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On the Energy-Momentum and Spin Tensors

in the Riemann-Cartan Space
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General classical theories of material fields in an arbitrary Riemann-Cartan space are considered.
For these theories, with the help of equations of balance, new non-trivially generalized, manifestly
generally covariant expressions for canonical energy-momentum and spin tensors are constructed in
the cases when a Lagrangian contains (a) an arbitrary set of tensorial material fields and their covari-
ant derivatives up to the second order, as well as (b) the curvature tensor and (c) the torsion tensor
with its covariant derivatives up to the second order. A non-trivial manifestly generally covariant
generalization of the Belinfante symmetrization procedure, suitable for an arbitrary Riemann-Cartan
space, is carried out. A covariant symmetrized energy-momentum tensor is constructed in a general
form.
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I. INTRODUCTION

In the present paper, general classical field theories of an arbitrary set of material fields ϕ propagating in an
arbitrary fixed (external) (D + 1)-dimensional Riemann-Cartan space C (1, D) are considered. We assume that ϕ
forms a set of tensorial fields with arbitrary but fixed ranks. The aim of the current paper is to construct general

manifestly covariant expressions for the canonical energy-momentum tensor t and the spin tensor s as well as for the

symmetrized energy-momentum tensor
sym

t in the cases, when Lagrangian of material fields L has the form:

L = L (g,R; T,∇T,∇∇T; ϕ,∇ϕ,∇∇ϕ). (1)

It depends on an arbitrary set of material fields ϕ
def
= {ϕa(x); a = 1, n} and their first ∇ϕ

def
= {∇αϕ

a(x)} and second

∇∇ϕ
def
= {∇α∇βϕ

a(x)} covariant derivatives1. Additionally, the Lagrangian depends explicitly on the curvature

tensor R
def
= {Rκ

λµν(x)}, the torsion tensor T
def
= {T λ

µν(x)} and its first ∇T
def
= {∇αT

λ
µν(x)} and second ∇∇T

def
=

{∇α∇βT
λ
µν(x)} covariant derivatives. Thus, the original material Lagrangian contains higher (second) derivatives

of the material fields ϕ, and a non-minimal coupling both with the metric g
def
= {gµν(x)} (by means of the argument

R in L ) and with the torsion T (by means of the arguments T, ∇T and ∇∇T in L ).
The importance of the stated above task can be seen from the following: The energy momentum tensor (EMT)

and the spin tensor (ST) are ones of the most important dynamic characteristics in a field theory both on classical

and quantum levels. There are several different types of EMT: canonical t
def
= {tµν(x)}, Belinfante symmetrized

sym

t
def
= {

sym

t µ
ν(x)}, metric

met

t
def
= {met

t µ
ν(x)} 2. The metric EMT

met

t is the most demanded in the theories defined
in a (D + 1)-dimensional Riemann spacetime R(1, D). For a given Lagrangian (and for a well-posed variational

problem) the EMT
met

t is uniquely defined by calculating the variational derivative δI/δg of the action functional I
with respect to the metric tensor g (the Hilbert formula):

1

2

√−g
met

t µν =
δI

δgµν
. (2)

∗Electronic address: rlompay@gmail.com
1 We use notations and conventions of the paper [14].
2 Different modifications of these basic EMT both in the Riemann spacetime and in the Riemann-Cartan space were considered in the
Refs. [6, 7, 10, 16].
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It is known that whenever the equations of motion δI/δϕ = 0 of material fields ϕ hold (on the ϕ-equations), the

symmetrized EMT
sym

t is equivalent to the metric EMT
met

t [13, 15, 19–21, 24]:

sym

t µ
ν =

met

t µ
ν (on the ϕ-equations).

Note the canonical spin tensor s does not appear in the theory explicitly, as it turns out “hidden” inside
sym

t (in the
form of the Belinfante correction).
Another situation is in metric-torsion theories of gravity. Here, the canonical EMT t [8, 9, 11, 25, 27] turns out to

be more useful. However, unlike the metric EMT
met

t (2), the canonical EMT t and ST s, in general, are not so well
defined. Indeed, a standard method of construction of these dynamic characteristics in a curved spacetime consists
of the following three steps:

1. In the (D + 1)-dimensional Minkowski space M (1, D) with a pseudo Cartesian coordinate system (CS) {Xµ},
a Lorentz-invariant field theory defined by an appropriate Lagrangian

L = L (η; ϕ,∂ϕ,∂∂ϕ, . . . ), (3)

is considered, where η
def
=
{

ηµν ; µ, ν = 0, D
}

= diag (−1, 1, . . . , 1) is the metric tensor; ϕ
def
= {ϕa(X); a = 1, n}

is a set of field functions; ∂ϕ
def
= {∂µϕa(X)} and ∂∂ϕ

def
= {∂µ∂νϕa(X)} are sets of their the first and the second

partial derivatives, respectively.

