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General Relativity à la string: a progress report∗†
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Preliminary results on a canonical formulation of general relativity based on an analogy with the
string model of elementary particles are presented. Rather than the metric components, the basic
fields of the formalism are taken to be the functions describing the embedding of four dimensional
spacetime in a ten or possibly higher dimensional manifold. So far, the main drawback of the
formalism is that the generator of normal deformations (“fourth constraint”) cannot be written
down in closed form. The present approach is compared and contrasted with the usual one and with
the canonical description of the relativistic string.

It is our intention in this note to analyze some formal analogies existing in different relativistic systems and to
assess some of the current difficulties in the canonical formalism for general relativity. In particular we shall compare
two different approaches to general relativity (the conventional one (I) [1, 2] and a new one based on the notion of
external variables (II)) with the string model of elementary particles [3].

I. GENERAL RELATIVITY: CONVENTIONAL FORMALISM

In the usual canonical formalism for Einstein’s theory of gravitation developed by Dirac [1] and Arnowitt, Deser
and Misner (ADM) [2] the starting point is the Hilbert action

S =

ˆ

(

−(4)g
)1/2

(4)Rd 4x (1)

which is regarded as a functional of the metric tensor gµν(x), x ∈ R4.
It is an important feature of the Hilbert action that by adding a suitable divergence to the integrand in (1) one can

switch to an alternate action density — the Dirac — ADM —lagrangian density

L =
(

−
(4)g

)1/2
(4)R+

∂Vα

∂xα
(2)

which contains no second time derivatives of the gµν and furthermore contains no first time derivatives of the g0µ.
The g0µ have then vanishing conjugate momenta and enter the theory as arbitrary functions. At this stage the

remaining degrees of freedom are thus those represented by the spatial metric components gij and their conjugates
πij . The fields gij , π

ij are however not independent, but they are restricted by the constraint equations1

H⊥ = g−1/2

(

πijπ
ij −

1

2

(

πi
i

)2
)

− g1/2R ≈ 0, (3a)

Hi = −2πi
j
|j ≈ 0. (3b)

∗ Research sponsored by the National Science Foundation under Grants No. GP-30799X to Princeton University and GP-40768X to the
Institute for Advanced Study.

† This paper was originally published as: T. Regge and C. Teitelboim, ‘General Relativity à la string: a progress report,’ in Proceedings
of the First Marcel Grossmann Meeting (Trieste, Italy, 1975), ed. by R. Ruffini, 77–88, North-Holland, Amsterdam, 1977. Several
colleagues have made the point that this reference is hard to access, and have suggested that it should be reprinted in the arXiv to make
it available. This is the purpose of the present text. Especial thanks are expressed to Sergey Paston and Anton Sheykin for taking the
initiative and going the effort of transforming the “camera ready” text of more than forty years ago to TeX. The kind help of Alfredo
Pérez on this front is also gratefully acknowledged. Recognition is expressed to Georgi Dvali for giving the decisive push when referring
to the article as “the paper that does not exist.”

1 The “weak equality” symbol is used to emphasize that H⊥ and Hi have non-vanishing Poisson brackets with the canonical variables of
the theory. The vertical slash denotes covariant differentiation in the spatial metric gij . Spacetime covariant derivatives are indicated
by a semicolon. The letter R denotes the spatial curvature and g is the determinant of the spatial metric. To avoid confusion some
spacetime quantities carry an upper left index (4) as in (1).
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Geometrically speaking the Hi generate arbitrary reparametrizations of the spacelike hypersurface on which the state
is defined whereas H⊥ generates deformations which change the location of the hypersurface in the ambient spacetime.
The fact that the hypersurfaces are embedded in a common spacetime is expressed through the closure relations [4, 5]

[H⊥(x),H⊥(x
′)] = (grs(x)Hs(x) + grs(x′)Hs(x

′)) δ,r(x, x
′), (4a)

[Hr(x),H⊥(x
′)] = H⊥(x)δ,r(x, x

′), (4b)

[Hr(x),Hs(x
′)] = Hr(x

′)δ,s(x, x
′) +Hs(x)δ,r(x, x

′). (4c)

In this theory it is in principle possible to fix the gauges by imposing particular coordinate conditions on the surface
and also by fixing the time slicing. The fixation of the spacetime coordinates amounts therefore to bring in four extra
constraints besides (3). After this is done one is left with only two independent pairs of canonical variables per space
point. These degrees of freedom appear in the weak field approximation as the two polarization states per wave vector
k̃ of a massless spin two graviton propagating on a flat background.

