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To study the coupling system of space-time and Fermions, we need the explicit

form of the energy-momentum tensor of spinors. The energy-momentum tensor is

closely related to the tetrad frames which cannot be uniquely determined by the

metric. This flexibility increases difficulties to derive the exact expression and easily

leads to ambiguous results. In this paper, we give a detailed derivation for the

energy-momentum tensor of Weyl and Dirac spinors. From the results we find that,

besides the usual kinetic energy momentum term, there are three kinds of other

additional terms. One is the nonlinear self-interactive potential, which acts like

negative pressure. The other reflects the interaction of momentum pµ with tetrad.

The third is the spin-gravity coupling term which is a higher order infinitesimal in

weak field, but may be important in a neutron star. This term is also closely related

with magnetic field of a celestial body. These results are based on the decomposition

of usual spin connection into geometrical part and dynamical part, which not only

makes calculation simpler, but also highlights their different physical meanings. In

addition, we get a new tensor Sµν
ab in calculation of tetrad formalism, which plays an

important role in the interaction of spinor with gravity.
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I. INTRODUCTION

The spinor field can give explanation for the accelerating expansion of the universe, and

may be a possible candidate of dark matter. It is studied by some researchers in recently

years[1–6]. In these works, the space-time is usually Friedmann-Lemaitre-Robertson-Walker

type with diagonal metric. The energy-momentum tensor(EMT) Tµν of spinors is simple

and can be directly derived from Lagrangian of the spinor field in this case. There are some

approaches to the general expression of EMT of spinors in curved space-time[6–9]. But the

formalisms are usually quite complicated for practical calculation and different from each

other. In [7, 8], according to the Pauli’s theorem

δγ̃α =
1

2
γ̃βδg

αβ + [γ̃α,M ], (1.1)

whereM is a traceless matrix related to the frame transformation, the EMT for Dirac spinor

φ was derived as follows,

T µν =
1

2
ℜ〈φ† (γ̃µi∇ν + γ̃νi∇µ)φ〉, (1.2)

where φ† = φ+γ is the Dirac conjugation, ∇µ is the usual covariant derivatives for spinor.

A detailed calculation for variation of action was performed in [6], and the results were a

little different from (1.1) and (1.2).

The following calculation shows that, M is still related with δgµν, and provides nonzero

contribution to T µν in general cases. Besides, the covariant derivatives operator i∇µ is not

parallel to the classical momentum pµ and the expression (1.2) is complicated for practical

calculation and some important effects are covered by the compact form. The exact EMT

of spinor was actually not obtained before.

The derivation of Tµν is quite difficult due to non-uniqueness representation and com-

plicated formalism of vierbein or tetrad frames. In this paper, we give a systematical and

detailed calculation for EMT of Weyl and Dirac spinors. We clearly establish the relations

between tetrad and metric at first, and then solve the Euler derivatives with respect to gµν

to get explicit and rigorous Tµν .

From the results we find some new and interesting conclusions. Besides the usual kinetic

energy momentum term, we find three kinds of other additional terms in EMT of bispinor.

One is the self interactive potential, which acts like negative pressure. The other reflects the
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interaction of momentum pµ with tetrad, which vanishes in classical approximation. The

third is the spin-gravity coupling term Ωαs
α, which is a higher order infinitesimal in weak

field, but becomes important in a neutron star. This term is the eye of a particle with

location and navigation functions, and is closely related with magnetic field of a celestial

body. All these results are based on the decomposition of usual spin connection Γµ into

geometrical part Υµ and dynamical part Ωµ, which not only makes calculation simpler, but

also highlights their different physical meanings. In addition, in the calculation of tetrad

formalism we find a new tensor Sµν
ab which plays an important role in the interaction of

spinor with gravity and appears in many places.

The materials are organized as follows: In the next section, we specify all notations,

conventions and relevant equations used in the discussion. In the third section, we provide

the technical foundations for the following derivation of EMT. We derive the exact EMT of

spinor and its classical approximation in section IV, and then we give some simple discussions

and illustrations in the last section.

