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Abstract

The advent of general relativity in 1915/16 induced a paradigm shift: since
then, the theory of gravity had to be seen in the context of thegeometry of
spacetime. An outgrowth of this new way of looking at gravityis the gauge
principle of Weyl (1929) and Yang–Mills–Utiyama (1954/56). It became
manifest around the 1960s (Sciama–Kibble) that gravity is closely related to
the Poincaré group acting in Minkowski space. The gauging of this external
group induces a Riemann–Cartan geometry on spacetime. If one general-
izes the gauge group of gravity, one discovers still more involved spacetime
geometries. If one specializes it to the translation group,one finds a specific
Riemann–Cartan geometry with teleparallelism (Weitzenb¨ock geometry).

∗Based on an invited seminar, given at:Towards a Theory of Spacetime Theories, Interna-
tional Workshop, 21 to 23 July 2010, IZWT, Bergische Universität Wuppertal, Germany; Den-
nis Lehmkuhl, Erhard Scholz, and Gregor Schiemann (organizers). To be published inEinstein
Studies(Birkhäuser, Boston, MA, 2015).
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1 Apropos a theory of spacetime theories

In this workshop, we are supposed to move “Towards a theory ofspacetime the-
ories”. The idea seems to be that there are many spacetime theories around,
the Riemannian spacetime theory in the framework of generalrelativity (GR),
the Weitzenböck spacetime theory in teleparallelism approaches to gravity, the
Riemann–Cartan spacetime theory withing the Poincaré gauge theory of gravity
(PG), the superspace(time) theory within supergravity, the Weyl(–Cartan) space-
time theory within a gauge theory of the Weyl group, etc.. Thelist could be
continued with spacetime theories emerging in quantization approaches to gravity
where spacetime becomes mostly a discrete structure. Thereis a plethora of dif-
ferent spacetime theories around and it is hardly possible to view all of them from
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some kind of a unifying principle, let alone from one theory encompassing these
spacetime theories as specific subcases.

Orientation in this seemingly chaotic landscape of spacetime theories can be
provided by looking at the successful theories of our days that are able to predict
and describe correctly fundamental phenomena occurring innature. There is the
standard model of particle physics, based on the Poincaré group (also known as
inhomogeneous Lorentz group) and the internal groupsSU(3), SU(2), U(1). The
Poincaré group is the group of motion in the Minkowski spacetime of special
relativity (SR) and it classifies the particles according totheir masses and their
spins. The internal groups describe the strong and the electro-weak interactions
by means of the respective gauge (or Yang–Mills) theory.

A book on the centennial of the discovery of SR was called [1]: “Special
Relativity. Will it survive the next 100 years?” When I read this title in 2005,
I thought for a moment that I must have been in a time machine and in reality
I am living in 1905. Hadn’t SR already been superseded in 1915/16 by GR, I
wondered? I pointed this out to the editors that this title looks anachronistic to me
and is hardly appropriate for editors who both are known to subscribe to GR. It
turned out that both wanted to ask whether SR surviveslocally as a valid theory.
But they didn’t want to change the title since this fact was, as they told me, known
to everybody anyway. I gave up since I realized that in a time when in the tabloid
press a title is more for catching one’s attention than for spreading the truth, the
scientific literature cannot stand aside.

But what is my point? Well, we all seem to agree that at least presently SR is
universally valid locallyin a freely falling frame.So far no deviations therefrom
have been found. Only at very high accelerations, the principle of locality, inher-
ent in SR, may need to be amended [2]. In any case, our march towards a theory
of all spacetime theories has at least a definitive starting point.

But was SR superseded by GR? Yes, of course—in spite of the title of refer-
ence [1]. The abstraction of a Minkowski space can only be uphold when grav-
itational effect can safely be neglected. If you measure Planck’s constant or the
elementary charge by a conventional laboratory experiment, then this assumption
is justified. But if you go down the stairs, you had better not neglect gravity, oth-
erwise you may fall downwards; or if you measure the deflection angle of a light
ray gracing a star, you also better don’t neglect gravity. From the laboratory to
at least the scale of the planetary system, GR is in excellentagreement with ex-
periment. On the galactic scale this is taken for granted by most physicists, but
this is disputed by supporters of MOND, of TeVeS, of f(R)-theory, or of nonlocal
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gravity,1 for example, compare the presentations in [6]. Anyway, GR is mostly ac-
cepted for the global description of the cosmos and if the cosmological principle
is assumed, namely homogeneity and isotropy of space, Einstein’s field equation
predicts a Friedmann cosmos. The cosmos started with the BigBang and it is
usually assumed to be equipped with a scalar inflationary field providing a suffi-
ciently fast expansion. Needless to say that this frameworkis based on a number
of extreme extrapolations.

The message is then that the Minkowski spacetime picture is substituted by
the Riemannian one. But this doesn’t rest on the same strong experimentally
well-confirmed basis as the local presence of the Minkowski spacetime of SR.

2 Is the gauge idea the underlying principle for all
interactions?

Since the advent of GR it was clear that a spacetime theory is inextricably linked
to gravity. One cannot be understood without the other. Coming back to the topic
of our workshop, it is then clear that gravity has to be considered in this general
context willy nilly. Accordingly, a spacetime theory is at the same time, at least
in some of its parts, a theory of gravity.

Let us then turn to gravity: Is GR all we have? Well, by some people GR
is declared to be sacrosanct and you may touch it only by superimposing some
abstract mathematical framework supposedly quantizing GR, see [7]. But practi-
tioners of this method increasingly become aware that they have to amend the
Hilbert–Einstein Lagrangian of the free gravitational field by non-Riemannian
supplementary terms thereby dissolving to a certain extendthe Riemannian struc-
ture they started with [8, 9, 10]. Hence alternatives to GR gain credibility even if
GR is left fixed at first.

Is GR the only reasonable theory of gravity? No, it isn’t. Already in 1956
Utiyama began to formulate gravity as a gauge theory, for a selection of classical
papers, see [11]. The strong and electro-weak gauge theories are based on internal
symmetry groups—mathematically semi-simple Lie groups—linked to conserved
currents. The gauge idea basically requires that therigid (or global) symmetry
group related to the conserved current under considerationhas to be madelo-

1Mashhoon and the author [3, 4] formulated anonlocaltranslationalgauge theoryof gravity
that seems to be able to reproduce the observed rotation curves of galaxies, see the most recent
results in [5].
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cal; without giving up the invariance of the Lagrangian, this isonly possible by
the introduction of a gauge potentialA = Aidx

i (a covector or an 1-form) that
transform under this group suitably; for each parameter of the group one needs
one covector field. Thus, the group dictates the interactionemerging from that
scheme: a new interaction is created from a conserved current via the (reciprocal)
Noether theorem and the symmetry group attached to it.

In the standard model of particle physics all gauge groups are internal, that is,
they act in some internal space. In the original Yang–Mills theory, for example,
it was the isospin space. But the gauge idea oflocalizing a symmetrydoes not
seem to be restricted to internal groups. An external group affects by definition
spacetime. If we have a conserved current and a corresponding group, nothing
prohibits us to apply the gauge principle.

