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Abstract. Recently, gravitational gauge theories with torsion have been discussed

by an increasing number of authors from a classical as well as from a quantum field

theoretical point of view. The Einstein-Cartan(-Sciama-Kibble) Lagrangian has been

enriched by the parity odd pseudoscalar curvature (Hojman, Mukku, and Sayed) and

by torsion square and curvature square pieces, likewise of even and odd parity. (i)

We show that the inverse of the so-called Barbero-Immirzi parameter multiplying

the pseudoscalar curvature, because of the topological Nieh-Yan form, can only be

appropriately discussed if torsion square pieces are included. (ii) The quadratic gauge

Lagrangian with both parities, proposed by Obukhov et al. and Baekler et al., emerges

also in the framework of Diakonov et al. (2011). We establish the exact relations

between both approaches by applying the topological Euler and Pontryagin forms in a

Riemann-Cartan space expressed for the first time in terms of irreducible pieces of the

curvature tensor. (iii) Only in a Riemann-Cartan spacetime, that is, in a spacetime

with torsion, parity violating terms can be brought into the gravitational Lagrangian

in a straightforward and natural way. Accordingly, Riemann-Cartan spacetime is a

natural habitat for chiral fermionic matter fields.
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1. Einstein-Cartan theory and weak gravity

In gauge-theoretical approaches to gravity (see [1, 2, 3, 4]), we have the orthonormal

coframe 1-form ϑα as the translational potential and the connection 1-form Γαβ = −Γβα

as the Lorentz potential. The corresponding field strength are the torsion 2-form T α

and the curvature 2-form Rαβ = −Rβα. The first order gravitational theory in this

framework is called the Poincaré gauge theory of gravity (PG).

The simplest model within PG is the Einstein-Cartan theory of gravity (EC), see [5],

with the twisted gauge Lagrangian (κ = gravitational and Λ0 = cosmological constant)‡

VEC :=
1

2κ

(
ηαβ ∧ R

αβ − 2Λ0η
)

and with Ltot = VEC + L(ψ,Dψ) , (1)

where L is the matter Lagrangian depending on the minimally coupled fermionic/bosonic

matter fields ψ(x). This is a viable gravitational theory that deviates from general

relativity at extremely high matter densities ρ & ρcrit, with ρcrit ≈ m/ (λComptonℓ
2
Planck)

and m is the mass of the field, see also [7]. At the same time it is clear that GR can

alternatively be reformulated as a teleparallelism theory with torsion square pieces in

the Lagrangian. If we call the Newton-Einstein type of gravity “weak” gravity, then its

general quadratic gauge Lagrangian reads (a0 and a1, a2, a3 are constants):

V +
weak =

1

2κ

(
−a0R

αβ ∧ ηαβ − 2Λ0η + T α ∧
3∑

I=1

aI
⋆(I)Tα

)
. (2)

Here (I)Tα denotes the irreducible pieces of the torsion, with (2)Tα := ϑα ∧ (eβ⌋T
β)/3

(vector, 4 independent components), (3)Tα := eα⌋(T
β ∧ ϑβ)/3 (axitor, 4), and

(1)Tα := Tα − (2)Tα − (3)Tα (tentor, 16). For the special cases Rαβ = 0, enforced by a

corresponding Lagrange multiplier term in (2), we recover the teleparallel equivalent of

GR, provided local Lorentz invariance of the gravitational Lagrangian is implemented,

see [8, 9, 10, 11], and alternatively, for T α = 0, we find GR directly. Thus, GR is hidden

in (2) in two totally different ways, a fact often overlooked.

To link up with the experience of GR, we recall that the Riemann-Cartan curvature

2-form Rαβ can be decomposed into the (torsionfree) Riemann curvature R̃αβ and in

torsion dependent terms. For the curvature scalar this formula reads (see [6, 12])§

−Rαβ ∧ ηαβ = −R̃αβ ∧ ηαβ − T α ∧ ⋆(−(1)Tα + 2(2)Tα +
1

2
(3)Tα) + 2d(ϑα ∧ ⋆Tα) . (3)

If we substituted (3) into (2), then apart from a boundary term, see below, the Riemann

curvature would emerge and the aI in the quadratic torsion would get redefined.

However, we don’t apply this procedure to (2), since we don’t want to leave the formalism

of first order field theory.

‡ We follow the conventions of [6]. We have the coframe 1-form ϑα = ei
αdxi and the frame vectors

eβ = ejβ∂j , with eβ⌋ϑ
α = δαβ . Greek indices are raised and lowered by means of the Minkowski metric

gαβ = diag(−1, 1, 1, 1). The volume 4-form is denoted by η, and ηα = ⋆ϑα, ηαβ = ⋆ϑαβ , ηαβγ =
⋆ϑαβγ , ηαβγδ =

⋆ϑαβγδ, where
⋆ is the Hodge star operator and ϑαβ := ϑα ∧ ϑβ , etc.

§ The second minus sign on the right-hand-side of this equation is corrected. In [6], Eq.(5.9.18) was a

sign error.
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We marked the Lagrangian (2) with a plus sign + for being, as a twisted 4-form,

parity even. However, already in 1980, Hojman, Mukku, and Sayed (HMS) [13] and

Nelson [14] added the parity odd‖ pseudoscalar curvature piece Rαβ ∧ ϑαβ to the EC

Lagrangian, see also [16, 17, 18, 19, 20]. More recently, in the context of the Ashtekar

formalism [21], see Kiefer [22], and in loop quantum gravity, see Rovelli [23], this has

become popular, see [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37], for related

cosmological models see also [38, 39, 40, 41, 42, 43]. Including additionally odd torsion

square pieces, we have (b0, σ1, σ2 are constants, (3)Rαβ is the irreducible pseudoscalar

curvature 2-form)

V −

weak = −
b0
2κ

(3)Rαβ ∧ ϑ
αβ +

1

κ

(
σ1

(1)T α ∧ (1)Tα + σ2
(2)T α ∧ (3)Tα

)
. (4)

The inverse of b0 is sometimes called the Barbero-Immirzi parameter [44, 45, 28]. The

total gauge Lagrangian would then read V +
weak + V −

weak. However, we should be aware

that for weak gravity there exists a boundary term, the untwisted parity odd Nieh-Yan

4-form [16],

B−

TT = dC−

TT =
1

2

(
T α ∧ Tα +Rαβ ∧ ϑ

αβ
)
=

1

2
(T α ∧ Tα − ⋆X)

=
1

2

(
(1)T α ∧ (1)Tα + 2 (2)T α ∧ (3)Tα + (3)Rαβ ∧ ϑ

αβ
)
, (5)

with C−

TT :=
1

2
ϑα ∧ Tα and X as the curvature pseudoscalar, X = ηαβγδR

[αβγδ]/4!. We

add this form with a suitable constant f1 to our weak gravity Lagrangian:

Vweak = Vweak(a0; b0; a1, a2, a3; σ1, σ2; f1) := V +
weak + V −

weak +
f1
κ
B−

TT . (6)

It depends on the gravitational constant κ and the cosmological constant λ0 and,

furthermore, on the 8 constants specified in (6). By a suitable choice of f1, we can

compensate either the HMS-term [13] (that is, b0 = 0) or one tensor square term

of the torsion (that is, either σ1 = 0 or σ2 = 0). However, since (1)T α depends

on 16 independent components, the pseudoscalar curvature only on 1 component, it

seems to simplify the Lagrangian to a greater extent, if we kick out the term with
(1)T α. Thus, for the weak gravity Lagrangian we are left with 6 unspecified constants

(a0, b0; a1, a2, a3; σ2)¶.

