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Abstract

This is a substantially expanded version of a chapter-contribution to The Springer Handbook of Spacetime,
edited by Abhay Ashtekar and Vesselin Petkov, published by Springer Verlag in 2014. It introduces the
reader to the reformulation of Einstein’s field equations of General Relativity as a constrained evolutionary
system of Hamiltonian type and discusses some of its uses, together with some technical and conceptual
aspects. Attempts were made to keep the presentation self contained and accessible to first-year graduate
students. This implies a certain degree of explicitness and occasional reviews of background material.
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1 Introduction

The purpose of this contribution is to explain how
the field equations of General Relativity—often
simply referred to as Einstein’s equations—can be
understood as dynamical system; more precisely,
as a constrained Hamiltonian system.

In General Relativity, it is often said, spacetime
becomes dynamical. This is meant to say that
the geometric structure of spacetime is encoded in
a field that, in turn, is subject to local laws of prop-
agation and coupling, just as, e.g., the electromag-
netic field. It is not meant to say that spacetime as
a whole evolves. Spacetime does not evolve, space-
time just is. But a given spacetime (four dimen-
sional) can be viewed as the evolution, or history,
of space (three dimensional). There is a huge re-
dundancy in this representation, in the sense that
apparently very different evolutions of space rep-
resent the same spacetime. However, if the result-
ing spacetime is to satisfy Einstein’s equations, the
evolution of space must also obey certain well de-
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fined restrictions. Hence the task is to give pre-
cise mathematical expression to the redundancies
in representation as well as the restrictions of evolu-
tion for this picture of spacetime as space’s history.
This will be our main task.

This dynamical picture will be important for
posing and solving time-dependent problems in
General Relativity, like the scattering of black holes
with its subsequent generation and radiation of
gravitational waves. Quite generally, it is a key
technology to

• formulate and solve initial value problems;

• integrate Einstein’s equations by numerical
codes;

• characterize dynamical degrees of freedom;

• characterize isolated systems and the associ-
ation of asymptotic symmetry groups, which
will give rise to globally conserved ‘charges’,
like energy and linear as well as angular mo-
mentum (Poincaré charges).

Moreover, it is also the starting point for the canon-
ical quantization program, which constitutes one
main approach to the yet unsolved problem of
Quantum Gravity. In this approach one tries to
make essential use of the Hamiltonian structure of
the classical theory in formulating the correspond-
ing quantum theory. This strategy has been ap-
plied successfully in the transition from classical
to quantum mechanics and also in the transition
from classical to quantum electrodynamics. Hence
the canonical approach to Quantum Gravity may
be regarded as conservative, insofar as it tries to
apply otherwise established rules to a classical the-
ory that is experimentally and observationally ex-
tremely well tested. The underlying hypothesis
here is that we may quantize interaction-wise. This
distinguishes this approach from string theory, the
underlying credo of which is that Quantum Gravity
only makes sense on the basis of a unified descrip-
tions of all interactions.

Historically the first paper to address the prob-
lem of how to put Einstein’s equations into the
form of a Hamiltonian dynamical system was

Dirac’s [54] from 1958. He also noticed its con-
strained nature and started to develop the cor-
responding generalization of constrained Hamilto-
nian systems in [53] and their quantization [55].
On the classical side, this developed into the more
geometric Dirac-Bergmann theory of constraints
[76] and on the quantum side into an elaborate
theory of quantization of systems with gauge re-
dundancies; see [80] for a comprehensive account.

Dirac’s attempts were soon complemented by an
extensive joint work of Richard Arnowitt, Stanley
Deser, and Charles Misner - usually and henceforth
abbreviated by ADM. Their work started in 1959
by a paper [3] of the first two of these authors and
continued in the series [4] [6] [5] [9] [8] [7] [10] [11]
[12] [14] [15] [13] of 12 more papers by all three. A
comprehensive summary of their work was given in
1962 in [16], which was republished in 2008 in [17];
see also the editorial note [104] with short biogra-
phies of ADM.

A geometric discussion of Einstein’s evolution
equations in terms of infinite-dimensional symplec-
tic geometry has been worked out by Fischer and
Marsden in [57]; see also their beautiful summaries
and extended discussions in [59] and [58]. More
on the mathematical aspects of the initial-value
problem, including the global behavior of gravita-
tional fields in General Relativity, can be found
in [39], [45], and [106]. Modern text-books on the
3+1 formalism and its application to physical prob-
lems and their numerical solution-techniques are
[27, 77]. The Hamiltonian structure and its use in
the canonical quantization program for gravity is
discussed in [34, 92, 107, 113].

2 Notation and conventions

From now on “General Relativity” will be abbrevi-
ated by “GR”. Spacetime is a differentiable man-
ifold M of dimension n, endowed with a metric
g of signature (ε,+, · · · ,+). In GR n = 4 and
ε = −1 and it is implicitly understood that these
are the “right” values. However, either for the
sake of generality and/or particular interest, we
will sometimes state formulae for general n and
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ε, where usually n ≥ 2 (sometimes n ≥ 3) and
either ε = −1 (Lorentzian metric) or ε = +1 (Rie-
mannian metric; also called Euclidean metric).

The case ε = 1 has been extensively considered
in path-integral approaches to Quantum Gravity,
then referred to as Euclidean Quantum Gravity.

The tangent space of M at point p ∈ M will be
denoted by TpM , the cotangent space by T ∗pM , and
the tensor product of u factors of TpM with d fac-
tors of T ∗pM by T u

pdM . (Mnemonic in components:
u = number of indices “upstairs”, d = number of
indices “downstairs”.) An element T in T u

pdM is
called a tensor of contravariant rank u and covari-
ant rank d at point p, or simply a tensors of rank
(u,d) at p. T is called contravariant if d = 0 and
u > 0, and covariant if u = 0 and d > 0. A tensor
with u > 0 and d > 0 is then referred to as of mixed
type. Note that TpM = T 1

p0M and T ∗pM = T 0
p1M .

The set of tensor fields, i.e. smooth assignments of
an element in T u

pdM for each p ∈ M , are denoted
by ΓTudM . Unless stated otherwise, smooth means
C∞, i.e. continuously differentiable to any order.
For t ∈ ΓTudM we denote by tp ∈ T u

pdM the eval-
uation of t at p ∈ M . C∞(M) denotes the set of
all C∞ real-valued functions on M , which we often
simply call smooth functions.

If f : M → N is a diffeomorphism between
manifolds M and N , then f∗p : TpM → Tf(p)N
denotes the differential at p. The transposed (or
dual) of the latter map is, as usual, denoted by
f∗p : T ∗f(p)N → T ∗pM . If X is a vector field
on M then f∗X is a vector field on N , called
the push forward of X by f . It is defined by
(f∗X)q := f∗f−1(q)Xf−1(q), for all q ∈ N . If α
is a co-vector field on N then f∗α is a co-vector
field on M , called the pull back of α by f . It is
defined by (f∗α)p := αf(p) ◦f∗p, for all p ∈M . For
these definitions to make sense we see that f need
generally not be a diffeomorphism; M and N need
not even be of the same dimension. More precisely,
if α is a smooth field of co-vectors that is defined at
least on the image of f in N , then f∗α, as defined
above, is always a smooth field of co-vectors on M .
However, for the push forward f∗ of a general vec-
tor field on M to result in a well defined vector field
on the image of f in N we certainly need injectivity

of f . If f is a diffeomorphism we can not only push-
forward vectors and pull back co-vectors, but also
vice versa. Indeed, if Y is a vector field on N one
can write f∗Y := (f−1)∗Y and call it the pull back
of Y by the diffeomorphism f . Likewise, if β is a
co-vector field on M , one can write f∗β := (f−1)∗β
and call it the push forward of β. In this fashion
we can define both, push-forwards and pull-backs,
of general tensor fields T ∈ ΓTudM by linearity and
applying f∗ or f∗ tensor-factor wise.

Note that the general definition of metric is as
follows: g ∈ ΓT 0

2M , such that gp is a symmet-
ric non-degenerate bilinear form on TpM . Such
a metric provides isomorphisms (sometimes called
the musical isomorphisms)

[ : TpM → T ∗pM

X 7→ X[ := g(X, · ) , (1a)

] : T ∗pM → TpM

ω 7→ ω] := [−1(ω) . (1b)

Using ] we obtain a metric g−1
p on T ∗pM from the

metric gp on TpM as follows:

g−1
p (ω1, ω2) := gp(ω

]
1, ω

]
2) = ω1(ω]2) . (2)

We also recall that the tensor space T 1
p1M is nat-

urally isomorphic to the linear space End(TpM)
of all endomorphisms (linear self maps) of TpM .
Hence it carries a natural structure as associative
algebra, the product being composition of maps
denoted by ◦. As usual, the trace, denoted Tr,
and the determinant, denoted det, are the natu-
rally defined real-valued functions on the space of
endomorphisms. For purely co- or contravariant
tensors the trace can be defined by first applying
one of the isomorphisms (1). In this case we write
Trg to indicate the dependence on the metric g.

Geometric representatives of curvature are of-
ten denoted by bold-faced abbreviations of their
names, like Riem and Weyl for the (covariant, i.e.
all indices down) Riemann and Weyl tensors, Sec
for the sectional curvature, Ric and Ein for the
Ricci and Einstein tensors, Scal for the scalar cur-
vature, and Wein for the Weingarten map (which
is essentially equivalent to the extrinsic curvature).
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This is done in order to highlight the geometric
meaning behind some basic formulae, at least the
simpler ones. Later, as algebraic expressions be-
come more involved, we will also employ the stan-
dard component notation for computational ease.

3 Einstein’s equations

In n-dimensional spacetime Einstein’s equations
form a set of 1

2n(n + 1) quasi-linear partial dif-
ferential equations of second order for 1

2n(n + 1)
functions (the components of the metric tensor)
depending on n independent variables (the coor-
dinates in spacetime). At each point of spacetime
(event) they equate a purely geometric quantity to
the distribution of energy and momentum carried
by the matter. More precisely, this distribution
comprises the local densities (quantity per unit vol-
ume) and current densities (quantity per unit area
and unit time) of energy and momentum. The ge-
ometric quantity in Einstein’s equations is the Ein-
stein tensor Ein, the matter quantity is the energy-
momentum tensor T. Both tensors are of second
rank, symmetric, and here taken to be covariant
(in components: “all indices down”). Their num-
ber of independent components in n spacetime di-
mensions is 1

2n(n+ 1)

Einstein’s equations (actually a single tensor
equation, but throughout we use the plural to
emphasize that it comprises several component
equations) state the simple proportionality of Ein
with T

Ein = κT , (3)

where κ denotes the dimensionful constant of pro-
portionality. Note that no explicit reference to the
dimension n of spacetime enters (3), so that even
if n 6= 4 it is usually referred to as Einstein’s equa-
tions. We could have explicitly added a cosmolog-
ical constant term gΛ on the left-hand side, where
Λ is a constant the physical dimension of which is
the square of an inverse length. However, as long
as we write down our formulae for general T we
may absorb this term into T where it accounts for
a contribution TΛ = −gΛ/κ. This has to be kept

in mind when explicit models for T are used and
when we speak of “vacuum”, which now means:

Tvacuum = TΛ := −κ−1gΛ . (4)

The signs are chosen such that a positive Λ ac-
counts for a positive energy density and a negative
pressure if the spacetime is Lorentzian (ε = −1).

There is another form of Einstein’s equations
which is sometimes advantageous to use and in
which n explicitly enters:

Ric = κ
(
T− 1

n−2gTrg(T)
)
. (5)

These two forms are easily seen to be mathemati-
cally equivalent by the identities

Ein = Ric− 1
2gTrg(Ric) , (6a)

Ric = Ein− 1
n−2gTrg(Ein) . (6b)

With respect to a local field of basis vectors
{e0, e1, · · · , en−1} we write Ein(eµ, eν) =: Gµν ,
T(eµ, eν) =: Tµν , and Ric(eµ, eν) =: Rµν . Then
(3) and (5) take on the component forms

Gµν = κTµν (7)

and

Rµν = κ
(
Tµν − 1

n−2gµνT
λ
λ

)
(8)

respectively. Next we explain the meanings of the
symbols in Einstein’s equations from left to right.

3.1 What aspects of geometry?

The left-hand side of Einstein’s equations com-
prises certain measures of curvature. As will be
explained in detail in Section 5, all curvature in-
formation in dimensions higher than two can be
reduced to that of sectional curvature. The sec-
tional curvature at a point p ∈ M tangent to
span{X,Y } ⊂ TpM is the Gaussian curvature at
p of the submanifold spanned by the geodesics in
M emanating from p tangent to span{X,Y }. The
Gaussian curvature is defined as the product of two
principal curvatures, each being measured in units
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of an inverse length (the inverse of a principal ra-
dius). Hence the Gaussian curvature is measured
in units of an inverse length-squared.

At each point p in spacetime the Einstein and
Ricci tensors are symmetric bilinear forms on TpM .
Hence Einp and Ricp are determined by the values
Einp(W,W ) and Ricp(W,W ) for all W ∈ TpM .
By continuity in W this remains true if we restrict
W to the open and dense set of vectors which are
not null, i.e. for which g(W,W ) 6= 0. As we will
see later on, we then have

Ein(W,W ) = −g(W,W )

N1∑
⊥W

Sec , (9)

Ric(W,W ) = +g(W,W )

N2∑
‖W

Sec . (10)

For the Einstein tensor the sum on the right-hand
side is over any complete set of N1 = 1

2 (n−1)(n−2)
sectional curvatures of pairwise orthogonal planes
in the orthogonal complement of W in TpM . For
the Ricci tensor it is over any complete set of
N2 = n−1 sectional curvatures of pairwise orthog-
onal planes containing W . If W is a timelike unit
vector representing an observer, Ein(W,W ) is sim-
ply (−ε) times an equally weighted sum of space-
like sectional curvatures, whereas Ric(W,W ) is ε
times an equally weighted sum of timelike sectional
curvatures. In that sense we may say that, e.g.,
Ein(W,W ) at p ∈M measures the mean Gaussian
curvature of the (local) hypersurface in M that is
spanned by geodesics emanating from W orthogo-
nal to W . It, too, is measured in units of the square
of an inverse length.

3.2 What aspects of matter?

Now we turn to the right-hand side of Einstein’s
equations. We restrict to four spacetime dimen-
sions, though much of what we say will apply ver-
batim to other dimensions. The tensor T on the
right-hand side of (3) is the energy-momentum ten-
sor of matter. With respect to an orthonormal
basis {e0, e1, · · · , en−1} with timelike e0 the com-
ponents Tµν := T(eµ, eν) form a symmetric 4 × 4

matrix, which we represent as follows by splitting
off terms involving a time component:

Tµν =

(
E −c ~M
− 1
c
~S Tmn

)
. (11)

Here all matrix elements refer to the matter’s en-
ergy momentum distribution relative to the rest
frame of the observer who momentarily moves
along e0 (i.e. with four-velocity u = ce0) and uses
the basis {e1, e2, e3} in his/her rest frame. Then

E = T00 is the energy density, ~S = (s1, s2, s3) the
(components of the) energy current-density, i.e. en-
ergy per unit surface area and unit time interval,
~M the momentum density, and finally Tmn the

(component of the) momentum current-density, i.e.
momentum per unit of area and unit time interval.
Note that symmetry Tµν = Tνµ implies a simple re-
lation between the energy current-density and the
momentum density

~S = c2 ~M . (12)

The remaining relations Tmn = Tnm express equal-
ity of the m-th component of the current density
for n-momentum with the n-th component of the
current density for m-momentum. Note that the
two minus signs in front of the mixed components
of (11) would have disappeared had we written
down the contravariant components Tµν . In flat
spacetime, the four equations ∂µTµν express the
local conservation of energy and momentum. In
curved spacetime (with vanishing torsion) we have
the identity (to be proven later; compare (90b))

∇µGµν ≡ 0 (13)

implies via (7)
∇µTµν = 0 , (14)

which may be interpreted as expressing a local con-
servation of energy and momentum for the matter
plus the gravitational field, though there is no such
thing as a separate energy-momentum tensor on
spacetime for the gravitational field.

Several positivity conditions can be imposed
on the energy momentum tensor T. The sim-
plest is known as weak energy-condition and reads
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T(W,W ) ≥ 0 for all timelike W . It is equivalent to
the requirement that the energy density measured
by any local observer is non negative. For a per-
fect fluid of rest-mass density ρ and pressure p the
weak energy-condition is equivalent to both con-
ditions ρ ≥ 0 and p ≥ −c2ρ. The strong energy-
condition says that

(
T − 1

2gTrg(T)
)
(W,W ) ≥ 0

again for all timelike W . This neither follows nor
implies the weak energy-condition. For a perfect
fluid it is equivalent to both conditions p ≥ −c2ρ
and p ≥ −c2ρ/3, i.e. to the latter alone if ρ is
positive and to the former alone if ρ is negative
(which is not excluded here). Its significance lies
in the fact that it ensures attractivity of gravity
as described by Einstein’s equations. It must, for
example, be violated if matter is to drive infla-
tion. Note that upon imposing Einstein’s equa-
tions the weak and the strong energy-conditions
read Ein(W,W ) ≥ 0 and Ric(W,W ) ≥ 0 respec-
tively. From (9) and (10) we can see that for fixed
W these imply conditions on complementary sets of
sectional curvatures. For completeness we mention
the condition of energy dominance, which states
that T(W,W ) ≥ |T(X,X)| for any pair of or-
thonormal vectors W,X where W is timelike (and
hence X is spacelike). It is equivalent to the weak
energy-condition supplemented by the requirement
that (iWT)] be non spacelike for all timelike W .
The second requirement ensures locally measured
densities of energy currents and momenta of matter
to be non spacelike.

3.3 How do geometry and matter
relate quantitatively?

We return to Einstein’s equations and finally dis-
cuss the constant of proportionality κ on the right-
hand side of (3). Its physical dimension is that of
curvature (m−2 in SI units) divided by that of en-
ergy density (J ·m−3 in SI units, where J = Joule).
It is given by

κ :=
8πG

c4
≈ 2.1× 10−43 m−2

J ·m−3
, (15)

where G ≈ 6.67384(80) × 10−11m3 · kg−1 · s−2 is
Newton’s constant. It is currently (March

2013) known with a relative standard uncertainty
of 1.2 × 10−4 and is thus by far the least well
known of the fundamental physical constants. c =
299 792 458 m · s−1 is the vacuum speed of light
whose value is exact, due to the SI-definition of
meter (“the meter is the length of the path trav-
eled by light in vacuum during a time interval of
1/299 792 458 of a second”).

The physical dimension of κ is
time2/(mass · length), that is in SI-units
s2 · kg−1 ·m−1 or m−2/(J ·m−3), where J =
Joule = kg ·m2 · s−2. It converts the common
physical dimension of all components Tµν , which
is that of an energy density (Joule per cubic
meter in SI-units) into that of the components
of Ein, which is that of curvature (in dimension
≥ 2), i.e., the square of an inverse length (inverse
square-meter in SI-units).

If we express energy density as mass density
times c2, the conversion factor is κc2 = 8πG/c2.
It can be expressed in various units that give a
feel for the local “curving power” of mass-densities.

For that of water, ρW ≈ 103 kg ·m−3, and nu-
clear matter in the core of a neutron star (which
is more than twice that of atomic nuclei), ρN ≈
5× 1017 kg ·m−3, we get, respectively:

κc2 ≈
(

1

1.5 AU

)2

· ρ−1
W ≈

(
1

10 km

)2

· ρ−1
N , (16)

where AU = 1.5 × 1011 m is the astronomical unit
(mean Earth-Sun distance). Hence, roughly speak-
ing, matter densities of water cause curvature radii
of the order of the astronomical unit, whereas the
highest known densities of nuclear matter cause
curvature radii of tens of kilometers. The curva-
ture caused by mere mass density is that expressed
in Ein(W,W ) when W is taken to be the unit time-
like vector characterizing the local rest frame of the
matter: It is a mean of spatial sectional curvatures
in the matter’s local rest frame. Analogous inter-
pretations can be given for the curvatures caused
by momentum densities (energy current-densities)
and momentum current-densities (stresses).
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3.4 Conserved energy-momentum
tensors and globally conserved
quantities

In this subsection we briefly wish to point out
that energy-momentum tensors T whose diver-
gence vanishes (14) give rise to conserved quanti-
ties in case the spacetime (M, g) admits non-trivial
isometries. We will stress the global nature of these
quantities and clarify their mathematical habitat.

Conservation laws for the matter alone result
in the presence of symmetries, more precisely, if
Killing fields for (M, g) exist. Recall that a vector
field V is called a Killing field iff LV g = 0, where
LV is the Lie derivative with respect to V . Recall
that the Lie derivative can be expressed in terms of
the Levi-Civita covariant derivative with respect to
g, in which case we get the component expression:

(LV g)µν = ∇µVν +∇νVµ = 0 . (17)

We consider the one-form JV that results from
contracting T with V :

JV := iV T = V µTµνdx
ν . (18)

As a result of Killing’s equation (17) it is divergence
free,

∇µJµV = 0 . (19)

This may be equivalently expressed by saying that
the 3-form ?JV , which is the Hodge dual of the
1-form JV , is closed:

d ? JV = 0 . (20)

Integrating ?JV over some 3-dimensional subman-
ifold Σ results in a quantity

Q[V,Σ] :=

∫
Σ

?JV (21)

which, because of (20), is largely independent of
Σ. More precisely, if Ω ⊂M is an oriented domain
with boundary ∂Ω = Σ1−Σ2, then Stokes’ theorem
gives Q[V,Σ1] = Q[V,Σ2].

Suppose now that V arises from a finite-
dimensional Lie group G that acts on (M, g) by

isometries. We will discuss general Lie-group ac-
tions on manifolds in the Appendix at the end
of this contribution, containing detailed proofs of
some relevent formulae. But in order not to inter-
rupt the argument too much, let us recall at this
point that an action of G on M is a map

Φ : G×M →M ,

(g,m) 7→ Φ(g,m) = Φg(m) ,
(22a)

which satisfies

Φe = IdM , (22b)

Φg ◦ Φh = Φgh . (22c)

Here e ∈ G denotes the neutral element, IdM the
identity map on M , and equation (22c) is valid for
any two elements g, h of G. In fact, equation (22c)
characterizes a left action. In contrast, for a right
action we would have Φhg instead of Φgh on the
right-hand side of (22c). Moreover, as the group
acts by isometries for the metric g, we also have
Φ∗hg = g for all h ∈ G.

Now, this action defines a map, V , from Lie(G),
the Lie algebra of G, into the vector fields on M .
The vector field corresponding to X ∈ Lie(G) is
denoted V X . Its value at a point m ∈M is defined
by

V X(m) :=
d

dt

∣∣∣
t=0

Φ
(
exp(tX),m

)
. (23)

From this it is obvious that V : Lie(G) → ΓT 1
0M

is linear. Moreover, one may also show (compare
(382b) in Appendix) that this map is a Lie anti-
homomorphism, i.e. that

V [X,Y ] = −[V X , V Y ] . (24)

(As shown in the Appendix, a right action would
have resulted in a proper Lie homomorphism – see
(382a) –, i.e. without the minus sign on the right-
hand side, which however is not harmful.) The left
action of G on M extends to a left action on all
tensor fields by push forward. In particular, the
push forward of V X by Φg has a simple expression
(see (383a) in Appendix) :

Φg∗V
X = V Adg(X) , (25)

7



where Ad denotes the adjoint representation of
G on Lie(G). In fact, relation (25) can be di-
rectly deduced from definition (23). Indeed, writ-
ing Φ(g, p) = g ·p for notational simplicity, we have
(see Appendix for more explanation)

(Φg∗V
X)(g · p) =

d

dt

∣∣∣
t=0

(
g exp(tX) · p

)
=

d

dt

∣∣∣
t=0

(
g exp(tX) g−1g · p

)
=

d

dt

∣∣∣
t=0

(
exp
(
tAdg(X)

)
· (g · p)

)
= V Adg(X)(g · p) .

(26)

This leads to (25) which we shall use shortly.
Returning to the expression (21) we see that, for

fixed Σ, it becomes a linear map from Lie(G) to R:

M : Lie(G)→ R , M(X) := Q[V X ,Σ] . (27)

Hence each hypersurface Σ defines an element M ∈
Lie∗(G) in the vector space that is dual to the Lie
algebra, given that the integral over Σ converges.
This is the case for spacelike Σ and energy momen-
tum tensors with spatially compact support (or at
least sufficiently rapid fall off). The same argument
as above using Stokes’ theorem and (20) then shows
that M is independent of the choice of spacelike
Σ. In other words, we obtain a conserved quantity
M ∈ Lie∗(G) for G-symmetric spacetimes (M, g)
and covariant divergence free tensors T.

So far we considered a fixed spacetime (M, g) and
a fixed energy-momentum tensor T, both linked by
Einstein’s equations. In this case the vanishing di-
vergence (14) is an integrability condition for Ein-
stein’s equation and hence automatic. However,
it is also of interest to consider the more general
case where (M, g) is merely a background for some
matter represented by energy-momentum tensors
T[µ], all of which are divergence free (14) with re-
spect to the background metric g. Note that we
do not assume (M, g) to satisfy Einstein’s equa-
tions with any of the T[µ] on the right-hand side.
The µ stands for some matter variables which may
be fundamental fields and/or of phenomenological

nature. In any case, we assume the isometric ac-
tion (22) to extend to an action of G on the set of
matter variables µ, which we denote by µ 7→ Φg∗µ,
like the push-forward on tensor fields. This is also
meant to indicate that we assume this to be a left
action, i.e. Φg∗ ◦ Φh∗ = Φgh∗.

We regard the energy-momentum tensor T as a
map from the space of matter variables to the space
of symmetric second-rank covariant tensor fields on
M . We require this map to satisfy the following
covariance property:

T[Φg∗µ] = Φg∗T[µ] := Φ∗g−1T , (28)

where Φg∗ is the ordinary push-forward of the ten-
sor T. Since we take T to be covariant, its push
forward is the pull back by the inverse diffeomor-
phism, as indicated by the second equality in (28).

For each specification µ of matter variables we
can compute the quantitty Q[V X ,Σ, µ] as in (21).
Note that we now indicate the dependence on µ
explicitly. We are interested in computing how Q
changes as µ is acted on by g ∈ G. This is done as
follws:

Q
[
V X ,Σ,Φg∗µ

]
=

∫
Σ

? iV X T[Φg∗µ]

=

∫
Σ

? iV X Φ∗g−1T[µ]

=

∫
Σ

?Φ∗g−1

(
iΦg−1∗V

XT[µ]
)

=

∫
Σ

?Φ∗g−1

(
i
V

Ad
g−1 (X)T[µ]

)
=

∫
Σ

Φ∗g−1

(
?i
V

Ad
g−1 (X)T[µ]

)
=

∫
Φg−1 (Σ)

? i
V

Ad
g−1 (X)T[µ]

= Q
[
V Adg−1 (X),Φg−1(Σ), µ

]
.

(29)

Here we used (28) in the second equality, the gen-
eral formula iV f

∗T = f∗(if∗V T ) (valid for any dif-
feomorphism f , vector field V , and covariant ten-
sor field T ) in the third equality, (25) in the fourth
equality, the formula ? f∗F = f∗ ? F in the fifth
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equality (valid for any orientation preserving isom-
etry f and any form-field F ; here we assume M
to be oriented), and finally the general formula for
the integral of the pull back of a form in the sixth
equality.

Our final assumption is that Q does not de-
pend on which hypersurface Φg(Σ) it is evaluated
on. Since we assume (14) this is guaranteed if all
Φg(Σ) are in the same homology class or, more
generally, if any two hypersurfaces Σ and Φg(Σ)
are homologous to hypersurfaces in the comple-
ment of the support of T. A typical situation
arising in physical applications is that of a source
T[µ] with spatially compact support; then any two
sufficiently extended spacelike slices through the
timelike support-tube of T[µ] is homologous to
the timelike cylindrical hypersurface outside this
support-tube. In this case we infer from (29) that

Q
[
V X ,Σ,Φg∗µ

]
e = Q

[
V Adg−1 (X),Σ, µ

]
. (30)

Recall from (27) that for fixed Σ and T we have
M ∈ Lie∗(G). Given the independence on Σ and
the depencence of T on µ, we now regard M as a
map from the matter variables µ to Lie∗(G). This
map may be called the momentum map. (Compare
the notion of a momentum map in Hamiltonian
mechanics; cf. Section 7.) Equation (30) then just
states the Ad∗-equivariance of the momentum map:

M ◦ Φg∗ = Ad∗g ◦M . (31)

Here Ad∗ denote the co-adjoint representation of
G on Lie(G), which is defined by Ad∗g(α) = α ◦
Adg−1 . From all this we see that the conserved
“momentum” that we obtain by evaluating M on
the matter configuration µ is a conserved quantity
that is globally associated to all of spacetime, not
a particular region or point of it. It is an element
of the vector space Lie∗(G) which carries the co-
adjoint representation of the symmetry group G.

In particular this applies to Special Relativ-
ity, where M is the four-dimensional real affine
space with associated (four-dimensional real) vec-
tor space V and g a bilinear, symmetric, non-
degenerate form of signature (−,+,+,+) [the sig-

nature does not matter in what follows]. The lin-
ear isometries of (V, η) form the Lorentz group
Lor ⊂ GL(V ) and the isometries G of (M, g)
can be (non-naturally) identified with the semi-
direct product V oLor , called the Poincaré group,
Poin. Using g we can identify Lie∗(Poin) with
V ⊕(V ∧V ). The co-adjoint action of (a,A) ∈ Poin
on (f, F ) ∈ Lie∗(Poin) is then given by

Ad∗(a,A)(f, F ) =
(
Af , (A⊗A)F − a∧Af

)
. (32)

Note that, e.g., the last term on the right hand side
includes the law of change of angular momentum
under spatial translations. In contrast, the adjoint
representation on Lie(Poin), the latter also identi-
fied with V ⊕ (V ∧ V ), is given by

Ad(a,A)(f, F ) =
(
Af −

(
(A⊗A)F

)
a , (A⊗A)F

)
,

(33)
where the application of an element in V ∧ V
to an element in V is given by (u ∧ v)(w) :=
u g(v, w) − v g(u,w), and linear extension. Note
the characteristic difference between (32) and (33),
which lies in the different actions of the subgroup
of translations, whereas the subgroup of Lorentz
transformations acts in the same fashion. Physical
momenta transform as in (32), as already exempli-
fied by the non-trivial transformation behavior of
angular momentum under spatial translations. For
a detailed discussion of the proper group-theoretic
setting and the adjoint and co-adjoint actions, see
the recent account [75].

