoint generator

is given by

L(λ)(Λ) = −iΛabηbcλ
c∂λa + 2iΛabηbcλaλ

c. (23)

The Lorentz action onEa
α via flow

ΦE
t (Λ) : (λa,Ea)→

(

λ
a
,E

a)

=
(

λa, (etΛη)a
bEb

)

(24)

gives unitary group

UE
t (Λ) : ψ(λ,E)→ ψ(λ, etΛηE)

e2

ē2
, (25)

whereē is again a determinant of transformed variables. The generator is

L(E)(Λ) = −iΛabηbcE
c
α∂Ea

α
+ 2iΛabηbcEc

a. (26)

Let us compare these results with (20), we can see that

Lab = L(λ)
ab + L(E)

ab

as one expected. GeneratorsL(λ)
ab , L(E)

ab play an important role, since, as we will see in a while, their

classical analogues can be used as coordinates on the phase space.

Lorentz group does not change lengths of the vectors, while∂t can be arbitrary long. We need

to cover this feature of∂t. Let us define a following transformation

λa→ eNλa, Ea
α → Ea

α.

10



Let Uπ(N) be its unitary operator defined via

Uπ(N)ψ(λa,Ea
α) = ψ(eNλa,Ea

α)

and its selfadjoint generator is

π = −iλa∂λa. (27)

A final transformation acting on the spaceconf is given by groupGL+(R3) ≡ GL+3 acting on the

spatial indicesα. Let θα
β

be an arbitrary real matrix, then the transformation given by

λa→ λa, Ea
α →

(

eθ
)β

α
Ea
β (28)

represents the change of spatial frame∂α → (eθ)βα∂β. Since the transformation does not change a

signature ofqαβ = ηabEa
αEb

β
, we have that eθconf ⊂ conf and operators

U∆(θ)ψ(λa,Ea
α) = ψ

(

λa,
(

eθ
)β

α
Ea
β

)

are unitary and their selfadjoint generators are

∆αβ = −iEa
β∂Ea

α
.

Let us summarize our situation. We have constructed family of unitary transformation with action

in the spaceconf. Now it is a time to find classical variables associated with their generator. Let

us focus on the last four families of the generators. We have

L(λ)(Λ) = Λabηbcλ
cπa,

π(N) = Nλaπa,

L(E)(Λ) = ΛabηbcE
c
αG

α
a,

∆(θ) = θβαEa
βG

α
a.

Quantum commutators and their classical analogues are

[λ(k),π(N)] = iλ(Nk) ↔ {λ(k),π(N)} = λ(Nk)
[

λ(k), L(λ)(Λ)
]

= iλ(kΛη)↔
{

λ(k), L(λ)(Λ)
}

= λ(kΛη),
[

L(λ)(Λ), L(λ)(Λ′)
]

= −iL(λ)(ΛηΛ′ − Λ′ηΛ)↔ {L(λ)(Λ), L(λ)(Λ′)} = −L(λ)(ΛηΛ′ − Λ′ηΛ),

[E(h),∆(θ)] = iE(θ(h)) ↔ {E(h),∆(θ)} = E(θ(h)),
[

E(h), L(E)(Λ)
]

= iE(Ληh) ↔ {E(h), L(E)(Λ)} = E(Ληh),
[

L(E)(Λ), L(E)(Λ′)
]

= iL(E)(ΛηΛ′ − Λ′ηΛ)↔ {L(E)(Λ), L(E)(Λ′)} = −L(E)(ΛηΛ′ − Λ′ηΛ),
[

∆(θ),∆(θ′)
]

= −i∆(θθ′ − θ′θ)↔ {∆(θ),∆(θ′)} = −∆(θθ′ − θ′θ),

11



whereλ(k) = kaλ
a, E(h) = hαaEa

α and
(

θ(h)
)α

a
= θα

β
hβa.