Looking back at Eq. (3), it could appear that we forgot the boundary term

B+
TT = 1

2
(dϑα ∧ ⋆Tα) and that we could add it as f0

κ
B+

TT to the Lagrangian (6), see the

procedure of Mielke [47, 48]. However, if we compare the Nieh-Yan and the “teleparallel”

formulas

d (ϑα ∧ Tα) = T α ∧ Tα − ϑα ∧DTα and (ϑα ∧ ⋆Tα) = T α ∧ ⋆Tα − ϑα ∧D ⋆Tα, (7)

respectively, then we recognize that in the former equation DTα can be eliminated via

the first Bianchi identity DTα = Rβα ∧ ϑβ , whereas in the latter equation such a trick

‖ Parity even and odd torsion square terms were introduced by Purcell [15] even 2 years ealier.
¶ Diakonov et al. [46] found an equivalent result, but they eliminated the curvature pseudoscalar. Thus,

they are left with the 6 unspecified constants (a0; a1, a2, a3;σ1, σ2), that is, with the curvature scalar

plus the 5 torsion-square pieces.
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is impossible. Therefore, we would trade in for torsion square pieces derivatives of the

torsion and would mess up the first order character of our Lagrangian.+

If one starts with the EC-Lagrangian and adds only an HMS-term, as numerous

people do, then, because of the Nieh-Yan form, two torsion square terms of odd parity

are induced. Consequently, the other torsion square terms come immediately into focus

and —this is one message of our letter—there doesn’t seem to exist a sufficient reason

to exclude the other torsion square terms. In other words, the whole weak gravity

Lagrangian (6) should come under scrutiny.

From a totally different point of view, from observational cosmology and from

quantum chromodynamics, there are indications that we may live in a parity violating

Universe, see the review by Urban & Zhitnitsky [49]. All the more investigations in a

parity odd PG model seem desirable.

2. Quadratic Poincaré gauge theory and strong gravity

If one wants the Lorentz connection as a propagating field, then one has to allow for

“strong” gravity of the Yang-Mills type by adding quadratic curvature 4-forms to the

weak Lagrangian. The curvature Rαβ of a Riemann-Cartan space has six irreducible

pieces: Rαβ =
∑6

I=1
(I)Rαβ. We write symbolically, using the self-explanatory computer

names for the irreducible terms: curv (36 indep. comp.) = weyl (10) + paircom (9) +

pscalar (1) + ricsymf (9) + ricanti (6) + scalar (1), see [6] for the exact definitions.

In a Riemann space only (1)Rαβ, (4)Rαβ , and (6)Rαβ are left over. Hence the most general

parity even quadratic Lagrangian, with a new dimensionless coupling constant ̺, reads

V +
strong = −

1

2̺
Rαβ ∧

6∑
I=1

wI
⋆(I)Rαβ . (9)

Alerted by the corresponding case in weak gravity, we now search for parity odd terms.

They were found to be (see [50, 51]) as

V −

strong = −
1

2̺

(
µ1

(1)Rαβ ∧ (1)Rαβ + µ2
(2)Rαβ ∧ (4)Rαβ

+ µ3
(3)Rαβ ∧ (6)Rαβ + µ4

(5)Rαβ ∧ (5)Rαβ

)
, (10)

which are the only quadratic curvature square invariants of odd character in a 4D

Riemann-Cartan space. Note that in a Riemann space, that is, when torsion vanishes,

only the first piece built up from the Weyl curvature (1)Rαβ is left over.

Taking a lesson from the above, we can now search for boundary terms. As in any

Yang-Mills theory, we can find an untwisted Pontryagin 4-form B−

RR. But in gravity the

(anholonomic) Lorentz indices of the curvature can be contracted with the help of the

+ We can combine the two equations in (7). This yields yields

d
(
ϑα ∧ ξ±α

)
= Tα ∧ ξ±α − ϑα ∧Dξ±α with ξ±α := Tα ± ⋆Tα . (8)

Mielke [47, 48] built a similar linear combination but with the imaginary unit in front of ⋆Tα, but

neither his nor our version seems to lead to firm conclusions so far.
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totally antisymmetric Levi-Civita tensor ηαβγδ. Accordingly, we introduce the so-called

Lie-dual of the curvature with the Lie star operator (∗) as

R(∗)αβ :=
1

2
Rµνη

µναβ . (11)

Like ηµναβ , the Lie star (∗) is twisted. It gives rise to the twisted Euler 4-form B+
RR(∗) .

Following [6], we have then the following two boundary terms:

B−

RR = dC−

RR =
1

2
Rαβ ∧R

αβ , B+
RR(∗) = dC+

RR(∗) =
1

2
Rαβ ∧R

(∗)αβ . (12)

Thus, the strong part of the gauge Lagrangian turns out to be

Vstrong := V +
strong + V −

strong +
f2
̺
B−

RR +
f3
̺
B+

RR(∗) . (13)

The total quadratic gauge Lagrangian including boundary terms is then

Vgauge = V +
weak + V −

weak + V +
strong + V −

strong +
f1
κ
B−

TT +
f2
̺
B−

RR +
f3
̺
B+

RR(∗) . (14)

For vanishing torsion, Vweak reduces to VGR with cosmological constant and Vstrong has

only (w1, w4, w6;µ1; f2, f3) 6= 0. By a suitable choice of f2, f3, only the two terms with

w4, w6 survive, that is, those with the tracefree Ricci tensor and the curvature scalar.

3. The role of the Lie-dual of the curvature

Before we continue the investigation of (13), we will derive some rules for manipulating

curvature square terms containing a Lie star. Using heavily the computer-algebra system

Reduce with the Excalc package, compare [52, 53, 54, 55], we were able to convert

completely the Lie star (∗) into the Hodge star ⋆ according to the following rules: The

expression (I)Rµν ∧(J)R
(∗)
µν is diagonal, that is, ∝ δIJ ; only the diagonal pieces do not

vanish, namely

(I)Rµν∧ (I)R(∗)
µν = ± (I)Rµν∧ ⋆(I)Rµν , (15)

with + for I = 1, 3, 5, 6 and with − for I = 2, 4. Note that on the left-hand-side of this

equation we have the Lie star (∗), on the right-hand-side, however, the Hodge star ⋆.

This implies the relation, derived here for the first time explicitly∗,

Rαβ ∧R
(∗)
αβ = (1)Rαβ ∧ ⋆(1)Rαβ −

(2)Rαβ ∧ ⋆(2)Raβ +
(3)Rαβ ∧ ⋆(3)Raβ

− (4)Rαβ ∧ ⋆(4)Rαβ +
(5)Rαβ ∧ ⋆(5)Raβ +

(6)Rαβ ∧ ⋆(6)Raβ . (16)

In particular, this shows that the Lie star is superfluous in forming a quadratic

Lagrangian, the Hodge star is sufficient.

Comparison with (12) allows us to rewrite the Euler 4-form with the help of the

Hodge star as

B+
RR(∗) =

1

2

(
Rαβ ∧ ⋆Rαβ − 2(4)Rαβ ∧ ⋆(4)Rαβ − 2(2)Rαβ ∧ ⋆(2)Rαβ

)
. (17)

∗ By using some simple algebra, Eq.(16) can alternatively be derived in a straightforward way from

Eqs.(10.17) to (10.22) of Obukhov [4].
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The Pontryagin 4-form, also defined in (12), after some algebra, can be expressed in

terms of the irreducible pieces of the curvature as (also this relation is new)

B−

RR =
1

2

(
(1)Rαβ ∧

(1)Rαβ + (5)Rαβ ∧
(5)Rαβ

+2 (3)Rαβ ∧
(6)Rαβ + 2 (2)Rαβ ∧

(4)Rαβ
)
. (18)

4. Comparison with Diakonov et al. [46]

Recently, in the framework of perturbative quantum field theory, new results were

reported [46] on including torsion in a gravitational gauge theory for describing fermionic

matter, for a review of some earlier results, see [56]. In this context, Diakonov et al.

investigated gravitational gauge Lagrangians containing quadratic terms in the gauge

fields of even and of odd parity. That is, contributions of the weak and the strong gravity

sector (Lorentz gauge bosons) were considered. Generally, those 4-fermion interaction

terms will give additional contributions to the energy-momentum current of matter.