4 Spacetime decomposition

In this section we explain how to decompose a given
spacetime (M, g) into “space” and ‘time”. For this
to be possible we need to make the assumption that
M is diffeomorphic to the product of the real line
R and some 3-manifold Σ:

M ∼= R× Σ . (34)

This will necessarily be the case for globally hy-
perbolic spacetimes, i.e. spacetimes admitting a

9



Cauchy surface [65]. We assume Σ to be orientable,
for, if it were not, we could take the orientable
double cover of it instead. Orientable 3-manifolds
are always parallelizable [111] , i.e. admit three
globally defined and pointwise linearly independent
vector fields. This is equivalent to the triviality of
the tangent bundle. In the closed case this is known
as Stiefel’s theorem (compare [100], problem 12-
B) and in the open case it follows, e.g., from the
well known fact that every open 3-manifold can
be immersed in R3 [117]. Note that orientabil-
ity is truly necessary; e.g., RP2 × S1 is not par-
allelizable. Since Cartesian products of paralleliz-
able manifolds are again parallelizable, it follows
that a 4-dimensional product spacetime (34) is also
parallelizable. This does, of course, not generalize
to higher dimensions. Now, for non-compact four-
dimensional spacetimes it is known from [64] that
parallelizability is equivalent to the existence of a
spin structure, without which spinor fields could
not be defined on spacetime. So we see that the
existence of spin structure is already implied by
(34) and hence does not pose any further topolog-
ical restriction. Note that the only other potential
topological restriction at this stage is that imposed
from the requirement that a smooth Lorentz metric
is to exist everywhere on spacetime. This is equiv-
alent to a vanishing Euler characteristic (see, e.g.,
§ 40 in [111]) which in turn is equivalently to the
global existence of a continuous, nowhere vanish-
ing vector field (possibly up to sign) on spacetime.
But such a vector field clearly exists on any Carte-
sian product with one factor being R. We conclude
that existence of a Lorentz metric and a spin struc-
ture on an orientable spacetime M = R × Σ pose
no restrictions on the topology of an orientable Σ.
As we will see later on, even Einstein’s equation
poses no topological restriction on Σ, in the sense
that some (physically reasonable) solutions to Ein-
stein’s equations exist for any given Σ. Topological
restrictions may occur, however, if we ask for solu-
tion with special properties (see below).

Now, given Σ, we consider a one-parameter fam-
ily of embeddings

Es : Σ→M , Σs := Es(Σ) ⊂M . (35)

M

Σ

Es′

Es

Es′′

Σs′

Σs

Σs′′

Figure 1: Spacetime M is foliated by a one-parameter
family of spacelike embeddings of the 3-manifold Σ. Here
the image Σs′ of Σ under Es′ lies to the future (above) and
Σs′′ to the past (below) of Σs if s′′ < s < s′. ‘Future’ and
‘past’ refer to the time function t which has so far not been
given any metric significance.

We distinguish between the abstract 3-manifold
Σ and its image Σs in M . The latter is called the
leaf corresponding to the value s ∈ R. Each point
in M is contained in precisely one leaf. Hence there
is a real valued function t : M → R that assigns to
each point in M the parameter value of the leaf it
lies on:

t(p) = s⇔ p ∈ Σs . (36)

So far this is only a foliation of spacetime by 3-
dimensional leaves. For them to be addressed as
“space” the metric induced on them must be posi-
tive definite, that is, the leaves should be spacelike
submanifolds. This means that the one-form dt is
timelike:

g−1(dt, dt) < 0 . (37)

The normalized field of one-forms is then

n[ :=
dt√

−g−1(dt, dt)
. (38)

As explained in section 2, we write n[ since we think
of this one form as the image under g of the nor-
malized vector field perpendicular to the leaves:

n[ = g(n, · ) . (39)

The linear subspace of vectors in TpM which are

tangent to the leaf through p is denoted by T
‖
pM ;

hence

T ‖pM := {X ∈ TpM : dt(X) = 0} . (40)
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The orthogonal complement is just the span of n at
p, which we denote by T⊥p M . This gives, at each
point p of M , the g-orthogonal direct sum

TpM = T⊥p M ⊕ T ‖pM . (41)

and associated projections (we drop reference to
the point p)

P⊥ :TM → T⊥M ,

X 7→ ε g(X,n)n , (42a)

P ‖ : TM → T ‖M ,

X 7→ X − εg(X,n)n . (42b)

As already announced in Section 2, we introduced
the symbol

ε = g(n, n) (43)

in order to keep track of where the signature mat-
ters. Note that the projection operators (42) are
self-adjoint with respect to g, so that for all X,Y ∈
TM we have

g
(
P⊥X,Y

)
= g
(
X,P⊥Y

)
, (44a)

g
(
P ‖X,Y

)
= g
(
X,P ‖Y

)
. (44b)

A vector is called horizontal iff it is in the kernel
of P⊥, which is equivalent to being invariant under
P ‖. It is called vertical iff it is in the kernel of P ‖,
which is equivalent to being invariant under P⊥.

All this can be extended to forms. We define
vertical and horizontal forms as those annihilating
horizontal and vertical vectors, respectively:

T ∗⊥p M := {ω ∈ T ∗pM : ω(X) = 0 , ∀X ∈ T ‖pM} ,
(45a)

T ∗‖p M := {ω ∈ T ∗pM : ω(X) = 0 , ∀X ∈ T⊥p M} .
(45b)

Using the ‘musical’ isomorphisms (1), the self-
adjoint projection maps (42) on vectors define self-
adjoint projection maps on co-vectors (again drop-
ping the reference to the base-point p)

P⊥∗ :=[ ◦ P⊥ ◦ ] : T ∗M → T ∗⊥M , (46a)

P
‖
∗ := [ ◦ P ‖ ◦ ] : T ∗M → T ∗‖M . (46b)

For example, letting the horizontal projection of
the form ω act on the vector X, we get

P
‖
∗ ω(X) = (P ‖ω])[(X)

= g
(
P ‖ω], X

)
= g
(
ω], P ‖X

)
= ω

(
P ‖X

)
,

(47)

where we merely used the definitions (1) of [ and ]
in the second and fourth equality, respectively, and
the self-adjointness (44b) of P ‖ in the third equal-
ity. The analogous relation holds for P⊥∗ ω(X). It

is also straightforward to check that P
‖
∗ and P⊥∗

are self-adjoint with respect to g−1 (cf. (2)).
Having the projections defined for vectors and

co-vectors, we can also define it for the whole ten-
sor algebra of the underlying vector space, just
by taking the appropriate tensor products of these

maps. All tensor products between P ‖ and P
‖
∗ will

then, for simplicity, just be denoted by P ‖, the
action on the tensor being obvious. Similarly for
P⊥. (For what follows we need not consider mixed
projections.) The projections being pointwise op-
erations, we can now define vertical and horizontal
projections of arbitrary tensor fields. Hence a ten-
sor field T ∈ ΓTudM is called horizontal if and only
if P ‖T = T . The space of horizontal tensor fields

of rank (u,d) is denoted by ΓT
‖u
dM .

As an example, the horizontal projection of the
metric g is

h := P ‖g := g
(
P ‖ · , P ‖ ·

)
= g − εn[ ⊗ n[ . (48)

Hence h ∈ ΓT
‖0
2M . Another example of a horizon-

tal vector field is the “acceleration” of the normal
field n:

a := ∇nn . (49)

Here∇ denotes the Levi-Civita covariant derivative
with respect to g. An observer who moves perpen-
dicular to the horizontal leaves has four-velocity
u = cn and four-acceleration c2a. If L denotes the
Lie derivative, it is easy to show that the accelera-
tion 1-form satisfies

a[ = Lnn
[ . (50)
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Moreover, as n is hypersurface orthogonal it is ir-
rotational, hence its 1-form equivalent satisfies

dn[ ∧ n[ = 0 , (51a)

which is equivalent to the condition of vanishing
horizontal curl:

P ‖dn[ = 0 . (51b)

Equation (51a) can also be immediately inferred
directly from (38). Taking the operation in ◦d (ex-
terior derivative followed by contraction with n) as
well as the Lie derivative with respect to n of (50)
shows

da[ ∧ n[ = 0 , (52a)

an equivalent expression being again the vanishing
of the horizontal curl of a:

P ‖da[ = 0 . (52b)

This will be useful later on.
Note that a[ is a horizontal co-vector field, i.e. an

element of ΓT
‖u=0
d=1 M . More generally, for a purely

covariant horizontal tensor field we have the follow-
ing results, which will also be useful later on: Let

T ∈ ΓT
‖0
dM , then

P ‖LnT = LnT , (53a)

LfnT = fLnT , (53b)

for all f ∈ C∞(M). Note that (53a) states that the
Lie derivative in normal direction of a horizontal
covariant tensor field is again horizontal. That this
is not entirely evident follows, e.g., from the fact
that a corresponding result does not hold for T ∈
ΓT
‖u
dM where u > 0. The proofs of (53) just use

standard manipulations.
A fixed space-point q ∈ Σ defines the worldline

(history of that point) R 3 s 7→ Es(q). The col-
lection of all worldlines of all space-points define a
foliation of M into one-dimensional timelike leafs.
Each leaf is now labeled uniquely by a space point.
We can think of “space”, i.e., the abstract mani-
fold Σ, as the quotient M/∼, where p ∼ p′ iff both
points lie on the same worldline. As any Σs in-
tersects each worldline exactly once, each Σs is a

representative of space. Instead of using the folia-
tion by 3-dimensional spatial leaves (35) we could
have started with a foliation by timelike lines, plus
the condition that these lines are vorticity free.
These two concepts are equivalent. Depending on
the context, one might prefer to emphasize one or
the other.

The vector parallel to the worldline at p = Es(q)
is, as usual in differential geometry, defined by its
action on f ∈ C∞(M) (smooth, real valued func-
tions):

∂

∂t

∣∣∣
Es(q)

f =
df(Es′(q))

ds′

∣∣∣
s′=s

. (54)

At each point this vector field can be decomposed
into its horizontal component that is tangential to
the leaves of the given foliation and its normal com-
ponent. We write

1

c

∂

∂t
= αn+ β , (55)

where β is the tangential part; see Figure 2. The

Σs

Σs+ds

p

p′

β

αn
1
c
∂
∂t

‘

Figure 2: For fixed q ∈ Σ its image points p = Es(q)
and p′ = Es+ds(q) for infinitesimal ds are connected by the
vector ∂/∂t|p, whose components normal to Σs are α (one
function, called lapse) and β (three functions, called shift)
respectively.

real-valued function α is called the lapse (function)
and the horizontal vector field β is called the shift
(vector-field) .

4.1 Decomposition of the metric

Let {e0, e1, e2, e3} be a locally defined orthonor-
mal frame with dual frame {θ0, θ1, θ2, θ3}. We call
them adapted to the foliation if e0 = n and θ0 = n[.
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A local coordinate system {x0, x1, x2, x3} is called
adapted if ∂/∂xa are horizontal for a = 1, 2, 3. Note
that in the latter case ∂/∂x0 is not required to be
orthogonal to the leaves (i.e. it need not be par-
allel to n). For example, we may take x0 to be
proportional to t; say x0 = ct.

In the orthonormal co-frame the spacetime met-
ric, i.e. the field of signature (ε,+,+,+) metrics
in the tangent spaces, has the simple form

g = εθ0 ⊗ θ0 +

3∑
a=1

θa ⊗ θa . (56)

The inverse spacetime metric, i.e. the field of signa-
ture (ε,+,+,+) metrics in the co-tangent spaces,
has the form

g−1 = εe0 ⊗ e0 +

3∑
a=1

ea ⊗ ea . (57)

The relation that expresses the coordinate basis
in terms of the orthonormal basis is of the form (in
a self-explanatory matrix notation)(

∂/∂x0

∂/∂xm

)
=

(
α βa

0 Aam

)(
e0

ea

)
, (58)

where βa are the components of β with respect to
the horizontal frame basis {ea}. The inverse of (58)
is (

e0

ea

)
=

(
α−1 −α−1βm

0 [A−1]ma

)(
∂/∂x0

∂/∂xm

)
, (59)

where βm are the components of β with respect
to the horizontal coordinate-induced frame basis
{∂/∂xm}.

The relation for the co-bases dual to those in (58)
is given by the transposed of (58), which we write
as: (

θ0 θa
)

=
(
dx0 dxm

)(α βa

0 Aam

)
. (60)

The inverse of that is the transposed of (59):(
dx0 dxm

)
=
(
θ0 θa

)(α−1 −α−1βm

0 [A−1]ma

)
.

(61)

Orthogonality of the ea implies for the chart
components of the spatial metric (48)

hmn := h
(
∂/∂xm, ∂/∂xn

)
=

3∑
a=1

AamA
a
n , (62)

and its inverse

hmn := h−1
(
dxm, dxn

)
=

3∑
a=1

[A−1]ma [A−1]na . (63)

Inserting (60) into (56) and using (62) leads to
the (3+1)-form of the metric in adapted coordi-
nates

g =
(
εα2 + h(β, β)

)
c2 dt⊗ dt

+ cβm
(
dt⊗ dxm + dxm ⊗ dt

)
+ hmn dx

m ⊗ dxn ,
(64)

where βm := hmnβ
n are the components of β[ :=

g(β, · ) = h(β, · ) with respect to the coordinate ba-
sis {∂/∂xm}. Likewise, inserting (61) into (57) and
using (63) leads to the (3+1)-form of the inverse
metric in adapted coordinates (we write ∂t := ∂/∂t
and ∂m := ∂/∂xm for convenience)

g−1 = εc−2α−2 ∂t ⊗ ∂t
− εc−1α−2 βm

(
∂t ⊗ ∂m + ∂m ⊗ ∂t

)
+
(
hmn + εβmβn

)
∂m ⊗ ∂n .

(65)

Finally we note that the volume form on space-
time also easily follows from (60)

dµg = θ0 ∧ θ1 ∧ θ2 ∧ θ3

= α
√

det{hmn} cdt ∧ d3x ,
(66)

where we use the standard shorthand d3x = dx1 ∧
dx2 ∧ dx3.

4.2 Decomposition of the
covariant derivative

Given horizontal vector fields X and Y , the covari-
ant derivative of Y with respect to X need not be
horizontal. Its decomposition is written as

∇XY = DXY + nK(X,Y ) , (67)
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where

DXY := P ‖∇XY , (68)

K(X,Y ) := ε g(n,∇XY ) . (69)

The map D defines a covariant derivative (in the
sense of Kozul; compare [110], Vol 2) for horizon-
tal vector fields, as a trivial check of the axioms
reveals. Moreover, since the commutator [X,Y ]
of two horizontal vector fields is always horizontal
(since the horizontal distribution is integrable by
construction), we have

TD(X,Y ) = DXY −DYX − [X,Y ]

= P ‖
(
∇XY −∇YX − [X,Y ]

)
= 0

(70)

due to ∇ being torsion free. We recall that tor-
sion is a tensor field T ∈ ΓT 1

2M associated to each
covariant derivative ∇ via

T∇(X,Y ) = ∇XY −∇YX − [X,Y ] . (71)

We have T (X,Y ) = −T (Y,X). As usual, even
though the operations on the right hand side of
(71) involve tensor fields (we need to differentiate),
the result of the operation just depends onX and Y
pointwise. This one proves by simply checking the
validity of T (fX, Y ) = fT (X,Y ) for all smooth
functions f . Hence (70) shows that D is torsion
free because ∇ is torsion free.

Finally, we can uniquely extend D to all hori-
zontal tensor fields by requiring the Leibniz rule.
Then, for X,Y, Z horizontal

(DXh)(Y,Z)

= X
(
h(Y, Z)

)
− h(DXY, Z)− h(Y,DXZ)

= X
(
g(Y, Z)

)
− g(∇XY,Z)− g(Y,∇XZ)

= (∇Xg)(Y, Z) = 0

(72)

due to the metricity, ∇g = 0, of ∇. Hence D is
metric in the sense

Dh = 0 . (73)

The map K from pairs of horizontal vector fields
(X,Y ) into functions define a symmetric tensor

field. Symmetry follows from the vanishing torsion
of ∇, since then

K(X,Y ) = ε g(n,∇XY )

= ε g(n,∇YX + [X,Y ])

= ε g(n,∇YX)

= K(Y,X)

(74)

for horizontal X,Y . From (69) one sees that
K(fX, Y ) = fK(X,Y ) for any smooth function
f . Hence K defines a unique symmetric tensor
field on M by stipulating that it be horizontal, i.e.
K(n, ·) = 0. It is called the extrinsic curvature of
the foliation or second fundamental form, the first
fundamental form being the metric. From (69)
and the symmetry just shown one immediately in-
fers the alternative expressions

K(X,Y ) = −ε g(∇Xn, Y ) = −ε g(∇Y n,X) .
(75)

This shows the relation between the extrinsic cur-
vature and the Weingarten map, Wein, also called
the shape operator, which sends horizontal vectors
to horizontal vectors according to

X 7→Wein(X) := ∇Xn . (76)

Horizontality of ∇Xn immediately follows from n
being normalized: g(n,∇Xn) = 1

2X
(
g(n, n)

)
= 0.

Hence (75) simply becomes

K(X,Y ) = −ε h
(
Wein(X), Y

)
= −ε h

(
X,Wein(Y )

)
,

(77)

where we replaced g with h—defined in (48)—
since both entries are horizontal. It says that K
is (−ε) times the covariant tensor corresponding
to the Weingarten map, and that the symmetry
of K is equivalent to the self-adjointness of the
Weingarten map with respect to h. The Wein-
garten map characterizes the bending of the em-
bedded hypersurface in the ambient space by an-
swering the following question: In what direction
and by what amount does the normal to the hy-
persurface tilt if, starting at point p, you progress
within the hypersurface by the vector X. The an-
swer is just Weinp(X). Self adjointness of Wein
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then means that there always exist three (n − 1
in general) perpendicular directions in the hyper-
surface along which the normal tilts in the same
direction. These are the principal curvature direc-
tions mentioned above. The principal curvatures
are the corresponding eigenvalues of Wein.

Finally we note that the covariant derivative of
the normal field n can be written in terms of the
acceleration and the Weingarten map as follows

∇n = εn[ ⊗ a+ Wein . (78)

Recalling (77), the purely covariant version of this
is

∇n[ = −ε
(
K − n[ ⊗ a[

)
. (79)

From (48) and (79) we derive by standard manip-
ulation, using vanishing torsion,

Lnh = −2εK . (80)

In presence of torsion there would be an addi-
tional term +2(inT )[s, where the subscript s de-
notes symmetrization; in coordinates [(inT )[s]µν =
nλTαλ(µgν)α.

5 Curvature tensors

We wish to calculate the (intrinsic) curvature ten-
sor of ∇ and express it in terms of the curvature
tensor of D, the extrinsic curvature K, and the
spatial and normal derivatives of n and K. Be-
fore we do this, we wish to say a few words on the
definition of the curvature measures in general.

All notions of curvature eventually reduce to that
of curves. For a surface S embedded in R3 we
have the notion of Gaussian curvature which comes
about as follows: Consider a point p ∈ S and a unit
vector v at p tangent to S. Consider all smooth
curves passing through p with unit tangent v. It
is easy to see that the curvatures at p of all such
curves is not bounded from above (due to the pos-
sibility to bend within the surface), but there will
be a lower bound, k(p, v), which just depends on
the chosen point p and the tangent direction repre-
sented by v. Now consider k(p, v) as function of v.
As v varies over all tangent directions k(p, v) will

assume a minimal and a maximal value, denoted
by kmin(p) = k(p, vmin) and kmax(p) = k(p, vmax)
respectively. These are called the principal curva-
tures of S at p and their reciprocals are called the
principal radii. It is clear that the principal direc-
tions vmin and vmax just span the eigenspaces of
the Weingarten map discussed above. In particu-
lar, vmin and vmax are orthogonal. The Gaussian
curvature K(p) of S at p is then defined to be the
product of the principal curvatures:

K(p) = kmin(p) · kmax(p) . (81)

This definition is extrinsic in the sense that essen-
tial use is made of the ambient R3 in which S is em-
bedded. However, Gauss’ theorema egregium states
that this notion of curvature can also be defined in-
trinsically, in the sense that the value K(p) can be
obtained from geometric operations entirely car-
ried out within the surface S. More precisely, it is
a function of the first fundamental form (the met-
ric) only, which encodes the intrinsic geometry of
S, and does not involve the second fundamental
form (the extrinsic curvature), which encodes how
S is embedded into R3.

Let us briefly state Gauss’ theorem in mathemat-
ical terms. Let

g = gab dx
a ⊗ dxb (82)

be the metric of the surface in some coordinates,
and

Γcab = 1
2g
cd
(
−∂dgab + ∂agbd + ∂bgda

)
, (83)

certain combinations of first derivatives of the met-
ric coefficients, known under the name of Christof-
fel symbols . Note that Γcab has as many indepen-
dent components as ∂agbc and that we can calculate
the latter from the former via

∂cgab = ganΓnbc + gbnΓnac . (84)

Next we form even more complicated combinations
of first and second derivatives of the metric coeffi-
cients, namely

Rab cd = ∂cΓ
a
db − ∂dΓacb + ΓacnΓndb − ΓadnΓncb , (85)
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which are now known as components of the Rie-
mann curvature tensor. From them we form the
totally covariant (all indices down) components:

Rab cd = ganR
n
b cd . (86)

They are antisymmetric in the first and second
index pair: Rab cd = −Rba cd = −Rab dc, so that
R12 12 is the only independent component. Gauss’
theorem now states that at each point on S we have

K =
R12 12

g11g22 − g2
12

. (87)

An important part of the theorem is to show that
the right-hand side of (87) actually makes good
geometric sense, i.e. that it is independent of the
coordinate system that we use to express the coef-
ficients. This is easy to check once one knows that
Rabcd are the coefficients of a tensor with the sym-
metries just stated. In this way the curvature of
a surface, which was primarily defined in terms of
curvatures of certain curves on the surface, can be
understood intrinsically. In what follows we will see
that the various measures of intrinsic curvatures of
n-dimensional manifolds can be reduced to that of
2-dimensional submanifolds, which will be called
sectional curvatures.

Back to the general setting, we start from the
notion of a covariant derivative ∇. Its associated
curvature tensor is defined by

R(X,Y )Z =
(
∇X∇Y −∇Y∇X −∇[X,Y ]

)
Z . (88)

For each point p ∈ M it should be thought of
as a map that assigns to each pair X,Y ∈ TpM
of tangent vectors at p a linear map R(X,Y ) :
TpM → TpM . This assignment is antisymmetric,
i.e. R(X,Y ) = −R(Y,X). If R(X,Y ) is applied
to Z the result is given by the right-hand side of
(88). Despite first appearance, the right-hand side
of (88) at a point p ∈ M only depends on the
values of X,Y , and Z at that point and hence de-
fines a tensor field. This one again proves by show-
ing the validity of R(fX, Y )Z = R(X, fY )Z =
R(X,Y )fZ = fR(X,Y )Z for all smooth real-
valued functions f on M. In other words: All terms
involving derivatives of f cancel.

From (88) and using (71) one may show that the
Riemann tensor always obeys the first and second
Bianchi identities:∑

(XY Z)

R(X,Y )Z

=
∑

(XY Z)

{
(∇XT )(Y,Z)− T

(
X,T (Y, Z)

)}
,

(89a)∑
(XY Z)

(∇XR)(Y, Z)

=
∑

(XY Z)

R
(
X,T (Y,Z)

)
, (89b)

where the sums are over the three cyclic permu-
tations of X, Y , and Z. For zero torsion these
identities read in component form:∑

(λµν)

Rαλµν = 0 , (90a)

∑
(λµν)

∇λRαβ µν = 0 . (90b)

The second traced on (α, µ) and contracted with
gβν yields (−2) times (13).

The covariant Riemann tensor is defined by

Riem(W,Z,X, Y ) := g
(
W,R(X,Y )Z

)
. (91)

For general covariant derivatives its only symme-
try is the antisymmetry in the last pair. But for
special choices it acquires more. In standard GR
we assume the covariant derivative to be metric
compatible and torsion free:

∇g = 0 , (92)

T = 0 . (93)

In that case the Riemann tensor has the symme-
tries

Riem(W,Z,X, Y ) = −Riem(W,Z, Y,X) , (94a)

Riem(W,Z,X, Y ) = −Riem(Z,W,X, Y ) , (94b)

Riem(W,X, Y, Z) + Riem(W,Y,Z,X) +

Riem(W,Z, Y,X) = 0 , (94c)

Riem(W,Z,X, Y ) = Riem(X,Y,W,Z) . (94d)
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Equation (94a) is true by definition (88), (94b) is
equivalent to metricity of ∇, and (94c) is the first
Bianchi identity in case of zero torsion. The last
symmetry (94d) is a consequence of the preceding
three. Together (94a), (94b), and (94d) say that,
at each point p ∈ M , Riem can be thought of
as symmetric bilinear form on the antisymmetric
tensor product TpM ∧ TpM . The latter has di-
mension N = 1

2n(n − 1) if M has dimension n,
and the space of symmetric bilinear forms has di-
mension 1

2N(N + 1). From that number we have
to subtract the number of independent conditions
(94c), which is

(
n
4

)
in dimensions n ≥ 4 and zero

otherwise. Indeed, it is easy to see that (94c) is
identically satisfied as a consequence of (94a) and
(94b) if any two vectors W,Z,X, Y coincide (pro-
portionality is sufficient). Hence the number # of
independent components of the curvature tensor is

#Riem =
1
2N(N + 1)−

(
n
4

)
= 1

12n
2(n2 − 1) for n ≥ 4

6 for n = 3

1 for n = 2

= 1
12n

2(n2 − 1) for all n ≥ 2 .

(95)

The Ricci and scalar curvatures are obtained
by taking traces with respect to g: Let {e1, · · · , en}
be an orthonormal basis, g(ea, eb) = δabεa (no sum-
mation) with εa = ±1, then

Ric(X,Y ) =

n∑
a=1

εa Riem(ea, X, ea, Y ) (96)

Scal =

n∑
a=1

εa Ric(ea, ea) . (97)

The Einstein tensor is

Ein = Ric− 1
2Scal g . (98)

The sectional curvature is defined by

Sec(X,Y ) =
Riem(X,Y,X, Y )

g(X,X)g(Y, Y )−
[
g(X,Y )

]2 , (99)

Here X,Y is a pair of linearly independent tangent
vectors that span a 2-dimensional tangent subspace
restricted to which g is non-degenerate. We will
say that span{X,Y } is non-degenerate. This is the
necessary and sufficient condition for the denomi-
nator on the right-hand side to be non zero. The
quantity Sec(X,Y ) is called the sectional curva-
ture of the manifold (M, g) at point p tangent to
span{X,Y }. From the symmetries of Riem it is
easy to see that the right-hand side of (99) does
indeed only depend on the span of X,Y . That is,
for any other pair X ′, Y ′ such that span{X ′, Y ′} =
span{X,Y }, we have Sec(X ′, Y ′) = Sec(X,Y ).
The geometric interpretation of Sec(X,Y ) is as
follows: Consider all geodesics of (M, g) that pass
through the considered point p ∈ M in a direc-
tion tangential to span{X,Y }. In a neighborhood
of p they form an embedded 2-surface in M whose
Gaussian curvature is just Sec(X,Y ).

Now, Riem is determined by components of the
form Riem(X,Y,X, Y ), as follows from the fact
that Riem is a symmetric bilinear form on TM ∧
TM . This remains true if we restrict to those X,Y
whose span is non-degenerate, since they lie dense
in TM ∧ TM and (X,Y ) 7→ Riem(X,Y,X, Y ) is
continuous. This shows that the full information
of the Riemann tensor can be reduced to certain
Gaussian curvatures.

This also provides a simple geometric interpre-
tation of the scalar and Einstein curvatures in
terms of sectional curvatures. Let {X1, · · · , Xn}
be any set of pairwise orthogonal non-null vec-
tors. The 1

2n(n − 1) 2-planes span{Xa, Xb} are
non-degenerate and also pairwise orthogonal. It
then follows from (97) and (99) that the scalar cur-
vature is twice the sum of all sectional curvatures:

Scal = 2

n∑
a,b=1
a<b

Sec(Xa, Xb) . (100)

The sum on the right-hand side of (100) is the same
for any set of 1

2n(n − 1) non-degenerate and pair-
wise orthogonal 2-planes. Hence the scalar curva-
ture can be said to be twice the sum of mutually or-
thogonal sectional curvatures, or n(n−1) times the
mean sectional curvature. Similarly for the Ricci
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and Einstein curvatures. The symmetry of the
Ricci and Einstein tensors imply that they are fully
determined by their components Ric(W,W ) and
Ein(W,W ). Again this remains true if we restrict
to the dense set of non-null W , i.e. g(W,W ) 6= 0.
Let now {X1, · · · , Xn−1} be any set of mutually
orthogonal vectors (again they need not be nor-
malized) in the orthogonal complement of W . As
before the 1

2 (n − 1)(n − 2) planes span{Xa, Xb}
are non degenerate and pairwise orthogonal. From
(96), (98), and (99) it follows that

Ric(W,W ) = g(W,W )

n−1∑
a=1

Sec(W,Xa) (101)

and

Ein(W,W ) = −g(W,W )

n−1∑
a,b=1
a<b

Sec(Xa, Xb) .

(102)
Again the right-hand sides will be the same for any
set {X1, · · · , Xn−1} of n − 1 mutually orthogonal
vectors in the orthogonal complement of W . Note
that Ric(W,W ) involves all sectional curvatures
involving W whereas Ein(W,W ) involves all sec-
tional curvatures orthogonal to W . For normalized
W , where g(W,W ) = σ = ±1, we can say that
−σG(W,W ) is the sum of sectional curvatures or-
thogonal to W , or 1

2 (n−1)(n−2) times their mean.
Note that for timelike W we have σ = −1 and
G(W,W ) is just the sum of spatial sectional curva-
tures.

