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Emergence of the Dirac Equation in the Solitonic Source of the Kerr Spinning Particle

Alexander Burinskii
Laboratory of Theor. Phys. NSI Russian Academy of Sciences, B. Tulskaya 52 Moscow 115191 Russia, *

The Kerr-Newman (KN) solution has many remarkable properties indicating its relationships with
the structure of the Dirac electron. We consider a soliton source of the KN solution satisfying
the requirement of maximal correspondence to flat quantum background, i.e. the full suppressing of
gravity in the source region. The resulting regular source takes the form of a bag confining the Higgs
field in a false-vacuum state. We show the origin of the Dirac equation from twistorial structure
of the Kerr geometry, and discuss relationships of this model with the known MIT and SLAC bag
models, and obtain specific features of the bag models related with the required long-range external
gravitational field and with two-sheeted structure of the KN solution.

PACS numbers: 11.27.4+d, 04.20.Jb, 04.60.-m, 04.70.Bw

1. It has been discussed for long time that black holes
(BH) have to be related with elementary particles [1].
However, spin and charge of particles prevent formation
of the BH horizons. A BH looses the horizons if the
charge e or spin parameter a = J/m exceeds the mass m
(in the dimensionless units G = ¢ = h = 1). For example,
the electron charge exceeds the mass for 21 order, while
its spin/mass ratio is about 10?2, and the BH threshold
a < m is exceeded for 44 orders. Similar relations are
valid for the other elementary particles, and besides the
Higgs boson, which has neither spin nor charge, none of
the elementary particles may be associated with a black
hole. Meanwhile, it does not means that it concerns the
over-rotating BH geometry without horizons.

As it was shown by Carter [2], the Kerr-Newman rotat-
ing BH solution has gyromagnetic ratio g = 2 as that of
the Dirac electron, and the four measurable parameters
of the electron: spin, mass, charge and magnetic mo-
ment shows unambiguously that gravitational and elec-
tromagnetic field of the electron should correspond to
over-rotating Kerr-Newman (KN) solution. The corre-
sponding space has topological defect — the naked Kerr
singular ring, which forms a branch line of space into two
sheets: the sheet of advanced and sheet of the retarded
fields. The Kerr-Schild form of metric

uv = Nuv + 2Hkuk1/7 (1)

in which 7, is metric of auxiliary Minkowski space M*,
and k, is a null vector field, k,k* = 0, forming the Prin-
cipal Null Congruence (PNC) K.[35] These retarded and
advanced sheets are related by analytic transfer of the
PNC via disk r = 0 spanned by the Kerr singular ring
r =0, cosf = 0 (see fig.1). So far as r is the Kerr el-
lipsoidal radial coordinate, the surface » = 0 represents
a disklike "door” from negative sheet r < 0 to positive
one 7 > 0. The null vector fields k**(z) differ on these
sheets, and form the different null congruences K*, cre-
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ating different metrics
Gy = M + 2H Kk (2)

on the same Minkowski background M*. This mysterious
twosheetedness caused search for different models of the
source of Kerr geometry without negative sheet. Singular

FIG. 1: Kerr’s principal congruence of the null lines (twistors)
is focused on the Kerr singular ring, forming a branch line of
the Kerr space into two sheets.

metric conflicts with basic principles of quantum the-
ory which is settled on the flat space-time and negligible
gravitation. Resolution of this conflict requires "regu-
larization” of space-time, which has to be done before
quantization, i.e. on the classical level. Singular region
has to be excised and replaced by a regular core with a
flat internal metric 7,,,, matching with external KN solu-
tion. Long-term search for the models of regular source
(H. Keres (1966), W. Israel (I970), V. Hamity (1976),
C. Lépez (1984) at al.) [3-6] resulted in appearance of
the gravitating soliton model [7, 8] which represents a
domain-wall bubble, or a bag confining the Higgs field
in a superconducting false-vacuum state. Such a matter
regulates the KN electromagnetic (EM) field pushing it
from interior of the bag to domain wall boundary and re-
sults in the consistency with flat internal metric required
by Quantum theory. The Higgs mechanism of broken
symmetry approaches this model with the known models
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of MIT- and SLAC- bags, and with the Coleman Q-ball
models [9, [10], considered as electroweak soliton models
in [11-H13]. The used in MIT- and SLAC- bag models
quartic potential for the self-interacting Higgs field ®,

V(le]) = g(oo —1*)?, 3)

describes a spontaneously broken theory, in which vac-
uum expectation value (vev) of the Higgs field 0 =<
|®| > vanishes inside the bag, r < R, and takes nonva-
nishing value 0 = 7, outside the bag, r > R. The Dirac
equation of the SLAC -bag theory in the presence of the
classical o-field takes the form

(iv"0y — go)p = 0, (4)

where g is a dimensionless coupling parameter. This ex-
pression shows that the Dirac field ¥ acquires effective
mass m = go from the vev of Higgs field o. Inside the
bag the Dirac field is massless, while outside the bag the
wave function 1 may acquire large mass m = gn. The
quarks are confined, preferring a more favorable ener-
getic position inside the bag, which is the principal idea
of the confinement mechanism.