How does gravity come into this framework? The source of Newtonian grav-
ity is the mass of a body. In classical physics, mass is a conserved quantity, as
has been experimentally demonstrated by Lavoisier (around1790). In SR mass
conservation is no longer valid—as has been shown in the 1930s by more accu-
rate experimental techniques—and is superseded by energy-momentum conser-
vation, as has been most vividly demonstrated in Alamogordoin 1945. Clearly
then, the Poisson equation controlling Newton’s gravitational potentialφ, namely
∆φ(r, t) = 4πGρ(r, t), with∆ as the Laplace operator,G as the gravitational con-
stant, andρ as the mass density, has to be substituted by an equation thatcarries
on its right-hand-side the energy density of matter (and/orradiation). However,
according to SR, the energy density is the time-time component of the symmetric
energy-momentum currenttij = tji of matter (and/or radiation).

For an isolated physical system, the energy-momentum current tij is con-
served:∂jtij = 0. This is an expression of the fact that the action of the sys-
tem is invariant under translations in time and space. Consequently, the con-
served energy-momentum current together with the translation groupT (4) acting
in Minkowski space should underlie gravity. Since the translation group has four
parameters, one describing a time translation and three describing space trans-
lations, we expect four potential one-formsϑα, for α = 0, 1, 2, 3. As we will
see further down, this framework leads to a teleparallelismtheory of gravity and
back to a theory that is equivalent to GR for conventional (bosonic) matter. Ac-
cordingly, GR can be understood as a gauge theory of the translation groupT (4),
which is anexternalgroup.

Ergo, all interactions, including gravity, are governed bygauge field theories.
But let us now turn back to the history of the gauge idea:
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3 The gauging of the Poincaŕe group

As we mentioned before, Utiyama [12] first attacked the problem of understanding
gravity as a gauge theory by means of gauging the Lorentz groupSO(1, 3). In this
way, Utiyama supposedly derived general relativity. However, the problematic
character of his derivation is apparent. First of all, he hadto introduce in an ad
hoc way tetradseiα (or coframesϑα = ei

αdxi), first holonomic (natural) and later
anholonomic (arbitrary) ones. Secondly, he has to assume the connectionΓi

αβ of
spacetime to be Riemannian, without any convincing argument.

But thirdly, perhaps the strongest reason, the current linked to the (homoge-
neous) Lorentz group is theangular momentum currentJij

k = −Jji
k, which is

conserved,∂kJij
k = 0. However, as we have seen in the last section, gravity is

coupled to the conserved and symmetric energy-momentum current tik. Accord-
ingly, Einstein (1915) took in general relativity the symmetric energy-momentum
currenttik as the source of gravity in his field equation andnot the angular mo-
mentum current. Hence Utiyama was not on the right track. Interestingly enough,
in numerous publications even today, the Lorentz group is incorrectly thought of
as gauge group of GR; usually the conserved current coupled to it is not even
mentioned.

This can be also viewed from the translational gauge group ofgravity, at which
we arrived above. In a Minkowski space, as in any Euclidean space, the group of
motions consists of translationsand rotations. In fact, the semidirect product of
the translation group and the Lorentz group,T (4)⋊SO(1, 3), is the Poincaré
groupP (1, 3) with its 4 + 6 parameters (and its4 + 6 gauge potentialsϑα and
Γαβ = −Γβα, respectively). In a Euclidean or Minkowskian space the translations
do not live alone, they are accompanied, in a nontrivial way,by the (Lorentz) rota-
tions. Accordingly, since we find reasons to gauge the translations in a Minkowski
spacetime, it is hardly avoidable to gauge also the rotations. If one has spinless
matter, this argument may be skipped. However, if we have fermionic matter, its
rotational behavior is closely linked to the translationalbehavior. Kibble, who
was the first to gauge the Poincaré group [13], poses the following question [14]:

“... Is it possible that starting from a theory with rigid symmetries
and applying the gauge principle, we can recover the gravitational
field? The answer turned out to be yes, though in a subtly differ-
ent way and with an intriguing twist. Starting from special relativity
and applying the gauge principle to its Poincaré-group symmetries
leads most directly not precisely to Einstein’s general relativity, but
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to a variant, originally proposed býElie Cartan, which instead of a
pure Riemannian space-time uses a space-time with torsion.In gen-
eral relativity, curvature is sourced by energy and momentum. In
the Poincaré gauge theory, in its basic version, additionally torsion
is sourced by spin.”

This is also the basic message of our seminar: Gauging an external group,
here the Poincaré group, leads directly to a new geometry ofspacetime, here the
Riemann–Cartan geometry of spacetime. To an external gaugegroup a certain ge-
ometry of spacetime is attached, the Minkowski space is deformed in accordance
with the gauged symmetries. Moreover, without a conserved current, there can be
no real gauge procedure in the sense of Weyl and Yang–Mills. If somebody tries
to sell you a gauge theory without mentioning the associatedconserved current,
don’t believe her or him a word. Gauging the Weyl groupwithoutconsidering the
scale current and gauging the conformal groupwithoutconsidering the conformal
currents, are procedures that may lead to something, but certainly not to gauge
theories à la Weyl–Yang–Mills, see the discussion in [11].

Often I have heard the argument that gravity can have no relation to the transla-
tion group since GR takes place in a Riemannian space and therein the translations
are an ill-defined concept since they are not integrable, forexample. However,
this argument rests on a misunderstanding. In a gauge approach, at the start of
the procedure, that is, before the rigid symmetry is made local, we consider the
gravity-free case. Accordingly, we are in Minkowski space where a translation
is part of the group of motion. Only after we localized the symmetry, we lose
the underlying Minkowski space, it gets deformed, and one has to reconstruct the
emerging geometry. This is the radicality of the gauge principle: an interaction is
created by a symmetry. The translation groupT (4), a subgroup of the Poincaré
groupP (1, 3), which acts in a Minkowski space, creates the gravitationalpoten-
tial ϑα. The Lorentz subgroupSO(1, 3) creates another gravitational potential
Γαβ = −Γβα, the consequences of which we will have to discuss.

4 Einstein’s discussion of the transition from special
to general relativity

Before we turn to the subject of the gauging of the Poincaré group, we remind
ourselves how Einstein “derived” gravity [15]. When Einstein developed GR, he
could take a classical mass point with massm as a starting point for his investiga-
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tions. He studied its behavior in an accelerated reference system. Technically, in
order to switch on acceleration, he transformed the original Cartesian coordinate
systemX i to a curvilinear coordinate systemxi. Let us look at this in more detail.
The points in the Minkowski space of SR can be described with the help of Carte-
sian coordinatesX i, with i = 0, 1, 2, 3. In these coordinates, the line element
reads

ds2 = (dX0)2 − (dX1)2 − (dX2)2 − (dX3)2 = oijdX
i ⊗ dXj, (1)

with oij = diag(1,−1,−1,−1) and summation over repeated indices. The equa-
tion of motion of aforce-freemass in an inertial frameK,

d2Xk

ds2
= 0, (2)

leads for the particle trajectory to a straight line with constant velocity.
The same motion, as viewed from the accelerated frameK ′, can be derived by

a transformation of (2) to curvilinear coordinates,

D2xk

Ds2
:=

d2xk

ds2
+ Γ̃ij

k dx
i

ds

dxj

ds
= 0, (3)

with the Riemannian connection (Christoffel symbols of the2nd kind):

Γ̃ij
k := 1

2
gkℓ (∂igjℓ − ∂jgiℓ + ∂ℓgij) = Γ̃ji

k; (4)

here we abbreviated the partial differentiation∂/∂xi as∂i. The massive particle
accelerates with respect to the non-inertial frameK ′ in such a way that this accel-
eration is independent of its mass. But an observer inK ′ cannot tell whether this
motion is accelerated or induced by a homogeneous gravitational field of strength
Γ̃ij

k. In other words, the reference systemK ′ can be alternatively considered as
being at rest with respect toK, but a homogeneous gravitational field is present
that is described by theChristoffel symbols̃Γij

k.
Nothing has happened so far. We are still in a Minkowski spacein which—as

is shown in geometry—theRiemann curvature tensorbelonging to the Christoffel
symbols

R̃ijk
ℓ := 2∂[iΓ̃j]k

ℓ + 2Γ̃[i|m|
ℓ Γ̃j]k

m (5)

vanishes, that is̃Rijk
ℓ = 0; brackets around indices denote antisymmetrization:

[ij] := {ij − ji}/2. This is the ingenuity of Einstein’s approach: He considers
force-free motion from two different reference frames and identifies thereby the
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Christoffels as describing—according to the equivalence principle—a homoge-
neous gravitational field. Of course, this gravitational field in Minkowski space
is fictitious, it is simulated, it doesn’t really exist sincethe Riemann curvature
vanishes.

