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1 Introduction

Surface charges in general relativity and gauge theories have a long history that goes back
to the founding papers on the Hamiltonian formulation, see [1] for a review and [2] for
further developments. Covariant approaches based on the linearized theory are discussed

in [3], chapter 20, and also in [4, 5]. A non-exhaustive list of subsequent references
includes [6–10]. More recently, there has been interest in first order formulations, see

e.g., [11–16].

Our approach here is based on actions, or more precisely, equivalence classes of La-

grangians up to total divergences. It originates in applications of the Batalin-Vilkovisky
formalism to the perturbative renormalization of gauge theories [17], [18], but can also

be formulated entirely independently of this machinery, see [19–25] for details.

The aim of this note is to provide explicit expressions for the local, on-shell closed co-

dimension 2 forms in the Cartan formulation of general relativity and prove their equiv-
alence with those of the metric formulation. The present note is extracted from a more

complete investigation that covers other first order formulations of general relativity [26].

2 Generalities

2.1 Local BRST cohomology and generalized auxiliary fields

One of the virtues of the approach is that non-trivial, local, co-dimension2 forms that
are closed for all solutions of the equations of motion can beshown to be isomorphic

to local BRST cohomology classes in ghost number´2. In turn, the latter are naturally
covariant under field redefinitions as well as suitably invariant under the introduction and

elimination of auxiliary and generalized auxiliary fields [17]. Auxiliary fields are a set of
fields whose Euler-Lagrange equations of motion can be solved algebraically to determine

them in terms of the remaining fields of the variational principle. Generalized auxiliary
fields extend this concept to the master action [27, 28]. Theyare present whenever the
vanishing of the gauge transformations of the fields can be solved algebraically for some

of the gauge parameters. The associated generalized auxiliary fields are sub-sets of fields
which are algebraically pure gauge, in the sense that they can be shifted arbitrarily by

gauge transformations that do not involve derivatives.

This is relevant for our purpose since the components of the Lorentz connection in

the Cartan formulation are auxiliary fields, while going from the vielbein to the metric
formulation involves elimination of generalized auxiliary fields. Indeed, in the linearized

formulation the skew-symmetric part of the vielbein fluctuations are algebraically pure
gauge since they can be shifted arbitrarily by Lorentz rotations. The argument can then
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be extended to the non-linear theory as well, for instance bya perturbative analysis.

More details will be provided in [26].

2.2 General case

Let φi denote the fields of the variational principle,n the spacetime dimension andL “

Ldnx the Lagrangian times the volume form. Here and below, we use the notation

pdn´pxqµ1...µp
“

1

p!pn ´ pq!
ǫµ1...µpµp`1...µn

dxµp`1 . . . dxµn , (2.1)

where the wedge product is omitted,ǫµ1...µn
is completely antisymmetric andǫ01...n´1 “ 1.

Let δǫφi “ Ri
αpǫαq denote a generating set of non trivial gauge transformations. Under

standard regularity assumptions, one can then show that there is an isomorphism between

equivalence classes of local, on-shell closed co-dimension 2 forms, with two such forms
being equivalent if they differ on-shell by an exact local form, and equivalence classes

of reducibility parameters̄fαrx, φs satisfyingRi
αpf̄αq « 0, with two sets of reducibility

parameters being equivalent if they agree on-shell. In other words, the classification of lo-

cal, on-shell closed co-dimension 2 forms is done through the classification of reducibility
parameters, which is a tractable problem.

The construction of then ´ 2 forms from the reducibility parameters can be summa-
rized as follows. For anyfα, standard integrations by parts allow one to write

Ri
αpfαq

δL

δφi
“ fαR`i

α p
δL

δφi
q ` dHSf , (2.2)

for some weakly vanishingn ´ 1 form

Sf “ Siµ
α p

B

Bdxµ

δL

δφi
, fαq. (2.3)

Then ´ 2 form is then obtained by applying the contracting homotopyρH for the hori-

zontal differential of the variational bi-complex [29,30]

tdH , ρHuωp “ ωp for p ă n. (2.4)

to Sf ,
kf “ ρHSf . (2.5)

Indeed, the Noether identities associated to the generating set of non-trivial gauge trans-
formations are

R`i
α p

δL

δφi
q “ 0. (2.6)

For particular reducibility parameters that satisfyRi
αpf̄αq “ 0, (2.2) reduces todHSf̄ “ 0

so that (2.4) reduces to
dHkf̄ “ Sf̄ « 0. (2.7)
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One can then proceed to show thatkf̄ satisfies (2.7) also for general reducibility parame-
ters (see [19] for details).