2. Such a structure of the broken symmetry is not
appropriate for the gravitating KN soliton model, since
the vev of Higgs field o breaks also the gauge symme-
try the gravitational and electromagnetic (EM) external
KN fields, turning them into short-range ones. An oppo-
site (dual) geometry is realized in the Coleman’s Q-ball
models |9, [10], in which the Higgs field is confined inside
the ball, r < R, and the external vacuum state is unbro-
ken. However, formation of the corresponding potential
turns out to be a very non-trivial problem, and we have
showed in [7] that this type of broken symmetry may be
obtained by using supersymmetric scheme of phase tran-
sition with three chiral fields @, i = 1,2, 3, [23]. One of
this fields, say ®(), has the required radial dependence,
and we chose it as the Higgs field #H, setting the addi-
tional notations in accord with (H, Z, %) = (®°, &1, 2).
The required potential V(r) = >, ]0;W|? is obtained
from the superpotential (suggested by J.Morris, see ref.
in [24]) W (!, ®%) = AZ(BX — n?) + (Z + pu)HH, where
i, M, A are real constants. The condition ;W = 0 de-
termines two vacuum states separated by a spike of the
potential V at r = R:

(I) external vacuum, r > R, V(r) = 0, with vanishing
Higgs field H = 0, and

(IT) internal state of false vacuum, r < R, V(r) = 0,
with broken symmetry, |H| = n\~/2 = const.

Domain wall boundary of the phase transition between
the states (I) and (II) is determined by matching the
external KN metric g, = 1 +2HEk,k,, where

mr —e2/2

" r2 4+ a2cos?6

(5)

with flat internal metric g,,,, = 7,.. It fixes the boundary
at H=0,orr =R = <® Since r is the Kerr oblate

2m

coordinate, the bag forms an oblate disk of the radius

. . 2
re & a = == with thickness r, = 5, 50 that 7. /r. =

2m
e? ~ 13774
3. The KN solution may be represented in the Kerr-
Schild (KS) form via the both Kerr congruences k;f or k,,,
but not via the both ones simultaneously, [18,[19]. Vector
potential A, of the KN solution is also to be aligned with
the Kerr congruence, and by the use of k" or k, congru-
ence, it turns out to be either retarded, A,.¢, or advanced,
Aqdv- For the physical sheet of the KN solution we chose
the outgoing Kerr congruence k;’[, corresponding to the
retarded EM field A,..;. The fields A,.; and Agq, cannot
reside on the same physical sheet, because each of them
should be aligned with the corresponding Kerr congru-
ence. Considering the retarded sheet as a basic physical
sheet, we fix the congruence k:[ and the corresponding
metric g, which are not allowed for the advanced field
Augy. The field Agqy is to be compatible with another
congruence k,, , positioned on the separate sheet which
different metric g,,,. It should be emphasized, that this
problem disappears inside the bag, where H = 0, and the
space is flat, g% = Nuv, and the difference between two
metrics disappears. Therefore, the regulated KN spice-
time takes again the twosheeted structure outside the
bag, as it is illustrated on Fig.2.
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FIG. 2: Two sheets of external KN solution are matched with
flat space inside the bag. The massless spinor fields ¢, and
%% live on different KN sheets, aligned with k:{ and k, null
directions. Inside the bag they join into the Dirac bispinor,
getting mass from the Yukawa coupling.

Nevertheless, we obtain that removing the twosheeted-
ness related with the source of KN solution, we meet it
again from another side related with advanced potentials
outside the regulated bag-like source of KN solution. [36]
We discuss here this new effect in details, because it turns
out to be related with solutions of the Dirac equation on
the KS background.

The Kerr congruences are determined by the Kerr the-
orem, [15, 20-22], which presents for the KN solution
two different congruences ki, [14, [15]. The considered



in sec.1 twosheeted structure of the source was related
with one of the congruences, k:[ The second sheet of
metric was created by analytic extension of this congru-
ence to negative sheet of the KN solution corresponding
to r < 0. The considered now twosheeted structure has
another origin. The two congruences kff are now related
with two different solutions of the Kerr theorem.