This aspects might be relevant in the context of quantum cosmological models, see

[39, 42, 43]. Other groups address only weak gravity, even though they include Euler

and Pontryagin terms, which refer to strong gravity, see Benedetti et al. [57].

In the following, we would like to compare the approach given in [46] with the

results we already gave in [51]♯.

4.1. Torsion square invariants

Let us compare our torsion-square invariants in (6), see also [51], with those in [46],

Eq.(53). If we add a plus sign for parity even and a minus sign for parity odd terms,

the invariants of Diakonov et al., multiplied by the volume form η, read:

K+
1 = 2 (1)T α ∧ ⋆(1)Tα − 2 (2)T α ∧ ⋆(2)Tα + 2 (3)T α ∧ ⋆(3)Tα , (19)

K+
2 = 3 (2)T α ∧ ⋆(2)Tα , (20)

K+
3 = (1)T α ∧ ⋆(1)Tα + (2)T α ∧ ⋆(2)Tα − 2 (3)T α ∧ ⋆(3)Tα , (21)

K−

4 = − 2 (1)T α ∧ (1)Tα + 4 (2)T α ∧ (3)Tα , (22)

K−

5 = (1)T α ∧ (1)Tα + 4 (2)T α ∧ (3)Tα , (23)

and the inverse relations are

(1)T α ∧ ⋆(1)Tα =
1

9
(3K+

1 +K+
2 + 3K+

3 ) , (24)

(2)T α ∧ ⋆(2)Tα =
1

3
K+

2 , (25)

♯ Following essentially Schouten [58], our conventions are [6]: ϑα = ei
αdxi , Γαβ = Γi

αβdxi , Tα :=

Dϑα = 1
2 Tij

αdxi∧dxj , Tij
α = 2(∂[iϑj]

α+Γ[ij]
α) , Rαβ := dΓαβ+Γαγ∧Γβ

γ = 1
2 Rij

αβdxi∧dxj , Rij
αβ =

2(∂[iΓj]
αβ + Γ[i

αγΓ β

j] · γ) , Ricα := eβ⌋Rα
β = Ricβα ϑβ , withRicαβ = Rγαβ

γ , R := Ricα
α = Rβα

αβ .

Diakonov et al. [46] use the conventions of Landau-Lifschitz [59]. Accordingly, there are the

following correspondence rules: Rκ
λµν |Diak et al. = Rµνλ

κ|here , Ricλµ|Diak et al. := Rλ
κ
µκ|Diak et al. =

Rµκ
κ
λ|here = Rκµλ

κ|here = Ricµλ|here.
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(3)T α ∧ ⋆(3)Tα =
1

12
(3K+

1 + 4K+
2 − 6K+

3 ) , (26)

(1)T α ∧ (1)Tα = −
1

3
(K−

4 −K−

5 ) , (27)

(2)T α ∧ (3)Tα =
1

12
(K−

4 + 2K−

5 ) . (28)

These 5 invariants agree with those given in [51], Eqs.(30) and (55).

4.2. Curvature square invariants

Diakonov et al. [46], Eq. (59), find 6 even and 4 odd independent quadratic invariants

GI . As we did with the torsion invariants, we translate their component representations

into the language of exterior differential forms used by us. We find, after some messy

computer checked algebra, the following curvature invariants (multiplied by η):

G+
1 = R2η = 12 (6)Rαβ ∧

⋆(6)Rαβ , (29)

G+
2 = RµνρλR

µνρλη = 2Rαβ ∧
⋆Rαβ = 2

6∑

I=1

(I)Rαβ ∧ ⋆(I)Rαβ , (30)

G+
3 = RµνρλR

λρνµη

= 2
(
(1)Rαβ ∧ ⋆(1)Rαβ −

(2)Rαβ ∧ ⋆(2)Rαβ +
(3)Rαβ ∧ ⋆(3)Rαβ

+(4)Rαβ ∧ ⋆(4)Rαβ −
(5)Rαβ ∧ ⋆(5)Rαβ +

(6)Rαβ ∧ ⋆(6)Rαβ

)
, (31)

G+
4 =

(
R2 − 4RicµλRic

λµ +RµνρλR
λρνµ

)
η

= 2
(
(1)Rαβ ∧ ⋆(1)Rαβ −

(2)Rαβ ∧ ⋆(2)Rαβ +
(3)Rαβ ∧ ⋆(3)Rαβ

−(4)Rαβ ∧ ⋆(4)Rαβ +
(5)Rαβ ∧ ⋆(5)Rαβ +

(6)Rαβ ∧ ⋆(6)Rαβ

)
, (32)

G+
5 =

(
R2 − 4RicµλRic

µλ +RµνρλR
µνρλ

)
η

= 2
(
(1)Rαβ ∧ ⋆(1)Rαβ +

(2)Rαβ ∧ ⋆(2)Rαβ +
(3)Rαβ ∧ ⋆(3)Rαβ

−(4)Rαβ ∧ ⋆(4)Rαβ −
(5)Rαβ ∧ ⋆(5)Rαβ +

(6)Rαβ ∧ ⋆(6)Rαβ

)
, (33)

G+
6 =

(
ηλρµνRµνρλ

)2
η = −48 (3)Rαβ ∧

⋆(3)Rαβ , (34)

G−

7 = RηλρµνRµνρλη = −24 (3)Rαβ ∧
(6)Rαβ , (35)

G−

8 = ηµναβRµνρλRαβ
ρλη

= − 4 (1)Rαβ ∧
(1)Rαβ − 4 (5)Rαβ ∧

(5)Rαβ

− 8 (3)Rαβ ∧
(6)Rαβ − 8 (2)Rαβ ∧

(4)Rαβ , (36)

G−

9 = ηλργδRµνρλR
µν

δγη

= − 4 (1)Rαβ ∧
(1)Rαβ − 4 (5)Rαβ ∧

(5)Rαβ

− 8 (3)Rαβ ∧
(6)Rαβ + 8 (2)Rαβ ∧

(4)Rαβ , (37)

G−

10 = ηλραβRµνρλRαβ
νµη

= − 4 (1)Rαβ ∧
(1)Rαβ + 4 (5)Rαβ ∧

(5)Rαβ − 8 (3)Rαβ ∧
(6)Rαβ . (38)

The inverse relations are convenient for a detailed comparison. They turn out to be

(1)Rαβ ∧ ⋆(1)Rαβ = −
1

12
G+

1 +
1

8

(
G+

2 +G+
3 +G+

4 +G+
5

)
+

1

48
G+

6 , (39)
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(2)Rαβ ∧ ⋆(2)Rαβ =
1

8

(
G+

2 −G+
3 −G+

4 +G+
5

)
, (40)

(3)Rαβ ∧ ⋆(3)Rαβ = −
1

48
G+

6 , (41)

(4)Rαβ ∧ ⋆(4)Rαβ =
1

8

(
G+

2 +G+
3 −G+

4 −G+
5

)
, (42)

(5)Rαβ ∧ ⋆(5)Rαβ =
1

8

(
G+

2 −G+
3 +G+

4 −G+
5

)
, (43)

(6)Rαβ ∧ ⋆(6)Rαβ =
1

12
G+

1 , (44)

and

(1)Rαβ ∧ (1)Rαβ = −
1

16

(
G−

8 +G−

9 + 2G−

10

)
+

1

12
G−

7 , (45)

(2)Rαβ ∧ (4)Rαβ = −
1

16

(
G−

8 −G−

9

)
, (46)

(3)Rαβ ∧ (6)Rαβ = −
1

24
G−

7 , (47)

(5)Rαβ ∧ (5)Rαβ = −
1

16

(
G−

8 +G−

9 − 2G−

10

)
. (48)

It is now straightforward to express the Euler 4-form (17) and the Pontryagin 4-form

(18) in terms of the GI ’s. We find

B+
RR(∗) =

1

4
G+

4 and B−

RR = −
1

8
G−

8 , (49)

respectively. This is what Diakonov et al. stressed: that their invariants G+
4 and G−

8 are

boundary terms. These two boundary terms can also be found in our earlier work, see

[51], Eqs.(33) and (50).