For this Lagrangian by the recipe of the 1-st Noether theorem the expressions for canonical EMT and ST are
constructed:

tµν = tµν(η; ϕ,∂ϕ,∂∂ϕ, . . . ); (4)

sπρσ = sπρσ(η; ϕ,∂ϕ,∂∂ϕ, . . . ). (5)

2. By a transition to an arbitrary curved CS {x̃µ} in M (1, D) the expressions (4) and (5) are transformed into the
form

tµν = tµν(g̃; ϕ, ∇̃ϕ, ∇̃∇̃ϕ, . . . ); (6)

sπρσ = sπρσ(g̃; ϕ, ∇̃ϕ, ∇̃∇̃ϕ, . . . ), (7)

where g̃
def
= {g̃µν(x̃)} and ∇̃

def
= {∇̃µ} are metric tensor in the space M (1, D) in the CS {x̃µ} and a covariant

derivative constructed with its help, respectively.

3. At last, a minimal way of an interaction with gravitational fields is introduced by a formal replacement in the
expressions

g̃µν → gµν , ∇̃µ → ∇µ, (8)

where g
def
= {gµν(x)} and ∇

def
= {∇µ} are a metric tensor in a (D + 1)-dimensional Riemann-Cartan space

C (1, D) and a metric-compatible covariant derivative, respectively. Then the expressions (6), (7) are transformed
into

tµν = tµν(g; ϕ,∇ϕ,∇∇ϕ, . . . ); (9)

sπρσ = sπρσ(g; ϕ,∇ϕ,∇∇ϕ, . . . ). (10)

respectively.

The procedure described above gives the unique formula for constructing the canonical EMT and ST in the Riemann-
Cartan space C (1, D) (as well as in the Riemann space R(1, D)) in the simplest case only, when the original Lagrangian
does not contain the derivatives of the fields higher than the first order:

L = L (η; ϕ,∂ϕ). (11)
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When the scheme (3) – (10) is generalized to theories with higher derivatives an ambiguity arises inevitably. It is
because a non-commutativity of the covariant derivatives in the space C (1, D) generally takes place

(∇µ∇ν −∇ν∇µ) ϕ
a def

= [∇µ,∇ν ]ϕ
a = −T λ

µν∇λϕ
a +Rκ

λµν(∆
λ
κ)

a|b ϕb.

Here, {(∆λ
κ)

a|b} are the Belinfante-Rosenfeld symbols – certain combinations of products of the δ-Kronecker symbols
(for the explicit expressions see, for example, Ref. [15]).
In the Minkowski space M (1, D), the covariant derivatives commute, therefore the order of the second derivatives

in the expressions does not matter, therefore one can write

∇̃µ∇̃ν = α∇̃µ∇̃ν + (1 − α)∇̃ν∇̃µ (α ∈ R). (12)

However, an application of the rule (8) to the left and the right hand sides of the formula (12) gives different results :

L.H.S. of the eq. (12) → ∇µ∇ν ; (13)

R.H.S. of the eq. (12) → α∇µ∇ν + (1− α)∇ν∇µ = ∇ν∇µ + α[∇µ,∇ν ]

= ∇ν∇µ + α
(

−T λ
µν∇λ +Rκ

λµν(∆
λ
κ) |
)

. (14)

On the other hand, it may turn out that due to certain physical requirements, for example, to preserve the conformal
invariance [5, 17, 18] or the gauge invariance [1, 4, 12], one should introduce the curvature tensor R (non-minimal

g-coupling) and/or the torsion tensor T (non-minimal T-coupling) into a Lagrangian of a theory in a non-minimal
way. Then from the beginning we have the Lagrangian explicitly containing tensors R and T (and, possibly, their
covariant derivatives), that is

L = L (g,R, . . . ; T,∇T, . . . ; ϕ,∇ϕ, . . . ). (15)

One can see that now the procedure (3) – (10) cannot be applied because the Lagrangian (15) cannot be obtained
from the Lagrangian (3) by means of the substituion(8). Therefore, the problem of constructing the canonical EMT t

and ST s in the space C (1, D) when the Lagrangian contains higher derivatives and/or a non-minimal coupling with
gravitational fields requires a thorough study.