Besides massive point particles, we have light rays (“photons”) that can be
considered in a similar way. For light propagation we haveds2 = 0, but the
geodesic line (3) can be reparametrized with the help of a suitable affine parame-
ter. Then, from the point of view of reference frameK ′, a light ray that propagates
in a straight line in the inertial frameK appears to be deflected inK ′. According
to Einstein [16], “...the principle of the constancy of thevelocity of light in vacuo
must be modified, since we easily recognize that the path of the light ray with
respect toK ′ must in general be curvilinear.” Thus, the gravitational field deflects
light. This is one of Einstein famous and successful predictions.

In order to create a real gravitational field—this is Einstein’s assumption—we
must relax the rigidity of Minkowski space and allow for Riemannian curvature,
inducing in this way a “deformed” spacetime carrying non-vanishing curvature
R̃ijk

ℓ 6= 0. A prerequisite for this procedure to work is the fact that the Christof-
fels depend at most on first derivatives∂kgij(x) of the metricgij(x). These first
derivatives appear even in a flat space in an accelerated frame. Only non-vanishing
second derivatives tell us about real gravitational fields.

There is one more thing to be seen from (3). If we multiply it with a slowly
varying scalar mass densityρ of dust matter, then we recognize that the Christof-
fels are coupled to the (symmetric) energy-momentum tensordensity of dust,2

ρ
d2xk

ds2
+ tij Γ̃ij

k = 0 with tij := ρuiuj (6)

andui := dxi/ds as velocity of the dust. The fictitious non-tensorial force density
fk := tij Γ̃ij

k, as observed by Weyl [18], is somewhat analogous to the Lorentz
force acting on a charged particle in electrodynamicsfkLor := JiFi

k, withJi = ρelu
i

as electric current density andFik as electromagnetic field strength, the difference
being that here the force densityfk is quadratic inui, whereas the Lorentz force
densityfkLor is linear inui; note also that the electromagnetic field is antisymmetric
Fik = −Fki and the gravitational field symmetric̃Γij

k = +Γ̃ji
k. Thus, as a

byproduct, we have identified the energy-momentum tensor density of matter as
the source of gravity.

2A more detailed discussion can be found in Adler, Bazin, and Schiffer [17], p. 351.
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5 Neutron interferometer experiments

However, in the meantime, I mean since 1916, we have learned that there are
fermions in nature. Besides massm, they carry half-integer spins. Instead of a
mass point, we will then study the simplest massive fermion,the Dirac field in
an inertial and a non-inertial reference frame thus taking care of Synge’s verdict
“Newton successfully wrote apple = moon, but you cannot write apple = neu-
tron” . This is what, in fact, Kibble [13] has done in 1961.

But even better, experimentally it has been clear since 1975that the Colella–
Overhauser–Werner (COW) experiment [19] is the “modern” archetypal experi-
ment for a fermion in a gravitational field: A monochromatic neutron beam, ex-
tracted from a nuclear reactor, falls freely in the gravitational field of the earth.
The phase shift of its wave functionΨ(x), caused by the gravitational field, is
measured by means of an interferometer built from a silicon mono-crystal, see
also [20]. Accordingly, the single-crystal interferometer is at rest with respect
to the laboratory, whereas the neutrons are subject to the gravitational potential.
Bonse and Wroblewski (BW) [21] compared this with the effect ofacceleration
relative to the laboratory frame by letting the interferometer oscillate horizontally.
With these experiments of BW and COW the effect of local acceleration and local
gravity on matter waves has been shown to be equivalent. Later, with atomic beam
interferometry, the accuracy of these type of results were appreciably improved.

It is strange, but in most textbooks on gravitation—and in most philosophical
discussions on gravity—these successful experiments on the behavior of Dirac
fields under acceleration (BW) and in a gravitational field (COW) are simply not
mentioned. Most textbook authors and philosophers rather restrict themselves
to Einstein’s 1916 discussion and to experiments related therewith. In writing a
textbook on gravitation, is it indecent to refer to experiments that have a certain
quantum flavor? Is it appropriate to be silent about experiments that provide new
insight into the structure of the gravitational field?

The neutrons in the COW and BW experiments have spin1
2
, they are fermions.

At the energies prevalent in the COW and the BW experiments, the neutron (in-
cluding its spin) can be supposed to be elementary, its composition out of three
quarks can be neglected. Accordingly, if the neutron is force-free, it can be
described by a Dirac spinorΨ(x) obeying the free Dirac equation3 (iγk∂k −

3Here~ = 1, c = 1, the imaginary unit is denoted byi, the Dirac gamma matrices byγk, and
the mass of the neutron bym. If an electromagnetic field is present, the Dirac equation has to be
coupled minimally to it and a Pauli-term added that takes into account the non-standard magnetic
moment of the neutron.
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Figure 1: Natural frameeb = δjb∂j and natural coframeϑa = δai dx
i at a pointP of

a three-dimensional manifold (a, b = 1, 2, 3). The coordinates ofP are denoted
by xi, i = 1, 2, 3, whereasδba is the the Kronecker symbol. The coframeϑa is
supposed to be also at the same pointP , but the three one-formsϑa are shifted for
better visibility in 3 different directions. Note thatϑ1(e1) = 1, ϑ1(e2) = 0, etc.,
that is,ϑa is dual toeb according toebyϑa ≡ ϑa(eb) = δab ; for the figure, see [22].

m)Ψ(x) = 0. Thus, the neutron obeys approximately a classical one-particle
equation, namely the Dirac or, in the non-relativistic limit, the Pauli-Schrödinger
equation and, if the spin can be neglected, the Schrödingerequation. That this
evaluation is correct has been borne out by experiments of the COW and BW
type [20]: the neutrons of the COW and the BW experiments obey a Schrödinger
equation including a Newtonian gravitational potential energy or a corresponding
acceleration term, respectively.