As we can see we have constructed a selfadjoint representation of the variables on the space

H = L2
(

conf, de
e4

)

. The question is whether these variables seperate points ofthe phase space.

Now, we will show that the answer is affirmative. The variablesλa, Ea are clear, so let us turn our

attention onL(λ)
ab , π, L(E)

ab , ∆α
β
. We have

L(λ)
abλ

aEb
α = −(λ)2πaEa

α + λ
aπaηbcλ

cEc
α,

π = πaλ
a,

L(E)
ab λ

aEb
α = qαβG

β
aλ

a − ηabλ
aEb

βG
β
cEb

α,

∆αβ = Ea
βG

α
a,

where (λ)2 = ηabλ
aλb. As we can see, we can invert these equations and we can express canonical

momentaπa, Gα
a as functions of new variables. The projected variablesL(λ)

āb̄
Eā

aEb̄
b, L(E)

āb̄
Eā

aEb̄
b are not

independent. They play similar roles like angular momenta in quantum mechanincs. So, we have

found representation of algebra of new variables.

V. TENSOR PRODUCT HILBERT SPACE

In the previous section we have constructed the Hilbert spaceHx associated with the point

x ∈ Σ asHx = L2 (confx, ex), wheree = de
e4 andx means that it is taken at the pointx. A main goal

of this section is to briefly summarize ideas of von Neumann’sarticle on tensor product of family

of Hilbert spaces labeled by index set of arbitrary cardinality (details can be found in10). In our

case we can formally write

HΣ = ⊗x∈ΣHx.

We have a set{Hx}x∈Σ of Hilbert spaces’s labeled by points ofΣ. A sequence of the states{ψx}x∈Σ

belongs to the Cartesian productH ×
Σ
= ×x∈ΣHx, but this space is too large, we need to pick up a

certain subset ofH ×
Σ

. Let us call{ψx}x∈Σ aC-sequence iff a product

‖{ψx}x∈Σ‖ =
∏

x∈Σ

‖ψx‖x (29)

converges. LetCΣ = {{ψx}x∈Σ: C-sequence} be a set of allC-sequences. A value of the product

limit (29) can be positive or zero. We need some criteria for convergence of such limits. They can

be found in (10).
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Citation(α - index andI is an index set with arbitrary cardinality):

Lemma2.4.1.(p.13):

If all zα are real and≥ 0, then

(I)
∏

α∈I zα converges if and only if either
∑

α∈I Max(zα − 1, 0) converges, or somezα = 0

(II)
∏

α∈I zα converges and is, 0 if and only if
∑

α∈I |zα − 1| converges and allzα , 0.

Lemma2.4.2.(p.15):

If the zα are arbitrary complex numbers, then
∏

zα converges if and only if

(I) either
∏

α∈I |zα| converges and its value is 0,

(II) or
∏

α∈I |zα| converges and its value is, 0, and
∑

α∈I |arcuszα| converges11

Definition2.5.1.(p.18):

∏

α∈I zα is quasi-convergent if and only if
∏

α∈I |zα| is convergent. Its value is

(I) the value of
∏

α∈I zα if it is even convergent

(II) 0, if it is not convergent.

End of citation.

The reason why we need a notion of quasi-convergence is that if {ψx}x∈Σ, {φx}x∈Σ ∈ CΣ then

product
∏

x∈Σ〈ψx|πx〉x is only quasi-convergent in general.

Now we can define a functionalψΣ associated with{ψx}x∈Σ on the setCΣ of all C-sequences as

ψΣ({φx}x∈Σ) =
∏

x∈Σ

〈φx|ψx〉x,

where{φx}x∈Σ ∈ CΣ and product is taken in the sence of quasi-convergence. It should be noted

thatψσ does not imply that{ψx = 0}x∈Σ, e.g. forC-sequence{ψx0 = 0, {ψx}x∈Σ\{x0}} its associated

functional vanishes on wholeCΣ. Let us define a complex linear spaceH 0
Σ

of such functionals,

13



where

(aψΣ + bφΣ)({ωx}x∈Σ) = aψΣ({ωx}x∈Σ) + bφΣ({ωx}x∈Σ).