In the present paper, to construct the EMT t,
sym

t and ST s, we suggest the following: It is well known that to find

the equations of balance, which are satisfied by the tensors t,
sym

t and s in an arbitrary Riemann-Cartan space, it is
enough to know the explicit form of these tensors and the equations of motion of the material fields. However, it is
not necessary to know the equations of gravitational fields. Thus, for instance, for the Lagrangian of the form

L = L (g; ϕ,∇ϕ) (16)

the canonical EMT and ST

tµν = L δµν − ∂L

∂(∇µϕa)
∇νϕ

a; (17)

sπρσ = 2
∂L

∂(∇πϕa)
(∆[ρσ])

a|b ϕb (18)

satisfy the equation of energy-momentum balance:

∗

∇µt
µ
ν = −tµλT

λ
µν +

1

2
sπρσR

ρσ
πν (on the ϕ-equations) (19)

(see, for example, Refs. [8, 9, 11, 26, 27]).
A converse statement holds as well: If the equations of balance and the equations of motion of material fields

are known, this allows to recover expressions for t, s and
sym

t even in more general cases than (16). To verify this

statement we begin from the equation of balance (19), keeping the expressions for t, s (and for
sym

t as well) as defined
and which generalize the expressions (17) and (18) in case of Lagrangian of the form (1). We will search for these
expressions by the method of consistent generalizations, starting from the expressions in the Minkowski space (Sect.
II) and, gradually, step by step, passing to more general Lagrangians. Since every such a transition introduce new
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terms into the expressions for t and s, we will search for general expressions for the EMT and ST in the form of
generalized presentations

tµν = (ϕ)tµν + (R)tµν + (T )tµν+
add
t µ

ν ; (20)

sπρσ = (ϕ)sπρσ + (R)sπρσ + (T )sπρσ+
add
s π

ρσ, (21)

defining consistently items arising in the case of the minimal gravitational coupling in the presence of higher derivatives
(ϕ)t, (ϕ)s (Sect. III); arising in the case of a non-minimal g-coupling (R)t, (R)s (Sect. IV), and finally, arising in the

case of non-minimal T-coupling (T )t, (T )s and
add

t ,
add
s (Sect. V). In the last section we will find a manifestly generally

covariant non-trivial generalization of the Belinfante procedure of symmetrization suitable for an arbitrary Riemann-

Cartan space. In a general form symmetrized (Belinfante’s) EMT
sym

t is constructed, for which a manifestly generally
covariant equation of balance is obtained. Some intermediate calculations are carried out in the Appendices A – D.
The suggested method allows to define uniquely all the terms at the right hand sides of the formulae (20) and (21).

It is surprisingly that in the term (ϕ)t (which already appears in the simplest case of minimal gravitational coupling)
the second covariant derivatives acquire the reverse order in comparison with the original one (see Sect. III, formula
(39) and the discussion after). Excluding the terms (ϕ)t and (ϕ)s, all the other terms in the formulae (20) and (21) as
well as the developed generalization of the Belinfante procedure are new and did not appear in the literature earlier.

II. THE EXPRESSIONS FOR THE EMT t AND ST s IN THE MINKOWSKI SPACE

In the Minkowski space with pseudo Cartesian coordinates, consider a classical field-theoretic model described by
a Lagrangian of the form

L = L (ϕ,∂ϕ,∂∂ϕ). (22)

For such a Lagrangian the canonical EMT t
def
= {tµν} and ST s

def
= {sπρσ} constructed by the recipe of the 1-st

Noether theorem have the form

tµν = L δµν − δI

δ(∂µϕa)
∂νϕ

a − ∂L

∂(∂µ∂λϕa)
∂λ∂νϕ

a; (23)

sπρσ = 2
δI

δ(∂πϕa)
(∆[ρσ])

a|b ϕb − 2
∂L

∂(∂π∂λϕa)

[

ηλ[ρ∂σ]ϕ
a − (∆[ρσ])

a|b ∂λϕb
]

. (24)

Here:

δI

δ(∂µϕa)

def
=

∂L

∂(∂µϕa)
− ∂λ

(

∂L

∂(∂λ∂µϕa)