II. NOTATIONS AND EQUATIONS

Denote the metric and coordinates of the Minkowski space-time respectively by

ηab = diag(−1,−1,−1, 1), δXµ = (δX, δY, δZ, cδT ). (2.1)

The Pauli matrices are expressed by

σµ =






 0 1

1 0


 ,


 0 −i
i 0


 ,


 1 0

0 −1


 ,


 1 0

0 1






 , (2.2)

σ̃µ = (−~σ, σ0), ~σ = (σ1, σ2, σ3). (2.3)

where a, µ ∈ 0, 1, 2, 3. In this paper, we use the Greek characters stand for indices of

curvilinear coordinates and Latin characters for indices of local Minkowski coordinates. The

element of the space-time can be expressed by

dx = γ̃µdx
µ = γaδX

a, (2.4)

where γa and γ̃µ are tetrad expressed by Dirac matrices

γµ =


 0 σ̃µ

σµ 0


 , γ̃µ = hµaγ

a, γ̃µ = l a
µ γa, (2.5)
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which satisfies the Cℓ(1, 3) Clifford algebra[10–14]

γµγν + γνγµ = ηµν , γ̃µγ̃ν + γ̃νγ̃µ = gµν . (2.6)

In Minkowski space-time, we have Dirac equation

γµi∂µφ = mφ, (2.7)

or in chiral form[10]



σµi∂µψ = mψ̃,

σ̃µi∂µψ̃ = mψ,
φ =


 ψ

ψ̃


 , (2.8)

where ψ, ψ̃ are two Weyl spinors.

Denote the Pauli matrices in curved space-time by



̺µ = hµaσ

a, ̺µ = l a
µ σa,

˜̺µ = hµaσ̃
a, ˜̺µ = l a

µ σ̃a,
γ̃µ =


 0 ˜̺µ

̺µ 0


 , (2.9)

then we have Clifford algebra as follows

̺µ ˜̺ν + ̺ν ˜̺µ = ˜̺µ̺ν + ˜̺ν̺µ = 2gµν . (2.10)

The Weyl spinor equation (2.8) in curved space-time becomes




̺µi(∂µ + Γµ)ψ = mψ̃,

˜̺µi(∂µ + Γ̃µ)ψ̃ = mψ,
(2.11)

where Γµ and Γ̃µ are the spinor affine connections[1, 2, 4–6, 8, 13],

Γµ =
1

4
˜̺ν̺ν;µ, Γ̃µ =

1

4
̺ν ˜̺ν;µ, (2.12)

in which ̺µ;ν = ∂ν̺
µ + Γµ

αν̺
α.

In order to disclose the physical meanings of connection, the total covariant derivatives

of spinor can be represented in the following form[15],

̺µi(∂µ + Γµ) = ̺µ [i(∂µ +Υµ) + Ωµ] , (2.13)

˜̺µi(∂µ + Γ̃µ) = ˜̺µ [i(∂µ +Υµ)− Ωµ] . (2.14)

In which, Υµ is related with the grade-1 Clifford algebra, which has only geometrical effect,

Υµ ≡ 1

2
(laµ∂νh

ν
a + ∂µ ln

√
g) =

1

2
hνa(∂µl

a
ν − ∂ν l

a
µ). (2.15)
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But Ωµ is related with grade-3 Clifford algebra[16]. Similarly, for Dirac bispinor in curved

space-time we have

∇µφ = (∂µ + Γ̂µ)φ, Γ̂µ =
1

4
γ̃ν γ̃

ν
;µ. (2.16)

More generally, the Lagrangian corresponding to (2.11) with electromagnetic interaction

and nonlinear self-potential F is given by

Lm = ℜ〈φ+α̃µp̂µφ〉+ Ωµφ
+ŝµφ−mφ+γ0φ+ F, (2.17)