The practical implementation of the coordinate fixing is unfortunately frought with difficulties which have prevented
so far the construction of an actual canonical quantum theory of gravity. In the first place it is not a simple matter
to fix the gauge freedom in such a manner as to ensure a proper parametrization of spacetime through coordinates,
although some of the proposed choices look reasonable [2, 6, 7]. A second difficulty is that the reduced Hamiltonian
associated to the coordinate conditions proposed so far cannot be written down in closed form and usually appears as
a highly non-local expression in the canonical fields. This brings virtually to a halt the construction of the quantum
theory because of the formidable problems of ordering which must be solved ex-novo at each order of perturbation
theory in the expression for the Hamiltonian.

Yet another difficulty arises in the so-called maximal slicing (πi
i = 0), which appears to be the gauge condition

most exhaustively investigated from the point of view of ensuring a proper parametrization of spacetime [7]. The
difficulty in question is that ordering problems appear here already at the level of interpreting the Poisson brackets
of the basic fields as commutators, because q-numbers appear nontrivially on the right hand side of the commutation
relations. Such difficulties do not arise however for the ADM variables [2, 8], but unfortunately there is not much
evidence that the ADM gauge defines a good system of spacetime coordinates.

The difficulties mentioned above are by no means exclusive to the gravitational field and they also appear, for
example, in the string model which bears in many respects a striking analogy with Einstein’s theory of gravitation. In
the case of the string, because of the simple geometrical nature of the model, it is possible to circumvent the ordering
problem by means of the DDF variables [9] as suggested by the interpretation of the theory in the framework of the
dual models of hadrons.

In what follows we would like to examine the possibility of extending some of the useful concepts of the string model
into general relativity. Although we have not been successful in this attempt we feel that the comparative discussion
of the two systems is interesting by itself and leads to useful critical remarks.

II. THE STRING MODEL

Here we consider n+1 fields yA(x, t), x ∈ R. The functions yA parametrize a two dimensional surface V2 embedded
in an N + 1 dimensional Minkowski space of metric

ds2 = dỹ · dỹ = ηABdy
AdyB = −(dy0)2 +

N
∑

1

(dyA)2. (5)

The two dimensional surface is spanned by the motion of the (one dimensional) string in the N +1 dimensional space.
The action for the system is taken to be

S =

ˆ

(

−(2)g
)1/2

dx dt (6)

where
(

−(2)g
)1/2

dx dt is the area element on V2. The string is assumed to have a finite length and one has to impose
Poincaré invariant boundary conditions at its ends in order to obtain a relativistic theory. The boundary conditions
imply that the endpoints move transversally with the speed of light. The canonical formalism based on (6) leads to a
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vanishing canonical Hamiltonian (due to the time reparametrization invariance of (6)) and to constraints of the form

H1 = π̃ ·
∂ỹ

∂x
≈ 0, (7a)

H⊥ =
1

2

∣

∣

∣

∣

∂ỹ

∂x

∣

∣

∣

∣

−1
(

π̃2 +

(

∂ỹ

∂x

)2
)

≈ 0. (7b)

The functions (7) admit again the geometrical interpretation of generating tangential and normal deformations of the
string. They satisfy closure relations analogous to (4), namely [8]

[H⊥(x),H⊥(x
′)] =

(

∣

∣

∣

∣

∂ỹ

∂x

∣

∣

∣

∣

−2

(x)H1(x) +

∣

∣

∣

∣

∂ỹ

∂x

∣

∣

∣

∣

−2

(x′)H1(x
′)

)