Finally we mention the Weyl curvature tensor,
which contains that part of the information in the
curvature tensor not captured by the Ricci (or
Einstein-) tensor. To state its form in a compact
form, we introduce the Kulkarni-Nomizu product,
denoted by an encircled wedge, ?, which is a bi-
linear symmetric product on the space of covari-
ant symmetric rank-two tensors with values in the
covariant rank-four tensors that have the symme-
tries (94) of the Riemann tensor. Let k and ` be
two symmetric covariant second-rank tensors, then

their Kulkarni-Nomizu product is defined by

k ? `(X1, X2, X3, X4) := k(X1, X3) `(X2, X4)

+ k(X2, X4) `(X1, X3)

− k(X1, X4) `(X2, X3)

− k(X2, X3) `(X1, X4) ,

(103)

or in components

(k?`)abcd = kac`bd+kbd`ac−kad`bc−kbc`ad . (104)

The Weyl tensor, Weyl, is of the same type as
Riem but in addition totally trace-free. It is ob-
tained from Riem by a projection map, PW , given
by

Weyl := PW (Riem)

:= Riem− 1
n−2

(
Ric− 1

2(n−1)Scal g
)

? g .

(105)

PW is a linear map from the space of rank-four
tensors with Riemann symmetries to itself. It is
easy to check that its image is given by the totally
trace-free such tensors and that the kernel consists
of all tensors of the form g?K, where K is a sym-
metric rank-two tensor. The latter clearly implies
PW ◦PW = PW . The dimension of the image corre-
sponds to the number of independent components
of the Weyl tensor, which is given by (95) minus
the dimension 1

2n(n + 1) of the kernel. This gives
for n ≥ 3

#Weyl = 1
12n(n+ 1)

[
n(n− 1)− 6

]
(106)

and zero for n = 2. Note that in n = 3 dimensions
the Weyl tensor also always vanishes, so that (105)
can be used to express the Riemann tensor in terms
of the Ricci and scalar curvature

Riem =
(
Ric− 1

4Scal g
)
?g (for n = 3) . (107)

A metric manifold (M, g) is said to be of constant
curvature if

Riem = k g ? g (108)
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for some function k. Then Ric = 2k(n − 1)g and
Ein = −k(n − 1)(n − 2)g. We recall that mani-
folds (M, g) for which the Einstein tensor (equiv-
alently, the Ricci tensor) is pointwise proportional
to the metric are called Einstein spaces. The twice
contracted second Bianchi identity (13) shows that
k must be a constant unless n = 2. For n = 3
equation (107) shows that Einstein spaces are of
constant curvature.

5.1 Comparing curvature tensors

Sometimes one wants to compare two different cur-
vature tensors belonging to two different covariant
derivatives ∇̂ and ∇. In what follows, all quan-
tities referring to ∇̂ carry a hat. Recall that a
covariant derivative can be considered as a map
∇ : ΓT 1

0M × ΓT 1
0M → ΓT 1

0M , (X,Y ) 7→ ∇XY ,
which is C∞(M)-linear in the first and a deriva-
tion in the second argument. That is, for f ∈
C∞(M) have ∇fX+Y Z = f∇XZ + ∇Y Z and
∇X(fY + Z) = X(f)Y + f∇XY + ∇XZ. This
implies that the difference of two covariant deriva-
tives is C∞(M)- linear also in the second argument
and hence a tensor field:

∇̂ − ∇ =: ∆ ∈ ΓT 1
2M . (109)

Replacing ∇̂ with ∇ + ∆ in the definition of the
curvature tensor for ∇̂ according to (88) directly
leads to

R̂(X,Y )Z = R(X,Y )Z

+ (∇X∆)(Y, Z)− (∇Y ∆)(X,Z)

+ ∆
(
X,∆(Y,Z)

)
−∆

(
Y,∆(X,Z)

)
+ ∆

(
T (X,Y ), Z)

)
.

(110)

Note that so far no assumptions have been made
concerning torsion or metricity of ∇̂ and ∇. This
formula is generally valid. In the special case where
∇̂ and ∇ are the Levi-Civita covariant derivatives
with respect to two metrics ĝ and g, we set

h := ĝ − g , (111)

which is a symmetric covariant tensor field. Note
that here, and for the rest of this subsection, h has

a different meaning from that given to it in (48).
We recall that the Levi-Civita covariant derivative
is uniquely determined by the metric. For ∇ this
reads

2 g(∇XY, Z)

= X
(
g(Y,Z)

)
+ Y

(
g(Z,X)

)
− Z

(
g(X,Y )

)
− g
(
X, [Y, Z])]

)
+ g
(
Y, [Z,X])]

)
+ g
(
Z, [X,Y ])]

)
.

(112)

Subtracting (112) from the corresponding formula
with ∇ and g replaced by ∇̂ and ĝ yields, using
T = 0,

2 ĝ
(
∆(X,Y ), Z

)
=

− (∇Zh)(X,Y ) + (∇Xh)(Y,Z) + (∇Y h)(Z,X).

(113)

This formula expresses ∆ as functional of g and ĝ.
There are various equivalent forms of it. We have
chosen a representation that somehow minimizes
the appearance of ĝ. Note that g enters in h as
well as ∇, whereas ĝ enters in h and via the scalar
product on the left-hand side. The latter obstructs
expressing ∆ as functional of g and h alone. In
components (113) reads

∆a
bc = 1

2 ĝ
an
(
−∇nhbc +∇bhcn +∇chnb

)
. (114)

Note that one could replace the components of h
with those of ĝ = g+h in the bracket on the right-
hand side, since the covariant derivatives of g van-
ish.

Now suppose we consider h and its first and sec-
ond derivatives to be small and we wanted to know
the difference in the covariant derivatives and cur-
vature only to leading (linear) order in h. To that
order we may replace ĝ with g on the left-hand side
of (113) and the right-hand side of (114). Moreover
we may neglect the ∆-squared terms in (110) and
obtain, writing δR for the first order contribution
to R̂−R,

δRabcd = ∇c∆a
db −∇d∆a

cb . (115)

From this the first-order variation of the Ricci ten-
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sor follows, writing hab =: δgab,

δRab = ∇n∆n
ab −∇b∆n

na

= 1
2

(
−∆g δgab −∇a∇b δg
+∇n∇a δgnb +∇n∇b δgna

)
,

(116)

where ∆g := gab∇a∇b and δg = gab δgab. Finally,
the variation of the scalar curvature is (note δgab =
−gacgbdδgcd = −hab)

δR = Rab δg
ab +∇aUa , (117a)

where

Ua = gnm∆a
nm − gan∆m

mn

= Gabcd∇b δgcd .
(117b)

Here we made use of the De Witt metric, which de-
fines a symmetric non-degenerate bilinear form on
the space of symmetric covariant rank-two tensors
and which in components reads:

Gabcd = 1
2

(
gacgbd + gadgbc − 2gabgcd

)
. (118)

We will later have to say more about it.
We also wish to state a useful formula that com-

pares the curvature tensors for conformally related
metrics, i.e.

ĝ = e2φ g , (119)

where φ : M → R is smooth. Then

Riemĝ = e2φ
[
Riemg + g ?K

]
, (120a)

with

K := −∇2φ+ dφ⊗ dφ− 1
2g
−1(dφ, dφ) g . (120b)

(This can be proven by straightforward calculations
using either (88) and (112), or Cartan’s structure
equations, or, most conveniently, normal coordi-
nates.) From (120a) and the fact that the kernel
of the map PW in (105) is given by tensors of the
form g ?K it follows immediately that

Weylĝ = e2φWeylg . (121)

This is equivalently expressed by the conformal in-
variance of the contravariant version of the Weyl

tensor, which is related to the covariant form,
Weyl, in the same way (91) as the curvature ten-
sor R is related to Riem (i.e., by raising the first
index of the latter).

From (120) we also deduce the transformation
properties of the Ricci tensor:

Ricĝ =Ricg

−
(
∆gφ+ (n− 2)g−1(dφ, dφ)

)
g

− (n− 2)(∇∇φ− dφ⊗ dφ) .

(122)

where, as above, ∆g denotes again the Lapla-
cian/d’Alembertian for g. Finally, for the scalar
curvature we get

Scalĝ = e−2φ

(
Scalg

− 2(n− 1)∆gφ

− (n− 1)(n− 2)g−1(dφ, dφ)

)
.

(123)

This law has a linear dependence on the second and
a quadratic dependence on first derivatives of φ. If
the conformal factor is written as an appropriate
power of some positive function Ω : M → R+ we
can eliminate all dependence on first and just retain
the second derivatives. In n > 2 dimensions it is
easy to check that the rule is this:

e2φ = Ω
4

n−2 , (124)

then (123) becomes

Scalĝ = −4(n− 1)

n− 2
Ω−

n+2
n−2DgΩ , (125a)

where

Dg = ∆g −
n− 2

4(n− 1)
Scalg . (125b)

Dg is a linear differential operator which is ellip-
tic for Riemannian and hyperbolic for Lorentzian
metrics g. If we set Ω = Ω1Ω2 and apply (125)
twice, one time to the pair (ĝ, g), the other time
to (ĝ,Ω2g), we obtain by direct comparison (and
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renaming Ω2 to Ω thereafter) the conformal trans-
formation property for the operator Dg:

D
Ω

4
n−2 g

= M
(

Ω−
n+2
n−2

)
◦ Dg ◦M(Ω) , (126)

where M(Ω) is the linear operator of multiplica-
tion with Ω. This is the reason why Dg is called
the conformally covariant Laplacian (for Rieman-
nian g) or the conformally covariant wave operator
(for Lorentzian g). As we will see, it has useful
applications to the initial-data problem in GR.

5.2 Curvature decomposition

Using (67) we can decompose the various curvature
tensors. First we let X,Y, Z be horizontal vector
fields. We use (67) in (88) and get the general
formula (i.e. not yet making use of the fact that ∇
and D are metric and torsion free)

R(X,Y )Z = RD(X,Y )Z

+ (∇Xn)K(Y, Z)− (∇Y n)K(X,Z)

+ n
[
(DXK)(Y,Z)− (DYK)(X,Z)

]
+ nK

(
TD(X,Y ), Z

)
,

(127)

where

RD(X,Y, )Z :=
(
DXDY −DYDX −D[X,Y ]

)
Z

(128)
is the horizontal curvature tensor associated to the
Levi-Civita covariant derivative D of h. This for-
mula is general in the sense that it is valid for any
covariant derivative. No assumptions have been
made so far concerning metricity or torsion, and
this is why the torsion TD of D (defined in (70))
makes an explicit appearance. From now on we
shall restrict to vanishing torsion. We observe that
the first two lines on the right-hand side of (127)
are horizontal whereas the last two lines are pro-
portional to n. Decomposition into horizontal and
normal components, respectively, leads to (where
TD = 0 and X,Y, Z, and W are horizontal),

Riem(W,Z,X, Y ) = RiemD(W,Z,X, Y )

− ε
[
K(W,X)K(Z, Y )−K(W,Y )K(Z,X)

]
.

(129)

Here we used h(W,∇Xn) = −εK(W,X) from (75),
and

Riem(n,Z,X, Y )

= ε
[
(DXK)(Y,Z)− (DYK)(X,Z)

]
.

(130)

Here and in the sequel we return to the meaning of
h given by (48). In differential geometry (129) is
referred to as Gauss equation and (130) as Codazzi-
Mainardi equation.

The remaining curvature components are those
involving two entries in n direction. Using (79)
we obtain via standard manipulations (now using
metricity and vanishing torsion)

Riem(X,n, Y, n)

= iX
(
∇Y∇n −∇n∇Y −∇[Y,n]

)
n[

= iX iY
(
εLnK +K ◦K +Da[ − εa[ ⊗ a[

)
.

(131)

Here K ◦ K (X,Y ) := h−1(iXK, iYK) =
iXK

(
(iYK)]

)
and we used the following relation

between covariant and Lie derivative (which will
have additional terms in case of non-vanishing tor-
sion):

∇nK = LnK + 2εK ◦K . (132)

Note also that the left-hand side of (131) is sym-
metric as consequence of (94d). On the right-hand
side only Da[ is not immediately seen to be sym-
metric, but that follows from (52b). Unlike (129)
and (130), equation (131) does not seem to have a
standard name in differential geometry.

Equations (127), (129), and (130) express all
components of the spacetime curvature in terms of
horizontal quantities and their Lie derivatives Ln
in normal direction. According to (55) the latter
can be replaced by a combination of Lie derivatives
along the time vector-field ∂/∂t and the shift β.
From (53b) we infer that Lαn = αLn on horizontal
covariant tensor fields, therefore we may replace

Ln → α−1
(
L ∂
c∂t
− Lβ

)
→ α−1

(
L
‖
∂
c∂t

− L‖β
)

(133)

on horizontal covariant tensor fields. Here we set
L‖ = P ‖ ◦L, i.e. Lie derivative (as operation in the
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ambient spacetime) followed by horizontal projec-
tion. Moreover, using (50), one easily sees that the
acceleration 1-form a[ can be expressed in terms of
the spatial derivative of the lapse function:

a[ = −εα−1Dα . (134)

Hence the combination of accelerations appearing
in (130) may be written as

Da[ − εa[ ⊗ a[ = −εα−1D2α . (135)

Note that D2α := DDα is just the horizontal co-
variant Hessian of α with respect to h.

6 Decomposing Einstein’s
equations

The curvature decomposition of the previous sec-
tion can now be used to decompose Einstein’s equa-
tions. For this we decompose the Einstein ten-
sor Ein into the normal-normal, normal-tangential,
and tangential-tangential parts. Let {e0, e1, e2, e3}
be an orthonormal frame with e0 = n, i.e. adapted
to the foliation as in Section 4.1. Then (102) to-
gether with (129) immediately lead to

2 Ein(e0, e0) = −
[
KabK

ab − (Ka
a )2
]
− εScalD ,

(136)
where ScalD is the scalar curvature of D, i.e. of
the spacelike leaves in the metric h. Similarly we
obtain from (130),

Ein(e0, ea) = Ric(e0, ea) = −ε
[
DbKab −DaK

b
b

]
.

(137)

The normal-normal component of the Ricci ten-
sor cannot likewise be expressed simply in terms of
horizontal quantities, the geometric reason being
that, unlike the Einstein tensor, it involves non-
horizontal sectional curvatures (compare (101) and
(102)). A useful expression follows from taking the
trace of (131), considered as symmetric bilinear
form in X and Y . The result is :

Ric(e0, e0) = −KabK
ab + (Kc

c )
2 + ε∇ · V , (138)

where ∇· denotes the divergence with respect to ∇
and V is a vector field on M whose normal com-
ponent is the trace of the extrinsic curvature and
whose horizontal component is ε times the acceler-
ation on n:

V = nKc
c + εa . (139)

For the horizontal-horizontal components of Ein-
stein’s equation it turns out to be simpler to use
their alternative form (6b) with the Ricci tensor on
the left hand side. For that we need the horizontal
components of the Ricci tensor, which we easily get
from (129) and (131):

Ric(ea, eb) = RicD(ea, eb)

+ LnKab + 2εKacK
c
b − εKabK

c
c

+ εDaab − aaab .
(140)

For later applications we also note the expression
for the scalar curvature. It follows, e.g., from
adding the horizontal trace of (140) to ε times
(138). This leads to

Scal = ScalD − ε
[
KabK

ab − (Ka
a )2
]

+ 2∇ · V .
(141)

Here we made use of the relation between the ∇
and D derivative for the acceleration 1-form:

∇a[ = Da[ + ε n[ ⊗∇na[ + iaK ⊗ n[ , (142)

whose trace gives the following relation between
the ∇ and D divergences of a:

∇ · a = D · a− εh(a, a) . (143)

Another possibility would have been to use (136)
and (138) in Scal = −2ε(Ein(e0, e0)−Ric(e0, e0)).

Using (136) and (137), and also using the
De Witt metric (118) for notational ease, we can
immediately write down the normal-normal and
normal-tangential components of Einstein’s equa-
tions (3):

GabcdKabKcd + εScalD = −2κT(n, n) , (144a)

GabcdDbKcd = −εκhabT(n, eb) . (144b)
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From (77) and (118) we notice that the bilinear
form on the left-hand side of (144a) can be written
as

G(K,K) : = GabcdKabKcd

= Tr(Wein ◦Wein)−
(
Tr(Wein)

)2
.

(145)

Here the trace is natural (needs no metric for its
definition) since Wein is an endomorphism. In a
local frame in which Wein is diagonal with entries
~k := (k1, k2, k3) we have

G(K,K) := (δab − 3nanb)kakb , (146)

where na are the components of the normalized
vector (1, 1, 1)/

√
3 in eigenvalue-space, which we

identify with R3 endowed with the standard Eu-
clidean inner product. Hence, denoting by θ the
angle between ~n and ~k, we have

G(K,K) =


0 if | cos θ| =

√
1/3

> 0 if | cos θ| <
√

1/3

< 0 if | cos θ| >
√

1/3 .

(147)

Note that | cos θ| =
√

1/3 describes a double cone
around the symmetry axis generated by ~n and ver-
tex at the origin, whose opening angle just is right
so as to contain all three axes of R3. For eigenvalue-
vectors inside this cone the bilinear form is nega-
tive, outside this cone positive. Positive G(K,K)
require sufficiently anisotropic Weingarten maps,
or, in other words, sufficiently large deviations from
being umbilical points.

The horizontal-horizontal component of Ein-
stein’s equations in the form (5) immediately fol-
lows from (140). In the ensuing formula we use
(133) to explicitly solve for the horizontal Lie
derivative ofK with respect to ∂/c∂t and also (135)
to simplify the last two terms in (140). This results

in

K̇ab :=
(
L
‖
∂
c∂t

K
)
ab

=
(
L
‖
βK
)
ab

+DaDbα

+ α
[
−2εKacK

c
b + εKabK

c
c −RicD(ea, eb)

]
− αε κ

n−2habT(n, n)

+ ακ
(
T− 1

n−2Trh(T)h
)
(ea, eb) .

(148)

Note that in the last term the trace of T is taken
with respect to h and not g. The relation is
Trh(T) = Trg(T)− εT(n, n).

The only remaining equation that needs to be
added here is that which relates the time derivative
of h with K. This we get from (80) and (133):

ḣab :=
(
L
‖
∂
c∂t

h
)
ab

=
(
L
‖
βh
)
ab
− 2αεKab . (149)

Equations (149) and (148) are six first-order in
time evolution equations for the pair (h,K). This
pair cannot be freely specified but has to obey the
four equations (144a) and (144b) which do not
contain any time derivatives of h or K. Equa-
tions (144a) and (144b) are therefore referred to as
constraints, more specifically (144a) as scalar con-
straint (also Hamiltonian constraint) and (144b) as
vector constraint (also diffeomorphism constraint).

We derived these equations from the 3+1 split
of a spacetime that we considered to be given. De-
spite having expressed all equations in terms of hor-
izontal quantities, there is still a relic of the ambi-
ent space in our equations, namely the Lie deriva-
tive with respect to ∂/∂ct. We now erase this last
relic by interpreting this Lie derivative as ordinary
partial derivative of some t-dependent tensor field
on a genuine 3-dimensional manifold Σ, which is
not thought of as being embedded into a space-

time. The horizontal projection L
‖
β of the space-

time Lie derivative that appears on the right-hand
sides of the evolution equations above then trans-
lates to the ordinary intrinsic Lie derivative on Σ
with respect to β. This is how from now on we shall
read the above equations. Spacetime does not yet
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exist. Rather, it has to be constructed from the
evolution of the fields according to the equations,
usually complemented by the equations that gov-
ern the evolution of the matter fields. In these
evolution equations α and β are freely specifiable
functions, the choice of which is subject to mathe-
matical/computational convenience. Once α and β
are specified and h as a function of parameter-time
has been determined, we can form the expression
(64) for the spacetime metric and know that, by
construction, it will satisfy Einstein’s equations.

To sum up, the initial-value problem consists in
the following steps:

1. Choose a 3-manifold Σ.

2. Choose a time-parameter dependent lapse
function α and a time-parameter dependent
shift vector-field β.

3. Find a Riemannian metric h ∈ ΓT 0
2 Σ and a

symmetric covariant rank-2 tensor field K ∈
ΓT 0

2 Σ that satisfy equations (144a) and (144b)
either in vacuum (T = TΛ; cf. (4)), or after
specifying some matter model.

4. Evolve these data via (149) and (148), possibly
complemented by the evolution equations for
the matter variables.

5. Construct from the solution the spacetime
metric g via (64).

For this to be consistent we need to check that the
evolution according to (149) and (148) will pre-
serve the constraints (144a) and (144b). At this
stage this could be checked directly, at least in
the vacuum case. The easiest way to do this is
to use the equivalence of these equations with Ein-
stein’s equations and then employ the twice con-
tracted 2nd Bianchi identity (13). It follows that
∇µEµν ≡ 0, where Eµν = Gµν + λgµν . The
four constraints (144a) and (144b) are equivalent
to E00 = 0 and E0m = 0, and the six second-order
equations Emn = 0 to the twelve first-order evolu-
tion equations (149) and (148). In coordinates the
identity ∇µEµν ≡ 0 reads

∂0E
0ν = −∂mEmν − ΓµµλE

λν − ΓνµλE
µλ , (150)

which shows immediately that the time derivatives
of the constraint functions are zero if the con-
straints vanished initially. This suffices for ana-
lytic data, but in the general case one has to do
more work. Fortunately the equations for the evo-
lution of the constraint functions can be put into
an equivalent form which is manifestly symmetric
hyperbolic [62]. That suffices to conclude the
preservation of the constraints in general. In fact,
symmetric hyperbolicity implies more than that. It
ensures the well-posedness of the initial-value prob-
lem for the constraints, which not only says that
they stay zero if they are zero initially, but also
that they stay small if they are small initially. This
is of paramount importance in numerical evolution
schemes, in which small initial violations of the con-
straints must be allowed for and hence the conse-
quences of these violations need to be controlled.
For a recent and mathematically more thorough
discussion of the Cauchy problem we refer to James
Isenberg’s survey [86].

Finally we wish to substantiate our earlier claim
that any Σ can carry some initial data. Let us show
this for closed Σ. To this end we choose a matter
model such that the right-hand side of (144b) van-
ishes. Note that this still allows for arbitrary cos-
mological constants since TΛ(n, ea) ∝ g(n, ea) = 0.
Next we restrict to those pairs (h,K) were K = λh
for some constant λ. Geometrically this means
that, in the spacetime to be developed, the Cauchy
surface will be totally umbilical (isotropic Wein-
garten map). Due to this proportionality and the
previous assumption the vector constraint (144b)
will be satisfied. In the scalar constraint we have
G(K,K) = G(λh, λh) = −6λ2 so that it will be
satisfied provided that

− εScalD = 2κT(n, n)− 6λ2 . (151)

For the following argument the Lorentzian signa-
ture, ε = −1, will matter. For physical rea-
sons we assume the weak energy condition so that
κT(n, n) ≥ 0, which makes a positive contribution
to the right-hand side of (151). However, if we
choose the modulus of λ sufficiently large we can
make the right-hand side negative somewhere (or
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everywhere, since Σ is compact). Now, in dimen-
sions 3 or higher the following theorem of Kazdan
& Warner holds ([91], Theorem 1.1): Any smooth
function on a compact manifold which is negative
somewhere is the scalar curvature for some smooth
Riemannian metric. Hence a smooth h exists which
solves (151) for any given T(n, n) ≥ 0, provided we
choose λ2 > |λ| sufficiently large. If Σ is not closed
a corresponding theorem may also be shown [118].

The above argument crucially depends on the
signs. There is no corresponding statement for pos-
itive scalar curvatures. In fact, there is a strong
topological obstruction against Riemannian met-
rics of strictly positive scalar curvature. It follows
from the theorem of Gromov & Lawson ([78], The-
orem 8.1) that a 3-dimensional closed orientable Σ
allows for Riemannian metrics with positive scalar
curvature iff its prime decomposition consists of
prime-manifolds with finite fundamental group or
“handles” S1 × S2. All manifolds whose prime list
contains at least one so-called K(π, 1)-factor (a 3-
manifold whose only non-trivial homotopy group is
the first) are excluded. See, e.g., [67] for more ex-
planation of these notions. We conclude that the
given argument crucially depends on ε = −1.

6.1 A note on slicing conditions

The freedom in choosing the lapse and shift func-
tions can be of much importance, theoretically and
in numerical evolution schemes. This is particu-
larly true for the lapse function α, which deter-
mines the amount of proper length by which the
Cauchy slice advances in normal direction per unit
parameter interval. If a singularity is to form in
spacetime due to the collapse of matter within a
bounded spatial region, it would clearly be advan-
tageous to not let the slices run into the singularity
before the outer parts of it have had any chance
to develop a sufficiently large portion of spacetime
that one might be interested in, e.g. for the study
of gravitational waves produced in the past. This
means that one would like to slow down α in regions
which are likely to develop a singularity and speed
up α in those regions where it seems affordable.
Take as an example the “equal-speed” gauge α = 1

and β = 0, so that g = −c2 dt2 + h. This means
that n = ∂/∂ct is geodesic. Taking such a gauge
from the t = 0 slice in the Schwarzschild/Kruskal
spacetime would let the slices run into the singu-
larity after a proper-time of t = πGM/c3, where
M is the mass of the black hole. In that short pe-
riod of time the slices had no chance to explore a
significant portion of spacetime outside the black
hole.

A gauge condition that one may anticipate to
have singularity-avoiding character is that where α
is chosen such that the divergence of the normal
field n is zero. This condition just means that the
locally co-moving infinitesimal volume elements do
not change volume, for Lndµ = (∇ · n) dµ, where
dµ = det{hab}d3x is the volume element of Σ.
From (79) we see that n has zero divergence iff
K has zero trace, i.e. the slices are of zero mean-
curvature. The condition on α for this to be pre-
served under evolution follows from

0 = Ln(habKab) = −KabLnhab + habLnKab .
(152)

Here we use (80) to eliminate Lnhab in the first
term and (131) to eliminate LnKab in the second
term, also making use of (135). This leads to the
following equivalent of (152):

∆hα+ ε
(
Ric(n, n) +KabKab

)
α = 0 . (153)

This is a linear elliptic equation for α. The case
of interest to us in GR is ε = −1. In the closed
case we immediately deduce by standard argu-
ments that α = 0 is the only solution, provided
the strong energy-condition holds (which implies
Ric(n, n) ≥ 0). In the open case, where we might
impose α → 1 as asymptotic condition, we de-
duce existence and uniqueness again under the as-
sumption of the strong energy condition. Hence we
may indeed impose the condition habKab = 0, or
Tr(Wein) = 0, for non-closed Σ. It is called the
maximal slicing condition or York gauge [119].

Whereas this gauge condition has indeed the de-
sired singularity-avoiding character it is also not
easy to implement due to the fact that at each new
stage of the evolution one has to solve the elliptic
equation (153). For numerical studies it is easier
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to implement evolution equations for α. Such an
equation is, e.g., obtained by asking the time func-
tion (36) to be harmonic, in the sense that

0 = �gt := gµν∇µ∇νt

= |det{gαβ}|−
1
2 ∂µ

(
|det{gαβ}|

1
2 gµν∂ν

)
t .

(154)

This is clearly just equivalent to

∂µ

(
|det{gµν}|

1
2 gµ0

)
= 0 , (155)

which can be rewritten using (65) and (66) to give

α̇ : =
∂α

c∂t
= Lβα− εKa

aα
2

= Lβα+ Tr(Wein) α2 .
(156)

This is called the harmonic slicing condition. Note
that we can still choose β = 0 and try to determine
α as function of the trace of Wein. There also
exist generalizations to this condition where α2 on
the right-hand side is replaced with other functions
f(α).

6.2 A note on the De Witt metric

At each point p on Σ the De Witt metric (118) can
be regarded as a symmetric bilinear form on the
space of positive-definite inner products h of TpΣ.
The latter is an open convex cone in T ∗PΣ ⊗ T ∗PΣ.
We wish to explore its properties a little further.

A frame in TpΣ induces a frame in T ∗pΣ ⊗ T ∗pΣ
(tensor product of the dual frame). If hab are the
components of h then we have the following repre-
sentation of the generalized De Witt metric

G(λ) = Gabcd(λ) dhab ⊗ dhcd , (157a)

where

Gabcd(λ) =
1

2

(
hachbd + hadhbc − 2λhabhcd

)
. (157b)

Here we introduced a factor λ in order to
parametrize the impact of the negative trace term.
We also consider Σ to be of general dimension n.

The inverse metric to (157) is given by

G−1
(λ) = G−1

(λ) abcd

∂

∂hab
⊗ ∂

∂hcd
, (158a)

where

G−1
(λ) abcd =

1

2

(
hachbd + hadhbc − 2µhabhcd

)
.