Hence the results of Diakonov et al. [46] with respect to the quadratic invariants of

torsion and curvature coincide with those of [51]. This is also manifest in the Riemannian

subcase, that is, for vanishing torsion T α = 0. Then,

(2)Rαβ = (3)Rαβ = (5)Rαβ = 0 , (50)

or, in terms of the GI ’s,

G+
2 = G+

3 , G+
4 = G+

5 , G+
6 = G+

7 = 0 , G+
8 = G+

9 = G+
10 , (51)

which can be read off directly from the Eqs.(29) to (38). Under the condition of vanishing

torsion the boundary terms read

B+
RR(∗) |Tα=0 =

1

2

(
(1)Rαβ ∧ ⋆(1)Rαβ −

(4)Rαβ ∧ ⋆(4)Rαβ +
(6)Rαβ ∧ ⋆(6)Raβ

)
, (52)

B−

RR|Tα=0 =
1

2
(1)Rαβ∧ (1)Rαβ . (53)
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5. The number of independent terms in the most general quadratic PG

Lagrangian

For the strong gravitational Lagrangian Vstrong in (13), we can enter in a similar

discussion as for Vweak in (6): Besides the strong gravitational coupling constant ̺,

we have the 12 constants (w1, w2, ..., w6;µ1, µ2, µ3, µ4; f2, f3). By a suitable choice of

f2 and f3, we can compensate the terms containing the Weyl 2-form (1)Rαβ with 10

independent components, as can be seen from (17) and (18). Consequently, we are left

with the 8 constants (w2, ..., w6;µ2, µ3, µ4). Diakonov et al. [46] found the 10 invariants

GI , two of which, namely G+
4 and G−

8 are boundary terms. Hence they also arrive at 8

independent invariants. Accordingly, also for strong gravity our results match those of

Diakonov et al.

Our final gravitational Lagrangian is then††

V =
1

2κ
[ ( a0R− 2Λ0 + b0X) η

+
a2
3
V ∧ ⋆V −

a3
3
A∧ ⋆A−

2σ2
3

V ∧ ⋆A+ a1
(1)T α ∧ ⋆(1)Tα

]

−
1

2̺

[
(
w6

12
R2 −

w3

12
X2 +

µ3

12
RX) η + w4

(4)Rαβ ∧ ⋆(4)Rαβ

+(2)Rαβ ∧ (w2
⋆(2)Rαβ + µ2

(4)Rαβ) +
(5)Rαβ ∧ (w5

⋆(5)Rαβ + µ4
(5)Rαβ)

]
. (54)

The first two lines represent weak gravity, the last two lines strong gravity. The parity

odd pieces are those with the constants b0, σ2;µ2, µ3, µ4. In a Riemann space (where

X = 0), only two terms of the first line and likewise two terms in the third line survive.

All these 4 terms are parity even, that is, only torsion brings in parity odd pieces into

the gravitational Lagrangian.

Yo and Nester [60, 61, 62] found that only a small subclass of the Lagrangians (54)

is consistent from a Hamiltonian point of view. They, together with Shie, presented

such a Lagrangian [63] and found an accelerating cosmological Friedman type model

with propagating connection. Shortly afterwards, Nester and his group, see Chen et

al. [64], generalized this model and introduced a consistent Lagrangian containing the

parity odd pieces A and X . Since these terms occur quadratically, their Lagrangian was

still parity even:

VChen et al. =
1

2κ
(a0R− 2Λ0) η +

1

6κ
(a2V ∧ ⋆V − a3A ∧ ⋆A)

−
1

24̺

(
w6R

2 − w3X
2
)
η . (55)

The next step was done by Baekler et al. [51], see also [65]. They investigated a

Lagrangian with three additional pieces with odd parity (55), namely those carrying

†† If we introduce the notations R and X for the curvature scalar and the curvature pseudoscalar, then

we find (6)Rαβ = −Rϑαβ/12 and (3)Rαβ = −Xηαβ/12, respectively; moreover, for the torsion we can

define the 1-forms of A and V for the axial vector and the vector torsion (3)Tα = ⋆(A ∧ ϑα)/3 and
(2)Tα = −(V ∧ ϑα)/3, respectively.
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the constants b0, σ2, µ3:

VBHN =
1

2κ
(a0R− 2Λ0 + b0X)η +

1

6κ
(a2V ∧ ⋆V − a3A ∧ ⋆A− 2σ2V ∧ ⋆A)

−
1

24̺

(
w6R

2 − w3X
2 + µ3RX

)
η . (56)

Now one should analyze the particle content of the lagrangian (54), that is, to find out

which modes are propagating decently. This has been done in [51] by the simple method

of the diagonalization of the Lagrangian. The results turned out to be in agreement with

those of the Hamiltonian approach.

It is manifest already by now, looking beyond the Einstein-Cartan theory including

parity odd Lagrangians is a field with bright prospects.
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[53] E. Schrüfer: EXCALC: A System for Doing Calculations in the Calculus of Modern Differential

Geometry (GMD-SCAI, D-53757 St.Augustin, Germany, 1994). 5
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Abstract. Recently, gravitational gauge theories with torsion have been discussed

by an increasing number of authors from a classical as well as from a quantum field

theoretical point of view. The Einstein-Cartan(-Sciama-Kibble) Lagrangian has been

enriched by the parity odd pseudoscalar curvature (Hojman, Mukku, and Sayed) and

by torsion square and curvature square pieces, likewise of even and odd parity. (i)

We show that the inverse of the so-called Barbero-Immirzi parameter multiplying the

pseudoscalar curvature, because of the topological Nieh-Yan form, can be appropriately

discussed if torsion square pieces are included. (ii) The quadratic gauge Lagrangian

with both parities, proposed by Obukhov et al. and Baekler et al., emerges also in the

framework of Diakonov et al. (2011). We establish the exact relations between both

approaches by applying the topological Euler and Pontryagin forms in a Riemann-

Cartan space expressed for the first time in terms of irreducible pieces of the curvature

tensor. (iii) In a Riemann-Cartan spacetime, that is, in a spacetime with torsion, parity

violating terms can be brought into the gravitational Lagrangian in a straightforward

and natural way. Accordingly, Riemann-Cartan spacetime is a natural habitat for

chiral fermionic matter fields.
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1. Einstein-Cartan theory and weak gravity

In gauge-theoretical approaches to gravity (see [1, 2, 3, 4]), we have the orthonormal

coframe 1-form ϑα as the translational potential and the connection 1-form Γαβ = −Γβα

as the Lorentz potential. The corresponding field strengths are the torsion 2-form T α

and the curvature 2-form Rαβ = −Rβα. The first order gravitational theory in this

framework is called the Poincaré gauge theory of gravity (PG).

