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Abstract

We argue the possibility that the gravitational energy-momentum tensor is constructed in gen-

eral relativity through the Noether theorem. In particular, we explicitly demonstrate that the

constructed quantity can vary as a tensor under the general coordinate transformation. Further-

more, we verify that the energy-momentum conservation is satisfied because one of the two indices

of the energy-momentum tensor should be in the local Lorentz frame. It is also shown that the

gravitational energy and the matter one cancel out in certain space-times.
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I. INTRODUCTION

The way of defining the gravitational energy-momentum tensor is a long standing issue

in general relativity, and it has not completely been solved yet. There have been proposed

several definitions of the gravitational energy momentum tensor. However, those forms are

different with each other, and it is considered that they are not appropriate tensors [1].

To derive the expression of the gravitational energy-momentum tensor is a significant

fundamental problem in general relativity. Hence, it is strongly expected that such an

explicit representation on the gravitational energy-momentum tensor in general relativity

can be useful and helpful to further consider the so-called modified gravity theories including

F (R) gravity, which have widely been studied to explain the late-time cosmic acceleration,

i.e., the dark energy problem (for recent reviews on the dark energy problem and modified

gravity theories, see, for example, Refs. [2–4]).

In this paper, by using the Noether theorem, we attempt to construct a proper form of a

gravitational energy-momentum tensor in general relativity. What is the most crucial point

in our approach is that the general coordinate transformation is described with the tetrad.

The energy and momentum of gravitation are induced by the tetrad. It has an index of

the local Lorentz frame, so that the energy-momentum conservation law can be satisfied.

The gravitational energy-momentum tensor has also been examined in Ref. [5], and its

further investigations including the energy-momentum conservation law have been executed

in Ref. [6]. Indeed, however, its explicit form was not been presented. In this work, therefore,

we attempt to explicitly construct the expression of the gravitational energy-momentum

tensor.

Particularly, as concrete examples, we investigate the gravitational energy of the homoge-

neous and isotropic Friedman-Lemâıtre-Robertson-Walker (FLRW) universe with its differ-

ent curvatures. Moreover, we analyze an energy in an outer region of the Schwarzschild black

hole with its mass M , whose metric describes the assymptotically flat, vacuum, and spheri-

cally symmetric space-time. As a consequence, we find that the energy becomes −M/2. It is

known that the gravitational energy takes the negative signature of the matter energy [7]. We

use units of kB = c = ~ = 1, and the Planck mass is given by MPl = G
−1/2
N

= 1.2×1019 GeV,

where GN is the gravitational constant.

The organization of the paper is the following. In Sec. II, we analyze the gravitational
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energy-momentum tensor in general relativity. Especially, we present the Noether theorem,

and with it the gravitational energy-momentum tensor is constructed. In Sec. III, we derive

the gravitational energy in the flat, closed, and open FLRW universes and the Schwarzschild

black hole. We find that in these space-times, the sum of the gravitational energy and the

matter one becomes zero. Conclusions are presented in Sec. IV.

II. GRAVITATIONAL ENERGY-MOMENTUM TENSOR IN GENERAL RELA-

TIVITY

In this section, we first formulate the Noether theorem. By using it, we next construct

the gravitational energy-momentum tensor.

A. Noether theorem

The action describing general relativity is represented as

I =
1

16π

∫

d4xeR (II.1)

=
1

16π

∫

d4xe

(

−1

4
KµνλK

µνλ − 1

2
KµνλK

λνµ +Kµν
µK

ρ
νρ + 2∇µK

νµ
ν

)

(II.2)

=

∫

d4x
(

F + ∂λD
λ
)

, (II.3)

where e is a determinant of a tetrad, and the gravitational constant GN has been set to

be unity. Here, we have defined the torsion tensor Kµνλ ≡ eaλ(e
a
µ,ν −eaν ,µ ) and Kµνλ ≡

gµρgνσeλa(e
a
ρ,σ −eaσ,ρ ), where the comma denotes the partial derivative of eaµ,ν ≡ ∂µe

a
µ. The

Latin index means the local Lorentz coordinate, whereas the Greece index shows the world

coordinate. Both the Latin and Greece indices run over 0, 1, 2, 3. Moreover, F is the volume

term, and ∂λD
λ is the surface one.