The Kerr theorem determines all the geodesic and
shear free congruences as analytical solutions of the equa-
tion

F(T*) =0, (6)

where F' is an arbitrary holomorphic function of the pro-
jective twistor variables

TA={Y, (—Yv, u+Y(C}, A=1,2,3 (7
where ¢ = (z + iy)/V2, ( = (x —iy)/V2, u = (z +
t)/v2, v = (2 —t)/\/2 are null Cartesian coordinates of
the auxiliary Minkowski space.

We notice, that the first twistor coordinate Y is also a
projective spinor coordinate

Y = ¢1/¢o, (8)

and it is equivalent to two-component Weyl spinor ¢,
which defines the null direction|[37] k, = a0l “¢a-

It is known, [14, [15, 20], that function F for the Kerr
and KN solutions may be represented in the quadratic in
Y form,

F(Y,z") = A(z")Y? + B(z")Y + C(a"). (9)

In this case (@) can explicitly be solved, leading to two
solutions

YE(2") = (=B F7)/24, (10)

where 7 = (B2 —4AC)"/2. Tt has been shown in [15], that
these solutions are antipodally conjugate,

Yt =—1/¥". (11)

Therefore, the solutions (I0) determine two Weyl
spinor fields ¢, and Y4, which in agreement with (II))
are related with two antipodal congruences

Y+ = ¢1/¢07 (12)

Y™ =Xi/Xo- (13)

In the Debney-Kerr-Schild (DKS) formalism [20] function
Y is also a projective angular coordinate Y+ = €' tan g.
It gives to spinor fields ¢, and x4 an explicit dependence
on the Kerr angular coordinates ¢ and 6.

For the congruence Y+ this dependence takes the form

€19/2 gin g >

o = ( e~i9/2 cosg

(14)

3

In agreement with (1)) we have Y~ = —e~* cot &, and
from the Lorentz invariant normalization ¢, x® = 1 we
btai —e'/? cos ¢ hich vield
obtain y, = o—i0/2 sing which yields
. g i$/2 gip &
& _ ap-. _ [ €e®/7sing
Xo=eXp= <e_i¢’/2 cos 2 > ' (15)

These massless spinor fields can be connected to the
left-handed and right-handed congruence, and only one
of them, say “left”, kﬁr) (x) is “retarded” and corresponds
to the external KN solution. In DKS formalism, the vec-

tor field kS (z) is determined by the differential form
kuda" = P~ (du +Yd¢ +YdC — YYdv), (16)

where P = (1 4+ YY)/v/2 may be considered as a nor-
malizing factor for the time-like component , kéi)(x) =
1. Antipodal map () transforms the normalized field
kS (2) = (1,k) in the field k5 (z) = (1, k), which
retains the time-like direction and reflects the space ori-
entation. Therefore, the spinor fields created by the Kerr
theorem ¢, and Y correspond to the left out-field and
right-in fields, i.e. to the retarded and advanced fields
correspondingly.

4. The KN solution belongs to the class of alge-
braically special Kerr-Schild (KS) solutions, for which all
the tensor quantities are to be aligned with null directions
of the Kerr congruence k,,. In means that the consistent
solutions of the Dirac equation on the KS background
should be aligned with the Kerr congruence. It has been
showed in [25] that the Dirac field aligned with KS back-
ground should satisfy the linearized Dirac equations

oH 0 XY = MPa, T, b0 = mX®, (17)

in which gravity drops out. For the Dirac bispinor ¥ =
(f_zg > , the alignment conditions k#v,¥ = 0 turn into

equations for eigenfunctions of the helicity operator (k-o)
2],

(k-o)p=09, (k-o)x=-Xx, (18)

and one sees that the spinor fields ¢ and y have opposite
helicity, forming the ”left-handed” ¢ and ”right-handed”
helicity states, aligned with out-going direction k and in-
going direction —k correspondingly. In Kerr geometry,
these fields should be placed on different sheets corre-
sponding to two antipodal congruences k:f obtained from
the Kerr theorem. Authors of the paper |25] concluded
that these solutions “are mot consistent unless the mass
vanishes...”. Indeed, the left-handed part of the Dirac
equation is aligned with physical sheet of the KN ge-
ometry, while the right-handed parts is aligned with the
second sheet obtained under parity inversion of the Kerr
null congruence. For the zero mass, the left- and right-
hand parts of the Dirac equations decouple, leading to
solutions with opposite helicity which are consistent with



different sheets of the KN geometry. In the same time,
the both null congruences kff coexist without conflict on
the flat space-time, where the massive Dirac equation is
consistent with the both Kerr congruences.