(158b)
The relation between λ and µ is

λ+ µ = nλµ , (159)

so that

Gabnm(λ) G−1
(λ)nmcd = 1

2

(
δac δ

b
d + δadδ

b
c

)
. (160)

In ordinary GR n = 3, λ = 1, and µ = 1/2.
Note that there are good reasons the keep the su-
perscript −1 even in component notation, that is,
to write G−1

(λ) abcd rather than just G(λ) abcd, since

G−1
(λ) abcd does not equal hakhblhcmhdnG

klmn
(λ) unless

λ = 2/n, in which case λ = µ.
If we change coordinates according to

τ : = ln
([

det{hab}
] 1
n

)
,

rab : = hab/
[
det{hab}

] 1
n ,

(161)

where τ parametrizes conformal changes and rab
the conformally invariant ones, the metric (157)
reads

G(λ) = n(1−λn) dτ⊗dτ+racrbd drab⊗drcd , (162)

where ranrnb = δab . Since h is positive definite, so is
r. Hence the second part is positive definite on the(

1
2n(n+1)−1

)
– dimensional vector space of trace-

free symmetric tensors. Hence the De Witt metric
is positive definite for λ < 1/n, Lorentzian for λ >
1/n, and simply degenerate (one-dimensional null
space) for the critical value λ = 1/n. In the GR
case we have λ = 1 and n = 3, so that the De Witt
metric is Lorentzian of signature (−,+,+,+,+,+).
Note that this Lorentzian signature is independent
of ε, i.e. it has nothing to do with the Lorentzian
signature of the spacetime metric.
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In the Hamiltonian formulation it is not G but
rather a conformally related metric that is impor-
tant, the conformal factor being

√
det{hab}. If we

set

Ĝ(λ) :=
[
det{hab}

]1/2
G(λ) (163)

and correspondingly

Ĝ−1
(λ) :=

[
det{hab}

]−1/2
G−1

(λ) , (164)

we can again write Ĝ(λ) in terms of (τ, rab). In fact,
the conformal rescaling clearly just corresponds to
multiplying (162) with

√
det{hab} = enτ/2. Set-

ting

T := 4
[
(1− nλ)/n

]1/2
enτ/4 (165)

we get, excluding the degenerate case λ = 1/n,

Ĝ(λ) = sign(1− nλ) dT ⊗ dT
+ T 2 C racrbd drab ⊗ drcd ,

(166)

where C = n/(16|1 − nλ|) (= 3/32 in GR). This
is a simple warped product metric of R+ with
the left-invariant metric on the homogeneous space
GL(3,R)/SO(3) × R+ of symmetric positive defi-
nite forms modulo overall scale, the warping func-
tion being just T 2 if T is the coordinate on R+.
Now, generally, quadratic warped-product metrics
of the form ±dT ⊗ dT + T 2g, where g is indepen-
dent of T , are non-singular for T ↘ 0 iff g is a
metric of constant curvature ±1 (like for a unit
sphere in Rn, with T being the radius coordinate,
or the unit spacelike hyperboloid in n-dimensional
Minkowski space, respectively). This is not the
case for (166), which therefore has a curvature sin-
gularity for small T , i.e. small det{hab}. Note that
this is a singularity in the space of metrics (here
at a fixed space point), which has nothing to do
with spacetime singularities. In the early days of
Canonical Quantum Gravity this has led to specu-
lations concerning “natural” boundary conditions
for the wave function, whose domain is the space of
metrics [52]. The intention was to pose conditions
such that the wave function should stay away from
such singular regions in the space of metrics; see
also [92] for a more recent discussion.

We stress once more that the signature of the
De Witt metric is not related to the signature of
spacetime, i.e. independent of ε. For example, for
the GR values λ = 1 and n = 3, it is Lorentzian
even if spacetime were given a Riemannian met-
ric. Moreover, by integrating over Σ, the pointwise
metric (166) defines a bilinear form on the infinite
dimensional space of Riemannian structures on Σ,
the geometry of which may be investigated to some
limited extent [70][74].

7 Constrained Hamiltonian
systems

In this section we wish to display some charac-
teristic features of Hamiltonian dynamical systems
with constraints. We restrict attention to finite-
dimensional systems in order to not overload the
discussion with analytical subtleties.

Let Q be the n-dimensional configuration man-
ifold of a dynamical system that we locally co-
ordinatize by (q1, · · · , qn). By TQ we denote
its tangent bundle, which we coordinatize by
(q1, · · · , qn , v1, · · · , vn), so that a tangent vector
X ∈ TQ is given by X = va∂/∂qa. The dynamics
of the system is described by a Lagrangian

L : TQ→ R , (167)

which selects the dynamically possible trajectories
in TQ as follows: Let R 3 t 7→ x(t) ∈ Q be a (at
least twice continuously differentiable) curve, then
it is dynamically possible iff the following Euler
Lagrange equations hold (we set dx/dt =: ẋ):

∂L

∂qa

∣∣∣∣
q=x(t)
v=ẋ(t)

− d

dt

[
∂L

∂va

∣∣∣∣
q=x(t)
v=ẋ(t)

]
= 0 . (168)

Performing the t-differentiation on the second
term, this is equivalent to

Hab

(
x(t), ẋ(t)

)
ẍb = Va

(
x(t), ẋ(t)

)
, (169)

where

Hab(q, v) :=
∂2L(q, v)

∂va∂vb
, (170)
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and

Va(q, v) :=
∂L(q, v)

∂qa
− ∂2L(q, v)

∂va∂qb
vb . (171)

Here we regard H and V as function on TQ with
values in the symmetric n × n matrices and Rn
respectively. In order to be able to solve (169) for
the second derivative ẍ the matrix H has to be
invertible, that is, it must have rank n. That is
the case usually encountered in mechanics. On the
other hand, constrained systems are those where
the rank of H is not maximal. This is the case we
are interested in.

We assume H to be of constant rank r < n.
Then, for each point on TQ, there exist s = (n −
r) linearly independent kernel elements K(α)(q, v),
α = 1, · · · , s, such that Ka

(α)(q, v)Hab(q, v) = 0.

Hence any solution x(t) to (169) must be such that
the curve t 7→

(
x(t), ẋ(t)

)
in TQ stays on the subset

C :=
{

(q, v) ∈ TQ : ψα(q, v) = 0 , α = 1, · · · , s
}
,

(172a)
where

ψα(q, v) = Ka
(α)(q, v)Va(q, v) . (172b)

We assume C ⊂ TQ to be a smooth closed subman-
ifold of co-dimension s, i.e. of dimension 2n− s =
n+ r.

Now we consider the cotangent bundle T ∗Q over
Q. On T ∗Q we will use so-called canonical coor-
dinates, denoted by {q1, · · · , qn, p1, · · · , pn}, the
precise definition of which we will give below. The
Lagrangian defines a map FL : TQ→ T ∗Q, which
in these coordinates reads

FL(q, v) =

(
q, p :=

∂L(q, v)

∂v

)
. (173)

From what has been said above it follows that the
Jacobian of that map has constant rank n + r.
Given sufficient regularity, we may further assume
that

C∗ := FL
(
C
)
⊂ T ∗Q (174)

is a smoothly embedded closed submanifold in
phase space T ∗Q of co-dimension s. Hence there

are s functions φα, α = 1, · · · , s such that

C∗ :=
{

(q, p) ∈ T ∗Q : φα(q, p) = 0 , α = 1, · · · , s
}
.

(175)
This is called the constraint surface in phase space.
It is given as the intersection of the zero-level sets of
s independent functions. Independence means that
at each p ∈ C∗ the s one-forms dφ1|p · · · , dφs|p are
linearly independent elements of T ∗p T

∗Q.

The dynamical trajectories of our system will
stay entirely on C∗. The trajectories themselves are
integral lines of a Hamiltonian flow. But what is
the Hamiltonian function that generates this flow?
To explain this we first recall the definition of the
energy function for the Lagrangian L. It is a func-
tion E : TQ→ R defined through

E(q, v) :=
∂L(q, v)

∂va
va − L(q, v) . (176)

At first sight this function cannot be defined on
phase space, for we cannot invert FL to express v
as function of q and p which we could insert into
E(q, v) in order to get E(q, v(q, p)). However, one
may prove the following: There exists a function

HC∗ : C∗ → R , (177a)

so that

E = HC∗ ◦ FL . (177b)

A local version of this is seen directly from tak-
ing the differential of (176), which yields dE =
vad(∂L/∂va) − (∂L/∂qa)dqa, expressing the fact
that dE(q,v)(X) = 0 if FL∗(q,v)(X) = 0 for X ∈
T(q,v)TQ, or in simple terms: E does not vary if q
and p do not vary.

So far the function HC∗ is only defined on C∗. By
our regularity assumptions there exists a smooth
extension of it to T ∗Q, that is a function H0 :
T ∗Q → R such that H0|C∗ = HC∗ . This is clearly
not unique. But we can state the following: Let H0

and H both be smooth (at least continuously dif-
ferentiable) extensions of HC∗ to T ∗Q, then there
exist s smooth functions λα : T ∗Q→ R such that

H = H0 + λαφα . (178)
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Locally a proof is simple: Let f : T ∗Q → R be
continuously differentiable and such that f |C∗ ≡
0. Consider a point p ∈ C∗ and coordinates
(x1, · · · , x2n−s, y1, · · · ys) in a neighborhood U ⊂
T ∗Q of p, where the x’s are coordinates on the con-
straint surface and the y’s are just the functions φ.
In U the constraint surface is clearly just given by
y1 = · · · = ys = 0. Then

f |U (x, y) =

∫ 1

0

dt
d

dt
f(x, ty)

=

∫ 1

0

dt
∂f

∂yα
(x, ty) yα = λα(x, y) yα ,

(179a)

where

λα(x, y) :=

∫ 1

0

dt
∂f

∂yα
(x, ty) . (179b)

For a global discussion see [80].
As Hamiltonian for our constraint system we

address any smooth (at least continuously differen-
tiable) extension H of HC∗ . So if H0 is a somehow
given one, any other can be written as

H = H0 + λαφα (180)

for some (at least continuously differentiable) real-
valued functions λα on T ∗Q.

Here we have been implicitly assuming that the
Hamiltonian dynamics does not leave the con-
straint surface (174). If this were not the case
we would have to restrict further to proper sub-
manifolds of C∗ such that the Hamiltonian vector
fields evaluated on them lie tangentially. (If no
such submanifold can be found the theory is sim-
ply empty). This is sometimes expressed by saying
that the primary constraints (those encountered
first in the Lagrangian/Hamiltonian analysis) are
completed by secondary, tertiary, etc. constraints
for consistency.

Here we assume that our system is already dy-
namically consistent. This entails that the Hamil-
tonian vector-fields Xφα for the φα are tangential
to the constraint surface. This is equivalent to
Xφα(φβ)|C∗ = 0, or expressed in Poisson brackets:

{φα, φβ}
∣∣
C∗ = 0 , (181)

for all α, β ∈ {1, · · · , s}. Following Dirac [55],
constraints which satisfy this condition are said to
be of first class. By the result shown (locally)
above in (179) this is equivalent to the existence
of 1

2s
2(s − 1) (at least continuously differentiable)

real-valued functions Cγαβ = −Cγβα on T ∗Q, such
that

{φα, φβ} = Cγαβ φγ . (182)

Note that as far as the intrinsic geometric proper-
ties of the constraint surface are concerned (181)
and (182) are equivalent.

The indeterminacy of the Hamiltonian due to the
freedom to choose any set of λα seems to imply
an s-dimension worth of indeterminacy in the dy-
namically allowed motions. But the difference in
these motions is that generated by the constraint
functions on the constraint surface. In order to ac-
tually tell apart two such motions requires observ-
ables (phase-space functions) whose Poisson brack-
ets with the constraints do not vanish on the con-
straint surface. The general attitude is to assume
that this is not possible, i.e. to assume that phys-
ical observables correspond exclusively to phase-
space functions whose Poisson bracket with all con-
straints vanish on the constraint surface. This is
expressed by saying that all motions generated by
the constraints are gauge transformations. This en-
tails that they are undetectable in principle and
merely correspond to a mathematical redundancy
in the description rather than to any physical de-
grees of freedom. It is therefore more correct to
speak of gauge redundancies rather than of gauge
symmetries, as it is sometimes done, for the word
“symmetry” is usually used for a physically mean-
ingful operation that does change the object to
which it is applied in at least some aspects (other-
wise the operation is the identity). Only some “rel-
evant” aspects, in the context of which one speaks
of symmetry, are not changed.

7.1 Geometric theory

Being first class has an interpretation in terms of
symplectic geometry. To see this, we first recall a
few facts and notation from elementary symplec-

29



tic geometry of cotangent bundles. Here some sign
conventions enter and the reader is advised to com-
pare carefully with other texts.

A symplectic structure on a manifold is a non-
degenerate closed two-form. Such structures al-
ways exist in a natural way on cotangent bun-
dles, where they even derive from a symplectic po-
tential. The latter is a one-form field θ on T ∗Q
whose general geometric definition is as follows:
Let π : T ∗Q → Q be the natural projection from
the co-tangent bundle of Q (phase space) to Q it-
self. Then, for each p ∈ T ∗Q, we define

θp := p ◦ π∗p . (183)

So in order to apply θp to a vector X ∈ TpT
∗Q,

we do the following: Take the differential π∗ of
the projection map π, evaluate it at point p and
apply it to X ∈ TpT ∗Q in order to push it forward
to the tangent space Tπ(p)Q at point π(p) ∈ Q.
Then apply p to it, which makes sense since p is,
by definition, an element of the co-tangent space
at π(p) ∈ Q.

The symplectic structure, ω, is now given by

ω = − dθ . (184)

The minus sign on the right-hand side has no signif-
icance other than to comply with standard conven-
tions. Let us stress that θ, and hence ω, is globally
defined. This is obvious from the global definition
(183). Therefore ω is not only closed, dω = 0, but
even globally exact for any Q. Non-degeneracy of ω
will be immediate from the expression in canonical
coordinates to be discussed below (cf. (196b)).

A diffeomorphism F : T ∗Q → T ∗Q is called a
canonical transformation or symplectic morphism
if it preserves ω, that is, if F ∗ω = ω. We explicitly
mention two kinds of canonical transformations,
which in some sense are complementary to each
other.

The first set of canonical transformations are
fibre-preserving ones. This means that, for each
q ∈ Q, points in the fibre π−1(q) are moved to
points in the same fibre π−1(q). This is equivalent
to the simple equation

π ◦ F = π . (185)

The special fibre-preserving diffeomorphisms we
wish to mention are given by adding to each mo-
mentum p ∈ T ∗Q the value σ

(
π(p)

)
of a section

σ : Q→ T ∗Q:

F (p) = p+ σπ(p) . (186)

This transforms the symplectic potential at p ∈
T ∗Q into

(F ∗θ)p = θF (p) ◦ F∗p
(183)
= F (p) ◦

(
π ◦ F

)
∗p

(185)
= F (p) ◦ π∗p

(186)
= θp + σπ(p) ◦ π∗p

= θp +
(
π∗σ

)
p
.

(187)

Hence

F ∗θ = θ + π∗σ , (188a)

F ∗ω = ω − π∗dσ . (188b)

This is a canonical transformation if σ is a closed
covector field on Q. By Poincaré’s Lemma such a
σ is locally exact, but this need not be the case
globally. Obstructions to global exactness are the
first De Rahm cohomology class H1

DR(Q), which is
just defined to be the vector space of closed mod-
ulo exact covector fields on Q. The dimension of
this vector space equals the rank of the free part
of the ordinary first homology group H1(Q,Z) on
Q with integer coefficients. This latter group is
always abelian and isomorphic to the abelianiza-
tion of the (generally non-abelian) first homotopy
group π1(Q). Hence for non-simply connected Q
the possibility of canonical transformations exist
which change the symplectic potential by a closed
yet non-exact covector field.

The second set of canonical transformations that
we wish to mention are natural extensions to T ∗Q
of diffeomorphisms of Q. These extensions not only
leave invariant the symplectic structure ω but also
the symplectic potential θ. To see this we note that
any diffeomorphism f : Q → Q has a natural lift
to T ∗Q. We recall that a lift of a diffeomorphism
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f of the base manifold Q is a diffeomorphism F :
T ∗Q→ T ∗Q such that

π ◦ F = f ◦ π . (189)

This is equivalent to saying that the following dia-
gram of maps commutes (a tailed arrow indicates
injectivity and a double-headed arrow surjectivity)

Q Q//
f

// //

T ∗Q

Q

π

����

T ∗Q T ∗Q// F // // T ∗Q

Q

π

����

(190)

Here the map F is just the pull-back of the inverse
f−1. Hence the image of p ∈ T ∗Q is given by

F (p) = p ◦ f−1
∗f(π(p)) . (191)

From that it follows that the symplectic potential
is invariant under all lifts of diffeomorphisms on Q:

(F ∗θ)p = θF (p) ◦ F∗p
(183)
= F (p) ◦

(
π ◦ F

)
∗p

(189)
= F (p) ◦ f∗π(p) ◦ π∗p

(191)
= p ◦ f−1

∗f(π(p)) ◦ f∗π(p) ◦ π∗p

= p ◦
(
f−1 ◦ f

)
∗π(p)

◦ π∗p

= θp .

(192)

So far we deliberately avoided intoducing local
coordinates in order to stress global existence of
the quantities in question. We now introduce con-
venient coordinates in which the symplectic poten-
tial and structure take on the familiar form. These
are called canonical coordinates, which we already
mentioned above and the definition of which we
now give. Let (x, U) be a local chart on Q such
that x : Q ⊃ U → Rn is the chart map with com-
ponent functions xa. This chart induces a chart
(z, V ) on T ∗Q, where V = π−1(U) ⊂ T ∗Q and
z : V → R2n. We follow general tradition and label

the first set of n component functions by za = qa

(for a = 1, · · · , n) and the second set by zn+a = pa
(for a = 1, · · · , n). For the first set we define

qa(λ) := xa
(
π(λ)

)
, (193a)

and for the second

pa(λ) := λ

(
∂

∂xa

∣∣∣∣
π(λ)

)
, (193b)

for any λ ∈ V . Note that (193b) just says that λ =
pa(λ) dxa|π(λ). In this way we get a “canonical”
extension of any chart on Q with domain U to a
chart on T ∗Q with domain V = π−1(U). From the
definition it is clear that

π∗λ

(
∂

∂qa

∣∣∣∣
λ

)
=

∂

∂xa

∣∣∣∣
π(λ)

(194a)

and

π∗λ

(
∂

∂pa

∣∣∣∣
λ

)
= 0 . (194b)

It immediately follows from the definition (183)
that

θλ

(
∂

∂qa

∣∣∣∣
λ

)
= pa(λ) (195a)

and

θλ

(
∂

∂pa

∣∣∣∣
λ

)
= 0 . (195b)

Hence, in canonical coordinates, the symplectic po-
tential and structure take on the form

θ|V = pa dq
a , (196a)

ω|V = dqa ∧ dpa . (196b)

Note again that (196) is valid in any canoni-
cal completion of a chart on Q. As advertised
above, it is immediate from (196b) that ω|V is
non-degenerate at any point p ∈ V . Since non-
degeneracy is a pointwise property and valid in any
canonical chart, it follows that ω is non-degenerate
everywhere. In the sequel we shall drop the explicit
mention of the chart domain V .

The non-degeneracy of ω allows to uniquely asso-
ciate a vector field Xf to any real-valued function
f on T ∗Q through

iXfω = df . (197)
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It is called the Hamiltonian vector field of f . An
immediate consequence of (197) and dω = 0 is that
ω has vanishing Lie derivative with respect to any
Hamiltonian vector field:

LXfω = (iXf ◦ d+ d ◦ iXf )ω = 0 . (198)

In coordinates Xf looks like this:

Xf =
∂f

∂pa

∂

∂qa
− ∂f

∂qa
∂

∂pa
. (199)

The Poisson bracket between two functions f and
g is defined as

{f, g} : = ω(Xf , Xg) = Xg(f) = −Xf (g) (200a)

=
∂f

∂qa
∂g

∂pa
− ∂f

∂pa

∂g

∂qa
. (200b)

It provides C∞(T ∗Q) with a structure of a Lie al-
gebra, which means that for all f, g, h ∈ C∞(T ∗Q)
and all a ∈ R we have,

{f, g} = −{g, f} , (201a)

{af + g, h} = a{f, h}+ {g, h} , (201b)

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0 .
(201c)

Antisymmetry and bi-linearity are obvious from
(200). The third property (201c), called the Jacobi
identity, can of course be directly checked using
the coordinate expression (200b), but the geomet-
ric proof is more instructive, which we therefore
wish to present here.

The first thing we note is that the map f 7→ Xf

obeys
X{f,g} = −[Xf , Xg] . (202)

This follows from

d{f, g} = d
(
ω(Xf , Xg)

)
= diXg iXfω

= LXg iXfω − iXgdiXfω
= i[Xg,Xf ]ω = −i[Xf ,Xg ]ω ,

(203)

where in the last step we used diXfω = 0 due to
dω = 0 and LXfω = 0 and once more LXgω = 0 in

the first term. As ω is non-degenerate comparison
with (197) leads to (202). Next we recall that the
exterior differential of a general k-form field α, ap-
plied to the k + 1 vectors X0, X1, · · · , Xk, can be
written as

dα(X0, · · · , Xk)

=
∑

0≤i≤k

(−1)i Xi

(
α(X0, · · · , X̂i, · · · , Xk)

)
+

∑
0≤i<j≤k

(−1)i+j α
(
[Xi, Xj ], X0, · · · ,

X̂i, · · · , X̂j , · · · , Xk

)
.

(204)

Here the hatted entries are omitted. This
we apply to dω(Xf , Xg, Xh) and make use
of, e.g., Xf

(
ω(Xg, Xh)

)
= (LXfω)(Xg, Xh) +

ω([Xf , Xg], Xh)+ω(Xg, [Xf , Xh]), as well as (198).
Then we get, writing

∑
(fgh) for the cyclig sum over

f, g, h:

dω(Xf , Xg, Xh) = −
∑

(fgh)

ω
(
Xf , [Xg, Xh]

)
(202)
=

∑
(fgh)

ω
(
Xf , X{g,h}

)
(200a)

=
∑

(fgh)

{f, {g, h}} .

(205)

Hence we see that the Jacobi identity (201c) follows
from dω = 0.

Equations (201) state that C∞(T ∗Q) is a Lie
algebra with {· , ·} as Lie product. With re-
spect to the ordinary pointwise product of func-
tions C∞(T ∗Q) is already a commutative and as-
sociative algebra. Both structures are linked via

{f · g, h} = f · {g, h}+ {f, h} · g , (206)

which immediately follows from the Leibniz rule
and (200) (which implies that {f ·g, h} is the deriva-
tive of f · g along Xh). All this is expressed by
saying that C∞(T ∗Q) is a Poisson algebra, mean-
ing the coexistence of two algebraic structures, one
of a commutative and associative algebra, one of
a Lie algebra, and their compatibility via (206).
Note that the liner space ΓT (T ∗Q) of vector fields
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is also a Lie algebra, whose Lie product is the
commutator of vector fields. Equation (202) then
shows that the map from C∞(T ∗Q) to ΓT (T ∗Q)
that sends f 7→ Xf is an anti homomorphism of
Lie algebras.

After this brief digression we now return to the
geometric interpretation of first-class constraints.
For any p ∈ C∗ we define

T⊥p (T ∗Q) :={
X ∈ Tp(T ∗Q) : ω(X,Y ) = 0 ,∀Y ∈ TpC∗

}
.

(207)

The non-degeneracy of ω implies that the dimen-
sion of T⊥p (T ∗Q) equals s, the co-dimension of C∗ in

T ∗Q. But note that as ω is skew, T⊥p (T ∗Q) might
well have a non-trivial intersection with TpC∗. This
gives rise to the following characterizations for the
submanifold C∗ ⊂ T ∗Q (understood to hold at each
point p ∈ C∗): C∗ is called

• isotropic iff TpC∗ ⊂ T⊥p (T ∗Q);

• co-isotropic iff TpC∗ ⊃ T⊥p (T ∗Q);

• Lagrangian iff TpC∗ = T⊥p (T ∗Q).

Since {φα, φβ} = dφα(Xφβ ) we see that condi-
tion (181) is equivalent to the statement that the
Hamiltonian vector-fields for the constraint func-
tions φα are tangent to the constraint hypersurface:

Xφα |C∗ ∈ ΓTC∗ . (208)

Our assumption that the s differentials dφα be
linearly independent at each p ∈ C∗ now implies
that the s vectors Xφα(p) span an s-dimensional
subspace of TpC∗. But they are also elements of
T⊥p (T ∗Q) since ω(Xφα , Y ) = dφα(Y ) = 0 for all Y

tangent to C∗. As the dimension of T⊥p (T ∗Q) is s,
this shows

T⊥p (T ∗Q) = span
{
Xφ1 · · · , Xφs

}
⊂ TpC∗ , (209)

that is, co-isotropy of C∗. First-class constraints
are precisely those which give rise to co-isotropic
constraint surfaces.

The significance of this lies in the following re-
sult, which we state in an entirely intrinsic geo-
metric fashion. Let C∗ ⊂ T ∗Q be co-isotropic of
co-dimension s and let e : C∗ → T ∗Q be its embed-
ding. We write

ω̂ := e∗ω (210)

for the pull back of ω to the constraint surface
(i.e. essentially the restriction of ω to the tan-
gent bundle of the constraint surface). ω̂ is now
s-fold degenerate, its kernel at p ∈ C∗ being just
T⊥p (T ∗Q) ⊂ TpC∗. We have the smooth assign-
ment of subspaces

C∗ 3 p 7→ kernelp(ω̂) = T⊥p (T ∗Q) , (211)

which forms a sub-bundle of TC∗ called the kernel
distribution of ω̂ . Now, the crucial result is that
this sub-bundle is integrable, i.e tangent to locally
embedded submanifolds γ∗ ⊂ C∗ of co-dimension s
in C∗, or co-dimension 2s in T ∗Q. Indeed, in order
to show this we only need to show that whenever
two vector fields X and Y on C∗ take values in the
kernel distribution their commutator [X,Y ] also
takes values in the kernel distribution. That this
suffices for local integrability is known as Frobenius’
theorem in differential geometry. Writing

i[X,Y ]ω̂ = LX
(
iY ω̂

)
− iY

(
LX ω̂

)
(212)

we infer that the first term on the right-hand side
vanishes because Y is in ω̂’s kernel and LX ω̂ van-
ishes because LX = d ◦ iX + iX ◦ d on forms, where
iX ω̂ = 0 again due to X being in the kernel and
dω̂ = de∗ω = e∗dω = 0 due to ω being closed.

The program of symplectic reduction is now
to form the (2n − 2s)-dimensional quotient space
C∗/∼, where ∼ is the equivalence relation whose
equivalence classes are the maximal integral sub-
manifolds of the kernel distribution of ω̂. C∗/∼ is
called the physical phase-space or reduced space of
states.

We stress that this geometric formulation of
the reduction program, and the characterization of
C∗/∼ in particular, does not refer to any set of func-
tions φα that one might use in order to character-
ize C∗. If one uses such functions, it is understood
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that they obey the above-mentioned regularity con-
ditions of being at least continuously differentiable
in a neighborhood of C∗ and giving rise to a set of s
linearly independent differentials dφα at any point
of C∗. Hence redefinitions of constraint functions
like φ 7→

√
|φ| or φ 7→ φ2, albeit leading to the

same surface C∗, are a priori not allowed.
The reduced phase space can be identified with

the set of physical states. Smooth functions on this
space then correspond to physical observables. But
how can we characterize the latter without explic-
itly constructing C∗/∼? This we shall explain in
the remaining part of this section.

We define the gauge algebra as the set of smooth
functions on unreduced phase space that vanish on
the constraint surface:

Gau :=
{
f ∈ C∞(T ∗Q) : f |C∗ = 0

}
. (213)

This set is clearly an associative ideal with respect
to the pointwise product. But it is also a Lie sub-
algebra with respect to the Poisson bracket. To
see this, we first remark that Xf |C∗ is T⊥(T ∗Q)-
valued if f ∈ Gau. Indeed, f ∈ Gau implies that
kernel(dfp) includes TpC∗ for p ∈ C∗. But then
(197) shows Xf (p) ∈ T⊥p (T ∗Q). Now, this im-
mediately implies that Gau is a Lie algebra for
co-isotropic C∗, for then (200) implies {f, g}|C∗ =
ω(Xf , Xg)|C∗ = 0. Hence Gau is a Poisson sub-
algebra of C∞(T ∗Q) and also an associative ideal
with respect to pointwise multiplication. However,
it is not a Lie-ideal with respect to {·, ·}. Indeed,
if f ∈ Gau we just need to take a g ∈ C∞(T ∗Q)
which is not constant along the flow of Xf |C∗ ;
then {f, g}|C∗ 6= 0. This means that we can-
not define physical observables by the quotient
C∞(T ∗Q)/Gau, since this will not result in a Pois-
son algebra. As we insist that all elements in Gau
generate gauge transformations, we have no choice
but to reduce the size of C∞(T ∗Q) in order to
render the quotient a Poisson algebra. Econom-
ically the most effective possibility is to take the
Lie-idealizer of Gau in C∞(T ∗Q), which is defined
as follows

IGau := {f ∈ C∞(T ∗Q) : {f, g}
∣∣
C∗ = 0 ∀g ∈ Gau} .

(214)

Note that IGau is the set of smooth functions
that, to use a terminology introduced by Dirac[55],
weakly (Poisson) commute with the constraints (i.e.
with Gau). Here weak (Poisson) commutativity
means that the Poisson brackets of observables and
constraints need not vanish globally, i.e. on T ∗Q,
but only after restriction to C∗. We will briefly
come back to the case of strong (Poisson) commu-
tativity below.

Now, if IGau/Gau is to make sense as Poisson al-
gebra of physical observables IGau must be a Pois-
son algebra containing Gau as an Poisson ideal.

That IGau is an associative algebra under point-
wise multiplication immediately follows from (206).
That it is also a Lie subalgebra follows from the
Jacobi identity (201c). Indeed, let f, g ∈ IGau and
h ∈ Gau; then (201c) immediately gives

{{f, g}, h}
∣∣
C∗

= −{{g, h}︸ ︷︷ ︸
∈Gau

, f}
∣∣
C∗ − {{h, f}︸ ︷︷ ︸

∈Gau

, g}
∣∣
C∗ = 0 . (215)

Hence we have shown that IGau is a Poisson sub-
algebra of C∞(T ∗M) which contains Gau as a Pois-
son ideal. By construction IGau is the largest
Poisson subalgebra of C∞(T ∗M) with that prop-
erty. Hence we may identify the Poisson algebra
of physical observables, or reduced space of observ-
ables with the quotient

Ophys := IGau/Gau . (216)

This complements the definition of the reduced
space of physical states. Again we stress that the
definition given here does not refer to any set of
functions φα that one might use in order to char-
acterize C∗.