We can define an inner product onH 0
Σ

as follows

〈ψΣ|φΣ〉 =
∏

x∈Σ

〈ψx|φx〉x. (30)

The closureHΣ = H 0
Σ

in the topology defined via inner product (30) is a Hilbert space and we

call it as a tensor product of the sequence{Hx}x∈Σ

HΣ = ⊗x∈ΣHx. (31)

We wish to characterize the spaceHΣ is some way. In order to do so we need to introduce a

notion ofC0-sequence and classes of equivalence on them. A sequence{ψx}x∈Σ is aC0-sequence

iff
∑

x∈Σ

∣

∣

∣‖ψx‖x − 1
∣

∣

∣ converges. EveryC0-sequence is aC-sequence and everyC-sequence{ψx}x∈Σ

is a C0-sequence iff its functionalψΣ , 0. We will say that twoC0-sequences are equivalent

{ψx}x∈Σ ∼ {φx}x∈Σ iff
∑

x∈Σ

∣

∣

∣〈ψx|φx〉x − 1
∣

∣

∣ converges, what is equivalent to the mutual convergence of

both series
∑

x∈Σ ‖ψx−φx‖
2,

∑

x∈Σ

∣

∣

∣ℑ(〈ψx|φx〉x)
∣

∣

∣, whereℑ(z) is the imaginary part ofz. Hence we see

immediately that if{ψx}x∈Σ, {φx}x∈Σ differ in finite number of points ofΣ then they are equivalent.

Let us label equivalence classes byγ and a set of all equivalence classes onHΣ by C(HΣ).

Now we can finish this bries summary of10 with the following statement. If twoC0-sequences

{ψx}x∈Σ, {φx}x∈Σ or their functionalψΣ, φΣ belong to two equivalence classesγ(ψΣ) , γ(φΣ), then

〈ψΣ|φΣ〉 = 0. If γ(ψΣ) = γ(φΣ) and〈ψΣ|φΣ〉 = 0 then there existsx0 where〈ψx0 |φx0〉x0 = 0. Hence

we see thatHΣ can be decomposed as

HΣ = ⊕γ∈C(HΣ)Hγ, (32)

whereHγ is a Hilbert space associated withγ.

We will use a following example later. LetKΣ = {Kx}x∈Σ be sequence of compact sets where

Kx ⊂ confx. KΣ can be identified with Cartesian product×x∈ΣKx. Let us define a sets of all

sequences of compact sets with unit measure as

J1(Conf) =
{

KΣ = {Kx}x∈Σ : ∀x ∈ Σ; ex(Kx) = 1
}

We can associate withKΣ ∈ J1(Conf) an element inHΣ via

χKΣ = {χKx}x∈Σ. (33)
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Let KΣ,K′Σ ∈ J1(Conf) andσ ⊂ Σ be a set of allx whereKx , K′x. We will use a notatione = (ea
µ),

ex = (ea
µ

∣

∣

∣

x
). Let e ∈ KΣ \ K′

Σ
. If we suppose that for∀x ∈ σ exists an open neighbourhood of

ex ∈ Ux with propertyUx ⊂ Kx \ K′x andex(Ux) > δ ∈ (0, 1) andσ is not a finite set then

〈χKΣ |χK′
Σ
〉 =

∏

x∈Σ

ex(Kx ∩ K′x) = 0,

since 1> 1− δ > 1− ex(Kx \ K′x) = ex(Kx ∩ K′x).

VI. QUANTUM ALGEBRA OF BASIC VARIABLES

Now it is time to construct a representation of the basic variables of the Einstein-Cartan theory.