= ℜ〈ψ+̺µp̂µψ + ψ̃+ ˜̺µp̂µψ̃〉+ ψ+Ωψ + ψ̃+Ω̃ψ̃ −m(ψ̃+ψ + ψ+ψ̃) + F, (2.18)

where ℜ〈〉 means taking real part, w̃ > 0 is the nonlinear coupling coefficient,

F =
1

2
w̃γ̌2, γ̌ = φ+γ0φ. (2.19)

(p̂µ, α̃
µ, ŝµ) are respectively momentum, current and spin operators defined by

p̂µ = i(∂µ +Υµ)− eAµ, α̃µ = diag(̺µ, ˜̺µ), ŝµ = diag(̺µ,−˜̺µ). (2.20)

Ω and Ω̃ are two Hermitian matrix defined by




Ω ≡ i
8
[̺µ ˜̺α∂µ̺α − (∂µ̺α)˜̺α̺µ] = Ωµ̺

µ = ωaσ
a,

Ω̃ ≡ i
8
[˜̺µ̺α∂µ ˜̺α − (∂µ ˜̺α)̺α ˜̺µ] = −Ωµ ˜̺µ = −ωaσ̃

a.
(2.21)

For any diagonal metric, it easy to check Ω = Ω̃ = 0. By straightforward calculation we

have[15]





ω0 = −1
4
(~hα ×~hβ) · ∂α~lβ,

~ω = −1
4

(
∂αl

0
β (~hα ×~hβ)− (hα0

~hβ − h
β
0
~hα)× ∂α~lβ

)
,

Ωµ = −1
4

(
(~hα ×~hβ) · (l 0

µ ∂α
~lβ −~lµ∂αl 0

β ) +~lµ · [(hα0~hβ − h
β
0
~hα)× ∂α~lβ]

)
,

(2.22)

in which ~ω = (ω1, ω2, ω3). (2.22) defines the dynamical part of the spinor connection.

III. RELATIONS BETWEEN TETRAD AND METRIC

In this section, we give an explicit representation of tetrad formalism. The derivation of

EMT is based on this representation. Different from the cases of vector and tensor, in general

relativity the dynamical equations for spinor fields depend on the local tetrad frame, which
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make the representation of the spinor connection and the EMT quite complicated. Assume

that xµ = (x, y, z, ct) is the coordinates and δXa is the element vector in the tangent space at

fixed point xµ. The tetrad γ̃µ cannot be uniquely determined by metric, which can be only

determined to an arbitrary local Lorentz transformation. Now we derive some important

relations used below.

Lemma 1. For Pauli matrices (2.2) and (2.3), we have relations





σaσ̃bσc − σcσ̃bσa = 2iǫabcdσd,

σ̃aσbσ̃c − σ̃cσbσ̃a = −2iǫabcdσ̃d,
(3.1)

in which ǫabcd is the permutation function.

Lemma 1 can be easy checked. We have only 4 nonzero cases for each equation.

For metric gµν , not losing generality we assume that, in the neighborhood of xµ, dx0 is

time-like and (dx1, dx2, dx3) are space-like. This means g00 ≥ 0 and gkk ≤ 0(k 6= 0), and the

following definitions of Jk are real numbers

J1 =
√−g11, J2 =

√√√√√

∣∣∣∣∣∣
g11 g12

g21 g22

∣∣∣∣∣∣
, J3 =

√√√√√√√√
−

∣∣∣∣∣∣∣∣∣

g11 g12 g13

g21 g22 g23

g31 g32 g33

∣∣∣∣∣∣∣∣∣

, J0 =
√
− det(g). (3.2)

Denote

u1 =

∣∣∣∣∣∣
g11 g12

g31 g32

∣∣∣∣∣∣
, u2 =

∣∣∣∣∣∣
g11 g12

g01 g02

∣∣∣∣∣∣
, u3 =

∣∣∣∣∣∣
g21 g22

g31 g32

∣∣∣∣∣∣
, (3.3)

and

v1 =

∣∣∣∣∣∣∣∣∣

g12 g13 g10

g22 g23 g20

g32 g33 g30

∣∣∣∣∣∣∣∣∣

, v2 =

∣∣∣∣∣∣∣∣∣

g11 g13 g10

g21 g23 g20

g31 g33 g30

∣∣∣∣∣∣∣∣∣

, v3 =

∣∣∣∣∣∣∣∣∣

g11 g12 g10

g21 g22 g20

g31 g32 g30

∣∣∣∣∣∣∣∣∣

, (3.4)

then we have the following conclusion.