It is seen that under the following general coordinate transformation

x
′µ = xµ + δxµ

= xµ + eµaξ
a , (II.4)

the action in Eqs. (II.1)–(II.3) is invariant. Here, ξa is an arbitrary function, and it becomes

zero on a boundary. Accordingly, the Noether theorem is satisfied as follows.

∂µ
[

δxµ(F + ∂λD
λ)
]

+ δLF + ∂λδ
LDλ = 0 , (II.5)
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where δLF and ∂λδ
LDλ are the Lie derivatives of F and ∂λD

λ, respectively. Here, we have

used the fact that the Lie derivative and the usual derivative can be commutative with each

other. The Lie derivatives of F and Dλ are given by

δLF =
∂F

∂eaν
δLeaν +

∂F

∂eaν ,µ
δLeaν ,µ , (II.6)

δLDλ =
∂Dλ

∂eaν
δLeaν +

∂Dλ

∂eaν ,µ
δLeaν ,µ . (II.7)

In addition, the Lie derivative of the tetrad reads

δLeaν = −eaσ∂ν(e
σ
b ξ

b)− eσb ξ
b∂σe

a
ν (II.8)

= −ξb(eσb ∂σe
a
ν − eσb ∂νe

a
σ)− ∂νξ

a (II.9)

= −ξbK a
νb − ∂νξ

a . (II.10)

By substituting these expressions of the Lie derivatives (II.6), (II.7), and (II.10) into the

Noether theorem described in Eq. (II.5), we acquire

∂µ(et
µ
aξ

a − V µν
a ∂νξ

a −W µνλ
a ∂λ∂νξ

a) + eT ν
a (ξ

bK a
νb + ∂νξ

a) = 0 , (II.11)

where we have used the gravitational field equation, and T ν
a is the energy-momentum tensor

of matter. Furthermore, tµa , V
µν
a , and W µνλ

a are defined as

etµa ≡ eµa(F + ∂νD
ν) +

∂Dµ

∂ebν
K b

aν +
∂Dµ

∂ebν,λ
∂λK

b
aν − ∂F

∂ebν,µ
K b

νa , (II.12)

V µν
a ≡ ∂F

∂eaν,µ
+

∂Dµ

∂eaν
+

∂Dµ

∂ebρ,ν
K b

ρa , (II.13)

W µνλ
a ≡ ∂Dµ

∂eaν,λ
. (II.14)

Since ξa is an arbitrary function, Eq. (II.11) can be reduced to the four equations, each of

which are proportional to ξa, ξa,ν , ξ
a,νµ, and ξa,µνλ. These equations are

∂µ(et
µ
a) + eT ν

b K
b

νa = 0 , (II.15)

etµa − ∂νV
νµ
a + eT µ

a = 0 , (II.16)

(V µν
a + ∂ρW

ρµν
a )∂µ∂νξ

a = 0 , (II.17)

W µνρ
a ∂µ∂ν∂ρξ

a = 0 . (II.18)

It can easily be shown that V µν
a is antisymmetric with respect to (µ, ν). Thus, the

derivative of Eq. (II.16) is written as

∂µe(t
µ
a + T µ

a ) = 0 . (II.19)
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B. Energy-momentum tensor of gravitation

It is natural to consider that tµa will behave as a gravitational energy momentum tensor,

because T µ
a is the energy momentum tensor of matter. Hence, Eq. (II.19) implies the con-

servation law of the total energy momentum. This equation is invariant under the general

coordinate transformation, because the energy-momentum tensor has only one world coordi-

nate index, Eq. (II.19) is invariant under the general coordinate transformation in Eq. (II.4).