We also stress that instead of the Lie idealizer
(214) we could not have taken the Lie centralizer

CGau := {f ∈ C∞(T ∗Q) : {f, g} = 0 ∀g ∈ Gau} .
(217)

Note that here the only difference to (214) is that
{f, g} is required to vanish strongly (i.e. on all of
T ∗Q) and not only weakly (i.e. merely on C∗). This
makes a big difference and the quotient IGau/Gau
will now generally be far too small. In fact, it is
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intuitively clear and also easy to prove (see, e.g.,
Lemma 5 of [72]) that the Hamiltonian vector fields
Xf corresponding to functions f ∈ Gau, which
span T⊥p (T ∗C) ⊂ TpC∗ at each p ∈ C, span all
of Tp(T

∗Q) for each point p off C∗. This implies
that smooth functions in C∞(T ∗Q) which strongly
(Poisson) commute with Gau are locally constant
outside C∗. Sometimes strong (Poisson) commuta-
tivity is required not with respect to Gau but with
respect to a complete set {φ1, · · · , φs} of functions
in Gau defining C∗; for example the component
functions of the momentum map (see next subsec-
tion). But even then strong commutativity is too
strong, as a smooth function commuting with all
φα on C∗ need generally not extend to a smooth
function defined in a neighborhood of C∗ in T ∗Q
which still commutes with all φα. The reason is
that the leaves of the foliation defined by the φα
may become ‘wild’ off C∗. Compare, e.g., the dis-
cussion in [35] (including the example on p. 116).

7.2 First-class constraints from zero
momentum-maps

First class constraints often arise from group ac-
tions (see Appendix for group actions). This is
also true in GR, at least partially. So let us ex-
plain this in more detail. Let a Lie group G act
on the left on T ∗Q. This means that there is a
map G × T ∗Q → T ∗Q, here denoted simply by
(g, p) 7→ g · p, so that g1 · (g2 · p) = (g1g2) · p and
e · p = p if e ∈ G is the neutral element. As al-
ready seen earlier in (24) and explained in detail in
the Appendix, there is then an anti-homomorphism
from Lie(G), the Lie algebra of G, to the Lie alge-
bra of vector fields on T ∗Q. Recall that the vector
field V X corresponding to X ∈ Lie(G), evaluated
at point p ∈ T ∗Q, is given by

V X(p) :=
d

dt

∣∣∣
t=0

exp(tX) · p . (218)

Then [
V X , V Y

]
= −V [X,Y ] . (219)

Let us further suppose that the group action on
T ∗Q is of a special type, namely it arises from a

group action onQ by a canonical lift. (Every diffeo-
morphism f of Q can be lifted to a diffeomorphism
F of T ∗Q given by the pull back of the inverse
f−1.) Then it is easy to see from the geometric
definition (183) that the symplectic potential θ is
invariant under this group action and consequently
the group acts by symplectomorphisms (ω preserv-
ing diffeomorphisms). The infinitesimal version of
this statement is that, for all X ∈ Lie(G),

LV Xθ = 0 . (220)

Since LV X = iV X ◦ d+ d ◦ iV X this is equivalent to

iV Xω = d
(
θ(V X)

)
(221)

which says that V X is the Hamiltonian vector field
of the function θ(V X). We call the map

Lie(G) 3 X 7→ P (X) := θ(V X) ∈ C∞(T ∗Q)
(222)

the momentum map for the action of G. It is a
linear map from Lie(G) to C∞(T ∗Q) and satisfies{

P (X), P (Y )
}

= V Y
(
θ(V X)

)
=
(
LV Y θ

)
(V X) + θ

(
LV Y V

X
)

= θ
(
V [X,Y ]

)
= P

(
[X,Y ]

)
,

(223)

where we used (220) and (219) for the third equal-
ity. Hence we see that the map (222) is a Lie ho-
momorphism from Lie(G) into the Lie algebra of
smooth, real-valued functions on T ∗Q (whose Lie
product is the Poisson bracket).

Now, first class constraints are often given by
the condition of zero momentum mappings, i.e., by
P (X) = 0 for all X ∈ Lie(G). By linearity in
X, this is equivalent to the set of s := dim(G)
conditions

φα := P (eα) = 0 , (224)

where eα = {e1, · · · , es} is a basis of Lie(G). Let
the structure constants for this basis be Cγαβ , i.e.

[eα, eβ ] = Cγαβeγ , then (223) becomes

{φα, φβ} = Cγαβφγ . (225)
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Constraints in gauge theories will typically arise
as zero momentum maps in the fashion described
here, the only necessary generalization being the
extension to infinite-dimensional groups and Lie al-
gebras. In fact, for gauge theories our G will cor-
respond to the infinite-dimensional group of gauge
transformations, which is not to be confused with
the finite-dimensional gauge group. The former
consists of functions, or sections in bundles, with
values in the latter. On the other hand, the con-
straints in GR will only partially be of this type.
More precisely, those constraints arising from 3-
dimensional diffeomorphisms (called the vector or
diffeomorphism constraints) will be of this type,
those from non-tangential hypersurface deforma-
tions (scalar or Hamiltonian constraint) will not fit
into this picture. For the former G will correspond
to Diff(Σ), or some appropriate subgroup thereof,
and Lie

(
Diff(Σ)

)
to the infinite-dimensional Lie al-

gebra of vector fields on Σ (possibly with spe-
cial support and/or fall-off conditions). The differ-
ent nature of the latter constraint will be signaled
by structure functions Cγαβ(q, p) appearing on the
right-hand side rather than constants. This has
recently given rise to attempts to generalize the
group-theoretic setting described above to that of
groupoids and Lie algebroids, in which the more
general structure of GR can be accommodated [33].

8 Hamiltonian GR

The Hamiltonian formulation of GR proceed along
the lines outlined in the previous section. For this
we write down the action in a (3+1)-split form,
read off the Lagrangian density, define the con-
jugate momenta as derivatives of the latter with
respect to the velocities, and finally express the
energy function (176) in terms of momenta. The
constraint functions will not be determined on the
Lagrangian level, but rather directly on the Hamil-
tonian level as primary and secondary constraints
(there will be no tertiary ones), the primary ones
being just the vanishing of the momenta for lapse
and shift.

The Lagrangian density for GR is essentially just

the scalar curvature of spacetime. However, upon
variation of this quantity, which contains second
derivatives in the metric, we will pick up bound-
ary terms from partial integrations which need not
vanish by just keeping the metric on the boundary
fixed. Hence we will need to subtract these bound-
ary terms which will otherwise obstruct functional
differentiability. Note that this is not just a mat-
ter of aesthetics: Solutions to differential equations
(like Einstein’s equation) will not be stationary
points of the action if the latter is not differentiable
at these points. Typically, Euler Lagrange equa-
tions will allow for solutions outside the domain
of differentiability of the action they are derived
from. Including some such solutions will generally
need to adapt the action by boundary terms. This
clearly matters if one is interested in the values of
the action, energies, etc. for these solutions and
also, of course, in the path-integral formulations of
the corresponding quantum theories.

The Einstein-Hilbert action of GR is

SGR[Ω, g] = − ε

2κ

∫
Ω

Scal dµg + boundary terms

(226)
where in local coordinates xµ = (x0 =
ct, x1, x2, x3),

dµg =
√
εdet{gµν} cdt ∧ dx1 ∧ dx2 ∧ dx3 . (227)

The sign convention behind the prefactor −ε in
(226) is such that in the Lorentzian as well as the
Riemannian case the Lagrangian density contains
the bilinear De Witt inner product of the extrinsic
curvatures (compare (141)) with a positive sign, i.e.
transverse traceless modes have positive kinetic en-
ergy.

The boundary term can be read off (141) and
(139). If the integration domain Ω ⊂ M is such
that the spacelike boundaries are contained in two
hypersurfaces Σs, i.e. two t = const. surfaces, say
∂Ωi := ∂Ω ∩ Σinitial and ∂Ωf := ∂Ω ∩ Σfinal, we
would have to add the two boundary terms (de-
pendence on ε drops out)

κ−1

∫
∂Ωf

Trh(K) dµh − κ−1

∫
∂Ωi

Trh(K) dµh .

(228)
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Here we used that the second term in (139) does
not contribute due to a being orthogonal to n. dµh
is the standard measure from the induced metric,
h, on the hypersurfaces. If the cylindrical timelike
boundary ∂Ωcyl is chosen such that its spacelike
normal m is orthogonal to n, only the second term
in (139) contributes and we get one more boundary
term (again ε drops out)

κ−1

∫
∂Ωcyl

K̂(n, n) dµh . (229)

Here K̂ is the extrinsic curvature of ∂Ωcyl in
M , which we picked up because g(a,m) =
g(∇nn,m) = −g(n,∇nm) = K̂(n, n).

Once the boundary terms are taken care of we
can just read off the Lagrangian density from (141)
also using (66),

LGR = (2κ)−1
[
G(K,K)− εR

]
α
√
h , (230)

where we now used the standard abbreviations

G(K,K) : = GabcdKabKcd ,

R : = ScalD ,
√
h : =

√
det{hab} .

(231)

Moreover, Kab has here to be understood as ex-
pressed in terms of the time and Lie derivatives of
hab:

K = − ε2α
−1
(
ḣ− Lβh) . (232)

We keep in mind that an overdot denotes differen-
tiation with respect to ct (not t). In passing we also
note that LGR has the right physical dimension of
an energy-density (α is dimensionless).

The Hamiltonian density is now obtained by the
usual Legendre transform with respect to all con-
figuration variables that are varied in the action.
These comprise all components gµν and hence in
the (3+1)-split parametrization all hab as well as
the lapse α and the three shift components βa.
However, it is immediate that (230) does not con-
tain any time derivatives of the latter; hence their

conjugate momenta vanish:

πα :=
1

c

∂LGR

∂α̇
= 0 , (233a)

πβa :=
1

c

∂LGR

∂β̇a
= 0 . (233b)

This leaves us with the momenta for the metric
components hab

πab : =
1

c

∂LGR

∂ḣab

=
(−ε)

√
h

2κc
GabcdKcd

=
(−ε)
2κc

ĜabcdKcd .

(234)

Here again K stands for the expression (232). We
also made use of the conformally rescaled De Witt
metric (163) whose significance appears here for
the first time. Again in passing we note that the
physical dimension of πab is right, namely that of
momentum per area (the dimension of K is an in-
verse length).

In order to compute the Hamiltonian density we
express ḣ in terms of the momenta

ḣab = (Lβh)ab − 2εαKab

= (Daβb +Dbβa) + 4ακc Ĝ−1
abcdπ

cd
(235)

and obtain

H0[h, π] = πab cḣab − LGR

= α
[
(2κc2)Ĝ−1

abcdπ
abπcd

+ ε(2κ)−1
√
hR
]

+ 2cπabDaβb .

(236)

The Hamiltonian, H0, is just the integral of this
density over Σ. The subscript 0 is to indicate that
this Hamiltonian is still to be modified by con-
straints according to the general scheme. Also, we
have to once more care about surface terms in order
to ensure functional differentiability without which
the Hamiltonian flow does not exist [105].
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The first thing to note is that we have found the
primary constraints (233). For them to be main-
tained under the evolution we need to impose

cπ̇α = {πα, H0} = −δHo

δα
= 0 , (237a)

cπ̇βa = {πβa , H0} = −δHo

δβa
= 0 , (237b)

giving rise to the secondary constraints

(2κc2)Ĝ−1(π, π) + ε(2κ)−1
√
hR = 0 , (238a)

− 2Daπ
ab = 0 , (238b)

respectively. It may be checked directly that these
equations respectively are equivalent to (144) for
T = 0. If we had included a cosmological con-
stant this would have led to the replacement of R
in (238a) with (R− 2Λ).

In passing we make the following geometric ob-
servation regarding the bilinear form G−1(π, π),
which is analogous to that made for G(K,K) below
equation (145). We can choose a local frame {ea}
so that hab = h(ea, eb) = δab and πab = π(θa, θb) =
diag(p1, p2, p3), where {θa} is dual to {ea}. Then

Ĝ−1(π, π) :=
(
δab − 3

2n
anb
)
papb , (239)

where, as before, na are the components of the
normalized vector ~n := (1, 1, 1)/

√
3 in eigenvalue-

space, which we identify with R3 endowed with the
standard Euclidean inner product. Denoting again
by θ the angle between ~n and ~p := (p1, p2, p3), we
have

Ĝ−1(π, π) =


0 if | cos θ| =

√
2/3

> 0 if | cos θ| <
√

2/3

< 0 if | cos θ| >
√

2/3 .

(240)
This should be compared with (147). The differ-
ence is that

√
1/3 is replaced by

√
2/3, which is

due to λ = 1 in (157b) but µ = 1/2 in (158b) in
the GR case. This has an interesting consequence:
The condition | cos θ| =

√
2/3 now describes a dou-

ble cone around the symmetry axis generated by ~n
and vertex at the origin, whose opening angle is
strictly smaller than that of the cone considered

in (147). In fact, it is small enough to just touch
boundaries of the positive and negative octants in
R3. This means that | cos θ| >

√
2/3 implies that

either all pa are positive or all pa are negative. In
other words Ĝ−1(π, π) < 0 implies that the sym-
metric bilinear form π is either positive or negative
definite. In contrast, (147) did not allow to con-
clude definiteness of the symmetric bilinear form
K from G(K,K) < 0, since the interiors of the
double-cone | cos θ| >

√
1/3 intersect the comple-

ments of the definite octants.
Let us now return to the constraints. We have

found the primary and secondary constraints (233)
and (238) respectively. The most important thing
to note next is that there will be no further (ter-
tiary, etc.) constraints. Indeed, this follows from
the general argument following (150), which en-
sures the preservation of the secondary constraints
under Hamiltonian evolution. The primary con-
straints are now taken care of by simply eliminating
the canonical pairs (α, πα) and (βa, πβa) from the
list of canonical variables. As we will see shortly,
the secondary constraints (238) are of first-class,
so that, according to the general theory outlined
above, they should be added with arbitrary coef-
ficients to the initial Hamiltonian H0 to get the
general Hamiltonian. This leads to

H[α, β] = Cs(α)+Cv(β)+boundary terms , (241)

where

Cs(α) : =

∫
Σ

d3x α
[
(2κc2)Ĝ−1(π, π)

+ ε(2κ)−1
√
hR
]
, (242a)

Cv(β) : =

∫
Σ

d3x βa
[
−2chabDcπ

bc
]
, (242b)

where α and βa are now arbitrary coefficients cor-
responding to the λ’s in (180). In particular, they
may depend on the remaining canonical variables h
and π. Note that up to boundary terms the Hamil-
tonian is just a sum of constraints, where S stands
for the scalar- (or Hamiltonian-) and and V for the
vector (or diffeomorphism-) constraint.

The equations of motion generated by H will
clearly be equivalent to (149) and (148). Let us
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write them down explicitly. To do this we first
note that the functional derivatives of Cv(β) with
respect to h and π are easily obtained if we note
that, modulo surface terms, the integrand can ei-
ther be written as c(Lβh)abπ

ab or as −c(Lβπ)abhab.
Hence, given that the surface terms are so chosen
to guarantee functional differentiability, we have

δCv(β)

δπab
= cLβhab = c (Daβb +Dbβa) (243)

and

δCv(β)

δhab
= − c (Lβπ)ab

= − c
[
Dc(β

cπab)− (Dcβ
a)πcb − (Dcβ

b)πac
]
.

(244)

Note that in the first term on the right-hand side of
(244) the βc appears under the differentiation Dc

because π is a tensor-density of weight one. The
functional derivative with respect to π of Cs(α) is
simply 4ακc2Ĝ(π, · ), so that the equation of mo-
tion for h is readily written down:

cḣab = {hab, H} =
δH

δπab

= 4ακc2Ĝ−1
ab cdπ

cd + cLβhab .

(245)

Using (234) this is immediately seen to be just
(149). From the explicit h-dependence of Ĝ, as
displayed in (158b) and (163), we obtain, using
∂
√
h/∂hab = 1

2

√
hhab,

∂Ĝ−1(π, π)

∂hab
= − 1

2h
abĜ−1(π, π)+2hanπbmĜ−1

nmcdπ
cd.

(246)
For the variational derivative of the second term
in (242) we use the following standard formula for
the variation of

√
h times the scalar curvature of h

δ
(√
hR(h)

)
=
√
h
(
−Gab(h)δhab +GnmabDnDmδhab

)
,

(247)

which immediately follows from (117), where we
recall that gab there corresponds to hab here and
also that δhab = −hachbdδhcd. Gab(h) denote the

contravariant components of the Einstein tensor for
h. Taken together we get

δCs(α)

δhab
=

κc2α
[
−habĜ−1(π, π) + 4hanπbmĜ−1

nmcdπ
cd
]

− ε

2κ

[
αGab(h)−GabnmDnDmα

]√
h

(248)

With (244) this gives the second Hamilton equation

cπ̇ab ={πab, H} = − δH

δhab

= κc2α
[
habĜ−1(π, π)− 4hanπbmĜ−1

nmcdπ
cd
]

+
ε

2κ

[
αGab(h)−GabnmDnDmα

]√
h

+ cLβπ
ab .

(249)

These are seen to be equivalent to (149) and
(148) respectively. Before we discuss the bound-
ary terms we write down the Poisson brackets for
the constraints.{

Cv(β), Cv(β
′)
}

= Cv
(
[β, β′]

)
, (250a){

Cv(β), Cs(α)
}

= Cs
(
β(α)

)
, (250b){

Cs(α), Cs(α
′)
}

= εCv
(
α(dα′)] − α′(dα)]

)
.

(250c)

These may be obtained by direct computation, but
are also dictated by geometry. Before discussing
the geometry behind them, we note the following
more or less obvious points:

1. The vector constrains form a Lie algebra. The
map β → V (β) is a Lie homomorphism form
the Lie algebra of vector fields in Σ to the Lie
algebra (within the Poisson algebra) of phase-
space functions. In fact, this map is just the
momentum map for the action of the diffeo-
morphism group G = Diff(Σ) on phase T ∗Q,
which is a lift of the action on Q = Riem(Σ),
the space of Riemannian metrics on Σ. Note
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that here the symplectic potential can be writ-
ten in a symbolic infinite-dimensional notation
(cf. (196a))

θ =

∫
Σ

d3x πab(x) δhab(x) (251)

and the vector field Vβ generated by the action
of G = Diff(Σ) on Q = Riem(Σ):

Vβ =

∫
Σ

d3x Lβhab(x)
δ

δhab(x)
. (252)

The momentum map (222) is then given by

Pβ = θ(Vβ) =

∫
Σ

d3x πabLβhab

= c−1Cv(β) + 2

∫
∂Σ

d2xβaπ
abνb ,

(253)

where νb denote the components of the out-
ward pointing normal of ∂Σ. This shows that
for vector fields β for which the surface term
does not contribute the vector constraint is
just the momentum map (up to a factor of
c−1, which comes in because the physical di-
mension of the values of the momentum map
are that of momentum whereas the physical
dimension of the constraints are that of an
Hamiltonian, that is, energy). The surface
term will be discussed below. What is im-
portant here is that the vector constraint coin-
cides to the zero momentum-map for those dif-
feomorphisms which are asymptotically triv-
ial, i.e. for which the surface term vanishes.
Only those are to be considered as gauge trans-
formations! Long ranging diffeomorphism for
which the surface term is non zero, i.e. for
configurations of non vanishing linear and/or
angular momentum (cf. Section 9), have to
be considered as proper changes in physical
state. If we required these motions to be pure
gauge we would eliminate all states with non-
zero asymptotic charges. Compare the closing
remarks of Section 7.

2. Once we have understood that the vector con-
straint is the momentum map for diffeomor-
phisms, its Poisson bracket with any other

phase-space function F that defines a geomet-
ric object on Σ (i.e. an object with well de-
fined transformation properties under diffeo-
morphisms) is fixed. We simply have

{
F, Vβ

}
= LβF . (254)

In this sense (250b) says no more than that
the expression (238a) is a scalar density of
weight one. Recall that if F is a scalar den-
sity of weight one then LβF = Da(βaF ). If
we multiply F by α and integrate over Σ we
get after partial integration and assuming the
boundary term to give no contribution (which
for non closed Σ requires certain fall-off con-
ditions) an integral of −Fβ(α), which is just
what (250b) expresses. Algebraically speak-
ing, the fact that the Poisson bracket of a vec-
tor and a scalar constraint is proportional to a
scalar rather than a vector constraint means
that the vector constraints do not form an
ideal. Geometrically this means that the
Hamiltonian vector fields for the scalar con-
straint, if evaluated on the hypersurface for the
vector constraint, will generally not be tan-
gential to it, except for the points where this
hypersurface intersects that of the scalar con-
straint. This has very important consequences
for algorithms of phase-space reduction, i.e.
algorithms that aim to “solve” the constraints.
It means that a reduction in steps is not pos-
sible, whereby one first solves for the vector
constraint and then seeks for solutions of the
scalar constraint within the class of solutions
to the vector constraint.

3. According to (250c) two scalar constraints
Poisson commute into a vector constraint.
Two facts are remarkable concerning the vec-
tor field that forms the argument of this vector
constraint: First, it depends on the signature
of spacetime (overall multiplication with ε).
Second, it depends on the phase space variable
h through the ]-operation of “index raising”;
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explicitly:

α(dα′)] − α′(dα)]

= hab
(
α∂bα

′ − α′∂bα
) ∂

∂xa
.

(255)

This is the fact already mentioned at the end
of Section 7, that the constraints in GR are
not altogether in the form of a vanishing mo-
mentum map. This fact has led to some dis-
cussion in the past and attempts have been
made to consider different algebraic combina-
tions of the constraints which define the same
constraint hypersurfaces but display structure
constants rather than structure functions in
their Poisson brackets; e.g., [99]. But as al-
ready discussed in Section 7 it is important
that these redefinitions do not spoil the reg-
ularity properties of the functions that define
the constraint surface.

This ends the immediate discussion of (250). But
there is another aspect that is related to the last
point just discussed and that deserves to be men-
tioned.

8.1 Hypersurface deformations and
their representations

Even though the constraints cannot be understood
in a straightforward fashion as zero momentum
map of a group action, they nevertheless do furnish
a representation of an algebraic object (a groupoid)
of hypersurface motions. As a result, the relations
(250) are universal, in the sense that any spacetime
diffeomorphism invariant theory, whatever its field
content, will give rise to the very same relations
(250); see [112] and [81] for early and lucid discus-
sions and [88][89] for a comprehensive account.

The idea is to regard the space of (space-
like) embeddings Emb(Σ,M) of Σ into M as an
infinite-dimensional manifold, on which the diffeo-
morphism group of M acts on the left by sim-
ple composition. Then there is a standard anti-
homomorphism from the Lie algebra of Diff(M)
to the Lie algebra of vector fields on E(Σ,M),
just as in (219). A tangent vector at a particular

E ∈ Emb(Σ,M) can be visualized as a vector field ξ
on Σ ⊂M with normal and tangential components,
more precisely, as a section in the pull-back bundle
E∗TM over Σ. Its decomposition into normal and
tangential components depends on E . If we think
of M as being locally coordinatized by functions
yµ and Σ by functions xa then E can be locally
represented by four functions yµ of three variables
xa. A vector field Vξ can then be represented in a
symbolic infinite-dimensional notation

Vξ =

∫
Σ

d3x ξµ
(
y(x)

) δ

δyµ(x)
. (256)

In full analogy to (219), this immediately leads to

[Vξ, Vη] = −V[ξ,η] . (257)

If we now decompose ξ in an embedding dependent
fashion into its normal component αn and tangen-
tial component β we can rewrite (256) into

V (α, β) =∫
Σ

d3x
(
α(x)nµ[y](x) + βa∂ay

µ(x)
) δ

δyµ(x)
,

(258)

where the components nµ of the normal n to the
image E(Σ) ⊂ M have to be considered as func-
tional of the embedding. Again we can compute
the commutator explicitly. The only non-trivial
part is the functional derivative of the nµ with re-
spect to the yν . How this is done is explained in
the Appendix of [112]. The result is[

V (α1, β1), V (α2, β2)
]

= −V (α, β) , (259a)

where

α = β1(α2)− β2(α1) , (259b)

β = [β1, β2] + ε
(
α1(dα2)] − α2(dα1)]

)
. (259c)

This is just (250) up to a relative minus sign that
has the same origin as that between (219) and
(223). We therefore see that (250) is a representa-
tion of a general algebraic structure which derives
from the geometry of deformations of (spacelike)
hypersurfaces in spacetime.
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We can now address the inverse problem, namely
to find all Hamiltonian representations of (259) on
a given phase space. As in GR the phase space is
T ∗Q, where Q = Riem(Σ), That is, we may ask for
the most general phase-space functions H(α, β) :
T ∗Riem(Σ)→ R, parametrized by (α, β), so that{

H(α1, β1), H(α2, β2)
}

= H(α, β) . (260)

The meaning of this relation is once more ex-
plained in Fig. 3. It is also sometimes expressed as
path independence, for it implies that the Hamilto-
nian flow corresponding to two different paths in
E(Σ,M) reaching the same final hypersurface will
also result in the same physical state (phase-space
point).

Σ

Σ1

Σ2

Σ12

Σ21

(α1
, β1

)

(α2
, β2

)

(α
2 , β

2 )

(α
1 , β

1 )

(α, β)

Figure 3: An (infinitesimal) hypersurface deformation
with parameters (α1, β1) that maps Σ 7→ Σ1, followed by
one with parameters (α2, β2) that maps Σ1 7→ Σ12 differs
by one with parameters (α, β) given by (259b) from that in
which the maps with the same parameters are composed in
the opposite order.

To answer this question one first has to choose a
phase space. Here we stick to the same phase space
as in GR, that is T ∗Q, where Q = Riem(Σ). The
representation problem can be solved under certain
additional hypotheses concerning the geometric in-
terpretation of H(α = 0, β) and H(α, β = 0):

1. H(0, β) should represent an infinitesimal spa-
tial diffeomorphism, so that

{F,H(0, β)} = LβF (261a)

for any phase-space function F . This fixes

H(0, β) to be the momentum map for the ac-
tion of Diff(Σ) on phase space.

2. H(α, 0) should represent an infinitesimal
Diff(M) action “normal to Σ”. In absence of
M , which is not yet constructed, this phrase
is taken to mean that (80) must hold, i.e.

{h,H(α, 0)} = −2εαK , (261b)

where K is the extrinsic curvature of Σ in
the ambient spacetime that is yet to be con-
structed.

It has been shown that under these conditions
the Hamiltonian of GR, including a cosmological
constant, provides the unique 2-parameter family
of solutions, the parameters being κ and Λ. See
[81] for more details and [96] for the most com-
plete proof (see below for a small topological gap).
This result may be seen as Hamiltonian analog
to Lovelock’s uniqueness result [98] for Einstein’s
equations using spacetime covariance.

A particular consequence of this result is the
impossibility to change the parameter λ in the
De Witt metric (157) to any other than the GR
value λ = 1 without violating the representation
condition, that is, without violating covariance un-
der spacetime diffeomorphisms. Such theories in-
clude those of Hořava-Lifshitz type [82], which were
suggested as candidates for ultraviolet completions
of GR.

At this point we must mention a topological sub-
tlety which causes a small gap in the uniqueness
proofs mentioned above and might have important
consequences in Quantum Gravity. To approach
this issue we recall from the symplectic framework
that we can always perform a canonical transfor-
mation of the form

π 7→ π′ := π + Θ , (262)

where Θ is a closed one-form on Riem(Σ). Closed-
ness ensures that all Poisson brackets remain the
same if π is replaced with π′. Since Riem(Σ) is
an open positive convex cone in a vector space and
hence contractible, it is immediate that Θ = df
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for some function f : Riem(Σ) → R. However, π
and π′ must satisfy the diffeomorphism constraint,
which is equivalent to saying that the kernel of
π (considered as one-form on Riem(Σ)) contains
the vector fields generated by spatial diffeomor-
phisms, which implies that Θ, too, must annihilate
all those, so that f is constant on each connected
component of the Diff(Σ) orbit in Riem(Σ). But
unless these orbits are connected this does not im-
ply that f is the pull back of a function on the
quotient Riem(Σ)/Diff(Σ), as assumed in [96]. We
can only conclude that Θ is the pull back of a
closed but not necessarily exact one-form on su-
perspace. Hence there is an analogue of the Bohm-
Aharonov-like ambiguity that one always encoun-
ters if the configuration space is not simply con-
nected. The quantum theory is then expected to
display a sectorial structure labeled by the equiva-
lence classes of unitary irreducible representations
of the fundamental group of configuration space,
which in analogy to Yang-Mills-type gauge theo-
ries are sometimes referred to as θ-sectors [87]. In
GR the fundamental group of configuration space is
isomorphic to a certain mapping-class group of the
3-manifold Σ. The theta-structure then depends
on the topology of Σ and can range from ‘trivial’
to ‘very complicated’. See [73] for more details on
the role and determination of these mapping-class
groups and [74] for a more general discussion of the
configuration space in GR, which, roughly speak-
ing, is the quotient Riem(Σ)/Diff(Σ), often referred
to as Wheeler’s superspace [116][52].

We finally note that additional theta-structures
may emerge if the gravitational field is formulated
by means of different field variables including more
mathematical degrees of freedom and more con-
straints (so as to result in the same number of phys-
ical degrees of freedom upon taking the quotient).
The global structure of the additional gauge trans-
formations may then add to the non-triviality of
the fundamental group of configuration space and
hence to the complexity of the sectorial structure.
Examples have been discussed in the context of
Ashtekar variables (cf. final Section) in connection
with the CP-problem in Quantum Gravity [19].

8.2 An alternative action principle

A conceptually interesting albeit mathematically
awkward alternative form of the action principle
for GR was given by Baierlein, Sharp, and Wheeler
in [21]. Its underlying idea, as far as the initial-
value problem is concerned, is as follows: We have
seen that initial data (h,K) (or (h, π)) had to obey
four constraints (per space point) but that the four
functions α and β could be specified freely. Could
we not let the constraints determine α and β and
thereby gain full freedom in specifying the initial
data? In that case we would, for example, gain
full control over the initial geometry, whereas, as
we will see later, the standard conformal method
to solve the constraints only provides control over
the conformal equivalence class of the initial ge-
ometry, the representative within that class being
determined by the solution to the scalar constraint.
For black-hole collision data this, e.g., means that
we cannot initially specify the initial distances. We
will now discuss to what extent this can indeed be
done. At the end of this subsection we will add
some more comments regarding the conceptual is-
sues associated with this alternative formulation.

We start from the action

SGR[g; Ω] =

∫
Ω

d4xLGR , (263)

where LGR is as in (230). In it we express K in
terms of ḣ as given in (232). This results in

SGR[α, β, h, ḣ ; Ω] =∫
Ω

d4x

√
h

2κ

{
1

4α
G
(
ḣ− Lβh , ḣ− Lβh

)
− εRα

}
.