δ′(x, x′)+

+ 2

(

∣

∣

∣

∣

∂ỹ

∂x

∣

∣

∣

∣

−3

(x′)H⊥(x)H1(x) +

∣

∣

∣

∣

∂ỹ

∂x

∣

∣

∣

∣

−3

(x′)H1(x
′)

)

δ′(x, x′), (8a)

[H1(x),H⊥(x
′)] =H⊥(x)δ

′(x, x′), (8b)

[H1(x),H1(x
′)] =(H1(x) +H1(x

′))δ′(x, x′). (8c)

We note that the only difference between (8) and (4) is the presence of the term quadratic in the constraints on
the right hand side of (8a). This term has however weakly vanishing brackets with everything, which means that (7)
still ensures that all the strings are embedded in a common two dimensional Riemannian surface.

In GGRT [3] the problem of accounting for the constraints and fixing the coordinate system on the surface spanned
by the string is solved by introducing a system of null surfaces y0 − y1 = t in RN+1 which reduces the problem to
dealing with N − 1 independent modes per point on the string2. It is also possible to introduce a more conventional
spacelike gauge [12] y0 = t. In the latter case the Dirac brackets of the basic fields are given typically by expressions
of the form

[αA
m, αB

n ] = mδm,−mδAB +
∑

M 6=0

mn

M

1

(p0)2
αA
m−MαB

n+M (9a)

where

yA(x, t) = qA + pAt+ i
∑

n6=0

1

n
αA
n cos(nx)e−int (9b)

Equation (9) shows that the fields yA, πA are related to the fundamental canonical variables of the theory by a
non-elementary expression. It is in fact extremely hard to approach the quantization procedure by considering the yA

as operators and (9a) as a commutation relation because of the ordering problem. A better approach is to consider
the DDF operators which appear in the integral form

DA
n =

1

2

2π
ˆ

π

dyA(0, t)

dt
exp

(

n(k̃ · p̃)−1k̃ · ỹ(0, t)
)

dt (10)

(here k̃ is an arbitrary null vector) and which obey a simple algebra. The whole string model can be built upon a
systematic exploitation of this algebra.

The underlying pseudo Euclidean structure of RN+1 is necessary for the use of the DDF operators in that form it
follows that there are orthonormal coordinates x, t such that the equations of motion can be explicitly solved in the
form

yA(x, t) = fA(t− x) + fA(t+ x), (11)

an equation which is crucial in defining the Fourier transform used by DDF.
A solution similar to (11) is of course not available in general relativity but it is nevertheless of interest to investigate

what happens if one tries to cast general relativity in a string-like form, which we pass to do now.

2 Null surfaces have been introduced to analyze the dynamics of gravity by Aragone and Gambini [10] and Kaku [11]. There is however
no analog in the discussion given by those authors of an ambient flat space which is heavily relied upon in the string model.
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III. GENERAL RELATIVITY À LA STRING

By analogy with the string model we postulate here that ordinary curved spacetime V4 is embedded in some
Minkowski space RN+1 with a sufficiently high dimensionality N ≥ 9 so as to be able to accommodate locally a
generic four-dimensional pseudo Riemannian manifold. We thus consider the spacetime V4 as a “trajectory” swept by
a three dimensional string in RN+1.

The key difference between the present formalism and the usual approach described in Section I above, is that the
metric components gµν(x) are no longer the basic variables but, rather, they are regarded now as derived objects
constructed from the functions yA(x0, x1, x2, x3) determining the (time dependent) embedding of V3 in RN+1.

The metric tensor is thus given by

gµν(x) = ỹ,µ · ỹ,ν = ηAB
∂ỹA

∂xµ

∂ỹB

∂xν
(12)

with ηAB = diag(−1, 1, . . . , 1), A,B, . . . = 0 . . .N .
We shall use the same action as in I, namely

S[y] =

ˆ

L d4 x (13)

where L is the Dirac--ADM lagrangian density appearing in (2), regarded this time as a functional of the yA through
(12). The fact that L contains no time derivatives of the g0µ implies that only first time derivatives of the yA enter
into the action (13). Eq. (12) shows that yA,0 can enter L through g0α only). As solely first time derivatives of the

yA appear in the action we see that we are still dealing with a system that can be put in canonical form by standard
methods. We have already paid however, a stiff price by introducing the external variables yA , namely, we have to
retain all the fields instead of being able to eliminate four of them (the g0) at an early stage as was done in I.