The basic difference between the mass point and the Dirac field is that the latter
requires anorthonormalreference frame for its description. A Dirac spinor is a
half-integer representation of the [covering groupSL(2, C) of the] Lorentz group
SO(1, 3), that is, it is intrinsically tied to the Lorentz group. In Minkowski space it
is simple to introduce an orthonormal frame. On starts with Cartesian coordinates
and takes the tangent vectors of the coordinate lines as “natural” frameeβ = δjβ∂j ,
compare Figure 1. If one translates and Lorentz rotates sucha frame, one can find
an arbitrary frameeβ = ejβ∂j that, in general, cannot any longer be derived from
coordinate lines. Before we discuss this from a more generalpoint of view, let us
first make a general remark:
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Pitts [23] argues, using work of Ogievetsky & Polubarinov of the 1960s, that
one doesn’t require orthonormal frames for introducing spinors in curved space-
time and that coordinate systems are sufficient. Frames are very useful for Fermi-
Walker transport and for gravitomagnetism already in GR. For the gauge theory
of gravity, frames were used by Sciama and Kibble, see [11], and we can hardly
see a benefit for kicking them out. The price one has to pay for the removal of
frames is to go to nonlinear group representations and to other complications. We
do not know whether this prevention of frames is really conclusive and leave the
answer to this question to the future.

6 Some geometric machinery: coframe and connec-
tion

Suppose that spacetime is a four-dimensional continuum in which we can distin-
guish one time and three space dimensions. At each pointP , we can span the lo-
cal cotangent space by means of fourlinearly independentcovectors, thecoframe
ϑα = ei

αdxi. Hereα, β, · · · = 0, 1, 2, 3 are frame andi, j, · · · = 0, 1, 2, 3 coor-
dinate indices. In general, the object of anholonomity two-form does not vanish,

Cα := dϑα = 1

2
Cij

αdxi ∧ dxj 6= 0 , with Cij
α = 2∂[iej]

α , (7)

see [24]. This specification of spacetime is the bare minimum that one needs for
applications to classical physics.

As soon as we have a coframeϑα, we can also define its dual, the frame
composed of four likewise linearly independent vectorseα = eiα∂i by the duality
relationeβyϑa = ϑα(eβ) = δαβ . Geometrically speaking, frame and coframe are
equivalent as reference frames for physical quantities. For physical reasons, the
coframe turns out to be the translational gauge type potential and thus does fit
more smoothly into a gauge formalism.

Having now a reference coframeϑα, we want to do physics in such a space-
time. We need a tool to express, for instance, that a certain field is constant. If the
field is a scalarφ, there is no problem, the gradientdφ = (∂iφ)dx

i, if equated to
zero, will do the job. However, if the field is a vector or, moregenerally, a spinor
or an arbitrary tensor fieldψ, we need a law that specifies the parallel transfer of
ψ from one pointP to a neighboring pointP ′. Let us see how Einstein in 1955
looked in retrospect at the development of GR [25]:
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...the essential achievement of general relativity, namely to over-
come ‘rigid’ space (ie the inertial frame), isonly indirectlyconnected
with the introduction of a Riemannian metric. The directly relevant
conceptual element is the ‘displacement field’ (Γl

ik), which expresses
the infinitesimal displacement of vectors. It is this which replaces
the parallelism of spatially arbitrarily separated vectors fixed by the
inertial frame (ie the equality of corresponding components) by an
infinitesimal operation. This makes it possible to construct tensors by
differentiation and hence to dispense with the introduction of ‘rigid’
space (the inertial frame). In the face of this, it seems to beof sec-
ondary importance in some sense that some particularΓ field can be
deduced from a Riemannian metric...4

Einstein’s ‘displacement field’ can be implemented by meansof a linear connec-
tion Γα

β = Γiα
βdxi (“affinity”). The one-form fieldΓα

β(x), with its 64 indepen-
dent components, has to be prescribed before the parallel transport of a spinor or
a tensor fieldψ can be performed and, associated with it, a covariant derivative
be defined (whose vanishing would imply that the field is constant). The linear
connectionΓα

β(x), shortly after the advent of general relativity, was recognized
as a fundamental ingredient of spacetime physics, for more details see [11], for
instance. The law of parallel transport embodies theinertial propertiesof matter.

The connectionΓα
β represents4× 4 potentials of the four-dimensional group

of general linear transformationsGL(4, R). Very similar to the Yang–Mills po-
tential of theSU(3), for example.

Coframe and connectionϑa,Γα
β—still the metric is not involved—provide a

good arsenal for further geometrical battles. Having a connection, we can covari-
antly differentiate. We define straightforwardly the “fieldstrengths” torsionT α

4When I showed this quotation during my seminar, E. Scholz (Wuppertal) immediately re-
marked that the fact of the importance of the connection as guiding field was already clear to Weyl
in 1918, or at least in the 1920s. And D. Rowe (Mainz) added that also Einstein was aware of the
importance of the concept of a connection since at least the late 1920s. Both remarks are certainly
true. However, there is a subtle difference: Weyl referred to a symmetric connection since he
was concerned with coordinates and not with frames. When, in1929, he introduced frames [26],
Weyl’s connection still remained symmetric, and only in 1950 he considered alsoasymmetric
connections in the context of gravity [27]. In contrast, Einstein was concerned withasymmetric
connections at least since 1925, when he formulated a unifiedtheory of gravity and electricity and
introduced what is nowadays called incorrectly the Palatini variational principle [28].
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and curvatureRα
β as

T α := d ϑα + Γβ
α ∧ ϑβ = 1

2
Tij

αdxi ∧ dxj , (8)

Rα
β := dΓα

β − Γα
γ ∧ Γγ

β = 1

2
Rijα

βdxi ∧ dxj . (9)

One recognizes thatT α andRα
β are the gauge field strengths of the affine group

A(4, R) = T (4)⋊GL(4, R).
Let us look at the torsion in components. From (8) we find

Tij
α = 2∂[iej]

α + 2Γ[i|β
αe|j]

β = Cij
α + 2Γ[ij]

α . (10)

In a holonomic (coordinate) frame,Cij
α = 0. Thus,Tijα

∗
= 2Γ[ij]

α; incidentally,
a ‘star equal’

∗
= is used, see [24], if a formula is only valid for a restricted class

of frames or coordinates. In such a frame—and only in a holonomic one—the
vanishing of the torsion translates into thesymmetry of the connection.It is now
obvious why this symmetry is called a “bastard symmetry”: inΓ[ij]

α = Γ[i|β
αe|j]

β,
the index ‘i’ originates from the one-form character of the connection, whereas the
index ‘j’ is related to the Lie-algebra index ‘β’. Only in a holonomic frame the
symmetry of a connection looks natural. In an anholonomic frame, hereCij

α 6= 0,
it is nothing trivial. It is a fundamental assumption that has to be justified similar
as the vanishing of the curvature.

A space withT α 6= 0, Rα
β 6= 0, we call anaffinespace. IfT α = 0, we have

a symmetricaffine space, ifRα
β = 0, we have ateleparallelaffine space (or of a

space with teleparallelism). Should we requireT α = 0 andRα
β = 0, we have a

symmetric flat affine space.
We followed here the lead of Schrödinger [29] and introduced first the con-

nection before we will turn to the metric.