(264)

For fixed domain Ω ⊂ M this is to be regarded as
functional of g, that is of α, β and h. Note that α
enters in an undifferentiated form. Variation with
respect to it gives

α = α∗(h, ḣ, β) :=
1

2

√
−εG

(
ḣ− Lβh , ḣ− Lβh

)
R

,

(265)
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where we have chosen the positive root for α and
introduced the abbreviation α∗ for the function
of h, ḣ, and β defined by the expression on the
right-hand side in (265). Note that this only
makes sense if R has no zeros and if the sign of
−εG

(
ḣ− Lβh , ḣ− Lβh

)
equals that of R. Hence

we have to restrict to a particular sign for the latter
expression. We set

σ : = sign
(
G
(
ḣ− Lβh , ḣ− Lβh

))
= −ε sign

(
R
)
.

(266)

Reinserting (265) into (263), taking into account
(266), gives

SBSW[β, h, ḣ; Ω] := SGR[α = α∗ , β, h, ḣ; Ω] =∫
Ω

d4x
σ
√
h

2κ

√
−εRG(ḣ− Lβh , ḣ− Lβh) .

(267)

Here we explicitly indicated the functional depen-
dence on the time derivative of h to stress the in-
dependence on the time derivative of β. With ref-
erence to [21] this form of the action is sometimes
called the Baierlein-Sharp-Wheeler action. (Hence
the subscript BSW in (267).) We can now try to
further reduce this action so as to only depend on
h and ḣ. For this we would have to proceed with
β in the same fashion as we have just done with α;
i.e., vary (267) with respect to β and then reinsert
the solution β[h, ḣ] of the ensuing variational equa-
tions back into (267). The variational equations for
β are easily obtained (note that σ drops out):

2κ√
h

δSBSW

δβd
=

Dc

{
Gabcd(ḣ− Lβh)ab

α∗(h, ḣ, β)

}
= 0 .

(268)

These three equations are traditionally referred to
as the thin-sandwich equations. They are meant to
determine β for given pairs (h, ḣ).

Suppose there is a unique solution to (268) for
given (h, ḣ), i.e.,

β = β∗(h, ḣ) . (269a)

Inserting this into (265) determines the lapse for
given (h, ḣ):

α = α∗
(
h, ḣ, β = β∗(h, ḣ)

)
. (269b)

Our initial goal is then achieved if we consider h ∈
ΓT 0

2 Σ (positive definite) and ḣ ∈ ΓT 0
2 Σ (arbitrary)

as freely specifiable initial data. As intended, h
represents a freely specifiable Riemannian geome-
try of Σ and ḣ its initial rate of change with respect
to some formal parameter. The relation between
this formal time parameter and proper time is fully
determined by the solutions (269), in the way ex-
plained in Section 4.1. This means that the specifi-
cation of two infinitesimally nearby configurations
h and h + ḣ dx0 allows to deduce the proper time
that separates the corresponding spatial slices in
the spacetime to be constructed. In this sense, and
subject to the solvability of (268), physically mean-
ingful durations can be deduced from two infinites-
imally close instantaneous configurations. This is
why Baierlein, Sharp, and Wheeler concluded in
[21] that “three-dimensional geometry is a carrier
of information about time”; or in Barbour’s conge-
nial dictum ([24], p. 2885): “The instant is not in
time; time is in the instant”. Also, it should now be
obvious where the term thin-sandwich comes from
and why the problem of finding a solution to (268)
is often referred to as the thin-sandwich problem.

The thin-sandwich equations (268) were first
conceived and discussed in [116] and [21]. Exis-
tence and uniqueness of solutions were originally
conjectured (henceforth known as thin-sandwich
conjecture) , e.g. in [116], but first mathemati-
cal investigations soon showed that the unqualified
thin-sandwich conjecture is false; see [30] and [41].

To see what positive statements can be made let
us summarize the situation: At fixed time, i.e. on
each 3-manifold Σ with given Riemannian metric
h and given parameter-time derivative ḣ (covari-
ant symmetric second-rank tensor field), equations
(268) form a system of three quasi-linear (though
highly non-linear) second order equations for the
three components βa. The restriction α > 0, where
α is given by (265), involves β and hence implies
an a priori bound for the unknown β. As a conse-
quence one may first of all expect only local results
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(if at all), in the sense that if β∗ is a solution for
given (h∗, ḣ∗) then there exists some open neigh-
borhood U of (h∗, ḣ∗) in field space (in an appropri-
ate topology) such that existence and uniqueness of
solutions follows for all (h, ḣ) ∈ U . Such a local re-
sult can only be expected if the initial velocity ḣ∗,
or any of its space-point dependent reparametriza-
tions, is not just of the form of an infinitesimal dif-
feomorphism Lξh∗. In other words, (h∗, ḣ∗) must
be chosen such that for any smooth function η and
vector field ξ on Σ we have the following implica-
tion

ḣ∗ = η Lξh∗ ⇔ η = 0 and ξ = 0 . (270)

Assuming (270), local results were first proven in
[26] and subsequently in a more geometric form and
with generalizations, also including matter fields,
in [71]. The idea of proof is to write β = β∗ + δβ
and linearize the differential operator (268) acting
on δβ around the solution (β∗;h∗, ḣ∗). The result-
ing linear operator turns out to be symmetric (no
surprise, being the second functional derivative of
SBSW in β) with a principal symbol σ(k) whose de-
terminant is proportional to a power of ‖k‖ times
[π(k, k)]2 (see eq. (3.14) in [71]), which vanishes
for non-zero k iff π(k, k) = 0. Hence the linearized
operator is elliptic iff the quadratic form π is ei-
ther positive or negative definite. Granted this,
(270) then ensures that the elliptic operator has
a trivial kernel. Together this allows to deduce an
implicit-function theorem that immediately implies
local existence and uniqueness. As regards ellip-
ticity, we recall that from the discussion following
(240) that a definite π is equivalent to Ĝ(π, π) < 0,
i.e. σ = −1 (compare (266)). Hence a local ex-
istence and uniqueness result holds provided that
(h∗, ḣ∗, β∗) satisfy σ = −1, comprising the two
equations

εR(h∗) > 0 ,

G(ḣ∗ − Lβ∗h∗ , ḣ∗ − Lβ∗h∗ , ) < 0 .
(271)

We see that we actually were not free in choosing
either sign for σ in (266): We are bound to σ =
−1 in order to ensure at least local existence and
uniquness of the thin-sandwich equation (268).

In passing we note the choice of the negative sign
σ = −1 has very different topological consequences
depending on whether ε = −1 (Lorentzian space-
time), where it implies R < 0, or ε = 1 (Rieman-
nian/Euclidean spacetime), where it implies R > 0.
In the former case, given any orientable closed 3-
manifold Σ, the theorem of Kazdan & Warner (see
paragraph above Section 6.1) ensures the existence
of a Riemannian metric h on Σ with negative scalar
curvature. In contrast, in the latter case (Euclidean
spacetimes), the theorem of Gromov & Lawson im-
plies a severe topological obstruction against Rie-
mannian metrics h on Σ with positive scalar cur-
vature (as already discussed above: only connected
sums of handles and lens spaces survive this ob-
struction).

The result on local uniqueness can be generalized
to a global argument, first given in [30] and gen-
eralized in [71] to also include matter fields. On
the other hand, it is not difficult to see that global
existence cannot hold, i.e. there are more or less
obvious data (h, ḣ) for which (268) has no solution
for β; see, e.g., [103].

Finally we mention the conformal thin-sandwich
approach of York’s [120], which is a conceptually
weaker but mathematically less awkward variant of
the full thin-sandwich problem, in which only the
conformal equivalence class of the metric and its
time derivative is initially specified, together with
the lapse function and the extrinsic curvature. The
constraints are then solved for the conformal fac-
tor and the shift vector field. The equation for
the conformal factor is as in the conformal method
discussed below (York’s equation (328)), but the
equation for the shift is mathematically less awk-
ward than in the full thin-sandwich equation (268).
Recall that the latter is rendered complicated to
the insertion of the solution (265) for α, which is
precisely what is not done in the conformal variant.
But, clearly, the price for not solving for the lapse
is that we have again no initial control over the
full metric. Nevertheless, the better behaved equa-
tions of the conformal variant of the thin-sandwich
method make it a useful tool in numerical investi-
gations; see, e.g., [27][77].

45



Comparison with Jacobi’s principle

It is conceptually interesting to compare the
Baierlein-Sharp-Wheeler action of GR with Ja-
cobi’s principle in mechanics. So let us briefly recall
Jacobi’s original idea [90], where only the notation
will be adapted.

As in Section 7 we consider a (so far uncon-
strained) mechanical system with n-dimensional
configuration space Q. Let it be characterized by
a Lagrangian L : TQ→ R of the form

L(q, v) = 1
2Gq(v, v)− V (q) . (272)

Here Gq is a positive-definite bilinear form on TqQ
called the kinetic-energy metric . We already know
that as L does not explicitly depend on time, any
dynamically possible trajectory will run entirely
within a hypersurface of constant energy E (the en-
ergy function being (176)). Maupertuis’ principle
of least action, states that a dynamically possible
trajectory x : R ⊃ I → Q, connecting fixed initial
and final points qi and qf , extremizes the “action”∫ qf

qi

Gx(t)

(
ẋ(t), ẋ(t)

)
dt (273)

relative to all other curves with the same end-
points and on the same energy hypersurface. We
note in passing that since ẋ dt = dq and G(v, ·) =
∂L(q, v)/∂v = p, the integrals in (273) equal the
integrals of the canonical one-form θ (compare
(196a)) along the paths q = x(t) and p = G

(
ẋ(t), ·

)
in T ∗Q with fixed endpoints of the curve pro-
jected into Q and the curves all running on a hy-
persurface of fixed value of the Hamiltonian func-
tion. This is the form the principle of least action
is given in modern formulations, like in Arnold’s
book [2](Chapter 9, Section 45 D). In this (modern,
Hamiltonian) form, time plays no role. Indeed, on
phase space T ∗Q the integral of the one-form θ, as
well as the level sets for the Hamiltonian function,
are defined without reference to any time param-
eter t. But in the traditional (19th century, La-
grangian) form stated above, the parameter enters
in an essential way. In fact, in this formulation t
is not an independent variable because the energy

condition expressed in terms of positions and ve-
locities (measured with respect to t) introduces an
implicit dependency of t with coordinates on TQ.
These dependencies have to be respected by vari-
ations of (273). This is why Jacobi complained in
his lectures that the form given above appears in-
comprehensible to him.1 His crucial observation
was that the energy condition allows to eliminate t
altogether. Indeed, if we solve the energy condition
for dt,

dt =

√
Gq(dq, dq)

2
(
E − V (q)

) , (274)

and use that to eliminate dt in (273), we can put
the integral into the form∫ qf

qi

√
2
(
E − V (q)

)
Gq(dq, dq) , (275)

which is independent of any parametrization. In
fact, it has the simple geometric interpretation of
the length functional or the conformally rescaled
kinetic-energy metric:

Ĝ = 2(E − V )G , (276)

where E is a constant. Jacobi’s principle then says
that the dynamically possible trajectories of energy
E are the geodesics of Ĝ, and that (Newtonian)
time along such a geodesic is obtained by integrat-
ing (274) along it. Note that Jacobi’s principle
defines in fact two new metrics on configuration
space Q, both of which are conformally equivalent
to the kinetic-energy metric G. The first is (276),
which determines the trajectory in Q, the other is

G̃ =
G

2(E − V )
, (277)

which determines Newtonian time along the trajec-
tories selected by the first. We call it the first and
second Jacobi metric respectively. Note also that
(274) gives a measure for duration, dt, in terms of
changes of mechanical coordinates.

1“Dieses Prinzip wird fast in allen Lehrbüchern, auch
den besten, in denen von Poisson, Lagrange und Laplace, so
dargestellt, dass es nach meiner Ansicht nicht zu verstehen
ist.” ([90], p. 44)
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In passing we remark that a special realization
of this far reaching idea, namely to read off New-
tonian time from simultaneous configurations (i.e.,
generalized positions) of mechanical systems, as-
suming the systems to obey Newtonian laws of
motion, is emphemeris (or astronomical) time in
astronomy [47][23], where the relative configura-
tions (ephemerides) of the Moon, Sun, and plan-
ets (as seen from the Earth) are used as positions.
Ephemeris time was first proposed as time standard
in 1948 [46] in order to establish a reference with
respect to which non uniformities in the Earth’s
daily rotation could be accounted for, though the
idea goes back at least to 1929 [48]. Ephemeris
time ideed became the time standard in 1952 until
the 1970s, when atomic time took over its place,
though we remark that “atomic time” is really just
based on a straightforward generalization of the
very same principle to Quantum Mechanics. Here,
again, one reads off time from simultaneously mea-
surable states or observables of one or more systems
obeying known deterministic “laws of motion”, like
Schrödinger’s equation for states or Heisenberg’s
equation for observables. These equations of mo-
tion correlate the a priori unobservable parameter
t with observable properties of the system, which
render t observable in a context dependent fash-
ion through inverting these relations (solving the
equations of motion for t).

Now, coming back to gravity, (275) should be
compared to (267). Except for the terms involv-
ing the lapse-function β the latter is (almost!) like
(275) for E = 0 and V = εR. The analogy is
incomplete (hence “almost”) because in (267) the
spatial integration is outside the square-root, so
that the integrand for the parameter-integration
along the curve in configuration space is a sum
of square-roots rather than a single square-root
of a sum. This difference renders the expression
in (267) different from usual “length functionals”.
Note that sums of square roots (involving them-
selves sums of squares) generally do not even form
a Finsler metric (compare the discussion in [71]).

Taking the analogy further, (274) should be com-
pared to (269b) with α∗ given by the integral (265).
Again, except for the terms involving β, they seem

to closely correspond to each other. Equation
(269b) determines one proper time per spatially
fixed (with respect to the spatial coordinates) ob-
server in the spacetime to be developed from the
initial data. Hence there is something like a contin-
uum of second Jacobi metrics, one for each space
point.

An interesting observation in this connection is
the following [40], which we give in a simplified
form. Suppose that we tried to define, from first
principles, duration by some measure of change
in the gravitational degrees of freedom, i.e., some
kind of gravitational ephemeris time . In analogy
to (274) We assume the “measure of change”, dτ ,
to be given by some local rescaling of a pseudo-
Riemannian distance measure

ds2 =

∫
Σ

d3x Gab cd[h(x)]dhab(x)dhcd(x) , (278)

so that

dτ2 =
ds2∫

Σ
d3x R(x)

. (279)

Here R must be a scalar function of the spatial
metric h. The simplest non-constant such function
is the scalar curvature, which depends on h and
its derivatives up to second order. A priori such
a measure of duration seems to depend equally on
all gravitational degrees of freedom at all points
in space, thus giving rise to a highly non-local
concept of time with respect to which durations
of processes, even local ones, can be measured.
However, suppose we required that the measure
of time be compatible with arbitrarily fine local-
ization Σ → U ⊂ Σ. Following [40] we call this
the chronos principle. It implies that the numera-
tor and denominator of (279) are proportional for
each restriction Σ → U . This is only possible if
the integrands are proportional. Without loss of
generality we can take this constant of proportion-
ality (which cannot be zero) to be 1 (this just fixes
the overall scale of physical time) and obtain (here
written without cosmological constant for simplic-
ity)

Gab cd[h(x)]
dhab(x)

dτ

dhcd(x)

dτ
−R[h](x) = 0 . (280)
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which is just the Hamiltonian constraint. The du-
ration in time is then given by

∆τ(hi, hf ) =

∫ hf

hi

√
G
(
dh/dλ, dh/dλ

)
−R
[
h(λ)

] dλ , (281)

which is obviously just the analog of the integrated
version of (274) for E = 0 (which here amounts
to the Hamiltonian constraint), i.e. the integrated
version of (265) for β = 0 (this is the simplification
we alluded to above) and ε = −1.

9 Asymptotic flatness and
global charges

Isolated systems are described by geometries which
at large spatial distances approach a matter-free
spacetime. In case of vanishing cosmological con-
stant the latter will be flat Minkowski spacetime.
For non-zero Λ it will either be de Sitter (Λ > 0) or
anti-de Sitter (Λ < 0) space. Here we are interested
in the case Λ = 0. We refer to the survey [60] for
a recent discussion of the anti-de Sitter case.

An initial data set (h, π) or (h,K) on Σ needs
to satisfy certain asymptotic conditions in order to
give rise to an asymptotically flat spacetime. Be-
fore going into this, we point out that there is also a
topological condition on Σ in order to sensibly talk
about asymptotic regions. The condition is that
there exists a compact set K ⊂ Σ such that its
complement Σ−K is diffeomorphic to the disjoint
union of manifolds R3−B, where B is a closed ball.
These pieces in which Σ decomposes if one cuts out
increasingly large compact sets are called ends of
Σ. In passing we note that the theory of ‘ends’
for topological spaces and groups was developed
by Freudenthal in 1931 [61]. Now, the first condi-
tion we pose is that there is only a finite number
of such ends. (It is not hard to visualize manifolds
with even an uncountable number of ends.) With
respect to each end we can talk of approaching in-
finity. This means to let r →∞ if r is the standard
radial coordinate on R3 − B to which this end is
diffeomorphic.

A first working definition of asymptotically flat
initial data in Hamiltonian GR was given in 1974
by Regge & Teiltelboim [105]. It was shown by
Beig & Ó Murchadha in 1986 [29] that this defini-
tion is sufficient to allow the implementation of the
10-parameter Poincaré group as asymptotic sym-
metries giving rise to 10 corresponding conserved
quantities. The definition can be given as follows
(here we restrict to one end):

Definition (Regge-Teitelboim asymptotic flat-
ness). Let Σ be a 3-manifold with one end. An
initial data set (h, π) on Σ is asymptotically flat in
the sense of Regge-Teitelboim if there is a coordi-
nate system {x1, x2, x3} covering the end, such that

as r :=
√
xaxbδab →∞)

hab(x) = δab +
sab(ν)

r
+O2(r−2) , (282a)

πab(x) =
tab(ν)

r2
+O1(r−3) , (282b)

where x = (x1, x2, x3) and ν = (ν1, ν2, ν3) with
νa := xa/r. Ok(r−n) denotes terms falling off like
1/rn and whose l-th derivatives fall off like 1/r(n+l)

for 0 < l ≤ k. Moreover, sab and tab obey the
parity conditions

sab(−ν) = sab(ν) , (283a)

tab(−ν) = −tab(ν) . (283b)

The first thing to observe is that these conditions
suffice to make the integral (251) for the symplec-
tic potential convergent. Note that (282) merely
implies that the integrand falls off like 1/r3, which
could still produce a logarithmic divergence. But
(283) implies that the 1/r3 integrand is of odd par-
ity and hence gives no contribution. Next we have a
look at the constraint functionals (242). In (242a)
the first integrand has a 1/r4 and the second a
1/r3 parity-even fall-off. In (242b) the integrand
has also a 1/r3 parity-even fall-off. Hence the in-
tegrals (242) certainly converge for those lapse and
shift fields α, β which asymptotically either tend
to zero or approach direction-dependent constants
in a parity-odd fashion. As we will see below, the
constraints for such parameter fields α and β are
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differentiable with respect to the canonical vari-
ables h and π and hence generate a Hamiltonian
flow that has to be considered as gauge transfor-
mations; compare Section 7.1. Hence we set

α(x)gauge = a(ν) +O2(r−1) , (284a)

βa(x)gauge = ba(ν) +O1(r−1) , (284b)

where

a(−ν) = −a(ν) , (285a)

ba(−ν) = −ba(ν) . (285b)

To see that Cs(α)[h, π] and Cv(β)[h, π] as defined
in (242a) and (242b) are functionally differentiable
with respect to h and π we make the following ob-
servations: For (242a) the only boundary term one
might pick up is that from the variation of the
scalar curvature with respect to h, which follows
from (117) (in which formula we have to replace
gab with hab and hab with δhab in order to match
the notation here). It reads

ε

2κ

∫
S2
∞

dΩα
√
hνaG

abcdDbδhcd (286)

and is thus seen to have an integrand that has 1/r2

fall-off and is parity-odd. Hence the integral van-
ishes. Note that here and in what follows we used
the following shorthand notation

∫
S2
∞

dΩ( · · · ) := lim
r→∞

{∫
S2(r)

dΩr( · · · )

}
, (287)

where S2(r) is the sphere of constant “radius” r (as
defined above) and dΩr its induced volume form.

The vector constraint (242b) contains π as well
as h in differentiated form (the latter in D), so that
boundary terms may appear in both variation, that
with respect to π as well as that with respect to
h. For both cases it is convenient to rewrite the
integral (242b) by performing a partial integration

before variation:

Cv(β) : =

∫
Σ

d3x βa
[
−2chabDcπ

bc
]

= c

∫
Σ

d3x(Lβh)abπ
ab

− 2c

∫
S2
∞

dΩβahabhcdν
dπbc .

(288)

Under the fall-offs and parity conditions mentioned
above the last (surface) integral is zero since its
integrand has 1/r2 decay and is parity-odd. Hence
variation with respect to π does not lead to surface
terms. Variation with respect to h is now simply
given by varying the h under the Lie differentiation
Lβ which itself has no dependency on h (unlike
the covariant derivative D). Using Lβ(δhabπ

ab) =
Dc(β

cδhabπ
ab), partial differentiation with respect

to the Lie derivative then gives the surface term

2c

∫
S2
∞

dΩhabν
aβb δhcdπ

cd , (289)

the integrand of which again falls off like 1/r2 and
is parity odd.

The considerations so far show that the con-
straints Cs(α)[h, π] and Cv(β)[h, π] are differen-
tiable with respect to h and π whenever (h, π) sat-
isfy (282) and (283) and the parameter-functions
(α, β) satisfy (284) and (285). From the consider-
ations it also follows that we cannot improve on
the latter two conditions given the fall-offs and
parity conditions on (h, π). This characterizes the
lapse and shift functions which generate pure gauge
transformations in Hamiltonian gravity for asymp-
totically states. We stress that (284) and (285) in-
cludes motions that do not vanish at infinity. These
are called supertranslations. Without their care-
ful inclusion into the transformations considered
as gauge, we would not obtain the Poincaré group
as proper physical symmetry group but rather an
infinite-dimensional extension thereof. For more
discussion on this conceptually important point
compare the discussion in [69].

Motions characterized by functions (α, β) out-
side the class (284) and (285) do change the phys-
ical state. If this motion is to be generated by
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the Hamiltonian (241) we must restrict to those
(α, β) for which suitable boundary terms can be
found such that H(α, β)[h, π] is differentiable with
respect to h and π obeying (282) and (283). To ac-
commodate asymptotic Poincaré transformations
we must worry about asymptotic translations in
time and space directions, asymptotic rotations,
and finally asymptotic boosts, all of which we
only need to specify modulo gauge transformations.
Asymptotic time translations correspond to con-
stant α. The surface term that results from the
variation of Cs(α) is just (286). It immediately fol-
lows that the term that has to be added to Cs(α)
so as to just cancel this surface term upon variation
with respect to h is just αEADM, where

EADM = MADMc
2

= −ε(2κ)−1

∫
S2
∞

dΩ (∂ahab − ∂bhaa)νb ,

(290)

is called the ADM energy and MADM the ADM
mass. Note that we just replaced all non dif-
ferentiated hab that appear in (286) by δab since
the difference does not contribute to the surface
integral in the limit as r → ∞. Similarly, asymp-
totic space translations corresponds to covariantly
constant β, i.e. constant components βa with re-
spect to the preferred coordinates that served to
define asymptotic flatness. Again we immediately
read off (288) the boundary term that we need to
add in order to cancel that in the last line of (288)
upon variation of π. It can be written in the form
cPADM(β), where

PADM(β) = 2

∫
S2
∞

dΩβaπabν
b . (291)

This we call the ADM general momentum. Note
that the integrand has fall-off 1/r2 and even parity
and hence gives a finite contribution. Furthermore,
it follows from (289) that the variation with respect
to h does not give rise to a boundary term since the
integrand in (289) has 1/r3 fall off and hence does
not contribute, independently of its (even) parity.

Asymptotic rotations and boosts are a priori
more delicate since now α and β are allowed to

grow linearly with r. We have, up to gauge trans-
formations, α ∝ uax

a for a boost in ~u-direction
and βa ∝ εabcω

bxc for a rotation around the ~ω
axis. Here εabc are the components of the metric
volume-form for the asymptotic metric δ with re-
spect to the coordinates {xa}, so that εabc = ±1,
depending on whether (abc) is an even (+) or odd
(−) permutation of (123). As indices are raised
and lowered with respect to δ, we need not be con-
cerned whether they are upper or lower (as long as
we work in components with respect to {xa}). The
components ua and ωa are then again constants.

We start with rotations and read off the last line
of (288) that the surface integral has an integrand
∝ πabβaνb, which looks dangerous as its naive fall-
off is 1/r. However, if we use that π actually sat-
isfies the constraint, Dbπ

ab = 0, we can convert
this surface integral to a bulk integral whose inte-
grand is proportional to Db(π

abβa) = πabD(aβb).
But D(aβb) = ∂(aβb) − Γcabβc and β is Killing with
respect to the metric δab, so that ∂(aβb) = 0. Now,
the Christoffel symbols Γcab for the metric h fall off
as 1/r2 with odd parity, so that Γcabβc falls off as
1/r with even parity. Hence πabD(aβb) falls off like
1/r3 with odd parity, showing that this volume in-
tegral also converges (a logarithmic divergence be-
ing just avoided by odd parity). Finally we observe
that for asymptotic rotations there is still no sur-
face term of the form (289), since its integrand has
1/r2 fall-off and is of odd parity. As a result we
have that even for asymptotic rotations we obtain
the same formula (291) for the (linear or angular)
momentum as long as the Regge-Teitelboim condi-
tions (282) and (283) are satisfied and (h, π) satisfy
the constraints. In components with respect to the
asymptotic coordinates the components of the lin-
ear momentum are

P aADM = 2

∫
S2
∞

dΩπabνb , (292)

and for the angular momentum

JaADM = 2

∫
S2
∞

dΩ εabcx
bπcdνd , (293)

where εabc is as above.
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Turning now to the boosts, we have

α = uax
a + αgauge . (294)

We need to repeat the same steps that previously
led us to (286). Now, according to (117) the space
integral over the divergence term in the variation
of the scalar curvature is

X :=

∫
Σ

d3xα
√
hGabcdDaDbδhcd . (295)

A first integration by parts leads to

X =

∫
S2
∞

dΩα
√
hνaG

abcdDbδhcd

−
∫

Σ

d3x
√
hGabcd(Daα)Dbδhcd .

(296)

One more integration by parts of the second term
gives

X =

∫
S2
∞

dΩα
√
hνaG

abcdDbδhcd

−
∫
S2
∞

dΩ
√
h (Daα)νbG

abcdδhcd

+

∫
Σ

d3x
√
hGabcd(DaDbα)δhcd .

(297)

Equation (294) implies that D2α has 1/r2 fall-
off with odd parity. Hence the last (volume) in-
tegral in (297) has 1/r3 fall-off with odd par-
ity and hence converges. It gives rise to a term
∝
√
hGabcdDaDbα in the Hamiltonian equation for

π̇cd. According to the general strategy the surface
integrals must be taken care of by adding suitable
surface integrals to the right-hand side of (241) so
as to just cancel ε/(2κ) times the integrals just
found as resulting from the variation of the scalar
curvature in (242). Hence the right surface terms
to be added to (241) are of the form uaX

a, where

Xa =
−ε
2κ

{∫
S2
∞

dΩxa
(
∂bhbc − ∂chbb

)
νc

−
∫
S2
∞

dΩ
(
(hab − δab)νb − (hbb − δbb)νa

)}
.

(298)

The coordinates Za of the center of mass are then
defined by the rescaled forms of (298), with rescal-
ing factor EADM:

Za :=
Xa

EADM
. (299)

In order to arrive at (298) we wrote δhab = δ(hab−
δab) and left the difference (hab − δab) rather than
just hab under the integral in order to not keep
the asymptotically constant term of (282a) under
the integral when pulling the variation δ outside it
(cf. [29] Appendix C).

It has been shown in [49] that the expression
(298) for the (unscaled) center of mass coincides
with the geometric definition of Huisken and Yau’s
[84]. The latter is defined by means of mean-
curvature foliations of Σ. Its relation to alterna-
tive definitions, including not only ADM but also
a definition due to R. Schoen, using asymptotically
conformal Killing fields, is discussed and lucidly
summarized in [83].

So far we have been working with the particular
asymptotic conditions (282) and (283). We have
been arguing for existence of certain quantities to
be identified with physical quantities of energy, lin-
ear and angular momentum, and center of mass.
But what about uniqueness? All these quantities
depend a priori on the choice of the asymptotic
coordinates within the set of all coordinates satis-
fying the given fall-off conditions. Hence one needs
to prove that this dependence is actually spurious
and that, consequently, these quantities are geo-
metric invariants. For the ADM mass and linear
momentum this has been shown in [25] and [43].
Moreover, ignoring angular momentum and cen-
ter of mass, these proofs were given under much
weaker asymptotic conditions, in fact the weakest
possible ones. Regarding the latter, we recall that
it was shown in [51] by means of explicit coordinate
transformations that the expression can be made
change its value if |hab − δab| < r−α with α ≤ 1/2;
see also the lucid discussion in [50]. Hence we cer-
tainly need α > 1/2. That this indeed suffices to
prove existence and uniqueness was established in
[102, 25, 43]. This fits nicely with recent general-
izations of stability results of Minkowski space by
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Bieri [31], which work under the following asym-
totic decay conditions, where α > 1/2:

hab = δab +O2(r−α) , (300a)

πab = O1(r−1−α) . (300b)

These conditions suffice to establish ADM energy
and linear momentum not only as being well de-
fined, but also as being preserved under Hamilto-
nian evolution.