A worse feature is that requiring the action (13) to be stationary under arbitrary variations of the yA does not
reproduce the equations of motion of general relativity

(Einstein tensor)αβ = Gαβ = 0, (14)

but gives rather the weaker set

Gαβ ỹ;αβ = 0. (15)

Equations (15) are the analog of the string equations

gαβ ỹ;αβ = 0. (String) (16)

in which case α and β refer to the two dimensional spanned by the string.
Equations (14) do not imply Gαβ = 0 due to the identities

ỹ;αβ · ỹ,γ = 0. (17)

which show that in the generic case only six among the N + 1 equations are independent. We note in passing that
the identities (17) avoid the paradoxical implication gαβ = 0 in (16). The difficulty of having only six independent
equations in (15) instead of the full Einstein set is not unsurmountable and could be circumvented by imposing in an
ad-hoc fashion the additional constraints

G⊥α = 0 (18)

where the symbol ⊥ refers to the unit normal to V3 lying in V4 and a = ⊥, 1, 2, 3. Examination of the canonical
formalism for the external variables shows in fact that one may expect (18) not to be an entirely unreasonable
addition to the equations (15).

IV. CANONICAL FORMALISM FOR EXTERNAL VARIABLES

We start from the Dirac-ADM Lagrangian density (13), which written down in detail reads

L =g1/2N(R+KabK
ab − (Ka

a )
2), (19)
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where R is the curvature scalar of V3 and where the extrinsic curvature Kab of V3 with respect to V4 is given by

Kab = (2N)−1(−ġab +Na|b +Nb|a). (20)

The symbols N and Na stand for the lapse and shift functions

N =
(

−
(4)g00

)1/2

, Na = g0a. (21)

A dot denotes differentiation with respect to x0. The Lagrangian density (19) is expressed as a functional of the yA

by means of (12), (20) and (21).
The canonical momenta are defined by

π̃(x) =
δ

δ ˙̃y(x)

ˆ

d3x′
L(x′) (22)

which gives, after some calculation3,

π̃ =g1/2
(

−2G⊥⊥ñ+ 2(Kab −Km
mgab)ỹ|ab

)

(23)

Here ñ denotes the unit normal to V3 lying in V4:

ñ = N−1
[

˙̃y − ( ˙̃y · ỹ|iỹ,i)
]

(24)

and G⊥⊥ is the double projection of the Einstein tensor along ñ :

−2G⊥⊥ = KabK
ab − (Km)2 −R. (25)

The normal (24) satisfies the normalization condition,

ñ · ñ = −1, (26)

and the extrinsic curvature is related to ñ by

Kab = ñ · ỹ|ab. (27)

Now we note that the six vectors ỹ|ab are perpendicular to V3 (this is just the V3 version of the identities (17)). Also
the normal ñ is perpendicular to V3. It thus follows that the three components of π̃ on V3 vanish. We then get the
three constraints

Hi = π̃ · ỹ,i ≈ 0, (28)

which are the analog of (7a) for the string. The Hi defined by (28) generate reparametrizations on V3 and they satisfy
consequently the closure relations (4c). It follows from (28), for example that yA and πA transform as scalars and
scalar densities respectively under changes of coordinates in V3, which was of course to be expected.

The fourth constraint (analog to (7b)) for the string) is obtained in principle by solving (23) as a system of nonlinear
algebraic equations for nA as a function of πA and yA and imposing afterwards the normalization condition (26). In
the case of the string this procedure yields (7b). In fact the string analog of (23) reads simply

π̃ =

∣

∣

∣

∣

∂ỹ

∂x

∣

∣

∣

∣

ñ (string), (29)

which upon squaring and using (26), gives (7b). The solution of (23) is however considerably harder and there seems
to be no way of obtaining a simple closed form for

ñ = ñ(ỹ, π̃). (30)

3 Note added (2016): Actually the right-hand side of (23) is nothing but the Lagrangian density obtained by dropping the factor N in
(19). See [14].
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This problem might be circumvented to some extent with the help of the additional constraints (18) which we pass
to discuss now.