Inspired by the point version of the phase space we will not work with canonical variables, but we

will construct a representation of the following variables

λ(k) =
∫

Σ

kaλ
a,

L(λ)(Λ) =
∫

Σ

Λabηbcλ
c
πa,

π(N) =
∫

Σ

Nλa
πa,

E(H) =
∫

Σ

Ha ∧ Ea,

L(E)(Λ) =
∫

Σ

ΛabηbcEc ∧Ga,

∆(θ) =
∫

Σ

θ(Ea) ∧Ga.
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whereθ(Ea) = Ea
αθ

α
β
dxβ, with similar algebra as in the point version (trivial brackets are not

written)

{

λ(k) , π(N)
}∗

= λ(Nk),
{

λ(k), L(λ)(Λ)
}∗

= λ(kΛη),
{

L(λ)(Λ), L(λ)(Λ′)
}∗

= −L(λ)(ΛηΛ′ − Λ′ηΛ),
{

E(H),∆(θ)
}∗

= E(θ(H)),
{

E(H), L(E)(Λ)
}∗

= E(ΛηH),
{

L(E)(Λ), L(E)(Λ′)
}∗

= −L(E)(ΛηΛ′ − Λ′ηΛ),
{

∆(θ),∆(θ′)
}∗

= −∆(θθ′ − θ′θ)

Before we start to costruct a representation of this algebra, we need to discuss properties of a

certain family of operators. LetAx be a selfadjoint operator with action onHx with dense domain

D(Ax). We wish to represent it on the spaceHΣ. SinceHΣ ≃ Hx ⊗HΣ\{x} we can use theory of

finite tensor product of bounded operator and we see that expression

UΣ(t)ψΣ =
{

Ux(t)ψx; {ψy}y,x
}

, (34)

whereψΣ is C-sequence, defines an unitary operator on wholeHΣ, which is strongly continuous

at t. UΣ(t)ψx determines a generatorAΣ associated with it andD(AΣ) ⊃ Do(Ax) = Span{ψx ⊗

ψΣ\{x};ψx ∈ D(Ax), ψΣ\{x} ∈ H 0
Σ\{x}}. Restricted operatorAΣ

∣

∣

∣

Do(Ax)
is essentially selfadjoint and acts

onC-sequencesψΣ ∈ Do(Ax) as

AΣ
∣

∣

∣

Do(Ax)
ψΣ =

{

Axψx, {ψy}Σ\{x}
}

.

Let us start with variablesλx(k) = λa(x)ka(x), Ex(h) = Ea
α(x)hαa(x). Both of them are acting on

the spaceHx, hence we can represent them via previous construction on the spaceHΣ by formula

for C-sequenceψΣ ∈ CΣ

̺
(

λx(k)
)

ψΣ =
{

λx(k)ψx(e); {ψy}y∈Σ\{x}
}

,

̺
(

Ex(h)
)

ψΣ =
{

Ex(h)ψx(e); {ψy}y∈Σ\{x}
}

.

We have used the actions of the groupsSO+(η) for λa, SO+(η) for Ea, R+ andGL+3 on the

spaceconf. Now, we wish to generalize this idea to Einstein-Cartan theory. Let Gx be one, same

for all x, of the previous groups acting on the spaceconfx and letΦx
t be flow associated with
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some one parametric subgroup ofGx. Then we have a groupGΣ = ×x∈ΣGx acting on the space

Conf = ×x∈Σconfx by the flowΦΣt (e) = {Φx
t (ex)}x∈Σ12. Let ψΣ be aC-sequence, then an operator

defined for anyΨ ∈H 0
Σ

UΣ(t)Ψ =
m∈�
∑

j=1

cjU
Σ(t)ψ j

Σ
=

m∈�
∑

j=1

cj

{

ψ
j
x(Φ

x
t ex)

}

x∈Σ
,

whereΨ =
∑m∈�

j=1 cjψ
j
Σ

andψ j
Σ

areC-sequences, can be extended to the one-parametric unitary

grup acting on wholeHΣ. We know nothing about its continuity at the moment.