The simplest model within PG is the Einstein-Cartan theory of gravity (EC), see [5],

with the twisted gauge Lagrangian (κ = gravitational and Λ0 = cosmological constant‡

VEC :=
1

2κ

(
ηαβ ∧ R

αβ − 2Λ0η
)

and with Ltot = VEC + L(ψ,Dψ) , (1)

where L is the matter Lagrangian depending on the minimally coupled fermionic/bosonic

matter fields ψ(x). This is a viable gravitational theory that deviates from general

relativity at extremely high matter densities ρ & ρcrit, with ρcrit ≈ m/ (λComptonℓ
2
Planck)

and m is the mass of the field, see also [10]. At the same time it is clear that GR can

alternatively be reformulated as a teleparallelism theory with torsion square pieces in

the Lagrangian. If we call the Newton-Einstein type of gravity “weak” gravity, then its

general quadratic gauge Lagrangian reads (a0 and a1, a2, a3 are constants):

V +
weak =

1

2κ

(
−a0R

αβ ∧ ηαβ − 2Λ0η + T α ∧
3∑

I=1

aI
⋆(I)Tα

)
. (2)

Here (I)Tα denotes the irreducible pieces of the torsion, with (2)Tα := ϑα ∧ (eβ⌋T
β)/3

(vector, 4 independent components), (3)Tα := eα⌋(T
β ∧ ϑβ)/3 (axitor, 4), and

(1)Tα := Tα − (2)Tα − (3)Tα (tentor, 16). For the special cases Rαβ = 0, enforced by a

corresponding Lagrange multiplier term in (2), we recover the teleparallel equivalent of

GR, provided local Lorentz invariance of the gravitational Lagrangian is implemented,

see [11, 12, 13, 14, 15, 16, 17], and alternatively, for T α = 0, we find GR directly. Thus,

GR is hidden in (2) in two totally different ways, a fact often overlooked.

To link up with the experience of GR, we recall that the Riemann-Cartan curvature

2-form Rαβ can be decomposed into the (torsionfree) Riemann curvature R̃αβ and in

torsion dependent terms. For the curvature scalar this formula reads (see [7, 12])§

−Rαβ ∧ ηαβ = −R̃αβ ∧ ηαβ − T α ∧ ⋆(−(1)Tα + 2(2)Tα +
1

2
(3)Tα) + 2d(ϑα ∧ ⋆Tα) . (3)

‡ Following essentially Schouten [6], our conventions are [7]: We have the coframe 1-form ϑα = ei
αdxi

and the frame vectors eβ = ejβ∂j , with eβ⌋ϑ
α = δαβ . The connection 1-form is Γαβ = Γi

αβdxi. Greek

indices are raised and lowered by means of the Minkowski metric gαβ = diag(−1, 1, 1, 1). The volume 4-

form is denoted by η, and ηα = ⋆ϑα, ηαβ = ⋆ϑαβ , ηαβγ = ⋆ϑαβγ , ηαβγδ =
⋆ϑαβγδ, where

⋆ is the Hodge

star operator and ϑαβ := ϑα∧ϑβ , etc. Furthermore, Tα := Dϑα = 1
2 Tij

αdxi∧dxj , Tij
α = 2(∂[iϑj]

α+

Γ[ij]
α) , Rαβ := dΓαβ + Γαγ ∧ Γβ

γ = 1
2 Rij

αβdxi ∧ dxj , Rij
αβ = 2(∂[iΓj]

αβ + Γ[i
αγΓ β

j] · γ) , Ricα :=

eβ⌋Rα
β = Ricβα ϑβ , withRicαβ = Rγαβ

γ , R := Ricα
α = Rβα

αβ . Diakonov et al. [8] use the conventions

of Landau-Lifschitz [9]. Accordingly, there are the following correspondence rules: Rκ
λµν |Diak et al. =

Rµνλ
κ|here , Ricλµ|Diak et al. := Rλ

κ
µκ|Diak et al. = Rµκ

κ
λ|here = Rκµλ

κ|here = Ricµλ|here.
§ The second minus sign on the right-hand-side of this equation is corrected. In [7], Eq.(5.9.18) was a

sign error.
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If we substituted (3) into (2), then apart from a boundary term, see below, the Riemann

curvature would emerge and the aI in the quadratic torsion would get redefined.

However, we don’t apply this procedure to (2), since we don’t want to leave the formalism

of first order field theory.

We marked the Lagrangian (2) with a plus sign + for being, as a twisted 4-form,

parity even. However, already in 1980, Hojman, Mukku, and Sayed (HMS) [18] and

Nelson [19] added the parity odd‖ pseudoscalar curvature piece Rαβ ∧ ϑαβ to the EC

Lagrangian, see also [21, 22, 23, 24, 25]. More recently, in the context of the Ashtekar

formalism [26], see Kiefer [27], and in loop quantum gravity, see Rovelli [28, 29], this

has become popular, see [30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,

47, 48, 49, 50], for related cosmological models see also [51, 52, 53, 54, 55, 56]. Including

additionally odd torsion square pieces, we have (b0, σ1, σ2 are constants, (3)Rαβ is the

irreducible pseudoscalar curvature 2-form)

V −

weak = −
b0
2κ

(3)Rαβ ∧ ϑ
αβ +

1

κ

(
σ1

(1)T α ∧ (1)Tα + σ2
(2)T α ∧ (3)Tα

)
. (4)

The inverse of b0 is sometimes called the Barbero-Immirzi parameter [57, 58, 35]. The

total gauge Lagrangian would then read V +
weak + V −

weak. However, we should be aware

that for weak gravity there exists a boundary term, the untwisted parity odd Nieh-Yan

4-form¶ [21],

B−

TT = dC−

TT =
1

2

(
T α ∧ Tα +Rαβ ∧ ϑ

αβ
)
=

1

2
(T α ∧ Tα − ⋆X)

=
1

2

(
(1)T α ∧ (1)Tα + 2 (2)T α ∧ (3)Tα + (3)Rαβ ∧ ϑ

αβ
)
, (6)

with C−

TT :=
1

2
ϑα ∧ Tα and X as the curvature pseudoscalar, X = ηαβγδR

[αβγδ]/4!. We

add this form with a suitable constant f1 to our weak gravity Lagrangian:

Vweak = Vweak(a0; b0; a1, a2, a3; σ1, σ2; f1) := V +
weak + V −

weak +
f1
κ
B−

TT . (7)

It depends on the gravitational constant κ and the cosmological constant λ0 and,

furthermore, on the 8 constants specified in (7). By a suitable choice of f1, we can

compensate either the HMS-term [18] (that is, b0 = 0) or one tensor square term

of the torsion (that is, either σ1 = 0 or σ2 = 0). However, since (1)T α depends

on 16 independent components, the pseudoscalar curvature only on 1 component, it

seems to simplify the Lagrangian to a greater extent, if we kick out the term with
(1)T α. Thus, for the weak gravity Lagrangian we are left with 6 unspecified constants

(a0, b0; a1, a2, a3; σ2)
+.

‖ Parity even and odd torsion square terms were introduced by Purcell [20] even 2 years ealier.