In this discussion, we have neglected non-trivial, identically conserved currents, which
are related to the topology of the bundle of fields. We have thus neglected “magnetic”

charges and concentrated on the “electric” ones. The formercan easily be incorporated
when taking into account the cohomology of the horizontal differential of the variational

bi-complex in lower form degrees, and more specifically, in degreen ´ 2 for the present
case.

2.3 Linearized theories

For definiteness, let us take the example of the Einstein-Hilbert action in metric formula-
tion, where a generating set of gauge transformations is given by the Lie derivative of the

metric,δξgµν “ Lξgµν . In spacetime dimensionn ě 3, one can then show thatξρrx, gs

can be assumed not to depend on the fields, so that reducibility parameters correspond

to Killing vectors. Since a generic metric does not admit Killing vectors, there are no
non-trivial conservedn ´ 2 forms in general relativity. In linearized gravity however,
a generating set of gauge transformations is given byδξhµν “ Lξḡµν , whereḡµν is the

background solution around which one linearizes the theory. There are then as many
conservedn ´ 2 forms as there are Killing vectors of the background solution. Explicit

expressions are obtained by applying the construction described previously, but now in
the framework of the linearized theory. For Einstein gravity, this has been done explicitly

in [19].

More generally, for gauge theories linearized around a solution φ̄i with gauge trans-

formationsδǫϕi “ Ri
αrx, φ̄spǫαq, one can show [20] that one may obtain then ´ 2 forms

of the linearized theory from the weakly vanishing Noether currentSf of the full theory

through

kf rδφ, φs “ k
µν
f pdn´2xqµν “

|λ| ` 1

|λ| ` 2
Bpλqrδφ

i δ

δφi
ppλqνq

B

Bdxν
Sf s, (2.8)

by replacingf by reducibility parameters of the linearized theory,φi by the background
solutionφ̄i andδφi by any solution̄ϕi of the theory linearized around̄φi. Explicit expres-

sions for the higher order Euler-Lagrange derivatives can be found in [29] and [30]; our
conventions and notations for multi-indices are summarized in the appendix of [19].

This construction is applicable in the case of Lagrangians that are of finite, arbitrarily
high order in derivatives. In caseSf is of second order in derivatives, which usually

requires the Euler-Lagrange equations of motion to be of second order as well, one needs
the higher order Euler-Lagrange operators up to order2,

kf rδφ, φs “
1

2
δφi δ

δφi
ν

B

Bdxν
Sf `

2

3
Bσrδφi δ

δφi
νσ

B

Bdxν
Sf s. (2.9)
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For theories for whichSf is of first order in derivatives, only the first higher order Euler-
Lagrange operator is involved and reduces to the partial derivative, so that the formula

simplifies to

kf rδφ, φs “
1

2
δφi B

Bφi
ν

B

Bdxν
Sf . (2.10)

A first order formulation can always be achieved by introducing suitable auxiliary and
generalized auxiliary fields.

For notational simplicity, we take units where the gravitational constant isG “

p16πq´1. More standard choices correspond to multiplying the action and forms below

by p16πGq´1.

2.4 Asymptotics

The strategy to use the linearized theory at infinity with prescribed asymptotics in order

to define conservation laws in general relativity is discussed in detail in [3].

Rather than trying to develop a theory for the asymptotic case, as done for instance

in [19] for the “asymptotically linear” case, one can take a more pragmatic point view that
consists in using the formula for then ´ 2 forms above, while substituting asymptotic

reducibility parameters and asymptotic solutions determined by the fall-off conditions
instead of exact ones determined by the linearized theory. The approach is reminiscent

of the one for current algebras associated to broken global symmetries described in [31].
As a result, the currents are in general neither integrable nor conserved. This is precisely
what happens for general relativity with asymptotically flat boundary conditions at null

infinity [9,24,25].