7 More geometry: metric and orthonormal coframe

However, our experience in Minkowski space tells us that there must be more
structure on the spacetime manifold than the symmetric flat affine space possesses.
Locally at least, we are able to measure time and space intervals and angles. A
pseudo-Riemannian (or Lorentzian) metric5 gij = gji is sufficient for accommo-

5Nowadays there exists a definite hint that the conformally invariant part of the metric, the
light cone, is electromagnetic in origin (see [22, 30]), that is, it can be derived from premetric
electrodynamics together with a linear constitutive law for the empty spacetime (vacuum). Hence
the metric, or at least its conformally invariant part, doesn’t appear as a fundamental structure, it
rather emerges in an electromagnetic context.
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dating these measurement procedures. Ifgαβ denotes the components of the metric
with respect to the coframe, we havegij = ei

αej
βgαβ andg = gαβ ϑ

α⊗ ϑβ . In an
orthonormal coframe we recover

gαβ
∗
= oαβ :=




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 . (11)

Now, in analogy to the procedures in equations (8) and (9), we can derive the
field strength, thenonmetricityone-form, corresponding to the potentialgαβ, by
differentiation:

Qαβ := −Dgαβ = −dgαβ + Γα
γgγβ + Γβ

γgαγ = Qiαβdx
i . (12)

Accordingly, the coframeϑα(x), the linear connectionΓα
β(x), and the metric

gαβ(x) control the geometry of spacetime. The metric determines the distances
and angles, the coframe serves as translational gauge potential, whereas the con-
nection provides the guidance field for matter reflecting itsinertial properties and
it is theGL(4, R) gauge potential. The space equipped with these10 + 16 + 64
potentials(gαβ , ϑα,Γα

β) we call ametric-affinespace, the corresponding field
strength are the40 + 24 + 96 fields (Qαβ , T

α, Rα
β), for reviews and the corre-

sponding formalism, see [11, 31, 32].
In a metric-affine space, we can lower the second index of the connection

according toΓαβ := Γα
γgγβ . Then we can compare it with the Riemann (Levi-

Civita) connectioñΓαβ. After some algebra, see [24], we find in terms of compo-
nents:

Γαβγ = Γ̃αβγ + 1

2
(Tαβγ − Tβγα + Tγαβ) + 1

2
(Qαβγ +Qβγα −Qγαβ) . (13)

It should be stressed that this decompositions are useful ifa direct comparison
is made with the Riemannian piecẽΓ. However, in the variational formalism of
a gauge theory of gravity, besidesgαβ andϑα, the connectionΓα

β is considered
as independentvariable. Then such a decomposition is unwarranted under those
circumstances.

Can we give a satisfactory justification for the emergence ofthree different
gravitational gauge potentials? We take the Minkowski space of SR as basis for
our considerations. It is a fact of life that the geometry of aMinkowski (or a
Euclidean) space consists of an interplay between properties that relate to par-
allel displacement and those that relate to distance and angle measurements. In
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Minkowski space this duality between affine (inertial) and metric properties is
solved in that the affine properties are exclusively expressed in terms of metric
properties: the metric properties dominate the affine ones.

If we “liberate” the affine properties, we are immediately led, in four dimen-
sions, to the affine groupA(4, R) = T (4)⋊GL(4, R) and, gauging it, to the
coframeϑα and the linear connectionΓα

β as gauge potentials. The metric prop-
erties, expressed by the metricgij , are then left behind.

Since macroscopic gravity in GR is so successfully described by means of
the metricgij as (Einstein’s) gravitational potential, it suggests itself to add the
metric—in its anholonomic formgαβ—as third member to the gravitational poten-
tials. There are two procedures possible: We pick, instead of an arbitrary coframe,
anorthonormalone, which is constructed with the help of the metric; in thisway
the metric is absorbed and, besides this orthonormal coframe, only the connection
remains as variable. However, since this restricts the freedom of choosing also
non-orthonormal coframes, we take all three potentials as independent variables.
The Lagrangian formalism of the corresponding field theory will then provide the
relation between the coframe and the metric, and it will turnout that there is, in-
deed, a close link between both variables, see [32]. At the same time—and this is
a real progress in understanding—we find that the metric energy-momentum cur-
rent of mattertαβ couples to the metric and the canonical oneTα couples to the
coframe. Their interdependence is beautifully displayed in the three-potentials’
approach.

In a metric-affine space, as shown by Hartley [33], normal framescan be
found: locally it is possible to find suitable coordinates and suitable frames such
that

(ϑα,Γα
β)

∗
= (δαi dx

i, 0) . (14)

This is the new type of Einstein elevator. In GR, the Einsteinelevator was de-
scribed by a holonomic reference frameϑα with Cα = 0. Then, in the Riemann
spacetime of GR, one could introduce Riemannian normal coordinates. Here, in
the gauge theoretical approach, the constraint of holonomicity is dropped and this
new degree of freedom, which expresses itself in a rotational acceleration, admits
to introduce normal frames. The equivalence principle can then be applied in this
new context. For new developments of this notion, see Nester[34] and Giglio &
Rodrigues [35].

As soon as we require in a metric-affine space integrability of length and angle
measurements, we have to postulate6 Qαβ = 0. Then we arrive at aRiemann–

6If one wants to keep the angles integrable, but not the length, one can postulate only the

16



M4

V4

Qα β=0

Tα Rαβ,

W4

Riemann

Minkowski

(teleparallelism)
Tα Rαβ

.

PG

|| GR

SR

.

Cartan
4U

Riemann-

GR

cu
rv

at
ur

e=
0

torsion=0

torsion=0

cu
rv

at
ur

e=
0

Weitzenbock

Figure 2: The Riemann–Cartan space (orU4), a metric-affine space with vanishing
nonmetricity, is the arena for the Poincaré gauge theory (PG). It can either become
a Weitzenb̈ockspaceW4, if its curvature vanishes, or aRiemannspaceV4, if the
torsion happens to vanish. GR acts in aV4, teleparallelism theories of gravity in a
W4.
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Cartan space (RC-space), which was mentioned in the context of the gauging
of the Poincaré group in Sec. 3. In such a space, if we chooseorthonormal
frames, the connection becomes antisymmetric; then we havethe6 + 24 poten-
tials (ϑa,Γαβ = −Γβα) as gravitational variables. Again normal frames like in
(14) can be found,

(ϑα,Γαβ)
∗
= (δαi dx

i, 0) , (15)

as has been first shown by von der Heyde [37]. This geometrical fact shows clearly
that the Lorentz connectionΓαβ is, besides the orthonormal frameϑα, the appro-
priate gauge field variable. After this geometrical detour we are back to where we
started from. In Figure 2 different subcases of a RC-space are displayed.

8 Dirac fieldΨ(x) in Minkowski space in a non-inertial
reference frame

After this rather long geometrical interlude, we come back to physics and consider
again the Dirac fieldΨ(x). A mass point in an inertial frame moves according to
equation (2), one in an accelerated frame, according to equation (3). The iner-
tial forces are represented by the Christoffels in equation(4). Let us execute the
analogous process for the Dirac electron. Since the Dirac electron is referred to
an orthonormal (co)frame, we have to study its behavior under translational and
rotational accelerations, see [38].

In Minkowski space in Cartesian coordinates, we have the force-free Dirac
equation as analog of equation (2),

(iγi∂i −m)Ψ
∗
= 0 , (16)

and in a non-inertial frame in flat Minkowski space we find
[
iγαeiα(∂i +

i

4
σβγΓ̃i

βγ)−m

]
Ψ = 0 , σβγ := iγ[βγγ] . (17)

These two equations correspond to the Einsteinian equations (2) and (3). Namely,
in the non-relativistic WKB-approximation, when the spin can be neglected, equa-
tion (16) becomes (2). You may wonder whether this is true since (16), in contrast

vanishing of the tracefree part of the nonmetricity,Qαβ − 1

4
gαβQγ

γ = 0. This results in a
Weyl–Cartan space with non-vanishing Weyl covector1

4
Qγ

γ , see the contribution of Scholz [36];
however, in this approach also the torsion is put to zero.
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to (2), is mass dependent. For this reason some people argued thatthis violates the
equivalence principle in the sense that the motion of a force-free particle (field)
must be independent ofm. However, what they overlooked is that also in clas-
sical mechanics the Hamilton-Jacobi equation for a force-free particleis mass
dependent—and the classical non-relativistic analog of the Dirac equation is the
Hamilton-Jacobi equation. Accordingly, all is fine and in the desired approxima-
tion the mass will drop out.