¶ In a metric-affine spacetime [7] with the distortion 1-form Nα
β := Γa

β − Γ̃a
β, we can bring the

Nieh-Yan identity in a very compact form, see [59]:

d (Tα ∧ ϑα) =
(3)Rα

β ∧ ϑα ∧ ϑβ − Tα ∧Nα
β ∧ ϑβ . (5)

+ Diakonov et al. [8] found an equivalent result, but they eliminated the curvature pseudoscalar. Thus,

they are left with the 6 unspecified constants (a0; a1, a2, a3;σ1, σ2), that is, with the curvature scalar

plus the 5 torsion-square pieces.
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Looking back at Eq. (3), it could appear that we forgot the boundary term

B+
TT = 1

2
d(ϑα ∧ ⋆Tα) and that we could add it as f0

κ
B+

TT to the Lagrangian (7), see the

procedure of Mielke [60, 61]. However, if we compare the Nieh-Yan and the “teleparallel”

formulas

d (ϑα ∧ Tα) = T α ∧ Tα − ϑα ∧DTα and d(ϑα ∧ ⋆Tα) = T α ∧ ⋆Tα − ϑα ∧D ⋆Tα, (8)

respectively, then we recognize that in the former equation DTα can be eliminated via

the first Bianchi identity DTα = Rβα ∧ ϑβ , whereas in the latter equation such a trick

is impossible. Therefore, we would trade in for torsion square pieces derivatives of the

torsion and would mess up the first order character of our Lagrangian.∗

If one starts with the EC-Lagrangian and adds only an HMS-term, as numerous

people do, then, because of the Nieh-Yan form, two torsion square terms of odd parity

are induced. Hence, the Lagrangian can be reformulated as the EC-Lagrangian with

specific additional torsion square pieces:

VEC +
b0
2κ

(3)Rαβ ∧ ϑ
αβ = VEC −

b0
2κ

(
(1)T α ∧ (1)Tα + 2 (2)T α ∧ (3)Tα

)
+ d(. . .) .(10)

Then the question can hardly be circumvented, why one should choose only these specific

torsion square pieces with very specific constants and why the other torsion square pieces

should be forbidden, that is, the torsion square pieces come into focus. Moreover, it

is known that GR can be reformulated as a teleparallelism theory with torsion square

pieces in the Lagrangian [11, 12, 13, 14, 15, 16, 17]. In other words, the addition of the

HMS-term opens the door wide for torsion square Lagrangians.

Classically, it is consistent to consider only the two additional specific terms in

(10). However, it is not particularly plausible. If torsion is introduced as a new

concept, why should one then introduce it in the highly constrained form of (10)? In

loop quantum gravity [29], which is thought of as a fundamental theory of gravity, the

truncated Lagrangian (10) is taken as a classical starting point, see [29], Eq. (34), with

the argument that also in QCD a similar parity odd piece is used. However, then in

the Lagrangian the internal color group SU(3) with its potential A is put in analogy

to the local Poincaré group R4⊃×SO(1, 3) with its translation potential ϑα and Lorentz

potential Γαβ. Apart from the fact that QCD is quadratic in the field strength and (10)

is only linear in the curvature, this argument is less than convincing to us.

If gravity is seen in a quantum field theoretical context, see Diakonov et al.

[8], for instance, then, as Date et al. [40] have pointed out, the Lagrangian (10) is

insufficient anyway: “In a complete theory of gravity, besides the Nieh-Yan topological

term, we need to include two other topological terms, the Pontryagin density and

the Euler density. This introduces two additional topological parameters associated

with such topological terms, besides the parameter η [our b0] we have discussed here.

∗ We can combine the two equations in (8). This yields yields

d
(
ϑα ∧ ξ±α

)
= Tα ∧ ξ±α − ϑα ∧Dξ±α with ξ±α := Tα ± ⋆Tα . (9)

Mielke [60, 61] built a similar linear combination but with the imaginary unit in front of ⋆Tα, but

neither his nor our version seems to lead to firm conclusions up to now.
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Any quantum theory of gravity should have all these three CP-violating topological

couplings.”Actually, the Euler 4-form is CP-even, see equation (19) or [49].

From a totally different point of view, from observational cosmology and from

quantum chromodynamics, there are indications that we may live in a parity violating

Universe, see the review by Urban & Zhitnitsky [62]. All the more investigations in a

parity odd PG model seem desirable.

2. Quadratic Poincaré gauge theory and strong gravity

If one wants the Lorentz connection as a propagating field, then one has to allow for

“strong” gravity of the Yang-Mills type by adding quadratic curvature 4-forms to the

weak Lagrangian. The curvature Rαβ of a Riemann-Cartan space has six irreducible

pieces: Rαβ =
∑6

I=1
(I)Rαβ. We write symbolically, using the self-explanatory computer

names for the irreducible terms: curv (36 indep. comp.) = weyl (10) + paircom (9) +

pscalar (1) + ricsymf (9) + ricanti (6) + scalar (1), see [7] for the exact definitions.

In a Riemann space only (1)Rαβ, (4)Rαβ , and (6)Rαβ are left over. Hence the most general

parity even quadratic Lagrangian, with a new dimensionless coupling constant ̺, reads

V +
strong = −

1

2̺
Rαβ ∧

6∑
I=1

wI
⋆(I)Rαβ . (11)

Alerted by the corresponding case in weak gravity, we now search for parity odd terms.

They were found to be (see [63, 64]) as

V −

strong = −
1

2̺

(
µ1

(1)Rαβ ∧ (1)Rαβ + µ2
(2)Rαβ ∧ (4)Rαβ

+ µ3
(3)Rαβ ∧ (6)Rαβ + µ4

(5)Rαβ ∧ (5)Rαβ

)
, (12)

which are the only quadratic curvature square invariants of odd character in a 4D

Riemann-Cartan space. Note that in a Riemann space, that is, when torsion vanishes,

only the first piece built up from the Weyl curvature (1)Rαβ is left over.

Taking a lesson from the above, we can now search for boundary terms. As in any

Yang-Mills theory, we can find an untwisted Pontryagin 4-form B−

RR. But in gravity the

(anholonomic) Lorentz indices of the curvature can be contracted with the help of the

totally antisymmetric Levi-Civita tensor ηαβγδ. Accordingly, we introduce the so-called

Lie-dual of the curvature with the Lie star operator (∗) as

R(∗)αβ :=
1

2
Rµνη

µναβ . (13)

Like ηµναβ , the Lie star (∗) is twisted. It gives rise to the twisted Euler 4-form B+
RR(∗) .

Following [7], we have then the following two boundary terms:

B−

RR = dC−

RR =
1

2
Rαβ ∧R

αβ , B+
RR(∗) = dC+

RR(∗) =
1

2
Rαβ ∧R

(∗)αβ . (14)

Thus, the strong part of the gauge Lagrangian turns out to be

Vstrong := V +
strong + V −

strong +
f2
̺
B−

RR +
f3
̺
B+

RR(∗) . (15)
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The total quadratic gauge Lagrangian including boundary terms is then

Vgauge = V +
weak + V −

weak + V +
strong + V −

strong +
f1
κ
B−

TT +
f2
̺
B−

RR +
f3
̺
B+

RR(∗) . (16)

For vanishing torsion, Vweak reduces to VGR with cosmological constant and Vstrong has

only (w1, w4, w6;µ1; f2, f3) 6= 0. By a suitable choice of f2, f3, only the two terms with

w4, w6 survive, that is, those with the tracefree Ricci tensor and the curvature scalar.

3. The role of the Lie-dual of the curvature

Before we continue the investigation of (15), we will derive some rules for manipulating

curvature square terms containing a Lie star. Using heavily the computer-algebra system

Reduce with the Excalc package, compare [65, 66, 67, 68], we were able to convert

completely the Lie star (∗) into the Hodge star ⋆ according to the following rules: The

expression (I)Rµν ∧(J)R
(∗)
µν is diagonal, that is, ∝ δIJ ; only the diagonal pieces do not

vanish, namely

(I)Rµν∧ (I)R(∗)
µν = ± (I)Rµν∧ ⋆(I)Rµν , (17)

with + for I = 1, 3, 5, 6 and with − for I = 2, 4. Note that on the left-hand-side of this

equation we have the Lie star (∗), on the right-hand-side, however, the Hodge star ⋆.

This implies the relation, derived here for the first time explicitly♯,

Rαβ ∧R
(∗)
αβ = (1)Rαβ ∧ ⋆(1)Rαβ −

(2)Rαβ ∧ ⋆(2)Raβ +
(3)Rαβ ∧ ⋆(3)Raβ

− (4)Rαβ ∧ ⋆(4)Rαβ +
(5)Rαβ ∧ ⋆(5)Raβ +

(6)Rαβ ∧ ⋆(6)Raβ . (18)

In particular, this shows that the Lie star is superfluous in forming a quadratic

Lagrangian, the Hodge star is sufficient.