Theorem 2. For LU decomposition of matrix (gµν),

(gµν) = L(ηab)L
+, (gµν) = U(ηab)U

+, U = L∗ = (L+)−1, (3.5)
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with positive diagonal elements, we have the following unique solution

L = (L a
µ ) =




−g11
J1

0 0 0

−g21
J1

J2
J1

0 0

−g31
J1

u1

J1 J2

J3
J2

0

−g01
J1

u2

J1 J2
− v3

J2 J3

J0
J3



, (3.6)

U = (Uµ
a) =




1
J1

g21
J1 J2

u3

J2 J3

v1
J3 J0

0 J1
J2

− u1

J2 J3
− v2

J3 J0

0 0 J2
J3

v3
J3 J0

0 0 0 J3
J0



. (3.7)

(3.6) and (3.7) can be checked directly. For any other solutions of (2.5), we have

Theorem 3. For any solution of tetrad (2.5) in matrix form (l a
µ ) and (hµa), there exists

a local Lorentz transformation δX ′a = Λa
bδX

b independent of gµν , such that

(l a
µ ) = LΛ+, (hµa) = UΛ−1, (3.8)

where Λ = (Λa
b) stands for the matrix of Lorentz transformation.

Theorem 3 can be checked as follows,

(gµν) = L(ηab)L
+ = (l a

µ )(ηab)(l
a

µ )+ =⇒ L−1(l a
µ )(ηab)(L

−1(l a
µ ))+ = (ηab). (3.9)

Then we have a Lorentz transformation matrix Λ = (Λa
b), such that

L−1(l a
µ ) = Λ+ =⇒ (l a

µ ) = LΛ+, or l a
µ = L b

µ Λ
a
b. (3.10)

Similarly we have (hµa) = UΛ−1.

Remark. The decomposition (3.5) is nothing but a Gram-Schmidt orthogonalization for

vectors dxµ = (dx, dy, dz, dt) in tangent space-time in the order dt → dz → dy → dx,

namely in vector form δX = dxL or

ds2 = gµνdx
µdxν = ηabδX

aδXb

= −(L X
x dx+ L X

y dy + L X
z dz + L X

t dt)2

−(L Y
y dy + L Y

z dz + L Y
t dt)2 − (L Z

z dz + L Z
t dt)2 + (L T

t dt)2. (3.11)
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(3.11) is a direct result of (3.6), but (3.11) manifestly shows the geometrical meanings of

the tetrad components L a
µ . Obviously, (3.11) is much convenient for practical calculation

of tetrad parameters.

Define a spinor coefficient tensor by

S
µν
ab ≡ 1

2
(hµah

ν
b + hνah

µ
b)sgn(a− b). (3.12)

S
µν
ab is symmetrical for Riemann indices (µ, ν) but anti-symmetrical for Minkowski indices

(a, b). (3.12) is important for the following calculation. By representation of (3.6), (3.7) and

relation (3.8), we can check the following results by straightforward calculation.

Theorem 4. For any solution of tetrad (2.5), we have

∂l n
α

∂gµν
=

1

4
(δµαh

ν
m + δναh

µ
m)η

nm +
1

2
S
µν
ab l

a
α η

nb. (3.13)

∂hαa
∂gµν

= −1

4
(hµag

αν + hνag
µα)− 1

2
S
µν
ab h

α
nη

nb. (3.14)

Or equivalently,

∂̺α

∂gµν
=

1

4
(δµα̺

ν + δνα̺
µ) +

1

2
S
µν
ab l

a
α σ

b. (3.15)

∂̺α

∂gµν
= −1

4
(gµα̺ν + gνα̺µ)− 1

2
S
µν
ab h

α
nη

nbσa. (3.16)