In particular, in flat space-time there exist the massive
plane wave solutions [26] (v.1, sec. 16 and sec. 23),
identified as the spherical helicity states

1 .
U, =—uyexp ¥, (19)

V2e

where € = +4/p? + m?2, p is 4-momentum and wu, is the
normalized bispinor formed from (I4]) and (I3)).

Therefore, the massive Dirac solutions aligned with the
both Kerr null directions exist only inside the bag, where
the spice-time is flat. Outside the bag, the KN gravi-
tational field breaks parity of the left- and right-handed
spinors, and the Dirac bispinor splits into the massless
left- and right- Weyl spinors which should be placed on
the different sheets of the KN solution, as it is illustrated
in Fig.2.

5. We arrive at the Dirac equation with a variable mass
term which changes for different regions of the space-
time. We notice that it is a proper feature of the MIT-
and SLAC- bag models related with principal idea of the
quark confinement [27, 28]. The quark wave function,
solution of the Dirac equation with a variable mass term,
is deformed tending to avoid the regions with a large
bare mass, and get an energetically favorable position,
concentrating inside or on the boundary of the bag.

The bag conception should be applied for the Dirac
wave function on the KN background. Taking into ac-
count the discussed in sec.1. peculiarities of the gravitat-
ing KN bag model, the self-interacting Higgs field should
be confined inside the bag. In agreement with (), the vev
of the Higgs field o should give the mass term m = go to
the Dirac equation through the Yukawa coupling between
the left-handed and right-handed spinor fields inside the
bag, in full agreement with the results of previous section.
The corresponding Hamiltonian is

H(z) = \P*(%o? ¥+ 9oV, (20)

and the energetically favorable wave function has to be
determined by minimization of the averaged Hamiltonian
H = [d*zH(z). Similarly to the approach and the re-
sults of the SLAC-bag model, this problem may be solved
by variational methods, and the Dirac wave function will
apparently be pushed from the region inside the bag,
where the bare mass m = gn is large, towards a nar-
row zone at the bag border. As it is claimed in theory
of the MIT and SLAC bag models, the very narrow con-
centration of the Dirac wave function is admissible for
scalar potential and does not lead to the Klein paradox.

Concrete form of the wave function depends on the ratio
of the parameters ¢ and 7. In the strong coupling limit,
g — 00, the wave function should concentrate on the shell
of the bag. The exact solutions of this kind are known
only for two-dimensional case, and the solution of the
corresponding variational problem for the KN bag model
should apparently be based on numerical computations.
One expects that computations will be simplified by the
ansatz U = f(r)¥(z), where f(r) is a variable factor of
the deformation, and the Dirac bispinor W is formed from
the Weyl spinors (I4) and (IH]) aligned with the Kerr null
congruences.

5. Taking the bag model interpretation, we should also
accept the dynamical point of view that the bags may be
easily deformed |28, 29]. The known Dirac’s model of an
”extensible” spherical electron [30] represents apparently
a first prototype of the bag model. Under vanishing rota-
tion, a = 0, the KN disk-like bag turns into the spherical
Dirac ”extensible” electron model[38] In fact, the disk-
like bag of the KN rotating source may be considered as
a bag obtained by the rotational stretch from the Dirac
”extensible” spherical bag. The Kerr parameter of ro-
tation @ = J/m stretches the spherical bag to the disk
of the Compton radius a = h/2mc, which indicates that
the KN bag should correspond to the zone of vacuum
polarization of a “dressed” electron. Since the degree of
oblateness of the KN bag turns out to be very close to
a = 13771, the fine structure constant acquires in the KN
bag a geometrical interpretation. As it was discussed in
[28], deformations of the bag may create stringy struc-
tures, and the bags acquire oscillations similar to excita-
tion of a string, [29]. For the KN source, concentration of
the wave function at the border of the KN disk results in
the appearance of the ring-like string, similar to the Sen
fundamental string to low energy heterotic string theory
131). [39]

We considered soliton source of the KN solution, based
on the principle of the minor conflict between KN grav-
ity and quantum theory, and showed that it should rep-
resent a gravitating bag model, a generalization of the
known MIT and SLAC bag models |27, [28]. Structure
the Dirac equation related with KN bag is determined by
two-sheeted structure of the KN geometry and strongly
correlated with twistorial structure defined by the Kerr
theorem. The KN bag realizes a gravitating extension of
the Q-ball models, which were suggested in |11H13] for
electroweak sector of the standard model, and therefore,
the KN bag performs a step beyond the standard model
towards its unification with gravity.
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