As we mentioned before, even if we imagine having the solution (30), the formalism does not reproduce Einstein’s
theory. In fact, if we count the number of independent degrees of freedom of the theory we find: 2(N + 1)− 4 (first
class constraints) −4 (gauge conditions) = 2(N − 3). That is we have N − 3 degrees of freedom per point, which
recalling that N ≥ 9 is at least an excess of four over the required number of two for general relativity.

We see therefore that even if we bring N down to its minimum value of 9, as we shall do tentatively from now on,
we need four additional first class constraints besides the Hµ. It is quite reasonable to take these new constraints
to be (18). In fact the G⊥µ are constructed from the gab and Kab only, which means that they can in principle be
expressed, via (30), as functions of the canonical variables ỹ, π̃.

Now, if we are going to impose the constraints (18), we need to solve (23) for ñ only when G⊥⊥ = 0. This will
result in changing the constraints by linear combinations of themselves and will therefore not change the dynamics of
the system.

When G⊥⊥ = 0 (23) can be written as

πA ≈ WA
B nB, (31)

with

WA
B =2g1/2(gadgbc − gabgcd)yA|abyB|cd. (32)

The matrix W defined by (32) regarded as a mapping of R10 onto R10 does not have an inverse because it maps to
zero the three vectors ỹ,i(i = 1, 2, 3). However when restricted to the sub-space orthogonal to the ỹ,i, W will have
an inverse in the generic case. Let us denote that inverse by M . The matrix M is therefore defined as giving that
solution of (31),

nB = MB
A πA (33)

which satisfies

ñ · ỹ,i = 0. (34)

It follows from (32) that M is constructed from the yA and their derivatives and that MAB = ηACM
C
B is symmetric.

The eight constraints of the theory can then be expressed in terms of M as follows

−2G⊥⊥ = KabK
ab − (Km

m )2 −R ≈
1

2
g−1/2MABπ

AπB −R ≈ 0, (35a)

−G⊥i = (Kk
i K

m
mδki )|k ≈ (MABπ

B),iy
A|m

|m − (MABπ
B),myA|m

|i ≈ 0, (35b)

H⊥ = g1/2(ñ2 + 1) ≈ g1/2
(

(M2)ABπ
AπB + 1

)

≈ 0, (35c)

Hi = π̃ · ỹ,i ≈ 0. (35d)

The essential problem at this point is to prove that the eight constraints (35) are first class. It does not seem possible
to do this without knowing more about the form of MAB. We plan to investigate this matter in the future.

If the constraints (35) are indeed first class their compatibility is ensured and the theory is consistent. Furthermore
we are then sure that we are dealing exactly with Einstein’s equations because the only way in which G⊥µ can vanish
on every three dimensional space like hypersurface of V4 is that all ten equations Gαβ = 0 hold. On the other hand,
if the system (35) is not first class we would be merely selecting by means of (35a), (35b) special coordinates on V4

(i.e., fixing the gauge) instead of reducing the number of physical degrees of freedom of the theory. The formalism
would not reproduce Einstein’s theory in that case.

Final Remarks

The theory as we have presented it here is not complete but we feel it deserves further investigation. It is quite
possible that the actual value of N is not relevant in a final, as yet hypothetical, complete form. We must keep in
mind in this connection that the possibility of embedding a four dimensional manifold in R10 holds only in a very local
sense and that non-trivial problems are already encountered in trying to embed globally a smooth two dimensional
manifold [13] in R3. However the existence of the variables yA gives us more freedom to construct field variables
which do not exist in the conventional theory and which could possibly lead to a canonical formulation of general
relativity different from the conventional one. In this sense it could be interesting to try to find the analog of the
DDF operators for the string model. Unfortunately we have not been able as yet to obtain any definite result along
this direction.
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