At first sight (300a) might seem too weak to
guarantee existence of (290). The reason why it
is not is, in fact, easy to see: If we convert (290)
into a bulk integral using Gauss’ theorem, the in-
tegrand contains a combination of 2nd derivatives
of h which just form the 2nd derivative part of
the scalar curvature. Using the scalar constraint,
which schematically has the form

π2 + ∂2h+ (∂h)2 = 0 , (301)

this can be written as a bulk integral containing
only integrands of the form ∝ π2 and ∝ (∂h)2,
which according to (300a) fall off like 1/r2(1+α),
i.e., faster than 1/r3. Hence the bulk integral con-
verges. But note that the conditions (300) do not
suffice to ensure the existence of conserved quan-
tities regarding angular momentum or center of
mass. Alternative conditions to (282) and (283)
for the existence of angular momentum have been
discussed in [20] and [44].

We recall that even in the context of the Regge-
Teitelboim conditions (282) and (283) we needed to
invoke the fact that (h, π) satisfy the constraints in
order to conclude sufficiently strong fall-offs. This
we have already seen explicitly in the discussion
on, e.g., the existence of angular momentum in the
paragraph above equation (292). From the scalar
constraint (301) we now learn that (282) and (283)
implies a 1/r4 fall-off for Gabcd∂a∂bhcd, and not
just 1/r3 as naively anticipated from (282).

Alternative expressions for mass/energy exist in
cases of symmetries. For example, for asymptot-
ically flat and stationary solutions to Einstein’s
equations, the ADM mass MADM is known to co-
incide with the so-called Komar mass [94], whose

simple and coordinate invariant expression is

MKomar =
−ε
c2κ

∫
S2
∞

?dK[ . (302)

Here K is the timelike Killing vector field so nor-
malized that limr→∞ g(K,K) = ε. There exist
various proofs in the literature showing MKomar =
MADM; see, e.g., [28][20][43] and Theorem 4.13 of
[39].

Since the Komar mass is frequently used in ap-
plications, let us say a few things about it. From
a mathematical point of view the main merit of
(302) is that it allows to associate a “mass” to any
2-dimensional submanifold S ∈ M , independently
of any choice of coordinates. We call it the Komar
mass of S:

MKomar(S) =
−ε
c2κ

∫
S

?dK[ . (303)

For S → S2
∞ its interpretation is that of the ADM

mass, whose physical significance as the value of the
Hamiltonian (divided by c2) endows it with a sound
physical interpretation. But what might the inter-
pretation be for general S? Well, suppose S = ∂B,
where B is a 3-dimensional spacelike submanifold
of M . Then, by Stokes’ theorem:

MKomar(S) =
−ε
c2κ

∫
B

d ? dK[

=
1

c2κ

∫
B

?(?d ? dK[)

=
ε

c2κ

∫
B

?(∇ · dK[)

=
−2ε

c2κ

∫
B

?ikRic .

(304)

Here we used the general identity for the square of
the Hodge star restricted to p-forms in n dimen-
sions,

? ◦ ?
∣∣
Λp(M)

= ε (−1)p(n−p) IdΛp(M) , (305)

and also the general formula that allows to express
?d? in terms of the covariant divergence ∇· on the
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first index with respect to the Levi-Civita connec-
tion,

? ◦d ◦ ?
∣∣
Λp(M)

= ε (−1)n(p+1) ∇ · . (306)

In the final step of (304) we used that any Killing
vector-field satisfies the identity (again for the
Levi-Civita connection):

∇a∇bKc = RdabcKd . (307)

If the spacetime satisfies Einstein’s equation we can
use (5) to eliminate the Ricci tensor in the last line
of (303) in favor of the energy-momentum tensor.
This shows that if S has two connected components
S1 and S2, and if T|B = 0, then (choosing the
relative orientations of S1 and S2 appropriately)
MKomar(S1) = MKomar(S2)M . For a finite-size star
or a black hole this means that we may take any S
to calculate the Komar- and hence the ADM mass,
as long as S ∪ S2

∞ bounds a 3-dimensional region
B on which T vanishes. In particular, S may be
taken as any 2-sphere outside the star’s surface.
More specifically, consider a static star where K
is the hypersurface orthogonal Killing vector-field.
The topology of the hypersurfaces orthogonal to
K inside the star shall be just that of a ball in
R3; then we express the star’s ADM energy by the
Komar integral over the star’s surface S and that,
in turn, by the bulk integral (304) over the star’s
interior, where we replace the Ricci tensor by T.
This results in the so-called Tolman mass (see [114]
and § 92 of [115]), which in our notation reads:

MTolman =
−ε
c2

∫
b

d3x
√

det(h) ×√
εg(K,K)

[
T(n, n)− εTrh(T)

]
.

(308)

Here n := K/
√
εg(K,K) is the normal to the hy-

persurfaces and Trh the trace with respect to the
spatial metric h, where, we recall, g = ε n[⊗n[+h.
In the Lorentzian case (ε = −1) we see that
the first T (n, n)-term in (308) is just the integral
over the spatial energy-density of the matter di-
vided by c2 and weighted by the redshift factor√
−g(K,K). The additional term is absent if the

pressures are negligible compared to the energy
density, but this need not be the case. For ex-
ample, if T is that of an electromagnetic field, we
have Trg(T) = εT (n, n) + Trh(T) = 0, so that
the pressure effectively doubles the contribution
of the first term to the overall mass. This is the
origin of the infamous “factor-2-anomaly” of the
Komar mass, which, e.g., leads to the result that
the difference between two Komar masses evalu-
ated on two different 2-spheres of spherical sym-
metry in the Reissner-Nordstrøm manifold (elec-
trically charged black-hole) gives twice the elec-
trostatic field energy stored in the region between
the spheres. On the other hand, for a spherically
symmetric perfect-fluid star, Tolman has shown
in [114] that in a weak-field approximation the
leading-order difference between (308) and the in-
tegrated mass-density of the fluid is just the New-
tonian binding energy, which makes perfect sense.

At this point we should mention the positive-
mass theorem (for Lorentzian signature ε = −1),
which states that for any pair (h, π) of initial data
satisfying the constraints MADM ≥ 0, with equal-
ity only if the data are that of Minkowski space.
Note that the expression (290) for MADM is a func-
tional of h alone, but that in the formulation of the
positive-mass theorem given here it is crucial that
for h there exists a π so that the pair (h, π) solves
the constraint. Otherwise it is easy to write down
3-metrics with negative ADM mass; take e.g. (314)
(see below) with r0 replaced by −r0, where r0 > 0,
suitably smoothed out for smaller radii so as to
avoid the singularity at r = r0. Since the ADM
mass only depends on the asymptotic behavior it
is completely independent of any alterations to the
metric in the interior. If one wishes to make the
positive mass theorem a statement about metrics
alone without any reference to the constraints one
has to impose positivity conditions on the scalar
curvature. But that also imposes topological re-
strictions due to the result of Gromov and Lawson
[78] mentioned at the end of Section 6. For a recent
up-to-date survey on the positive-mass theorem we
refer to [50].

Note that MADM = MKomar implies the posi-
tivity of MKomar ≡ MKomar(S

2
∞). But this does
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not imply that MKomar(S
2) is also positive for

general S2. In fact, explicit examples of regular,
asymptotically flat spacetimes with matter satisfy-
ing the hypotheses of the positive-mass theorem are
known in which MKomar(S

2) < 0 for suitably cho-
sen 2-spheres [1]. The recipe here is to regard two
concentric counter-rotating objects in an axially-
symmetric and stationary spacetime, e.g., an out-
side perfect-fluid ring and an inner rigidly rotating
disk of dust. The Komar mass of the disk (i.e. S2

encloses the disk but not the ring) may then turn
out negative if the frame-dragging effect of the ring
is large enough so as to let the angular velocity and
the (Komar) angular momentum of the central ob-
ject have opposite signs.

In passing we remark that the positive mass the-
orem in combination with the equality MADM =
MKomar gives a simple proof of the absence of
“gravitational solitons”, i.e. stationary asymp-
totically flat solutions to Einstein’s equations on
Σ = R3. This follows from (302) and d ? dK[ ∝
?iKRic. The vaccum equation Ric = 0 then im-
plies MADM = MKomar = 0 which implies that
spacetime is flat Minkowski. This theorem was
originally shown for static spacetimes (i.e. hyper-
surface orthogonal K) by Pauli and Einstein [56]
and later generalized to the stationary case by Lich-
nerowicz [97]. The result of this theorem cannot be
circumvented by trying more complicated topolo-
gies for Σ. As soon as Σ becomes non-simply con-
nected (which in view of the validity of the Poincaré
conjecture will be the case for any one-ended man-
ifold other than R3) we know from Gannon’s theo-
rem [63] that the evolving spacetime will inevitably
develop singularities.

Finally we mention that under suitable fall-
off conditions we can find the Poincaré group as
asymptotic symmetry group [29]. It will emerge
from (260) as equivalence classes of all hypersur-
face deformations, including those in which α and
β asymptotically approach rigid translations, ro-
tations, or boosts. The quotient is taken with re-
spect to those deformations which are generated by
the constraints, in which α and β tend to zero at
spatial infinity. There are various subtleties and
fine tunings involved for the precise fall-off condi-

tions that are necessary in order to exactly obtain
a 10-dimensional symmetry as a quotient of two
infinite-dimensional objects. This is particularly
true for asymptotic boosts, for which one needs to
tilt the hypersurface, corresponding to asymptotic
lapse functions α ∝ r. (Boosted hypersurfaces are
known to exist in the development of asymptoti-
cally flat initial data [42].) But leaving the ana-
lytic details aside, the qualitative picture is quite
generic for gauge field theories with long-ranging
field configurations [69]: A proper physical symme-
try group arises as quotient of a general covariance
group with respect to a proper normal subgroup,
the latter being defined to be that object that is
generated by the constraints.

10 Black-Hole data

In this section we discuss some simple solutions to
the vacuum Einstein equations without cosmologi-
cal constant. We first specify to the simplest case
of time symmetric conformally flat data. Time
symmetry means that the initial extrinsic curva-
ture vanishes, K = 0. The corresponding Cauchy
surface will then be totally geodesic in the space-
time that emerges from it. The vector constraint
(144b) is identically satisfied and the scalar con-
straint (144a) reduces to scalar flatness

R(h) = ScalD = 0 . (309)

Conformal flatness means that

h = Ω4 δ , (310)

where δ is the flat metric. From (125a) we infer
that (309) is equivalent to Ω being harmonic

∆δΩ = 0 (311)

where ∆δ is the Laplacian with respect to the flat
metric δ. We seek solutions Ω which are asymp-
totically flat for r → ∞ and give rise to complete
manifolds in the metric structure defined by g. The
only spherically symmetric such solution is

Ω(r) = 1 +
r0

r
, (312)
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where the integration constant r0 can be related to
the ADM mass (290) by

MADM = 2c2r0/G . (313)

This solution is defined on Σ = R3 − {0}. The
metric on Σ so obtained is

h =
(

1 +
r0

r

)4 (
dr2 +r2(dθ2 +sin2 θ dϕ2)

)
. (314)

It admits the following isometries

I1(r, θ, ϕ) := (r2
0/r, θ, ϕ) , (315a)

I2(r, θ, ϕ) := (r2
0/r, π − θ, ϕ+ π) . (315b)

Note that the second is just a composition of the
first with the antipodal map (r, θ, ϕ) 7→ (r, π −
θ, ϕ + π) which is well defined on R3 − {0}. This
makes I2 a fixed-point free action. The fixed-point
set of I1 is the 2-sphere r = r0. Note that gener-
ally a submanifold that is the fixed-point set of an
isometry is necessarily totally geodesic (has van-
ishing extrinsic curvature). To see this, consider
a geodesic that starts on and tangentially to this
submanifold. Such a geodesic cannot leave the sub-
manifold, for if it did we could use the isometry to
map it to a different geodesic with identical initial
conditions, in contradiction to the uniqueness of
solutions for the geodesic equation. Hence the 2-
sphere r = r0 has vanishing extrinsic curvature and
is therefore, in particular, a minimal surface (has
vanishing trace of the extrinsic curvature). The ge-
ometry inside the sphere r = r0 is isometric to that
outside it. This is depicted in Fig. 4.

For the data (h = (314) , K = 0) on Σ = R3−{0}
we actually know its maximal time evolution: It
is the Kruskal spacetime [95][79] which maximally
extends the exterior Schwarzschild spacetime. Fig-
ure 5 shows a conformal diagram of Kruskal space-
time.

In Kruskal coordinates (Kruskal [95] uses (v, u),
Hawking Ellis [79] (t′, x′) for what we call (T,X))
(T,X, θ, ϕ), where T and X each range in (−∞,∞)
obeying T 2−X2 < 1, the Kruskal metric reads (as
usual, we write dΩ2 for dθ2 + sin2 θ dϕ2):

g =
8r2

0

r
exp(−r/r0)

(
−dT 2 + dX2

)
+ r2dΩ2 ,

(316)

r = r0 →

Figure 4: Cauchy surface with time symmetric initial
data and two isometric asymptotically flat ends separated
by a totally geodesic 2-sphere.

where r is a function of T and X, implicitly defined
by (

(r/r0)− 1
)

exp(r/r0) = X2 − T 2 . (317)

The metric is spherically symmetric and allows for
the additional Killing field

K =
(
X∂T + T∂X

)
, (318)

which is timelike for |X| > |T | and spacelike for
|X| < |T |.

Both maps (315) extend to the Kruskal manifold.
The fixed-point free action (315b) has the extension

J : (T,X, θ, ϕ) 7→ (T,−X,π − θ, ϕ+ π) . (319)

It generates a freely acting group Z2 of smooth
isometries which preserve space- as well as time-
orientation. Hence the quotient is a smooth space-
and time-orientable manifold, that is sometimes
called the RP3-geon. It represents the maximal
time evolution of the data (h = (314),K = 0)
as above, but now defined on the initial quotient
manifold Σ = (R3 − {0})/I2. It has only one
asymptotically flat end and the topology of a once
punctured real projective space RP3. Note that
the map J preserves the Killing field (318) only
up to sign. Had one chosen J ′ : (T,X, θ, ϕ) 7→
(−T,−X,π − θ, ϕ + π) as in [101] and [66], one
would have preserved K but lost time orientabil-
ity.
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Figure 5: Conformally compactified Kruskal spacetime.
The T axis points up vertically, the X axis horizontally to
the right. The Cauchy surface of Fig. 4 corresponds trio the
hypersurface T = 0. The various infinities are: i0 spacelike,
i± future/past timelike, and I± future/past lightlike infin-
ity. The right diamond-shaped region corresponds to the
usual exterior Schwarzschild solution containing one asymp-
totically flat end.

Within the set of conformally-flat and time sym-
metric initial data we can easily generalize the so-
lution (312) to (311) to include more than one
monopole term on a multi-punctured R3. For two
terms we get

Ω(r) = 1 +
a1

r1
+
a2

r2
, (320)

where ri = ‖~x − ~ci‖. This represents two black
holes without spin and orbital angular momentum
momentarily at rest, with ~ci ∈ R3 representing the
hole’s “positions”. The manifold has three ends,
one for r → ∞ and one each for ri → 0. For each
end we can calculate the ADM mass and get

M = 2(a1 + a2)c2/G , (321a)

M1 = 2

(
a1 +

a1a2

r12

)
c2

G
, (321b)

M2 = 2

(
a2 +

a1a2

r12

)
c2

G
, (321c)

where r12 := ‖~c1 − ~c2‖. Here M is the total mass
associated with the end r → ∞ and Mi is the in-
dividual hole mass associated with the end ri → 0.
The binding energy is the overall energy minus the
individual ones. One obtains

∆E := (M−M1−M2)c2 = −GM1M2

r12
+· · · (322)

where the dots stand for corrections of quadratic
and higher powers in GMi/c

2r12. This can be eas-
ily generalized to any finite number of poles. Note
that the initial manifolds are all complete, i.e. all
punctures lie at infinite metric distance from any
interior point.

Other generalizations consist in adding linear
and angular momentum. This can be done using
the conformal method, which we now briefly de-
scribe. Recall that we wish to solve the constraints
(144) for T = 0 but now with K 6= 0. Encour-
aged by previous experience with the simplifying
effect of conformal transformations, we now study
the general conformal transformation properties of
the left-hand sides of (144). Generalizing (310), we
write

hab = Ω4h̄ab , (323a)

Kab = Ω−sK̄ab . (323b)

Note that in view of (323a) the second equation is
equivalent to

Kab = Ω8−sK̄ab . (323c)

We first wish to determine the power s that is most
suitable for simplifying (144b) if written in terms
of h̄ and K̄. A slightly lengthy but straightforward
computation gives

Da

(
Kab − habKc

c

)
= Ω−sD̄a

(
K̄ab − h̄abK̄c

c

)
+ (10− s)Ω−(s+1)(D̄aΩ)K̄ab

+ (s− 6)Ω−(s+1)D̄bK̄c
c .

(324)

Here D̄ is the Levi-Civita covariant derivative with
respect to h̄ and indices on barred quantities are
moved with the barred metric. A suitable simpli-
fication in the sense of conformal covariance would
occur if only the first line in (324) survived. The
other two lines cannot be made to vanish simulta-
neously on account of a suitable choice of s. The
best one can do is to choose s = 10 and restrict to
traceless K̄, i.e. K̄c

c = 0. From (323) this might
seem as if we had to restrict to traceless K. But
note that as the left-hand side of (144b) is linear
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in K we can always add to any traceless solution
K(1) a pure trace part

K
(2)
ab = 1

3τhab , (325)

which satisfies the vector constraint as long as τ is
constant. Putting all this together we see that we
get a solution to the vector constraint if we main-
tain (323a) but replace (323b) with

Kab = Ω−10K̄ab + 1
3Ω−4 h̄ab τ , (326a)

Kab = Ω−2K̄ab + 1
3Ω4 h̄ab τ , (326b)

where τ is a constant and K̄ is transverse traceless
in the metric h̄:

h̄abK̄
ab = 0 , (327a)

D̄aK̄
ab = 0 . (327b)

Note that Ka
a = τ so that the method as presented

here only produces initial data of constant mean
curvature. It can be generalized to non-constant τ ,
see e.g. [86].

As before, the idea is now to let the remain-
ing scalar constraint determine the conformal fac-
tor. Inserting (323a) and (326) into the scalar con-
straint (144a) and using (125), we obtain the fol-
lowing elliptic York equation for Ω

−ε
(

∆h̄− 1
8ScalD̄

)
Ω+ 1

8Ω−7K̄abK̄
ab− 1

12Ω5τ2 = 0 .

(328)
Existence and uniqueness of this equation for the
Lorentzian case ε = −1 is discussed in the survey
[86]. It may be further simplified if, as before, we
assume conformally flat intitial data, i.e.

h̄ = δ = flat metric . (329)

Then

− ε∆δΩ + 1
8Ω−7K̄abK̄

ab − 1
12Ω5τ2 = 0 . (330)

where K̄ is now transverse-traceless with respect to
the flat connection (partial derivatives in suitable
coordinates).

It is remarkable that the ADM momenta (291)
can be calculated without knowing Ω. Hence we

can parametrize solutions to (327) directly by the
momenta without solving (328) first. Two solu-
tions of particular interest for h̄ = δ are the Bowen-
York data [37][119]. In Cartesian coordinates and
corresponding components they read

K̄
(1)
ab = r−2

(
νaAb + νbAa − (δab − νaνb)νcAc

)
,

(331a)

K̄
(2)
ab = r−3

(
νaεbcd + νbεacd

)
Bcνd , (331b)

where νa := xa/r and where all indices are raised
and lowered with the flat metric δ. A and B are co-
variantly constant vector fields with respect to the
Levi Civita connection for the flat metric δ, which
are here represented by constant components Ab

and Bc. One verifies by direct computation that
they satisfy (327) with h̄ab = δab and D̄a = ∂a.
Furthermore, using (291) one shows that (331a)
has vanishing angular momentum and a linear mo-
mentum with components

P a =
2c3

3G
Aa , (332)

whereas (331b) has vanishing linear momentum
and an angular momentum with components

Ja =
c3

3G
Ba . (333)

They can be combined to give data for single holes
with non-zero linear and angular momenta and
also be superposed in order to give data for multi
black-hole configurations. Such data, and certain
modifications of them, form the essential ingredient
for present-day numerical simulations of black hole
scattering and the subsequent emission of gravita-
tional radiation.

Let us now return to equation (328), which we
have to solve once suitable expressions for the com-
ponents K̄ab have been found. As the metric is
flat at the end representing spatial infinity, i.e.
Ω(r → ∞) = 1, it is clear that Ω cannot be
bounded in the interior region. The idea of the
puncture method , first proposed in [38], is to re-
strict the type of singularities of Ω to be, in some
sense, as simple as possible, which here means to
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be of the pure monopole type that we already en-
countered in (312) for a single hole and generalized
to two holes in (320). This amounts to the follow-
ing: Take Σ = R3−{~c1, · · · ,~cn} and assume we are
given suitable K̄ab which are regular in Σ, e.g., a
sum of York data of the form (331), each centered
at one of the punctures ~ci. Accordingly, we write

Ω = u+
1

ω
, (334a)

where
1

ω
:=

n∑
i=1

ai
ri
, (334b)

again with ri := ‖~x− ~ci‖. The crucial assumption
now is that the function u is smooth, at least C2,
on all of R3, including the points ~ci. Since 1/ω
is annihilated by ∆δ, (328) applied to (334) then
leads to a second order elliptic differential equation
for u. In the simple case of conformally flat max-
imal data, i.e. h̄ab = δab and τ = 0, we get in the
Lorentzian case (ε = −1)

∆δu = − 1
8

(
1 + ωu

)−7
ω7K̄abK̄

ab , (335)

where u → 1 at spatial infinity. Now, at the i-
th puncture, K̄ab diverges as (1/ri)

2 for the data
(331a) and as (1/ri)

3 for the data (331b). This
means that K̄abK̄

ab diverges at most as (1/ri)
6.

But from (334b) we see that ω vanishes as ri at ~ci
so that ω7K̄abK̄

ab also vanishes at least as fast as ri
at ~ci and is hence continuous on all of R3. Standard
elliptic theory now allows to conclude existence and
uniqueness of C2 solutions to (335); see [38] for
more details. It is then not difficult to see that the
Riemannian manifold (Σ, h) so obtained has n+ 1
asymptotically flat ends whose ADM masses are
readily calculated. Similar to (321), one obtains

M =
2c2

G

n∑
i=1

ai , (336a)

Mi =
2c2

G

(
aiui +

n∑
j=1
j 6=i

aiaj
rij

)
, (336b)

where ui := u(~ci) and rij := ‖~ci − ~cj‖. Comparing
this to (321) (and its obvious generalization from

2 to n punctures) shows that the only difference
in the analytic expression for the masses is the ap-
pearance of ui (instead of 1) in the first term on the
right-hand side of (336b). Thus, formally, for fixed
monopole parameters ai, the switching-on of linear
and angular momentum (here represented locally
by trace-free extrinsic curvatures) adds to each in-
dividual mass a term ai(ui − 1). This contribution
is non-negative as a consequence of u ≥ 1. The
latter equation follows immediately from standard
elliptic theory. Indeed, (335) implies ∆δu ≤ 0, i.e.
that u is superharmonic, and hence that u ≥ f for
any continuous harmonic f with the same bound-
ary values, i.e. f ≡ 1. Note that this argument
relies on ε = −1.

Finally we wish to point out an interesting type
on non-uniqueness in writing down initial data of
the form (331). It has to do with the question of
whether we wish to enforce the inversion symme-
tries of the type (315) to become isometries of the
initial geometry. Let us focus on I1 as defined in
(315), where we now denote the radius of inversion
a (rather than r0). Dropping the subscript 1, we
have

[I(x)]a = (a2/r2)xa . (337)

Its Jacobian is

[I∗(x)]ab = (a2/r2)
(
δab − 2νaνb

)
. (338)

We note in passing that the matrix in round brack-
ets is orthogonal with determinant −1.

It follows that the conformally flat metric h =
Ω4 δ satisfies I∗h = h iff

(a/r)(Ω ◦ I) = Ω . (339)

In such a metric the sphere r = a is the fixed-point
set of the isometry I and hence totally geodesic.
In particular, this implies that it is a stationary
point of the area function which is equivalent to
∂r(r

2Ω4) = 0 and hence to[
∂Ω

∂r
+

Ω

2a

]
r=a

= 0 , (340)

which may also be directly verified from differenti-
ating (339) with respect to r at r = a. This would
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be the condition for (330) at the “inner boundary”
in order to produce a solution that gives rise to
a metric h that has I as an isometry. But that,
clearly, also puts conditions on the extrinsic curva-
ture K̄, for h and K have to satisfy the coupled sys-
tem of constraints (144) in the vacuum case T = 0.
A sufficient condition is

I∗K = ±K . (341a)

Using (326b) and restricting to maximal data,
Kc
c = τ = 0, this is equivalent to

(a2/r2) I∗K̄ = ±K̄ , (341b)

where we also made use of (339).
Using the global chart {x1, x2, x3} on R3 − {0}

together wit the flat metric h̄ = δ, we have the func-
tion r whose value at x is the δ-geodesic distance
((x1)2+(x2)2+(x3)2) and the following vector fields
and volume form (Aa, Ba, εabc being constant com-
ponent functions)

ν =
xa

r

∂

∂xa
, (342a)

A = Aa
∂

∂xa
, (342b)

B = Ba
∂

∂xa
, (342c)

ε = 1
3!εabcdx

a ∧ dxb ∧ dxc . (342d)

The co-vector fields that arise from these vector
fields via the isomorphism induced by the flat met-
ric δ are called ν[, A[, B[. Under the inversion-map
(337), making also use of (338), these structures
behave as follows:

I∗r = r ◦ I =
a2

r
, (343)

I∗ν = −(a/r)−2ν , (344a)

I∗ν[ = −(a/r)2ν[ , (344b)

I∗A = (a/r)−2
(
A− 2 ν(ν ·A)

)
, (345a)

I∗A[ = (a/r)2
(
A[ − 2 ν[(ν ·A)

)
, (345b)

and identically for B, where a dot denotes the
scalar product with respect to the flat metric, i.e.
ν ·A = δ(ν,A),

I∗δ = (a/r)4 δ , (346)

and2

I∗ε = −(a/r)6ε . (347)

These formulae allow to immediatly write down
the I-transforms of the data (331). We have, in
components,

I∗K̄
(1)
ab

= −r−2
(
νaAb + νbAa + (δab − 5 νaνb)ν

cAc
)
.

(348a)

and
I∗K̄

(2)
ab = −(a/r)−2K̄(2) . (348b)

This means that K̄(2) as given by (331b) is already
antisymmetric in the sense of (341b), but (331a) is
neither symmetric nor antisymmetric. Symmetric
or antisymmetric data can be obtained by forming
the symmetric or antisymmetric combination

K̄
(1)
± := K̄(1) ± (a/r)2I∗K̄(1) . (349)

which satisfies

(a/r)2I∗K̄
(1)
± = ±K̄(1)

± . (350)

In components they read[
K̄

(1)
±
]
ab

= 1/r2
(
νaAb + νbAa − (δab − νaνb)νcAc

)
∓ a2/r4

(
νaAb + νbAa + (δab − 5 νaνb)ν

cAc
)
.

(351)

Having enforced symmetry with respect to the
inversion (337) we will obtain an initial-data 3-
manifold with two isometric asymptotically flat

2A straightforward calculation using (338) first yields
I∗ε = (a/r)6

(
ε − 2 ν[ ∧ ?ν[

)
, where ? denotes the Hodge

dual with respect to δ. But for any vector field ν one triv-
ially has ν[ ∧ ε = 0 and hence, now assuming ν to be also
normalized, 0 = iν(ν[ ∧ ε) = ε− ν[ ∧ iνε. Using iνε = ?ν[,
this gives ν[ ∧ ?ν[ = ε and hence (347).
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ends whose Poincaré charges coincide (possibly up
to sign) and are given by those of the original data.
This is trivially true for angular momentum and
follows for linear momentum from the 1/r4 fall-off
of the second term in (351). It is interesting to
note that a term proportional to the second term
in (351) follows in case of spherically symmetric
extended matter sources [36].

11 Further developments,
problems, and outlook

In this contribution we have explained in some de-
tail the dynamical and Hamiltonian formulation of
GR. We followed the traditional ADM approach
in which the basic variables are the Riemannian
metric h of space and its conjugate momentum π,
which is essentially the extrinsic curvature that Σ
will assume once the spacetime is developed and Σ
is isometrically embedded in it. Attempts to es-
tablish a theory of Quantum Gravity based on the
Hamiltonian formulation of GR suggest that other
canonical variables are better suited for the mathe-
matical implementation of the constraints and the
ensuing construction of spaces of states and observ-
ables [113][107][34]. These variables are a (suit-
ably densitized) orthonormal 3-bein field E on Σ
and the Ashtekar-Barbero connection. We have al-
ready seen that orientable Σ are parallelizable so
that global fields E do indeed exist. Any field
E determines a Riemannian metric h, which in
turn determines its Levi-Civita connection. The
Ashtekar-Barbero covariant derivative, D, differs
from the Levi-Civita connection D of h by the
endomorphism-valued 1-form which associates to
each tangent vector X the tangent-space endomor-
phism Y 7→ γWein(X) × Y , where γ is a dimen-
sionless constant, the so-called Barbero-Immirzi-
parameter, which was first introduced by Immirzi
in [85] on the basis of Barbero’s generalization [22]
of Ashtekar’s variables. Hence we have

DXY = DXY + γWein(X)× Y . (352)

The multiplication × is the standard 3-dimensional
vector product with respect to the metric h. It is

defined as follows

X × Y :=
[
?(X[ ∧ Y [)

]]
, (353)

where the isomorphisms [ and ] are with respect
to h (cf. (1)). The product × obeys the standard
rules: It is bilinear, antisymmetric, and X × (Y ×
Z) = h(X,Z)Y − h(X,Y )Z. Moreover, for any X,
the endomorphism Y 7→ X × Y is antisymmetric
with respect to h, i.e. h(X×Y, Z) = −h(Y,X×Z),
and hence it is in the Lie algebra of the orthogonal
group of h. In particular this is true for Y 7→
Wein(X) × Y , showing that D is again metric,
i.e. obeys Dh = 0 once its unique extension to
all tensor fields is understood. Clearly, unlike D,
the torsion of D cannot be zero:

TD(X,Y ) = DXY −DYX − [X,Y ]

= γ
(
Wein(X)× Y −Wein(Y )×X

)
.