Let KΣ ∈ J1(Conf) be a constant sequence of compact sets, i.e.∀x Kx = K, and letΦx
t = Φt for

∀x ∈ σ ⊂ Σ andΦx
t = id for ∀x ∈ Σ \ σ. Let us explore an expression

u(t) =
∥

∥

∥

∥

(

1− UΣt
)

χKΣ

∥

∥

∥

∥

2
.

It is clear by definition, thatu(0) = 0. Let t , 0, then we can write

u(t) =
〈

χKΣ

∣

∣

∣

∣

(

1− UΣ−t

) (

1− UΣt
)

χKΣ

〉

= 2−
〈

χKΣ

∣

∣

∣

∣

UΣ−tχKΣ

〉

−
〈

χKΣ

∣

∣

∣

∣

UΣt χKΣ

〉

.

The last two terms are zero in the case whenσ is not finite due to the arguments from the end of the

previous section. Hence we have, as a consequence, that operatorUΣ(t) is not strongly continuous

in the general case. Therefore there does not exist selfadjoint generator ofUΣ(t) in the general

case.

What we can do is to explore the case when the groupGΣ acts onConf nontrivially only on

some finite subsetσ ⊂ Σ. Let us start withσ = {x}. This case were explored few rows above

and point generatorsTx of such action were found in section 2.2. Generalization to the case when

σ = {x1, . . . , xn} is clear and the resulting generator isTσ =
∑

x∈Σ Tx.

Now we can write explicitly the generators of our groups acting on theConf. They are

π(N) =
∑

x∈Σ

−iN(x)λa(x)∂λa(x),

L(λ)(Λ) =
∑

x∈Σ

−iΛab(x)ηbcλ
c(x)∂λa(x),

∆(θ) =
∑

x∈Σ

−iθβα(x)Ea
β(x)∂Ea

α(x),

L(E)(Λ) =
∑

x∈Σ

−iΛab(x)ηbcE
b
α(x)∂Ea

α(x),
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whereN(x), Λab(x), θβα(x) has support on a finite set. Commutator algebra of basic quantum

observables is generated by

[

̺
(

λx(k)
)

, π(N)
]

= i̺
(

λx(Nk)
)

,
[

̺
(

λx(k)
)

, L(λ)(Λ)
]

= i̺
(

λx(kΛη)
)

,
[

L(λ)(Λ), L(λ)(Λ′)
]

= −iL(λ)(ΛηΛ′ − Λ′ηΛ),
[

̺
(

Ex(h)
)

,∆(θ)
]

= i̺
(

Ex(θ(h))
)

,
[

̺
(

Ex(h)
)

, L(E)(Λ)
]

= i̺
(

Ex(Ληh)
)

,
[

L(E)(Λ), L(E)(Λ′)
]

= −iL(E)(ΛηΛ′ − Λ′ηΛ).

Hence we see that we found representation of classical variables of Einstein-Cartan theory.

Really? This statement needs some additional explanation.The first thing which should be

taken into account is given by the fact that on classical level we were working with smooth vari-

ables (λa(x),Ea
α(x)) as is usual. Since on the quantum level we were looking for representation

by von Neumann infinity-dimensional tensor product of pointHilbert spaces where all points are

independend the spaceConf is no longer space of smooth variables but rather the space ofcartesian

productConf = ×x∈Σconfx. Tangent spaceTeConf in e ∈ Conf is isomorphic toF(Σ,R16) =
(

R
16
)Σ

what is the space of all function onΣ valued inR16. SpaceConf andF(Σ,R16) are equipped with

standard Tychonov topology. Topological dual of spaceF∗(Σ,R16) is given by linear mappings