Comparison with (14) allows us to rewrite the Euler 4-form with the help of the

Hodge star as

B+
RR(∗) =

1

2

(
Rαβ ∧ ⋆Rαβ − 2(4)Rαβ ∧ ⋆(4)Rαβ − 2(2)Rαβ ∧ ⋆(2)Rαβ

)
. (19)

The Pontryagin 4-form, also defined in (14), after some algebra, can be expressed in

terms of the irreducible pieces of the curvature as (also this relation is new)

B−

RR =
1

2

(
(1)Rαβ ∧

(1)Rαβ + (5)Rαβ ∧
(5)Rαβ

+2 (3)Rαβ ∧
(6)Rαβ + 2 (2)Rαβ ∧

(4)Rαβ
)
. (20)

4. Comparison with Diakonov et al. [8]

Recently, in the framework of perturbative quantum field theory, new results were

reported [8] on including torsion in a gravitational gauge theory for describing fermionic

matter, for a review of some earlier results, see [69]. In this context, Diakonov et al.

♯ By using some simple algebra, Eq.(18) can alternatively be derived in a straightforward way from

Eqs.(10.17) to (10.22) of Obukhov [4].
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investigated gravitational gauge Lagrangians containing quadratic terms in the gauge

fields of even and of odd parity. That is, contributions of the weak and the strong gravity

sector (Lorentz gauge bosons) were considered. Generally, those 4-fermion interaction

terms will give additional contributions to the energy-momentum current of matter.

This aspects might be relevant in the context of quantum cosmological models, see

[52, 55, 56]. Other groups address only weak gravity, even though they include Euler

and Pontryagin terms, which refer to strong gravity, see Benedetti et al. [70].

In the following, we would like to compare the approach given in [8] with the results

we already gave in [64].

4.1. Torsion square invariants

Let us compare our torsion-square invariants in (7), see also [64], with those in [8],

Eq.(53). If we add a plus sign for parity even and a minus sign for parity odd terms,

the invariants of Diakonov et al., multiplied by the volume form η, read:

K+
1 = 2 (1)T α ∧ ⋆(1)Tα − 2 (2)T α ∧ ⋆(2)Tα + 2 (3)T α ∧ ⋆(3)Tα , (21)

K+
2 = 3 (2)T α ∧ ⋆(2)Tα , (22)

K+
3 = (1)T α ∧ ⋆(1)Tα + (2)T α ∧ ⋆(2)Tα − 2 (3)T α ∧ ⋆(3)Tα , (23)

K−

4 = − 2 (1)T α ∧ (1)Tα + 4 (2)T α ∧ (3)Tα , (24)

K−

5 = (1)T α ∧ (1)Tα + 4 (2)T α ∧ (3)Tα , (25)

and the inverse relations are

(1)T α ∧ ⋆(1)Tα =
1

9
(3K+

1 +K+
2 + 3K+

3 ) , (26)

(2)T α ∧ ⋆(2)Tα =
1

3
K+

2 , (27)

(3)T α ∧ ⋆(3)Tα =
1

12
(3K+

1 + 4K+
2 − 6K+

3 ) , (28)

(1)T α ∧ (1)Tα = −
1

3
(K−

4 −K−

5 ) , (29)

(2)T α ∧ (3)Tα =
1

12
(K−

4 + 2K−

5 ) . (30)

These 5 invariants agree with those given in [64], Eqs.(30) and (55).

4.2. Curvature square invariants

Diakonov et al. [8], Eq. (59), find 6 even and 4 odd independent quadratic invariants

GI . As we did with the torsion invariants, we translate their component representations

into the language of exterior differential forms used by us. We find, after some messy

computer checked algebra, the following curvature invariants (multiplied by η):

G+
1 = R2η = 12 (6)Rαβ ∧

⋆(6)Rαβ , (31)

G+
2 = RµνρλR

µνρλη = 2Rαβ ∧
⋆Rαβ = 2

6∑

I=1

(I)Rαβ ∧ ⋆(I)Rαβ , (32)
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G+
3 = RµνρλR

λρνµη

= 2
(
(1)Rαβ ∧ ⋆(1)Rαβ −

(2)Rαβ ∧ ⋆(2)Rαβ +
(3)Rαβ ∧ ⋆(3)Rαβ

+(4)Rαβ ∧ ⋆(4)Rαβ −
(5)Rαβ ∧ ⋆(5)Rαβ +

(6)Rαβ ∧ ⋆(6)Rαβ

)
, (33)

G+
4 =

(
R2 − 4RicµλRic

λµ +RµνρλR
λρνµ

)
η

= 2
(
(1)Rαβ ∧ ⋆(1)Rαβ −

(2)Rαβ ∧ ⋆(2)Rαβ +
(3)Rαβ ∧ ⋆(3)Rαβ

−(4)Rαβ ∧ ⋆(4)Rαβ +
(5)Rαβ ∧ ⋆(5)Rαβ +

(6)Rαβ ∧ ⋆(6)Rαβ

)
, (34)

G+
5 =

(
R2 − 4RicµλRic

µλ +RµνρλR
µνρλ

)
η

= 2
(
(1)Rαβ ∧ ⋆(1)Rαβ +

(2)Rαβ ∧ ⋆(2)Rαβ +
(3)Rαβ ∧ ⋆(3)Rαβ

−(4)Rαβ ∧ ⋆(4)Rαβ −
(5)Rαβ ∧ ⋆(5)Rαβ +

(6)Rαβ ∧ ⋆(6)Rαβ

)
, (35)

G+
6 =

(
ηλρµνRµνρλ

)2
η = −48 (3)Rαβ ∧

⋆(3)Rαβ , (36)

G−

7 = RηλρµνRµνρλη = −24 (3)Rαβ ∧
(6)Rαβ , (37)

G−

8 = ηµναβRµνρλRαβ
ρλη

= − 4 (1)Rαβ ∧
(1)Rαβ − 4 (5)Rαβ ∧

(5)Rαβ

− 8 (3)Rαβ ∧
(6)Rαβ − 8 (2)Rαβ ∧

(4)Rαβ , (38)

G−

9 = ηλργδRµνρλR
µν

δγη

= − 4 (1)Rαβ ∧
(1)Rαβ − 4 (5)Rαβ ∧

(5)Rαβ

− 8 (3)Rαβ ∧
(6)Rαβ + 8 (2)Rαβ ∧

(4)Rαβ , (39)

G−

10 = ηλραβRµνρλRαβ
νµη

= − 4 (1)Rαβ ∧
(1)Rαβ + 4 (5)Rαβ ∧

(5)Rαβ − 8 (3)Rαβ ∧
(6)Rαβ . (40)

The inverse relations are convenient for a detailed comparison. They turn out to be

(1)Rαβ ∧ ⋆(1)Rαβ = −
1

12
G+

1 +
1

8

(
G+

2 +G+
3 +G+

4 +G+
5

)
+

1

48
G+

6 , (41)

(2)Rαβ ∧ ⋆(2)Rαβ =
1

8

(
G+

2 −G+
3 −G+

4 +G+
5

)
, (42)

(3)Rαβ ∧ ⋆(3)Rαβ = −
1

48
G+

6 , (43)

(4)Rαβ ∧ ⋆(4)Rαβ =
1

8

(
G+

2 +G+
3 −G+

4 −G+
5

)
, (44)

(5)Rαβ ∧ ⋆(5)Rαβ =
1

8

(
G+

2 −G+
3 +G+

4 −G+
5

)
, (45)

(6)Rαβ ∧ ⋆(6)Rαβ =
1

12
G+

1 , (46)

and

(1)Rαβ ∧ (1)Rαβ = −
1

16

(
G−

8 +G−

9 + 2G−

10

)
+

1

12
G−

7 , (47)

(2)Rαβ ∧ (4)Rαβ = −
1

16

(
G−

8 −G−

9

)
, (48)

(3)Rαβ ∧ (6)Rαβ = −
1

24
G−

7 , (49)
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(5)Rαβ ∧ (5)Rαβ = −
1

16

(
G−

8 +G−

9 − 2G−

10

)
. (50)

It is now straightforward to express the Euler 4-form (19) and the Pontryagin 4-form

(20) in terms of the GI ’s. We find

B+
RR(∗) =

1

4
G+

4 and B−

RR = −
1

8
G−

8 , (51)

respectively. This is what Diakonov et al. stressed: that their invariants G+
4 and G−

8 are

boundary terms. These two boundary terms can also be found in our earlier work, see

[64], Eqs.(33) and (50).