It follows from Eq. (II.12) that the gravitational energy momentum tensor is expressed as

16πtµa = eµaR + 2∇νK
µν

a − 2∇µK ν
aν + (K µν

a −Kν µ
a +Kµν

a)K
λ

νλ

+Kaνλk
µνλ +KaλνK

µνλ −KνλaK
µνλ . (II.20)

It is remarked that with the following several identities

R = −1

4
KµνλK

µνλ − 1

2
KµνλK

λνµ +Kµν
µK

ρ
νρ + 2∇µK

νµ
ν , (II.21)

Rµ
a = −1

2
∇νK

µν
a −

1

2
∇νK

νµ
a − 1

2
∇νK

µ ν
a −∇aK

νµ
ν

+
1

2
KλνµKaλν −

1

4
KλνµKλνa +

1

2
(K µν

a −Kµν
a +Kν µ

a )K ρ
νρ , (II.22)

and

∇νK
µν

a +∇aK
µν

ν +∇µK ν
νa +K µν

a K ρ
νρ +

1

2
KaρνK

ρνµ − 1

2
KρνaK

µρν = 0 , (II.23)

it is possible to rewrite the gravitational energy-momentum tensor in several different forms.

From Eqs. (II.15) and (II.19), we find

∂µ(eT
µ
a ) = eT µ

b K
b

µa . (II.24)

The energy-momentum tensor of matter T µ
a can be replaced with the Einstein tensor Gµ

a

through the gravitational field equation Gµ
a = 8πT µ

a . Therefore, Eq. (II.24) becomes

e(∂µG
µ
a + Γν

νµG
µ
a −K b

νa Gµ
b ) = 0 . (II.25)

Since the Ricci’s rotation coefficient is given by

Ωabµ =
1

2
(Kabµ −Kbµa −Kµab) , (II.26)

Eq. (II.25) reads

∇µG
µ
a = 0 . (II.27)
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Hence, the Bianchi identity can be derived.

It is the novel point to present the explicit representation of the gravitational energy-

momentum tensor, in comparison with the preceding work [5], in which the expression of

the gravitational energy-momentum tensor was not given.

III. GRAVITATIONAL ENERGY

In this section, we demonstrate that the gravitational energy and the matter one cancel

out, particularly, the FLRW universe with different curvatures and the Schwarzschild space-

time.

A. FLRW universe

We study the gravitational energy in the FLRW universe with the metric

ds2 = −dt2 + a2(t)

[

dr2

1−Kr2
+ r2dΩ2

]

, (III.1)

where a(t) is the scale factor, K is the cosmic curvature, and dΩ2 ≡ dθ2+sin2 θdφ2 is the line

element on the two-dimensional sphere. If K = 0, the universe is flat, while if K > 0(< 0),

it is closed (open). In the FLRW background, the (t, t) component of the gravitational

energy-momentum tensor is represented as

ttt = tt
0
e0tgtt (III.2)

=
3

8π

(

− ȧ2

a2
+

K

a2

)

, (III.3)

where the dot denotes the time derivative, and the Hubble parameter H is defined as H =

ȧ/a. The total gravitational energy is given by

EG =

∫ √
γtttdrdθdφ (III.4)

= −3

2
a(ȧ2 +K)

∫

r2√
1−Kr2

dr , (III.5)

where γ is the determinant of the three-dimensional space metric.
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1. K = 0 (Flat universe)

When K = 0, the total gravitational energy is written as

EG = −3

2
aȧ2

∫

∞

0

r2dr . (III.6)

By combining this equation with the Friedmann equation

H2 =
ȧ2

a2
=

8π

3
ρ , (III.7)

where ρ is the energy density of the dust matter, we obtain

EG = −4πρ0

∫

∞

0

r2dr . (III.8)

Here, we express ρ = ρ0/a
3 with ρ0 the value of ρ at the present time, when the scale factor

is taken as a = a0 = 1. On the other hand, the (t, t) component of energy-momentum tensor

of matter reads ρ = ρ0/a
3. Consequently, the total energy of matter is described as

Em =

∫

∞

0

√
γTttdrdθ dφ

= 4πρ0

∫

∞

0

r2dr . (III.9)

By comparing Eq. (III.8) with Eq. (III.9), it is clearly seen that the gravitational energy and

the matter energy cancel out, because the difference between them is only the signature and

their absolute values are the same with each other. This is consistent with the investigations

in Ref. [7].