In (3.13)-(3.16) we set ∂̺α
∂gµν

= ∂̺α
∂gνµ

= 1
2

d̺α
dgµν

(µ 6= ν) to get the tensor form. d
dgµν

means the

total derivative for gµν and gνµ. For given vector Aα, we have

Aα ∂̺α

∂gµν
=

1

4
(Aµ̺ν + Aν̺µ) +

1

2
S
µν
ab A

αl a
α σ

b. (3.17)

Aα

∂̺α

∂gµν
= −1

4
(Aµ̺ν + Aν̺µ)− 1

2
S
µν
ab Aαh

α
nη

nbσa. (3.18)

Similarly, for Dirac matrices we have

Corollary 5. For Dirac matrices (2.5), we have

∂γ̃α

∂gµν
=

1

4
(δµαγ̃

ν + δναγ̃
µ) +

1

2
S
µν
ab l

a
α γ

b. (3.19)

Or equivalently, for any given vector Aµ, we have

Aα ∂γ̃α

∂gµν
=

1

4
(Aµγ̃ν + Aν γ̃µ) +

1

2
S
µν
ab A

αl a
α γ

b. (3.20)
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IV. ENERGY-MOMENTUM TENSOR OF SPINORS

Now we consider the coupling system of spinor and gravity. The Ricci tensor and scalar

curvature is defined by

Rµν = ∂µΓ
α
να − ∂αΓ

α
µν + Γα

µβΓ
β
να − Γα

µνΓ
β
αβ, R ≡ gµνRµν .

The total Lagrangian of the system reads

L =
1

2κ
Lg + Lm = − 1

2κ
(R− 2Λ) + Lm, (4.1)

where κ = 8πG, Λ is the cosmological constant, Lm the Lagrangian of spinors (2.18).

Variation of the Lagrangian (4.1) with respect to gµν we get Einstein’s equation

Rµν − 1

2
gµνR + Λgµν = κT µν , (4.2)

where T µν is EMT of the spinors, which is defined by

T µν = −2
δ(Lm

√
g)

√
gδgµν

= −2

(
∂Lm

∂gµν
− (∂α + Γγ

αγ)
∂Lm

∂(∂αgµν)

)
− gµνLm, (4.3)

where g = | det(gµν)| and δ
δgµν

is the Euler derivatives.

We take ψ as example to derive relations, because we have similar results for ψ̃. By (2.18)

and (3.16) we have

Eµν
p ≡ ∂

∂gµν
ℜ〈ψ+̺αp̂αψ〉 = −1

4
ℜ〈ψ+(̺µp̂ν + ̺ν p̂µ + 2Sµν

ab h
α
nη

nbσap̂α)ψ〉. (4.4)

By (2.21), (3.1) and (3.17) we rewrite Ω as follows,

Ω =
i

8

(
̺µ ˜̺α ∂̺α

∂gλκ
− ∂̺α

∂gλκ
˜̺α̺µ

)
∂µgλκ,

=
i

16

(
σaσ̃bσc − σcσ̃bσa

)
hµaS

λκ
bc ∂µgλκ, by (3.17)

= −1

8
ǫabcdσdh

µ
aS

λκ
bc ∂µgλκ =

1

8
ǫdabcσdh

µ
aS

λκ
bc ∂µgλκ. by (3.1) (4.5)

By (4.5), we get (Ωα, ωa) expressed by ∂αgµν as follows,

ωd =
1

8
ǫdabchαaS

µν
bc ∂αgµν , Ωα =

1

8
ǫdabcl α

d h
β
aS

µν
bc ∂βgµν . (4.6)

Then we get

∂(ψ+Ωψ)

∂gµν
= −1

8
ǫabcdσ̌d

∂(hαaS
λκ
bc )

∂gµν
∂αgλκ, σ̌d ≡ ψ+σdψ, (4.7)

(∂α + Γβ
αβ)

∂(ψ+Ωψ)

∂(∂αgµν)
= −1

8
ǫabcd

(
hαaS

µν
bc (∂α + Γβ

αβ)σ̌d + σ̌d
∂(hαaS

µν
bc )