The new potentials, emerging in a non-inertial frame, are(eiα, Γ̃i
βγ). The

latter one, in Minkowski space, can be expressed in terms of derivatives of the
former: Γ̃i

βγ = Γ̃i
βγ(∂je

k
δ). However, we will not substitutẽΓi

βγ in terms of the
the frame since we will relax the constraintTijα = 0 subsequently.

This is what we will do now. Einstein relaxed the constraintR̃ijk
ℓ = 0, since

that is all he found for a point particle, we relax the constraints Tijα = 0 and
R̃ij

αβ = 0, since a Dirac field has a more involved structure as displayed in par-
ticular in a non-inertial frame. This relaxation of both constraints leads directly to
aRiemann–Cartan spacetimeas the arena appropriate for a Poincaré gauge theory
(PG).

Why couldn’t we do by only relaxing the curvature constraint, R̃ij
αβ 6= 0, but

keeping the torsion constraint,Tijα = 0? Well, this is possible. However, it is not
in the sense of local field theory. Why should we keep the non-local constraint7

Tij
α = 0, which corresponds to 24 partial differential equations offirst order,

when we know that its relaxation does away with these PDEs andstill allows
locally to get rid of gravity according to (15)?

Whereas Einstein discussed the equivalence principle on the level of the equa-
tions of motion, in gauge theories, because of the application of the Noether the-
orem for rigid and local symmetries, the discussion takes place on the level of
Lagrangians. If we multiplyDαΨ = (∂α + i

4
σβγΓα

βγ)Ψ from the left byiΨγα,
average with its Hermitian conjugate, and add a mass term, wefind the (real)

7Explicitly, this constraint readsTij
α = 2(∂[iej]

α + Γ[i|β|
αej]

β) = 0. These are6 × 4 = 24
PDEs for the coframe componentseiα. For their solution, we not only have to know the local
values ofeiα, but also their values in the infinitesimal neighborhood. Inthis sense, the constraint
is non-local and contrived, see [37] for a more detailed discussion.
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Dirac Lagrangian density:8

L

e
=

i

2
eiα

[
Ψγα

(
∂i +

i

4
σβγΓi

βγ

)
Ψ

]
+ herm. conj.+mΨΨ

=
i

2
(ΨγαDαΨ−ΨγαDαΨ) +mΨΨ . (18)

The action isW =
∫
d4xL. The Lagrangian in an inertial frame in Cartesian

coordinates can be read off by making the substitutionseiα → δiα, Γi
βγ → 0.

9 Some results of the Lagrange–Noether formalism

To identify the currents that couple to the gravitational potentials(eiα,Γi
αβ), some

formalism is necessary that may disturb the philosophically minded reader. We try
to simplify these considerations and will, instead of working in a RC-spacetime
(for a rigorous treatment see [32]), restrict ourselves to the Minkowski space in
Cartesian coordinates.

The actionW is invariant under 4 rigid spacetimetranslationsof 6 rigid
Lorentzrotations(3 boosts plus 3 spatial rotations). As a consequence, we have
(see Corson [39]) energy-momentum and angular momentum conservation,

∂kTi
k ∗
= 0 , ∂kJij

k ∗
= 0 , (19)

with thecanonical energy-momentumtensor density

Ti
k :

∗
= δki L−

∂L

∂∂kΨ
∂iΨ , (20)

the total canonical angular momentum tensor density, consisting of an intrinsic
and an orbital part,

Jij
k :

∗
= Sij

k + xiTj
k − xjTi

k = −Jji
k, (21)

and thecanonical spinangular momentum tensor density (lij=Lorentz generators)

Sij
k :

∗
=

∂L

∂∂kΨ
lijΨ = −Sji

k . (22)

8e := det ei
α, ∂α = eiα∂i, Dα = eiαDi.
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From this straightforward consideration in Minkowski space alone, we rec-
ognize that the canonical energy-momentumTi

k and the canonical angular mo-
mentumJij

k are the translational and the Lorentz currents of matter. Only the
intrinsic spin partSij

k of the angular momentum is a tensor; the orbital part is
only a tensor under Cartesian coordinate transformations.For the Dirac field we
find (Tα

k = eiαT i
k, etc.):

Tα
i ∗

=
i

2

(
Ψγi∂αΨ−Ψγi∂αΨ

)
, (23)

Sαβ
i ∗

=
1

8
Ψ
(
σαβγ

i + γiσαβ
)
Ψ . (24)

The spin is totally antisymmetric: after some algebra, we can put (24) into the
form

Sαβγ =
1

4
ǫαβγδΨγ

δγ5Ψ , (25)

with γ5 := − i
4!
ǫαβγδγ

αγβγγγδ.
We compare (23) and (24) with the Lagrangian (18) and consider small devi-

ations from the inertial case, that is,eiα = δiα + ǫiα, with ǫiα ≪ 1, then we find
after some algebra and some rearrangements to linear order in ǫiα,

L ∼ ei
αTα

i + Γi
αβSαβ

i −mΨΨ . (26)

There is some resemblance to the structure in (6) even though we work here on a
Lagrangian level. This coupling of geometry to matter displayed in (26) suggests
the following representation of the canonical currents:

Tα
i =

δL

δeiα
, Sαβ

i =
δL

δΓi
αβ
. (27)

Of course, this was a heuristic consideration, but with the full Lagrange-
Noether machinery acting in RC-spacetime, it can be made rigorous [32]: The
canonical currentsTα

i, Sαβ
i, defined via the Noether theorem according to (20)

and (22), can be shown to be equal to the “dynamical” currents that couple to
the gravitational potentials according to (27). These currents should also play a
decisive role in quark and gluon physics, see [40].

A short summary of the formalism in this section

For those of you who were lost in this formalism, a short bird eye’s view on
the results: In order to compactify our notation, we change to exterior calculus.
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We introduce the matrix-valued one-formγ := γαϑ
α and the Hodge star operator

⋆. Then the Dirac equation in an arbitrary orthonormal frame in a RC-space can
be rewritten as

i∗γ ∧DΨ+ ∗mΨ = 0 , (28)

with the covariant exterior derivativeDΨ := (d + i
4
σαβΓ

αβ)Ψ. Let us then for-
mulate Lagrange four-form of the Dirac field,

L = L(ϑα,Ψ, DΨ) =
i

2

(
Ψ ∗γ ∧DΨ+DΨ ∧ ∗γΨ

)
+ ∗mΨΨ , (29)

which is minimally coupled to the RC-spacetime via the gaugepotentialsϑα [con-
tained inγ = γαϑ

α] and Γαβ = −Γβα [contained inD]. Note that only the
potentials themselves enter the Lagrangian, but not their derivatives. Thus, the
Lagrangian (29), formulated in a RC-spacetime, because of (15), looks locally
special-relativistic. This attests to the validity of the relaxation process discussed
above. The currents, as we saw above in (27), are then defined as follows:

Tα =
δL

δϑα
, Sαβ =

δL

δΓαβ
. (30)

These innocently looking equations (29) and (30), all living in a RC-spacetime,
are the net outcome of our considerations so far.