3 Application to the Cartan formulation of GR

3.1 Cartan formulation

Consider ann dimensional spacetime with a moving, (pseudo-)orthonormal frame,

ea “ ea
µ B

Bxµ
, ea “ eaµdx

µ, (3.1)

whereeaµeaν “ δµν , eaµebµ “ δba, andBaf “ eapfq. The structure functions are defined

by

rea, ebs “ Dc
abec ðñ dea “ ´

1

2
Da

bce
bec. (3.2)

For further use, note that ife “ det eaµ then

Bµpe eµaq “ eDb
ba, (3.3)



6 G. BARNICH, P. MAO, R. RUZZICONI

We thus assume that there is a pseudo-Riemannian metric,

gµν “ eaµηabe
b
ν , (3.4)

with a flat (Lorentz) metric in tangent space,ηab “ diagpp´q1, 1, . . . , 1q. As usual, tan-

gent space indicesa, b, . . . and world indicesµ, ν, . . . are lowered and raised withgab,
gµν , and their inverses, and converted into each other using thevielbeinseaµ and their
inverse.

Local (Lorentz) rotations are denoted byΛa
bpxq with Λa

bηbcΛd
c “ ηad, or equiva-

lently,Λd
bΛa

b “ δda. Under a combined frame rotation and coordinate transformation, we
have

e1
a
µ
px1q “ Λa

bpxqeb
νpxqΛµ

νpxq, (3.5)

with Λµ
ν “

Bx1µ

Bxν
.

In addition, assume that there is an affine connection definedby

Dcea “ Γb
aceb, (3.6)

and that metricity holds,

Daηbc “ 0. (3.7)

This implies in particular that

Γabc “ ´Γbac, (3.8)

In terms of the Poincaré algebra,

rJab, Jcds “ ηbcJad ´ ηacJbd ´ ηbdJac ` ηadJbc, rJab, Pcs “ ηbcPa ´ ηacPb, (3.9)

one defines the Lorentz connectionΓ “ 1

2
ΓabJab, with Γab “ Γab

µdx
µ “ Γab

ce
c, and

e “ eaPa.

The torsion and curvature tensors are defined by

T “ T aPa “ de ` rΓ, es, R “
1

2
RabJab “ dΓ `

1

2
rΓ,Γs, (3.10)

where the wedge product is omitted, and the bracket is the graded commutator.

More explicitly,T a “ 1

2
T a

bce
bec “ dea ` Γa

be
b, so that

T a
µν “ Bµe

a
ν ´ Bνe

a
µ ` Γa

bµe
b
ν ´ Γa

bνe
b
µ, (3.11)

T c
ab “ 2Γc

rbas ` Dc
ba, (3.12)

where round (square) brackets denote (anti) symmetrization of enclosed indices divided

by the factorial of the number of indices involved. In this case,

Bµpe vµq “ e pDµ ` eb
νBµe

b
νqvµ “ Dµpe vµq, (3.13)
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with Dµv
µ “ Bµv

µ for the Lorentz connection and the definition

Dµe “ e peb
νBµe

b
νq. (3.14)

In particular, this implies that

Dµpe eµaq “ eT b
ab. (3.15)

For the curvature components,Ra
b “ 1

2
Ra

bcde
ced “ dΓa

b ` Γa
cΓ

c
b, we have

Rf
cµν “ BµΓ

f
cν ´ BνΓ

f
cµ ` Γf

dµΓ
d
cν ´ Γf

dνΓ
d
cµ, (3.16)

Rf
cab “ BaΓ

f
cb ´ BbΓ

f
ca ` Γf

daΓ
d
cb ´ Γf

dbΓ
d
ca ´ Dd

abΓ
f
cd. (3.17)

Furthermore,
rDa, Dbsvc “ ´Rd

cabvd ´ T d
abDdvc. (3.18)

Under a local frame rotation, we have

e1 “ ΛeΛ´1, Γ1 “ ΛΓΛ´1 ` ΛdΛ´1, (3.19)

so that
T 1 “ ΛTΛ´1, R1 “ ΛRΛ´1. (3.20)

DefiningΛ “ 1 ` ω ` Opω2q, with ω “ 1

2
ωabJab, ωab “ ´ωba, we have

δωΓ “ ´pdω ` rΓ, ωsq ðñ δωΓ
ab “ ´pdωab ` Γa

cω
cb ` Γb

cω
acq, (3.21)

and also
δωe “ rω, es ðñ δωe

a “ ωa
be

b. (3.22)

Under a coordinate transformation, we have

e1a
µ “ Λµ

νeaν , Γ1a
bµ “ Λµ

νΓa
bν , (3.23)

and forx1µ “ xµ ´ ξµ ` Opξ2q, Λµ
ν “ δµν ´ Bνξ

µ ` Opξ2q, so thatων
µ “ Bνξ

µ and

δξe
a
µ “ Lξe

a
µ, δξΓ

a
bµ “ LξΓ

a
bµ, (3.24)

whereLξ denotes the Lie derivative.