∂gλκ
∂αgλκ

)
, (4.8)
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and then we have the Euler derivative for ψ+Ωψ as

Eµν
Ω ≡ δ(ψ+Ωψ)

δgµν
=
∂(ψ+Ωψ)

∂gµν
− (∂α + Γβ

αβ)
∂(ψ+Ωψ)

∂(∂αgµν)
,

=
1

8
ǫabcd

[
hαaS

µν
bc (∂α + Γβ

αβ)σ̌d + σ̌d

(
∂(hαaS

µν
bc )

∂gλκ
− ∂(hαaS

λκ
bc )

∂gµν

)
∂αgλκ

]
. (4.9)

In principle, we can substitute (3.14) into (4.9) and then simplify it to get the final

expression of Eµν
Ω . However, the structure of Eµν

Ω has been clear, and we need not to do

so complicated calculations now, because it is a second order tenser including only linear

first order derivatives ∂µσ̌d and ∂µgαβ. The vectors and tensors constructed by metric and

its linear first order derivatives are only (Υµ,Ωµ) multiplied by gµν and gαβ. Substituting

σ̌d = h
β
d ˇ̺β into (4.9), then the simplified expression should take the following covariant form

Eµν
Ω =

1

8
ǫabcdhαah

β
bS

µν
cd ˇ̺β;α + gµν(k1Ω

α + k2Υ
α)ˇ̺α, (4.10)

where (k1, k2) are 2 constants to be determined.

For diagonal metric we have Ω = S
µµ
ab = Eµµ

Ω = 0, and then by (4.10) we get k2 = 0.

In Gaussian normal coordinate system gµν = (−ḡkl, 1), we have Hamiltonian for linear

bispinor[15]

H = −α̃kp̂k + eA0 +mγ0 − Ωµŝ
µ. (4.11)

By (4.3) and (4.10), we have

T 00 = −2E00
Ω + · · · = −2k1Ωµš

µ + · · · , (4.12)

in which the omitted terms are irrelevant with the following comparison. Since T 00 is energy

of the spinors, in contrast (4.12) with (4.11) we get k1 =
1
2
. So we get

Eµν
Ω =

1

8
ǫabcdhαah

β
bS

µν
cd ˇ̺β;α +

1

2
gµνΩα ˇ̺α. (4.13)

Similarly, for ψ̃ we have

Eµν

Ω̃
= −1

8
ǫabcdhαah

β
bS

µν
cd
ˇ̺̃
β;α − 1

2
gµνΩα ˇ̺̃

α,
ˇ̺̃
α ≡ ψ̃+ ˜̺αψ̃. (4.14)

For total spin ŝµ we have

Eµν
s = Eµν

Ω + Eµν

Ω̃
=

1

8
ǫabcdhαah

β
bS

µν
cd šβ;α +

1

2
gµνΩαšα, šα ≡ φ+ŝφ. (4.15)
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Substituting (4.4) and (4.15) into (4.3), we get the EMT for Weyl spinors

T µν =
1

2
ℜ〈ψ+(̺µp̂ν + ̺ν p̂µ)ψ + ψ̃+(˜̺µp̂ν + ˜̺ν p̂µ)ψ̃〉 − gµνLm

+ℜ〈ψ+S
µν
ab h

α
nη

nbσap̂αψ + ψ̃+S
µν
ab h

α
nη

nbσ̃ap̂αψ̃〉 (4.16)

−1

4
ǫabcdhαah

β
bS

µν
cd šβ;α − gµνΩαšα.

For nonlinear spinor, by Dirac equation we have Lm = −F .
Substituting the results into (4.16), we get the final EMT of bispinor φ as follows,

T µν =
1

2
ℜ〈φ+(α̃µp̂ν + α̃ν p̂µ + 2Sµν

ab h
α
nη

nbαap̂α)φ〉+ gµνF

−1

4
ǫabcdhαah

β
bS

µν
cd šβ;α − gµνΩαš

α. (4.17)

The physical meaning of

Eµν ≡ 1

4
ǫabcdhαah

β
bS

µν
cd šβ;α =

1

8
ǫabcdhαah

β
bS

µν
cd (∂αšβ − ∂β šα) (4.18)

is unclear. Its diagonal components vanish, so it should be very tiny term to keep T µν
;ν = 0.