(354)

Using (77) and index notation, the curvature tensor
for D is

RDabcd = RDabcd

+ εγ
(
DcKdn −DdKcn

)
εnab

− γ2
(
KacKbd −KadKbc

)
.

(355)

From this the scalar curvature follows

ScalD = ScalD + γ2GabcdKabKcd . (356)

Camparison with (144a) shows that for γ2 = ε the
gravitational part of the scalar constraint is just
(ε times) the scalar curvature of D. This striking
simplification of the scalar constraint formed the
original motivation for the introduction of D by
Ashtekar [18]. However, for ε = −1 one needs to
complexify the tensor bundle over Σ for γ = ±i to
make sense, and subsequently impose reality con-
ditions which re-introduce a certain degree of com-
plication; see, e.g., [68] for a compact account not
using spinors. The usage of D in the real case was
then proposed by Barbero in [22] and forms the ba-
sic tool in Loop Quantum Gravity [113], which has
definite technical advantages over the metric-based
traditional approach.
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At this point we wish to inject one word of cau-
tion concerning the possible geometric interpreta-
tion of the of Barbero connection D, depending on
the value of γ. From the defining equation (352)
it is clear that any D explicitly contains extrinsic
information, i.e. information that refers to the way
Σ is embedded into spacetime M . Moreover, un-
less γ2 = ε, this dependence on the embedding is
such that D cannot be considered as pull-back of a
connection defined on (the bundle of linear frames
over) M , as has been pointed out in [109]. The
argument is simple: If it were the pull-back of such
a connection on M , its holonomy along a loop in
spacetime would be the same for all Σ containing
that loop. That this is not the case for γ2 6= ε can,
e.g., be checked for the simple example where M is
Minkowski space and the loop is a planar unit cir-
cle that is contained in a flat spacelike hyperplane
as well as in the constant-curvature spacelike hy-
perboloid of unit future-pointing timelike vectors.
The holonomy in the latter case turns out to be
non-trivial (see [109] for the explicit calculation).
For the Ashtekar connection, i.e. for γ2 = ε, we
know from its original construction that it is the
pull-back of a spacetime connection (see, e.g., the
derivation in [68]). But for Barbero’s generaliza-
tions (352) with γ2 6= ε, and in particular for all
real values of γ in the Lorentzian case (ε = −1),
this means that it is impossible to attach a gauge-
theoretic spacetime interpretation to D.

Despite this conceptual shortcoming, the techni-
cal advantages over the metric-based approach re-
main. On the other hand, the latter is well suited
to address certain conceptual problems [92], like
e.g. the problem of time that emerges in those
cases where the Hamiltonian (241) has no bound-
ary terms and is therefore just a sum of constraints.
This happens in cosmology based on closed Σ. The
motions generated by the Hamiltonian are then
just pure gauge transformations and the question
arises whether and how ‘motion’ and ‘change’ are
to be recovered; see, e.g., [107, 108].

Dynamical models in cosmology often start from
symmetry assumptions that initially reduce the in-
finitely many degrees of freedom to finitely many
ones (so-called mini-superspace models). Other

modes are then treated perturbatively in an expan-
sion around the symmetric configurations. In these
cases quantization in the metric representation can
be performed, with potentially interesting conse-
quences for observational cosmology, like the mod-
ification of the anisotropy spectrum of the cosmic
microwave background [93][32]. All these attempts
make essential use of the Hamiltonian theory as
described in this contribution.

12 Appendix: Group actions
on manifolds

Let G be a group and M a set. An action of G on
M is a map

Φ : G×M →M (357)

such that, for all m ∈ M and e ∈ G the neutral
element,

Φ(e,m) = m, (358)

and where, in addition, one of the following two
conditions holds:

Φ
(
g,Φ(h,m)

)
= Φ(gh,m) , (359a)

Φ
(
g,Φ(h,m)

)
= Φ(hg,m) . (359b)

If (357), (358), and (359a) hold we speak of a left
action. A right action satisfies (357), (358), and
(359b). For a left action we also write

Φ(g,m) =: g ·m (360a)

and for a right action

Φ(g,m) =: m · g . (360b)

Equations (359) then simply become (group mul-
tiplication is denoted by juxtaposition without a
dot)

g · (h ·m) = (gh) ·m, (361a)

(m · h) · g = m · (hg) . (361b)

Holding either of the two arguments of Φ fixed we
obtain the families of maps

Φg : M →M

m 7→ Φ(g,m)
(362)
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for each g ∈ G, or

Φm : G→M

g 7→ Φ(g,m)
(363)

for each m ∈M . Note that (358) and (359) imply
that Φg−1 =

(
Φg)
−1. Hence each Φg is a bijec-

tion of M . The set of bijections of M will be de-
noted by Bij(M). It is naturally a group with group
multiplication being given by composition of maps
and the neutral element being given by the identity
map. Conditions (358) and (359a) are then equiv-
alent to the statement that the map G→ Bij(M),
given by g 7→ Φg, is a group homomorphism. Like-
wise, (358) and (359b) is equivalent to the state-
ment that this map is a group anti-homomorphism.

The following terminology is standard: The set
Stab(m) := {g ∈ G : Φ(g,m) = m} ⊂ G is
called the stabilizer of m. It is easily proven to
be a normal subgroup of G satisfying Stab(g ·
m) = g

(
Stab(g ·m)

)
g−1 for left and Stab(m · g) =

g−1
(
Stab(g · m)

)
g for right actions. The orbit of

G through m ∈M is the set Orb(m) := {Φ(g,m) :
g ∈ G} =: Φ(G,m) (also written G ·m for left and
m · G for right action). It is easy to see that two
orbits are either disjoint or identical. Hence the
orbits partition M . A point m ∈ M is called a
fixed point of the action Φ iff Stab(m) = G. An
action Φ is called effective iff Φ(g,m) = m for all
m ∈M implies g = e; i.e., “only the group identity
moves nothing”. Alternatively, we may say that ef-
fectiveness is equivalent to the map G 7→ Bij(M),
g 7→ Φg, being injective; i.e., Φg = IdM implies
g = e. The action Φ is called free iff Φ(g,m) = m
for some m ∈M implies g = e; i.e., “no g 6= e fixes
a point”. This is equivalent to the injectivity of all
maps Φm : G → M , g 7→ Φ(g,m), which can be
expressed by saying that all orbits of G in M are
faithful images of G.

Here we are interested in smooth actions. For
this we need to assume that G is a Lie group, that
M is a differentiable manifold, and that the map
(357) is smooth. We denote by exp : TeG → G
the exponential map. For each X ∈ TeG there is a

vector field V X on M , given by

V X(m) =
d

dt

∣∣∣
t=0

Φ
(
exp(tX),m

)
= Φm∗e(X) .

(364)

Recall that Φm∗e denotes the differential of the map
Φm evaluated at e ∈ G. V X is also called the
fundamental vector field on M associated to the
action Φ of G and to X ∈ TeG. (We will later write
Lie(G) for TeG, after we have discussed which Lie
structure on TeG we choose.)

In passing we note that from (364) it already
follows that the flow map of V X is given by

FlV
X

t (m) = Φ(exp(tX),m) . (365)

This follows from exp(sX) exp(tX) = exp
(
(s +

t)X
)

and (359) (any of them), which imply

FlV
X

s ◦ FlV
X

t = FlV
X

s+t (366)

on the domain of M where all three maps appear-
ing in (366) are defined. Uniqueness of flow maps
for vector fields then suffices to show that (365) is
indeed the flow of V X .

Before we continue with the general case, we
have a closer look at the special cases where M = G
and Φ is either the left translation of G on G,
Φ(g, h) = Lg(h) := gh, or the right translation,
Φ(g, h) = Rg(h) := hg. The corresponding funda-
mental vector fields (364) are denoted by V XR and
V XL respectively:

V XR (h) =
d

dt

∣∣∣
t=0

(
exp(tX)h

)
, (367a)

V XL (h) =
d

dt

∣∣∣
t=0

(
h exp(tX)

)
. (367b)

The seemingly paradoxical labeling of R for left
and L for right translation finds its explanation in
the fact that V XR is right and V XL is left invariant,
i.e., Rg∗V

X
R = V XR and Lg∗V

X
L = V XL . Recall that

the latter two equations are shorthands for

Rg∗hV
X
R (h) = V XR (hg) , (368a)

Lg∗hV
X
L (h) = V XL (gh) . (368b)

62



The proofs of (368a) only uses (367a) and the chain
rule:

Rg∗hV
X
R (h) = Rg∗h

d

dt

∣∣∣
t=0

(
exp(tX)h

)
=

d

dt

∣∣∣
t=0

Rg

(
exp(tX)h

)
=

d

dt

∣∣∣
t=0

(
exp(tX)hg

)
= V XR (hg) .

(369a)

Similarly, the proof of (368b) starts from (367b):

Lg∗hV
X
L (h) = Lg∗h

d

dt

∣∣∣
t=0

(
h exp(tX)

)
=

d

dt

∣∣∣
t=0

Lg

(
h exp(tX)

)
=

d

dt

∣∣∣
t=0

(
gh exp(tX)

)
= V XL (gh) .

(369b)

In particular, we have

V XR (g) = Rg∗eV
X
L (e) = Rg∗eX , (370a)

V XL (g) = Lg∗eV
X
R (e) = Lg∗eX , (370b)

showing that the vector spaces of right/left invari-
ant vector fields onG are isomorphic to TeG. More-
over, the vector spaces of right/left invariant vector
fields on G are Lie algebras, the Lie product being
their ordinary commutator (as vector fields). This
is true because the operation of commuting vector
fields commutes with push-forward maps of diffeo-
morphisms: φ∗[V,W ] = [φ∗V, φ∗W ]. This implies
that the commutator of right/left invariant vector
fields is again right/left invariant. Hence the iso-
morphisms can be used to turn TeG into a Lie al-
gebra, identifying it either with the Lie algebra of
right- or left-invariant vector fields. The standard
convention is to choose the latter. Hence, for any
X,Y ∈ Lie(G), one defines

[X,Y ] := [V XL , V YL ](e) . (371)

TeG endowed with that structure is called Lie(G).
Clearly, this turns VL : Lie(G) → ΓTG, X 7→ V XL ,
into a Lie homomorphism:

V
[X,Y ]
L = [V XL , V YL ] . (372)

As a consequence, VR : Lie(G)→ ΓTG, X 7→ V XR ,
now turns out to be an anti Lie homomorphism,
i.e., to contain an extra minus sign:

V
[X,Y ]
R := − [V XR , V YR ] . (373)

This can be proven directly but will also follow
from the more general considerations below.

On G consider the map

C : G×G→ G

(h, g) 7→ hgh−1 .
(374)

For fixed h this map, Ch : G → G, g 7→ Ch(g) =
hgh−1, is an automorphism (i.e., self-isomorphism)
of G. Automorphisms of G form a group (multi-
plication being composition of maps) which we de-
note by Aut(G). It is immediate that the map
C → Aut(G), h 7→ Ch, is a homomorphism of
groups; i.e.,

Ce = IdG , (375a)

Ch ◦ Ck = Chk . (375b)

Taking the differential at e ∈ G of Ch we obtain
a linear self-map of TeG, which we call Adh:

Adh := Ch∗e : TeG→ TeG . (376a)

Differentiating both sides of both equations (375)
at e ∈ G, using the chain rule together with
Ck(e) = e for the second, we infer that

Ade = IdTeG , (376b)

Adh ◦Adk = Adhk . (376c)

This implies, firstly, that each linear map (376a)
is invertible, i.e. an element of the general linear
group GL(TeG) of the vector space TeG, and, sec-
ondly, that the map

Ad : G→ GL(TeG)

h 7→ Adh
(377)

is a group homomorphism. In other words, Ad is
a linear representation of G on TeG, called the ad-
joint representation.
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In (368) we saw that V XR and V XL are invari-
ant under the action of right and left translations
respectively (hence their names). But what hap-
pens if we act on V XR with left and on V XL with
right translations? The answer is obtained from
straightforward computation. In the first case we
get:

Lg∗h
(
V XR (h)

)
= Lg∗h

d

dt

∣∣∣
t=0

(
exp(tX)h

)
=

d

dt

∣∣∣
t=0

(
g exp(tX)h

)
=

d

dt

∣∣∣
t=0

(
Cg
(
exp(tX)

)
gh
)

= V
Adg(X)
R (gh) ,

(378a)

where we used (376) in the last and the definition
of V XR in the first and last step. Similarly, in the
second case we have

Rg∗h
(
V XL (h)

)
= Rg∗h

d

dt

∣∣∣
t=0

(
h exp(tX)h

)
=

d

dt

∣∣∣
t=0

(
h exp(tX) g

)
=

d

dt

∣∣∣
t=0

(
hg Cg−1

(
exp(tX)

))
= V

Adg−1 (X)

L (gh) .

(378b)

Taking the differential of Ad at e ∈ G we obtain
a linear map from TeG into End(TeG), the linear
space of endomorphisms of TeG (linear self-maps
of TeG).

ad := Ad∗e : TeG→ End(TeG)

X 7→ adX .
(379)

Now, we have

adX(Y ) = [X,Y ] (380)

where the right-hand side is defined in (371). The
proof of (380) starts from the fact that the commu-
tator of two vector fields can be expressed in terms
of the Lie derivative of the second with respect to
the first vector field in the commutator, and the

definition of the Lie derivative. We recall from
(365) that the flow of the left invariant vector fields

is given by right translation: Fl
V XL
t (g) = g exp(tX).

Then we have

[X,Y ] = [V XL , V YL ](e)

= (LV XL V
Y
L )(e)

=
d

dt

∣∣∣
t=0

Fl
V XL
(−t)∗

(
V YL (Fl

V XL
t (e))

)
=

d

dt

∣∣∣
t=0

Fl
V XL
(−t)∗

d

ds

∣∣∣
s=0

FlV
Y
L
s

(
Fl
V XL
t (e)

)
=

d

dt

∣∣∣
t=0

d

ds

∣∣∣
s=0

exp(tX) exp(sY ) exp(−tX)

=
d

dt

∣∣∣
t=0

Adexp(tX)(Y )

= adX(Y ) .

(381a)

A completely analogous consideration, now using

Fl
V XR
t (g) = exp(tX) g, allows to compute the com-

mutator of the right-invariant vector fields evalu-
ated at e ∈ G:

[V XR , V YR ](e) = (LV XR V
Y
R )(e)

=
d

dt

∣∣∣
t=0

Fl
V XR
(−t)∗

(
V YR (Fl

V XR
t (e))

)
=

d

dt

∣∣∣
t=0

Fl
V XR
(−t)∗

d

ds

∣∣∣
s=0

FlV
Y
R
s

(
Fl
V XR
t (e)

)
=

d

dt

∣∣∣
t=0

d

ds

∣∣∣
s=0

exp(−tX) exp(sY ) exp(tX)

=
d

dt

∣∣∣
t=0

Adexp(−tX)(Y )

= −adX(Y )

= −[X,Y ] .

(381b)

Equation (373) now follows if we act on both
sides of [V XR , V YR ](e) = −[X,Y ] with Rg∗e and use
(368a).

We now return to the general case where M is
any manifold and the vector field V X is defined by
an action Φ as in (364) and whose flow map is given
by (365). Now, given that Φ is a right action, we
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obtain[
V X , V Y

]
(m)

= (LV XV
Y )(m)

=
d

dt

∣∣∣
t=0

FlV
X

(−t)∗

(
V Y (FlV

X

t (m))
)

=
d

dt

∣∣∣
t=0

FlV
X

(−t)∗
d

ds

∣∣∣
s=0

FlV
Y

s

(
FlV

X

t (m)
)

=
d

dt

∣∣∣
t=0

d

ds

∣∣∣
s=0

Φ
(
exp(tX) exp(sY ) exp(−tX),m

)
=

d

dt

∣∣∣
t=0

Φm∗e
(
Adexp(tX)(Y )

)
= V adX(Y )(m)

= V [X,Y ](m)

(382a)

where we used (365) and (359b) at the fourth and
(380) at the last equality. Similarly, if Φ is a left
action, we have[
V X , V Y

]
(m)

= (LV XV
Y )(m)

=
d

dt

∣∣∣
t=0

FlV
X

(−t)∗

(
V Y (FlV

X

t (m))
)

=
d

dt

∣∣∣
t=0

FlV
X

(−t)∗
d

ds

∣∣∣
s=0

FlV
Y

s

(
FlV

X

t (m)
)

=
d

dt

∣∣∣
t=0

d

ds

∣∣∣
s=0

Φ
(
exp(−tX) exp(sY ) exp(tX),m

)
=

d

dt

∣∣∣
t=0

Φm∗e
(
Adexp(−tX)(Y )

)
= −V adX(Y )(m)

= −V [X,Y ](m)

(382b)

where we used (365) and (359a) at the fourth and
again (380) at the last equality.

Finally we derive the analog of (378) in the gen-
eral case. This corresponds to computing the push-
forward of V X under Φg. If Φ is a left action we
will obtain the analog of (378a), and the analog of
(378b) if Φ is a right action. For easier readability
we shall also make use of the notation (360). For

a left action we then get

Φg∗m
(
V X(m)

)
= Φg∗m

d

dt

∣∣∣
t=0

Φ
(
exp(tX),m

)
=

d

dt

∣∣∣
t=0

Φ
(
g exp(tX),m

)
=

d

dt

∣∣∣
t=0

Φ
(
Cg(exp(tX)), g ·m

)
= Φ(g·m)∗e

d

dt

∣∣∣
t=0

Cg
(
exp(tX)

)
= Φ(g·m)∗e

(
Adg(X)

)
= V Adg(X)(g ·m)

= V Adg(X)
(
Φ(g,m)

)
.

(383a)

Similarly, if Φ is a right action,

Φg∗m
(
V X(m)

)
= Φg∗m

d

dt

∣∣∣
t=0

Φ
(
exp(tX),m

)
=

d

dt

∣∣∣
t=0

Φ
(
exp(tX) g,m

)
=

d

dt

∣∣∣
t=0

Φ
(
Cg−1(exp(tX)),m · g

)
= Φ(m·g)∗e

d

dt

∣∣∣
t=0

Cg−1

(
exp(tX)

)
= Φ(m·g)∗e

(
Adg−1(X)

)
= V Adg−1 (X)(m · g)

= V Adg−1 (X)
(
Φ(g,m)

)
.

(383b)
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Birkhäuser Verlag, Basel, 2004.

[46] Gerald M. Clemence. On the system of astro-
nomical constants. The Astronomical Jour-
nal, 53(6):169–179, 1948.

[47] Gerald M. Clemence. Astronomical time. Re-
views of Modern Physics, 29(1):2–8, 1957.

[48] Gerald M. Clemence. The concept of
ephemeris time: A case of inadvertent plagia-
rism. Journal for the History of Astronomy,
2:73–79, 1971.

[49] Justin Corvino and Haotian Hu. On the cen-
ter of mass of isolated systems. Classical
and Quantum Gravity, 25(8):085008 (18 pp),
2008.

[50] Sergio Dain. Positive energy theorems in gen-
eral relativity. In Abhay Ashtekar and Ves-
selin Petkov, editors, Springer Handbook of
Spacetime, pages 363–380. Springer Verlag,
Berlin, 2014.

[51] V.I. Denisov and V.O. Solov’ev. The energy
determined in general relativity on the basis
of the traditional Hamiltonian approach does
not have physical meaning. Theoretical and
Mathematical Physics, 56(2):832–841, 1983.

[52] Bryce Seligman DeWitt. Quantum theory of
gravity. I. The canonical theory. Physical Re-
view, 160(5):1113–1148, 1967. Erratum, ibid.
171(5):1834, 1968.

[53] Paul A. M. Dirac. Generalized Hamiltonian
dynamics. Proceeedings of the Royal Society
of London A, 246(1246):326–332, 1958.

[54] Paul A. M. Dirac. The theory of gravita-
tion in Hamiltonian form. Proceeedings of the
Royal Society of London A, 246(1246):333–
343, 1958.

[55] Paul A.M. Dirac. Lectures on Quantum Me-
chanics. Belfer Graduate School of Science,
Monographs Series Number Two. Yeshiva
University, New York, 1964.

[56] Albert Einstein and Wolfgang Pauli. On
the non-existence of regular stationary solu-
tions of relativistic field equations. Annals of
Mathematics, 44(2):131–137, 1943.

[57] Arthur E. Fischer and Jerrold E. Marsden.
The Einstein equations of evolution – a ge-
ometric approach. Journal of Mathematical
Physics, 13(4):546–568, 1972.

68



[58] Arthur E. Fischer and Jerrold E. Marsden.
The initial value problem and the dynam-
ical formulation of general relativity. In
Stephen W. Hawking and Werner Israel, ed-
itors, General Relativity. An Einstein cente-
nary survey, pages 138–211. Cambridge Uni-
versity Press, Cambridge, 1979.

[59] Arthur E. Fischer and Jerrold E. Marsden.
Topics in the dynamics of general relativity.
In Jürgen Ehlers, editor, Isolated Gravitat-
ing Systems in General Relativity, volume
LXVII of Proceedings of the International
School of Physics “Enrico Fermi”, pages
322–395. North-Holland Publ. Comp., Am-
sterdam, 1979.

[60] Sebastian Fischetti, William Kelly, and Don-
ald Marolf. Conserved charges in asymp-
totically (locally) AdS spacetimes. In Ab-
hay Ashtekar and Vesselin Petkov, editors,
Springer Handbook of Spacetime, pages 381–
407. Springer Verlag, Berlin, 2014.

[61] Hans Freudenthal. Über die Enden topolo-
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[82] Petr Hořava. Quantum gravity at a Lifshitz
point. Physical Review D, 79(8):084008 (15
pages), 2009.

[83] Lan-Hsuan Huang. On the center of mass in
general relativity. arXiv:1101.0456. Contri-
bution to the Proceedings of Fifth Interna-
tional Congress of Chinese Mathematicians.

[84] Gerhard Huisken and Yau Shing-Tung. Def-
inition of center of mass for isolated phys-
ical systems and unique foliations by sta-
ble spheres with constant mean curvature.
Inventiones mathematicae, 124(1-3):281–311,
1996.

[85] Giorgio Immirzi. Real and complex connec-
tions for canonical gravity. Classical and
Quantum Gravity, 14(10):L117–L181, 1997.

[86] James Isenberg. The initial-value problem in
general relativity. In Abhay Ashtekar and
Vesselin Petkov, editors, Springer Handbook
of Spacetime, pages 303–321. Springer Ver-
lag, Berlin, 2014.

[87] Christopher J. Isham. Theta–states induced
by the diffeomorphism group in canonically
quantized gravity. In M.J. Duff and C.J.
Isham, editors, Quantum Structure of Space
and Time, Proceedings of the Nuffield Work-
shop, August 3-21 1981, Imperial College
London, pages 37–52. Cambridge University
Press, London, 1982.

[88] Christopher J. Isham and Karel V. Kuchař.
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Index

action
left, of group, 61
right, of group, 61

adapted frames, 13
ADM, 2

angular momentum, 50
center of mass, 51
energy, 50
general momentum, 50
linear momentum, 50
mass, 50

algebra
associative, 3
gauge, 34
Lie, 7, 32–36, 39, 60, 63
Poisson, 32, 39

Ashtekar
-Barbero connection, 60
variables, 43

asymptotic
flatness according to Bieri, 52
flatness according to Regge-Teitelboim, 48
regions, 48
symmetry group, 54

Baierlein-Sharp-Wheeler action, 44
Barbero-Immirzi parameter, 60
Bianchi identities, 16
Bowen York initial data, 57

canonical
coordinates, 28
quantization, 2
transformation, 30

Cauchy problem, 24
Christoffel symbols, 15
chronos principle, 47
co-isotropic submanifold, 33
Codazzi-Mainardi equation, 21
commutativity (Poisson)

strong, 34
weak, 34

conformal method, 43, 56

conformally flat data, 54
conserved quantity, 7, 8
constrained Hamiltonian system, 1, 2, 28
constraints

algebra, universality of, 41
diffeomorphism, 23
first class, 29
Hamiltonian, 23
in GR, 23
preservation, 24
primary, 29
scalar, 23
secondary, 29
solve (methods, meaning), 40, 43, 53, 56
surface, 28
vector, 23

contravariant tensor, 3
coordinates, canonical, 28
cosmological constant, 4
covariant

derivative, 14
tensor, 3

CP-problem, in Quantum Gravity, 43
curvature

caused by matter, 6
extrinsic, 14
Gaussian, 4, 15, 17
of spacetime, 6
Ricci, 17
Riemann, 16
scalar, 17
sectional, 16
Weyl, 18

d’Alembertian, see wave operator, 21
De Witt metric, 20, 26
dynamical spacetime, 1

Einstein
equations, 1, 4
spaces, 19
tensor, 4

Einstein-Hilbert action, 36
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end (of a manifold), 48
energy

ADM, 50
current-density, 5
density, 5
function, 28

energy condition
energy dominance, 6
strong, 6
weak, 5

energy-momentum tensor, 4, 5
ephemeris time

gravitational, 47
Euclidean metric, 3
Euclidean Quantum Gravity, 3
Euler Lagrange equations, 27
evolution of space, 1
extrinsic curvature, 14

first class constraints, 29
first fundamental form, 14
foliation

leaves of, 35
mean curvature, 51
of spacetime (by spacelike hypersurfaces), 10,

12, 14
of spacetime (by timelike curves), 12

Frobenius theorem, 33
function

energy, 28
Hamiltonian, 29

fundamental
form (first and second), 14
group (of configuration space), 43

gauge
algebra, 34
group, 36
redundancies versus symmetries, 29
transformations, 29
transformations (asympt. flat case), 49
York, 25

Gauss equation, 21
Gaussian curvature, 4, 15, 17
geometric object, 40
geon, 55

globally hyperbolic, 9
gravitational constant, 6
group

gauge, 36
of gauge transformations, 36

group action, 7, 61
by isometries, 7
left and right, 7, 61

group representation
adjoint, 8, 9, 63
co-adjoint, 9

groupoids, 36

Hamiltonian, 29
Hamiltonian vector field, 32
harmonic slicing, 26
history of space, 1

ideal, 40
associative, 34
Lie, 34
Poisson, 34

idealizer, Lie, 34
initial data, Bowen York, 57
isotropic submanifold, 33

Jacobi
identity, 32, 34
metric (first and second), 46
principle, 46

Killing fields, 7
kinetic-energy metric, 46
Komar mass, 52
Kruskal spacetime, 55
Kulkarni-Nomizu product, 18

Lagrangian (Lagrange function), 27
Lagrangian submanifold, 33
Laplacian, conformally covariant, 21
lapse function, 12
Lie

algebra, 7, 32–36, 39, 60, 63
algebra, dual of, 8
algebroids, 36
anti-homomorphism, 7, 35, 41
anti-isomorphism, 63
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centralizer, 34
group, 7, 35, 62
homomorphism, 7, 33, 63
ideal, 34
idealizer, 34

lift, of diffeomorphims to cotangent bundle, 30
Loop Quantum Gravity, 60
Lorentz

group, 9
metric, 3, 10
signature of De Witt metric, 26
transformations, 9

mass
ADM, 50
Komar, 52
Tolman, 53

Maupertuis’ principle, 46
maximal slicing, 25
mean curvature, constant, 57
metric

connection compatible with, 16
De Witt, 20, 26
Euclidean, 3
Lorentzian, 3
on manifold, 3
Riemannian, 3

mixed tensor, 3
momentum

current-density, 5
density, 5
map, 9, 35

musical isomorphisms, 3

Newton’s constant, 6

observables, physical, 29

parallelizable, 10
parity conditions, 48
path integral, 3
paths independence, 42
physical

observables, 29, 34
phase space, 33
states, 34

Poincaré
charges, 2, 60
group, 48

Poisson
algebra (general), 32, 34
algebra (of physical observables), 34
bracket, 32
ideal, 34

primary constraints, 29
principal

curvature directions, 15
curvatures, 15
radii, 15

principle
Jacobi’s, 46
Maupertuis’, 46
of least action (in GR), 36
of least action (in mechanics), 46

pull back, 3
puncture method, 57
push forward, 3

quantization, canonical, 2
Quantum Gravity, 2, 60

reduced space
of observables, 34
of states, 33

reduction
of phase space, 40
program (geometric), 33
symplectic, 33

redundancy
gauge, 2
gauge (versus symmetries), 29
in representing spacetime, 1, 2

Ricci curvature, 17
Riemann

curvature, 16
tensor, 16

Riemannian metric, 3

scalar curvature, 17
Schwarzschild spacetime, 55
second fundamental form, 14
secondary constraints, 29
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sectional curvature, 4, 16, 17
shape operator, 14
shift vector-field, 12
slicing

harmonic, 26
maximal, 25

spacetime (dynamical), 1
speed of light, 6
spin structure, 10
structure

constants, 36
functions, 36

submanifold
co-isotropic, 33
isotropic, 33
Lagrangian, 33

superspace, Wheeler’s, 43
supertranslations, odd parity, 49
surface, constraint, 28
symmetric hyperbolicity, 24
symmetries

gauge (versus redundancies), 29
symmetry group, asymptotic, 54
symmetry, of energy-momentum tensor, 5
symplectic

morphism, 30
potential, 30
reduction, 33
structure, 30

systems, constrained, 28

tensor, 3
contravariant, 3
covariant, 3
Einstein, 4
energy-momentum, 4
fields, 3
mixed, 3
Riemann, 16

theorem
of Frobenius, 33
of Gauss (theorema egregium), 15
of Gromov-Lawson, 25, 45
of Kazdan-Warner, 25, 45

theta sectors, in Quantum Gravity, 43
thin-sandwich

conformal variant, 45
conjecture, 44
equations, 44
problem, 44

time symmetric data, 54
Tolman mass, 53
torsion, 14
torsion free, 16
transformation, canonical, 30

vector constraints, no ideal, 40
vector field, Hamiltonian, 32
velocity of light, 6

wave operator, conformally covariant, 21
Weingarten map, 14, 15
well posedness

of initial-value problem for constraints, 24
Weyl curvature, 18

York
equation, 57
gauge, 25
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