It was then Sciama [41] and Kibble [13] in the early 1960s who added the
Hilbert–Einstein type Lagrangian of the RC-spacetime to (18) and formulated the
corresponding simplest field equations of the gauge theory of gravity; for a his-
torical view see O’Raifeartaigh [42] and the reprint volume [11], for a modern
representation Blagojević [43] and Ryder [44].

10 Field equations of Sciama and Kibble

The Ricci tensor in a RC-spacetime is defined according to Rici
α := ejβRji

αβ .
A corresponding scalar densityeeiαRiciα is the simplest nontrivial gravitational
Lagrangian. The total action is (Λ = cosmological constant)

Wtot =

∫
d4x

[
1

2κ
e(eiαRici

α − 2Λ) + L(ek
γ,Ψ, DΨ)

]
, (31)
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with Einstein’s gravitational constantκ. Variation with respect toeiα andΓi
αβ

yields the gravitational field equations of Sciama [41] and Kibble [13]:

Ricα
i − 1

2
eiαRicγ

γ + Λeiα =
κ

e
Tα

i , (32)

Torαβ
i − eiαTorβγ

γ + eiβTorαγ
γ =

κ

e
Sαβ

i . (33)

We made here the torsion a bit more visible. Please note that Ric andT have
both 16 independent components, whereas Tor andS have both 24 independent
components. These field equations are just linear algebraicequations between Ric
and Tor on the geometrical side andT andS on the matter side, respectively. The
Dirac case is particularly simple, there (33) collapses to just 4 equations.

The first equation can be easily recognized as an Einstein type field equation.
However, the Ricci tensor is here asymmetric as well as the canonical energy-
momentum tensor of matter. The second equation relates the torsion linearly to
the spin of matter. If we consider matterwithoutspin, the torsion vanishes and the
first field equation reduces just to the Einstein field equation of GR, for a review
see [45].

In exterior calculus, these field equations, given first in this form by Trautman,
see [46], look even a bit more transparent:9

1

2
ηαβγ ∧R

βγ − Ληα = κTα , (34)
1

2
ηαβγ ∧ T

γ = κSαβ . (35)

The two equations (32),(33) or (34),(35) are the field equations of the Einstein–
Cartan(–Sciama–Kibble) theory of gravity or, in short, of the Einstein–Cartan
theory(EC). This is a special case of a Poincaré gauge theory, namely that which
has the curvature scalar of the RC-spacetime as gravitational Lagrangian. EC is a
viable gravitational theory.

The Maxwell field carries helicity, that is, spin projected along its wave vector,
but is doesn’t carry spin proper as a gauge covariant quantity. Therefore, there is
no electromagnetic contribution to the material spin on theright-hand-side of (33)
or (35). Light is insensitive to torsion; torsion cannot be “seen”.10

Torsion effects in EC-theory are minute. Besides the Einsteinian gravitational
field, we have additionally a very weakspin-spin contact interactionthat is pro-
portional to the gravitational constant, which is measurable in principle. For a

9Here we have: Hodge star⋆, ηα = ⋆ϑa, ηαβ = ⋆(ϑa ∧ ϑβ), ηαβγ = ⋆(ϑa ∧ ϑβ ∧ ϑγ).
Moreover,Tα = 1

e
Tα

γηγ andSαβ = 1

e
Sαβ

γηγ .
10Only a nonminimal coupling of the electromagnetic field to torsion-square pieces is conceiv-

able, see [47].
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particle of massm and reduced Compton wave lengthλCo := ~/mc (with ~ =
reduced Planck constant,c = speed of light), there exists in EC a critical density
and, equivalently, a critical radius of (ℓPℓ = Planck length)

ρEC ∼ m/(λCoℓ
2
Pℓ) and rEC ∼ (λCoℓ

2
Pℓ)

1/3 , (36)

respectively, see [45]. For a nucleon we haveρEC ≈ 1054 g/cm3 and rEC ≈
10−26 cm. Whereas those densities are extremely high from a usual lab perspec-
tive or even from the point of view of a neutron star (≈ 1016 g/cm3), in cosmology
they are standard. It may be sufficient to recall that inflation is believed to set in
around the Planck density of1093 g/cm3.

At densities higher thanρEC, EC-theory is expected to overtake GR. There is
no reason why GR should survive under those conditions, since for fermionsthe
gauge-theoretical framework seems more trustworthy. Somecosmological models
of EC can be found in [11].

It is probably fair to say that EC has been established as a consistent and
viable theory of gravity and the Riemann–Cartan geometry ofspacetime has won
solid support so that its study should not be skipped in philosophical circles as
undesirable complication of the Riemann geometry of GR.

11 Quadratic Poincaŕe gauge theory of gravity (qPG)

Let me first express a word of caution: In a fairly recent paper, Mao, Tegmark,
Guth, and Cabi [48] believe to have shown “...that Gravity Probe B is an ideal ex-
periment for further constraining nonstandard torsion theories,...” Nothing could
be further away from the truth. Following the guiding principle that nothing is
more practical than a good theory, Puetzfeld, Obukhov, et al. [49, 50] have shown
that the measurement of torsion requires elementary particle spins as test objects
whereas in Gravity Probe B the rotating quartz balls carry orbital angular mo-
mentum only, but don’t carry uncompensated elementary particle spin. Thus, the
results in [48] are simply incorrect in spite of the wide publicity that this paper
has won.

But back to Einstein–Cartan theory (EC). It is in many ways a very degenerate
theory. A contact interaction in physics cries for a generalization to a propagating
interaction, as has been the way things developed in the Fermi theory of weak
interaction—which was a contact interaction par excellence—to the theory of the
propagatingW andZ. The recipe is very simple: The EC-Lagrangian is linear
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in the Lorentz field strength, add terms that are quadratic inthe translational field
strength (torsion) and the Lorentz field strength (curvature).

Instead of boring you with all the details of this development to quadratic
Lagrangians in a RC-spacetime and who did what and when and why, I shock
you again with a messy formula. This is the most general quadratic Lagrangian
including parity violating pieces (see [9] and the explanations in the subsequent
paragraphs):

V =
1

2κ
[ ( a0R + b0X − 2Λ) η (37)

+ 1

3
a2V ∧ ⋆V − 1

3
a3A∧ ⋆A− 2

3
σ2V ∧ ⋆A+ a1

(1)T α ∧ ⋆(1)Tα
]

−
1

2̺

[
( 1

12
w6R

2 − 1

12
w3X

2 + 1

12
µ3RX) η + w4

(4)Rαβ ∧ ⋆(4)Rαβ

+(2)Rαβ ∧ (w2
⋆(2)Rαβ + µ2

(4)Rαβ) +
(5)Rαβ ∧ (w5

⋆(5)Rαβ + µ4
(5)Rαβ)

]
.

The first two lines representweakgravity, with the conventional gravitational con-
stantκ, the last two lines speculativestronggravity with the dimensionless strong
gravity constant̺ . The unknown constants(a0; a1, a2, a3; b0, σ2), weight the dif-
ferent terms of weak gravity, the unknown constants(w2, w3, w4, w5, w6;µ2, µ3, µ4)
those of strong gravity. What a mess!

But let us discuss the formula line by line: In thefirst line R is the EC-
term,X := 1

4
ηαβγδR

[αβγδ] is the (parity violating) curvature pseudoscalar, which
vanishes in Riemannian space, but is nonvanishing in RC-space. This term is
presently very popular in the quantum gravity scene,Λ is the cosmological con-
stant, andη the ‘volume element’.