2. K > 0 (Closed universe)

For K > 0, the gravitational energy is

EG = −3

2
a

(

ȧ2 +
K

a2

)
∫ rc

0

r2√
1−Kr2

dr

= −3π

8

a(ȧ2 +K)

K3/2
, (III.10)

where rc is the radius of the curvature, and we haveK = 1/r2
c
. With the Friedmann equation

H2 =
ȧ2

a2
=

8π

3
ρ− K

a2
, (III.11)
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we get

EG = −π2r3
c
ρ0 . (III.12)

Hence, the value of the matter energy is equal to the positive signature of EG in Eq. (III.12),

i.e., |EG|.

3. K < 0 (Open universe)

In the case of K < 0, the gravitational energy is given by

EG = −4πρ0

∫

∞

0

r2√
1−Kr2

dr . (III.13)

The energy of matter is also equivalent to the positive signature of value of EG in Eq. (III.13).

As a result, in all the cases of the FLRW universe, the gravitational energy and the

energy of matter cancel out. The energy conservation law means the total energy is constant.

However, the examples shown above indicate the fact that the total energy vanishes.

B. Schwarzschild black hole

As the last example, we explore the energy in the outer region of the Schwarzschild black

hole. The Schwarzschild metric is given by

ds2 = −
(

1− 2M

r

)

dt2 +
1

1− 2M/r
dr2 + r2dΩ2 . (III.14)

The (t, t) component of the energy-momentum tensor for the Schwarzschild black hole is

represented as

ttt = − M2

8πr4
. (III.15)

Therefore, the total gravitational energy in the outer region of the Schwarzschild black hole

becomes

EG =

∫

∞

2M

√
γtttd

3x

= −M2

2

∫

∞

2M

1√
r − 2Mr3/2

dr

= −M

2
. (III.16)

This is the energy seen by the observer who is in the rest frame in the infinite distance.
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IV. CONCLUSIONS

In the present paper, with the Noether theorem, we have attempted to construct a grav-

itational energy-momentum tensor in general relativity. Indeed, we have examined that

under the general coordinate transformation, the quantity constructed in our approach can

behave as a tensor. We have also confirmed that the energy-momentum conservation law can

be met. It originates from the fact that in the expression of the energy-momentum tensor,

one of the two indices should be the one in terms of the local Lorentz frame. In addition,

we find that the gravitational energy and the matter ones cancel out in the homogeneous

and isotropic FLRW universe and the Schwarzschild space-time.

It should be emphasized that the most significant idea of our construction method is to

describe the general coordinate transformation by using the tetrad. Furthermore, the tetrad

induces the gravitational energy and momentum and has an index of the local Lorentz frame.

Thus, the energy-momentum conservation law can be met.

If the gravitational energy-momentum tensor is multiplied by a tetrad, both of its two in-

dices will be in the world coordinate. As a consequence, the gravitational energy-momentum

tensor could not be symmetric. In this sense, it might be difficult to consider that general

relativity is a complete theory of gravitation.

Regarding the tetrad, it is meaningful to mention that as an alternative description of

gravity to general relativity, the so-called teleparallelism has attracted much attention in

the literature. In the teleparallelism, the gravity theory is written with the torsion scalar T

constructed with the Weitzenböck connection, and not the scalar curvature R constructed

with the Levi-Civita connection [8] (for a recent review, see, e.g., [9]). The torsion scalar

is derived from the torsion tensor described by using the tetrad, as shown in Sec. II A. It

has been indicated that in an extended theory of teleparallelism, so-called F (T ) gravity, the

inflationary universe [10] and the dark energy dominated stage [11] can be realized (for more

detailed explanations and references, see [3, 4, 12]). In fact, the energy and momentum have

been explored in the Poincare gauge theory [13], and the energy-momentum conservation

law has recently been discussed in teleparallelism [14]. In the light of such a recent study on

teleparallelism, it is considered that there exist the cases in which the tetrad is much more

useful to describe the theory of gravitation.
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