Hence the results of Diakonov et al. [8] with respect to the quadratic invariants of

torsion and curvature coincide with those of [64]. This is also manifest in the Riemannian

subcase, that is, for vanishing torsion T α = 0. Then,

(2)Rαβ = (3)Rαβ = (5)Rαβ = 0 , (52)

or, in terms of the GI ’s,

G+
2 = G+

3 , G+
4 = G+

5 , G+
6 = G+

7 = 0 , G+
8 = G+

9 = G+
10 , (53)

which can be read off directly from the Eqs.(31) to (40). Under the condition of vanishing

torsion the boundary terms read

B+
RR(∗) |Tα=0 =

1

2

(
(1)Rαβ ∧ ⋆(1)Rαβ −

(4)Rαβ ∧ ⋆(4)Rαβ +
(6)Rαβ ∧ ⋆(6)Raβ

)
, (54)

B−

RR|Tα=0 =
1

2
(1)Rαβ∧ (1)Rαβ . (55)

5. The number of independent terms in the most general quadratic PG

Lagrangian

For the strong gravitational Lagrangian Vstrong in (15), we can enter in a similar

discussion as for Vweak in (7): Besides the strong gravitational coupling constant ̺,

we have the 12 constants (w1, w2, ..., w6;µ1, µ2, µ3, µ4; f2, f3). By a suitable choice of

f2 and f3, we can compensate the terms containing the Weyl 2-form (1)Rαβ with 10

independent components, as can be seen from (19) and (20). Consequently, we are left

with the 8 constants (w2, ..., w6;µ2, µ3, µ4). Diakonov et al. [8] found the 10 invariants

GI , two of which, namely G+
4 and G−

8 are boundary terms. Hence they also arrive at 8

independent invariants. Accordingly, also for strong gravity our results match those of

Diakonov et al.

Our final gravitational Lagrangian is then††

V =
1

2κ
[ ( a0R− 2Λ0 + b0X) η

†† If we introduce the notations R and X for the curvature scalar and the curvature pseudoscalar, then

we find (6)Rαβ = −Rϑαβ/12 and (3)Rαβ = −Xηαβ/12, respectively; moreover, for the torsion we can

define the 1-forms of A and V for the axial vector and the vector torsion (3)Tα = ⋆(A ∧ ϑα)/3 and
(2)Tα = −(V ∧ ϑα)/3, respectively.
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+
a2
3
V ∧ ⋆V −

a3
3
A∧ ⋆A−

2σ2
3

V ∧ ⋆A+ a1
(1)T α ∧ ⋆(1)Tα

]

−
1

2̺

[
(
w6

12
R2 −

w3

12
X2 +

µ3

12
RX) η + w4

(4)Rαβ ∧ ⋆(4)Rαβ

+(2)Rαβ ∧ (w2
⋆(2)Rαβ + µ2

(4)Rαβ) +
(5)Rαβ ∧ (w5

⋆(5)Rαβ + µ4
(5)Rαβ)

]
. (56)

The first two lines represent weak gravity, the last two lines strong gravity. The parity

odd pieces are those with the constants b0, σ2;µ2, µ3, µ4. In a Riemann space (where

X = 0), only two terms of the first line and likewise two terms in the third line survive.

All these 4 terms are parity even, that is, only torsion brings in parity odd pieces into

the gravitational Lagrangian.

Yo and Nester [71, 72, 73] found that only a small subclass of the Lagrangians (56)

is consistent from a Hamiltonian point of view. They, together with Shie, presented

such a Lagrangian [74] and found an accelerating cosmological Friedman type model

with propagating connection. Shortly afterwards, Nester and his group, see Chen et

al. [75], generalized this model and introduced a consistent Lagrangian containing the

parity odd pieces A and X . Since these terms occur quadratically, their Lagrangian was

still parity even:

VChen et al. =
1

2κ
(a0R− 2Λ0) η +

1

6κ
(a2V ∧ ⋆V − a3A ∧ ⋆A)

−
1

24̺

(
w6R

2 − w3X
2
)
η . (57)

The next step was done by Baekler et al. [64], see also [76, 77]. They investigated a

Lagrangian with three additional pieces with odd parity (57), namely those carrying the

constants b0, σ2, µ3:

VBHN =
1

2κ
(a0R− 2Λ0 + b0X)η +

1

6κ
(a2V ∧ ⋆V − a3A ∧ ⋆A− 2σ2V ∧ ⋆A)

−
1

24̺

(
w6R

2 − w3X
2 + µ3RX

)
η . (58)

Now one should analyze the particle content of the lagrangian (56), that is, to find out

which modes are propagating decently. This has been done in [64] by the simple method

of the diagonalization of the Lagrangian. The results turned out to be in agreement with

those of the Hamiltonian approach.

It is manifest already by now, looking beyond the Einstein-Cartan theory including

parity odd Lagrangians is a field with bright prospects.
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[2] M. Blagojević, Gravitation and Gauge Symmetries (IoP Publishing, Bristol, 2002). 2

[3] T. Ort́ın, Gravity and Strings (Cambridge University Press, Cambridge, UK, 2004). 2

[4] Y. N. Obukhov, Int. J. Geom. Meth. Mod. Phys. 3, 95 (2006) [arXiv:gr-qc/0601090]. 2, 6

[5] A. Trautman, in: Encyclopedia of Math. Physics, J.-P. Francoise et al., eds. (Elsevier, Oxford,

2006) p. 189 [arXiv:gr-qc/0606062]. 2

[6] J. A. Schouten, Ricci-Calculus, 2nd ed. (Springer: Berlin, 1954). 2

[7] F. W. Hehl, J. D. McCrea, E. W. Mielke and Y. Ne’eman, Phys. Rept. 258, 1 (1995). 2, 3, 5

[8] D. Diakonov, A. G. Tumanov and A. A. Vladimirov, arXiv:1104.2432v2, version 2 (17 April 2011).

2, 3, 4, 6, 7, 9

[9] L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, Vol.2 of Course of Theoretical

Physics, 4th rev. English ed. [transl. from the 6th rev. Russian ed.] (Elsevier, Amsterdam, 1975).

2

[10] W.-T. Ni, Rep. Prog. Phys. 73, 056901 (2010) [arXiv:0912.5057]. 2

[11] F. W. Hehl, in: Proc. of the 6th Course of the School of Cosmology and Grav-

itation on Spin, Torsion, Rotation, and Supergravity, held at Erice, Italy, May

1979, P.G. Bergmann, V. de Sabbata, eds. (Plenum, New York 1980) p. 5 [see

http://www.thp.uni-koeln.de/gravitation/mitarbeiter/Erice1979.pdf]. 2, 4

[12] E. W. Mielke, Annals Phys. (N.Y.) 219, 78 (1992). 2, 4
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