The second linehouses all torsion-square pieces. We have a tensor torsion
(1)T α, a vector torsionV and an axial vector torsionA. They can enter in the
combinations shown. The remarkable fact is that for dimensional reasons the first
line and the second line give rise to similar effects. Instead of the EC-theory with
R, you can select a suitable linear combination of torsion-square pieces acting in
a RC-space with vanishing curvature (Weitzenböck space),see, for example, Itin
[51] or [11] and the historical article of Sauer [52]. On the first two lines there are
literally hundreds of published papers studying differentproperties. Numerous
printed pages could be saved, if our colleagues would start with the first two lines
right away and just motivate their choice of the unknown constants.

Now we turn to the remaining more speculative pieces, which are, however,
fairly plausible due to their Yang–Mills type structure. After all, C. N. Yang him-
self proposed such a theory [53]. We are not in bad company! In thethird line
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we turn our attention immediately to the first three pieces: They are just squares
built from the curvature scalar and/or the curvature pseudoscalar. The curvature
in a RC-spaceRαβ decomposes into 6 irreducible pieces(I)Rαβ : they are num-
bered byI, running from 1 to 6. The pseudoscalarX is number 3, the scalarR
number 6. The last term in the third line is then a square pieceof number 4. In the
fourth linewe have the remaining curvature square pieces. The term withnumber
1 drops out due to certain identities.

This is only algebra. Where is the physics? you may ask. Well,we have to find
out. It will be a task of the future to single out of this set of quadratic Lagrangians
(37) the physically acceptable one. How such possible developments may look
like, I will illustrate with one example. Shie–Nester–Yo [54] developed a fairly
realistic cosmological model of Friedmann type withpropagating connectionby
picking the Lagrangian

VSNY =
1

2κ

(
a0Rη + a1

(1)T α ∧ ⋆(1)Tα
)

︸ ︷︷ ︸
weak Newton-Einstein gravity

−
w6

24̺
R2 η

︸ ︷︷ ︸
strong YM-type gravity

. (38)

They found two conventional graviton helicities, as in GR, and this, fora0 6= a1,
combined with a torsion mode of mass ofµ := a1−a0 and spin0+ (spin zero with
positive parity, that is, an ordinary scalar), which has many attractive features. Of
course, equation (38) is a subcase of equation (37). In the meantime this paper has
been generalized by including parity violating pieces, inter alia, and it has been
numerically evaluated. This paper has about 45 follow-up papers. In this way one
collects more and more insight into the possible physics behind the most general
quadratic PG-Lagrangian.

12 Outlook

What is the benefit of all of that for the theory of spacetime? Well, it is a small
but decisive step beyond the established Riemannian spacetime structure of GR.
Cartan’s torsion has been incorporated into the body of knowledge of classical
spacetime geometry. At the same time it has been demonstrated that the Poincaré
groupP (1, 3) = T (4)⋊SO(1, 3), acting in the Minkowski space, and the behav-
ior of the Dirac field in non-inertial frames leads, via the gauge principle, to the
Riemann–Cartan geometry of spacetime. That is, theP (1, 3) symmetry induced
the Riemann–Cartan geometry.
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The generalization of this procedure seems to be straightforward. If we add the
group of dilations toP (1, 3), assuming scale covariance in addition to theP (1, 3)
covariance, we arrive at the 11 parametric Weyl group. Gauging it, requires one
more potential, namely the Weyl covectorQ, defined in terms of the nonmetricity
according toQ := 1

4
Qγ

γ = 1
4
gαβQαβ, see equation (12). Associated with it

comes a conservation law and the Noether current∆ = δL/δQ, the dilation or
scale current, which Weyl had mistaken for the electric current. If we turn the
crank, a Weyl–Cartan spacetime emerges together with a gauge field equation that
has the dilation current as source. This is standard Weyl lore from a contemporary
point of view, see [11], Chapter 8.

I hope it doesn’t take you by surprise that I cannot see much common ground
with the theory of E. Scholz presented during this workshop [36]. In his approach,
spacetime is governed by a Weyl geometry with vanishing torsion, but the dila-
tion current is not an inhabitant of the Weyl space of Scholz—or, at least, this
current has not been identified as such and lives anonymouslyand drifts around
uncontrolled by any field equation.

Instead, one can add to theP (1, 3) simple supersymmetry (symmetry be-
tween fermions and bosons) by extending the Poincaré algebra with anticommut-
ing fermionic generators thus being led to a Poincaré superalgebra. The corre-
sponding gauge procedure creates a so-called superspace(time) geometry. The
field equations of simple supergravity can be immediately written down by using
the EC-field equations (34) and (35); as sources one takes the energy-momentum
and the spin currents of the massless Rarita–Schwinger field, which carries spin
3
2
. The Rarita–Schwinger field conspires with the effective spin 2 of the EC-field

to build up a super multiplet(2, 3
2
), compare [11], Chapter 12.

In this way we see that also in supersymmetry the gauge concept of Weyl and
Yang–Mills–Utiyama is successful. And the geometry of spacetime turned out to
have a potential “super” structure beyond Riemann–Cartan geometry.

Mielke [55] generalized the Poincaré groupT (4)⋊SO(1, 3) to theSL(5, R)
and recovered by symmetry breaking reasonable 4-dimensional gravitational gauge
structures. This could be a future-pointing approach.
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of gravity, its equations of motion, and Gravity Probe B,Phys. Lett. A377,
1775–1781 (2013) [arXiv:1304.2769]. 24

[51] Y. Itin, Energy-momentum current for coframe gravity,Class. Quantum
Grav.19, 173–189 (2002) [arXiv:gr-qc/0111036]. 25

[52] T. Sauer,Field equations in teleparallel spacetime: Einstein’s Fernparal-
lelismus approach towards unified field theory,Historia Math.33, 399–439
(2006) [arXiv:physics/0405142]. 25

[53] C. N. Yang,Integral formalism for gauge fields,Phys. Rev. Lett.33, 445–447
(1974). Reprint 19.1 in [11]. 25

[54] K. F. Shie, J. M. Nester, and H. J. Yo,Torsion cosmology and the accelerat-
ing universe,Phys. Rev. D78, 023522 (2008) [16 pages] [arXiv:0805.3834].
26

[55] E. W. Mielke,Spontaneously broken topological SL(5,R) gauge theory with
standard gravity emerging,Phys. Rev. D83, 044004 (2011) [9 pages].27

=======

32

http://arXiv.org/pdf/gr-qc/0606062
http://arXiv.org/pdf/gr-qc/0307063
http://arXiv.org/pdf/gr-qc/0608121
http://arXiv.org/pdf/0708.1926
http://arXiv.org/pdf/1304.2769
http://arXiv.org/pdf/gr-qc/0111036
http://arXiv.org/pdf/physics/0405142
http://arXiv.org/pdf/0805.3834

	1 Apropos a theory of spacetime theories
	2 Is the gauge idea the underlying principle for all interactions?
	3 The gauging of the Poincaré group
	4 Einstein's discussion of the transition from special to general relativity
	5 Neutron interferometer experiments
	6 Some geometric machinery: coframe and connection
	7 More geometry: metric and orthonormal coframe
	8 Dirac field (x) in Minkowski space in a non-inertial reference frame
	9 Some results of the Lagrange–Noether formalism
	10 Field equations of Sciama and Kibble
	11 Quadratic Poincaré gauge theory of gravity (qPG)
	12 Outlook