The Bianchi identities are

dT ` rΓ, T s “ rR, es, dR ` rΓ, Rs “ 0. (3.25)

Explicitly,

Ra
rbcds “ DrbT

a
cds ` T a

frbT
f
cds, DrfR

a
|b|cds “ ´Ra

bgrfT
g
cds, (3.26)
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where a bar encloses indices that are not involved in the (anti) symmetrization. The Ricci
tensor is defined byRab “ Rc

acb, while Sab “ Rc
cab “ 0. Contracting the Bianchi

identities gives

Rab ´ Rba “ ´DcT
c
ab ´ 2DraT

c
bsc ´ T c

fcT
f
ab, (3.27)

2DrfR|b|ds ` DcR
c
bdf “ RbgT

g
df ´ 2Rc

brf |g|T
g
dsc. (3.28)

The curvature scalar is defined byR “ gabRab, the Einstein tensor by

Gab “ Rab ´
1

2
gabR. (3.29)

Contracting (3.28) withηbf gives the contracted Bianchi identities,

DbG
b
a “

1

2
Rbc

daT
d
bc ` R

b
cT

c
ab. (3.30)

For any affine connection, metricityDagbc “ 0, implies that the connection is given

by
Γabc “ tabcu ` Kabc ` rabc, (3.31)

where the Christoffel symbols are given by

tabcu “
1

2
pBbgac ` Bcgab ´ Bagbcq “ tacbu, (3.32)

Kabc are the components of the contorsion tensor,

Kabc “
1

2
pTbac ` Tcab ´ Tabcq “ ´Kbac, (3.33)

and
rabc “

1

2
pDbac ` Dcab ´ Dabcq “ ´rbac. (3.34)

Furthermore, one can directly show that

Γa
bµ “ eaνpBµeb

ν ` Γν
ρµe

ρ
bq ðñ Γabc “ eaνBceb

ν ` ea
µeb

νec
ρΓµνρ. (3.35)

with
Γµνρ “ tµνρu ` Kµνρ. (3.36)

Note also that for a Lorentz connection, (3.31) reduces to

Γabc “ Kabc ` rabc. (3.37)
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3.2 Variational principle

In the standard Cartan formulation, the variables of the variational principle are the com-
ponents of the vielbeineaµ and a Lorentz connection 1-form in the coordinate basis,Γa

bµ

in terms of which the action is

SCrea
µ,Γb

cνs “

ż

dnxLC “

ż

dnx e pRab
µνea

µeb
ν ´ 2Λq. (3.38)

Using
δRa

bµν “ DµδΓ
a
bν ´ DνδΓ

a
bµ, (3.39)

the variation of the action is given by

δSC “

ż

dnx e
“

2pGa
µ ` Λeaµqδea

µ ` ea
µeb

νpDµδΓ
ab

ν ´ DνδΓ
ab
µ q

‰

. (3.40)

Using now (3.13) and neglecting boundary terms, this gives

δSC “

ż

dnx
“

2e pGa
µ ` Λeaµqδea

µ ` 2Dνpe ea
µeb

νqδΓab
µ

‰

, (3.41)

so that
δLC

δeaµ
“ 2e pGa

µ ` Λeaµq, (3.42)

δLC

δΓab
µ

“ 2Dνpe era
µebs

νq “ e pT µ
ab ` 2e

µ

raT
c
bscq. (3.43)

Contracting the equations of motions associated to (3.43) with eµ
b givesT b

ab “ 0. When
re-injecting, this impliesT a

bc “ 0. It follows that when the equations of motion forΓab
µ

hold, the connection is torsionless and thus given byΓabc “ rabc. The fieldsΓab
µ are thus

entirely determined byeaµ so thatΓab
µ are auxiliary fields.

Using (3.40) for an infinitesimal gauge transformation as in(3.21), (3.22), (3.24) un-
der the form

δξ,ωS
C “

ż

dnx
“ δLC

δeaµ
δξ,ωea

µ `
δLC

δΓab
µ
δξ,ωΓ

ab
µ

‰

, (3.44)

and integrating by parts in order to isolate undifferentiated gauge parameters as in (2.6)
gives the Noether identities

δLC

δera|µ|
ebs

µ ` Dµ
δLC

δΓab
µ

“ 0, (3.45)

δLC

δeaµ
Bρea

µ `
δLC

δΓab
µ

BρΓ
ab
µ ` Bµp

δLC

δeaρ
ea

µ ´
δLC

δΓab
µ
Γab

ρq “ 0. (3.46)