α( f ) =
∑

x∈Σ

αµa(x) f a
µ (x), (35)

whereαµa(x) has support on finite subset ofΣ. We can write formally instead of (35) a following

expression

α( f ) =
∫

Σ

∑

x′∈Σ

αµa(x′)δxx′ f
a
µ (x)d3x =

∫

Σ

αa ∧ f a +

∫

Σ

αa ∧ fa, (36)

where

αa=
∑

x′∈Σ

α0
a(x
′)δxx′d

3x,

αa=
∑

x′∈Σ

1
2
ααa(x′)δxx′εαβγdxβ ∧ dxγ,

f a= f a
0

fa = f a
αdxα

18



Since the spaceF∗(Σ,R16) isomorphic toT∗eConf we can identify

πa=
∑

x′∈Σ

πa(x′)δxx′d
3x,

Ga=
∑

x′∈Σ

Gα(x′)δxx′εαβγdxβ ∧ dxγ.

Now, let us explore a reducibility of this representation. As we already know, the spaceHΣ

can be decomposed into the mutually orthogonal subspaces labeled by classes of equivalences of

C0-sequencesC(HΣ). Our representation does not mix this decomposition henceit is reducible.

Number of irreducible representations inH is equal to the number of equivalence classes onHΣ,

what is ”huge” infinite, e.g. for every element ofL2
(

conf, de
e4

)

there exists its own equivalence class,

etc. One may partially save the situation by using unitary version of basic variables and represents

operatorsUΣGΣ(ξ), whereξ = N for R+, etc., instead of its generatorsT(ξ), with action on whole

Conf which mix orthogonal decomposition ofHΣ. Anyway for K1
Σ
,K2
Σ
∈ J1(Conf), whereK1

Σ
is

built by simple connected sets andK2
Σ

is built by union of two simple connected sets, there is no

element ofGΣ which mixes their equivalence classes and reducibility of unitary representation is

still too huge.

VII. COMMENTS

We have defined a point version of the phase space of Einstein-Cartan theory. Basic variables

of the point phase space were successfully quantized. Theseresults were used for construction of

field variables representation via von Neumann construction of infinity dimensional tensor product

of point Hilbert spaces.

The problem of the presented construction lies in the fact, that the canonical momentaGa

does not transform as a tensor under local Lorentz transformation since it is linear funcional of

connection potentialAab. Dirac bracket betweenGa and Lorentz generatorL(E) generates the

tensor type transformation ofGa. In other words Lorentz transformation generated byL(E) is

not physical transformation but rather only the transformation on the absract phase space. The

way how to go throught this obstacle is to find a tensorial canonical momentum let sayPa. In

the second paper of the miniseries started by work3 will be shown know how looks the physical

Lorentz generators. They are given by torsion contrains Tab, which can be formally written as

T ∼ E ∧ dE + E ∧G. The basic idea of construction of tensorial momenta is to find it in a formal

form P ∼ AdE +G, whereA depends only onλ,E.
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Another open problem is given by the question how does look the quantum representation

of the first class constraints. This should be explored carefully since our quantum configuration

spaceConf is the space of all orthonormal coframes overΣ and it does not look that the exterior

derivative operator d can be defined on such space. Perhaps the Regge ideas can be used here.

Problem of the huge reducibility is familiar for field theories. If we recall the quantization of

scalar (Dirac, Standard model,...) fields then the similar problem was occured there and it was

solved by finding the correct vacuum by superselection rule given by condition that the vacuum

should be invariant under Poincaré group. Of course quantum gravity has no Lorentz invariant

backround or something like that since we are working with full theory where the geometry of

the spacetime is dynamical quantity. But we are already assuming that the final physical Hilbert

space is invariant under local Poincaré transformations,since the constrains generating such gauge

symmetry are driven by EOM to vanish. So the question is whether the condition of vanishing the

local Poincaré generators will pick up the correct representation subspace of general Hilbert space

as it is in the case of usual quantum field theory on Minkowski backround.

ACKNOWLEDGMENTS
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