Now we consider the classical approximation for (4.17),

φ+α̃νφ→ uν
√
1− v2δ3(~x− ~X), p̂µφ → muµφ, F → w

√
1− v2δ3(~x− ~X). (4.19)

Substituting (4.19) into (4.17) and noticing Sµν
ab = −Sµν

ba , we have

ℜ〈φ+S
µν
ab h

α
nη

nbαap̂αφ〉 → mS
µν
ab u

aub
√
1− v2δ3(~x− ~X) = 0. (4.20)

Omitting the tiny spin-gravity coupling energy, we get the usual EMT for a classical particle

with self-interactive potential

T µν → (muµuν + wgµν)
√
1− v2δ3(~x− ~X). (4.21)

w > 0 acts like negative pressure[3, 17]. By (4.21) and energy-momentum conservation law

T µν
;ν = 0, we find only if w = 0 and m is a constant independent of v, the particle moves

along geodesic and the principle of equivalence strictly holds[15, 18].

Some previous works usually use one spinor to represent matter field. This may be not

the case, because spinor fields only has a very tiny structure. Only to represent one particle

by one spinor field, the matter model can be comparable with general relativity, classical



12

mechanics and quantum mechanics[3, 15, 17, 19]. The many body system should be better

described by the Lagrangian similar to the following one,

Lm =
∑

n

ℜ〈φ+
n α̃

µp̂µφn〉+ Ωµφ
+
n ŝ

µφn −mφ+
n γ0φn + Fn, Fn =

1

2
w̃γ̌2n. (4.22)

The corresponding EMT is given by

T µν =
∑

n

(
1

2
ℜ〈φ+

n (α̃
µp̂ν + α̃ν p̂µ + 2Sµν

ab h
α
nη

nbαap̂α)φn〉+ gµνFn

−1

8
ǫabcdhαah

β
bS

µν
cd (∂αšnβ − ∂β šnα)− gµνΩαš

α
n

)
. (4.23)

The classical approximation becomes

T µν →
∑

n

(mnu
µ
nu

ν
n + wng

µν)
√

1− v2nδ
3(~x− ~Xn), (4.24)

which leads to the EMT for average field of spinor fluid as follows

T µν = (ρ+ P )UµUν + (W − P )gµν. (4.25)

The self potential becomes the negative pressure W [20].

V. DISCUSSION AND CONCLUSION

In this paper, according to the explicit relations between tetrad and metric, we derived the

exact representation of Tµν of spinors. By splitting the spinor connection into geometrical

part Υµ and dynamical part Ωµ, we find some new results. In this EMT, besides the usual

kinetic energy momentum term, the nonlinear self-interactive potential W acts like negative

pressure and may be important in astrophysics. The term ℜ〈φ+S
µν
ab h

α
nη

nbαap̂αφ〉 reflects the
interaction of momentum pµ with tetrad, which vanishes in classical approximation. The

spin-gravity coupling term is described by Ωαs
α, which may be the origin for magnetic field

of a celestial body. This term also appears in the dynamics of a spinor and has location and

navigation functions for the particle. The strong magnetic field in a neutron star may be

closely related with this term.

The decomposition of spin connection Γµ not only makes calculation simpler, but also

highlights their different physical meanings. Only in this representation, we can discover and

clarify the special effects as discussed above. In the calculation of tetrad formalism we get a
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new tensor Sµν
ab which plays an important role in the interaction of spinor with gravity and

appears in many places. But it has not classical correspondences, and vanishes in classical

approximation.

The spinor has only a tiny but marvelous structure. It is an indivisible system and

unsuitable to describe many body problem. Only by using one spinor to describe one

particle, we get a harmonic picture for field theory and classical mechanics.
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