Equation (3.45) can be shown to be equivalent to (3.27). Using (3.45), equation (3.46)
can be written as

Bµp
δLC

δeaρ
ea

µq `
δLC

δeaµ
Dρea

µ `
δLC

δΓab
µ
Rab

ρµ “ 0, (3.47)

and then be shown to be equivalent to (3.30).
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3.3 Construction of the co-dimension 2 forms

When keeping the boundary term, one finds the weakly vanishing Noether current asso-
ciated to the gauge symmetries as

S
µ
ξ,ω “

δLC

δΓab
µ

p´ωab ` Γab
ρξ

ρq ´
δLC

δeaρ
ea

µξρ. (3.48)

The associated co-dimension 2 formkξ,ω “ k
µν
ξ,ωpdn´2xqµν computed through (2.10) is

given by

k
µν
ξ,ω “ e

“

p2δea
µeb

ν ` ecλδec
λea

νeb
µqp´ωab ` Γab

ρξ
ρq

` δΓab
ρpξρea

µeb
ν ` 2ξµea

νeb
ρq ´ pµ ÐÑ νq

‰

. (3.49)

This can also be written as

kξ,ω “ ´δKK
ξ,ω ` KK

δξ,δω ´ ξν
B

Bdxν
Θξ, (3.50)

where

KK
ξ,ω “ 2e ea

νeb
µp´ωab ` Γab

ρξ
ρqpdn´2xqµν , Θξ “ 2e δΓab

ρea
µeb

ρpdn´1xqµ. (3.51)

According to the general results reviewed in section 2, the co-dimension 2 form is
closed,dHkξ,ω “ 0, or equivalently,Bνk

µν
ξ,ω “ 0, if eaµ,Γab

µ are solutions to the Euler-
Lagrange equations of motion, and thus to the Einstein equations,δeaµ, δΓab

µ solutions

to the linearized equations andωab, ξρ satisfy

Lξea
µ ` ωa

beb
µ « 0, LξΓ

ab
µ « Dµω

ab, (3.52)

where« now denotes on-shell for the background solution and is relevant in case the
parametersωab, ξρ explicitly depend on the background solutioneaµ,Γab

µ around which

one linearizes. Note that the first equation also implies in particular thatξρ is a possibly
field dependent Killing vector of the background solutiongµν ,

Lξgµν « 0, (3.53)

and that

ωab « ´ebµLξe
aµ « ´erb

µLξe
asµ. (3.54)

3.4 Reduction to the metric formulation

In order to compare with the results in the metric formulation, let us go on-shell for the
auxiliary fieldsΓab

µ and eliminateωab using (3.54). The former implies that we are in
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the torsionless case with the Lorentz connection simplifiedto Γab
µ “ rabµ, while (3.35)

reduces to

Γab
µ “ eaν∇µe

bν “ era
ν∇µe

bsν , (3.55)

with ∇µv
ν “ Bµv

ν ` tνρµuvρ. Note also that the Killing equation can be written as

∇µξν ` ∇νξµ « 0. Together with (3.55), we have

´ ωab ` Γab
ρξ

ρ « ´era
ρe

bs
σ∇

ρξσ, (3.56)

δΓab
ρ “ δera

σ∇ρe
bsσ ` era

σδtστρuebsτ ` era
σ∇ρδe

bsσ, (3.57)

with

δtστρu “
1

2
gσδp∇ρδgδτ ` ∇τδgδρ ´ ∇δδgτρq. (3.58)

Using that

δeaµeaν “
1

2
hµν ` δearµe|a|νs, (3.59)

with hµν “ δgµν , indices being lowered and raised withgµν and its inverse, andh “ hµ
µ,

substitution into (3.49) gives

6
a

|g|∇ρpδea
rµe|a|νξρsq ` k

µν
ξ , (3.60)

where the first term can be dropped since it is trivial in the sense that it corresponds to the

exterior derivative of ann ´ 3 form, while

k
µν
ξ “

a

|g|
“

ξν∇µh ` ξµ∇σh
σν ` ξσ∇

νhσµ

`
1

2
h∇νξµ `

1

2
hµσ

∇σξ
ν `

1

2
hνσ

∇
µξσ ´ pµ ÐÑ νq

‰

. (3.61)

We have thus recovered the results of the metric formulationsince the last expression

agrees with the one given in [20]1, which in turn is equivalent to those derived directly in
the metric formulation in [19].
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