)

; (25)

(∆ρσ)
a|b

def
= ηρε(∆

ε
σ)

a|b . (26)

According to the bracketized indices, antisymmetrization is carried out.
After transition from the pseudo Cartesian coordinates to arbitrary curved ones (in the same Minkowski space

M (1, D)) the formulae (23) and (24) acquire the form

tµν = L δµν − ∆I

∆(∇̃µϕa)
∇̃νϕ

a − ∂L

∂(∇̃µ∇̃λϕa)
∇̃λ∇̃νϕ

a; (27)

sπρσ = 2
∆I

∆(∇̃πϕa)
(∆[ρσ])

a|b ϕb

−2
∂L

∂(∇̃π∇̃λϕa)

[

g̃λ[ρ∇̃σ]ϕ
a − (∆[ρσ])

a|b ∇̃λϕ
b
]

,
(28)
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where

∆I

∆(∇̃µϕa)

def
=

∂L

∂(∇̃µϕa)
− ∇̃λ

(

∂L

∂(∇̃λ∇̃µϕa)

)

. (29)

Note that the order of placing the second covariant derivatives in the expressions ∇̃λ∇̃νϕ
a and ∂L /∂(∇̃λ∇̃νϕ

a) at

this stage is inessential as far as curvature tensor R̃
def
= {R̃κ

λµν} and torsion tensor T̃
def
= {T̃λ

µν} of the Minkowski

space are equal to zero: R̃ = 0, T̃ = 0. However, in the formulae (27) – (29) the order is original, that is in the process
of derivation of these relations the order of placing the second derivatives was preserved everywhere. No permutations
of derivatives have been done especially.

III. THE GENERALIZATION TO THE CASE OF A MINIMAL COUPLING:

THE TENSORS (ϕ)t AND (ϕ)s

Let C (1, D) be an arbitrary Riemann-Cartan space and let

L = L (g; ϕ,∇ϕ,∇∇ϕ) (30)

be the Lagrangian, which in the limit of the Minkowski space M (1, D) passes into the Lagrangian (22). Keeping in

mind the ambiguity (12) – (14), suppose, that the expressions for (ϕ)t
def
= {(ϕ)tµν} and (ϕ)s

def
= {(ϕ)sπρσ} have the

form

(ϕ)tµν = L δµν − ∆I

∆(∇µϕa)
∇νϕ

a − ∂L

∂(∇µ∇λϕa)
[∇ν∇λϕ

a + α(∇λ∇ν −∇ν∇λ)ϕ
a]; (31)

(ϕ)sπρσ = 2
∆I

∆(∇πϕa)
(∆[ρσ])

a|b ϕb

−2
∂L

∂(∇π∇λϕa)

[

gλ[ρ∇σ]ϕ
a − (∆[ρσ])

a|b ∇λϕ
b
]

(32)

(compare these formulae with the formulae (27) and (28)). We notice that in the formula (31) the selection of the
value α = 0 leads to the order of placing of the second derivatives which is reverse to the original one. The original

order (as in the formula (27)) is reached by the choice α = 1.
To find the equation of balance which is satisfied by the EMT (ϕ)t, we calculate its divergence. Using the definition

of the modified covariant derivative
∗

∇

∗

∇µ
def
= ∇µ + T µ; T µ

def
= Tα

µα, (33)

the explicit form of EMT (ϕ)t (31) and formula for the calculation of derivative ∇νL (B9), after simple calculations
we obtain

∗

∇µ
(ϕ)tµν = T νL +

{

∆I

∆ϕa
∇νϕ

a − ∆I

∆(∇µϕa)
[∇µ,∇ν ]ϕ

a

− ∂L

∂(∇µ∇λϕa)
[∇µ,∇ν ]∇λϕ

a

}

− α
∗

∇µ

(

∂L

∂(∇µ∇λϕa)
[∇λ,∇ν ]ϕ

a

)

.
(34)

In the braces of the last expression, use the formulae for commutator of the covariant derivatives

[∇µ,∇ν ]ϕ
a = −T ε

µν∇εϕ
a +Rσ

ρµν(∆
ρ
σ)

a|b ϕb; (35)

[∇µ,∇ν ]∇λϕ
a = −T ε

µν∇ε∇λϕ
a +Rσ

ρµν(∆
ρ
σ)

a|b ∇λϕ
b −Rε

λµν∇εϕ
a

= −T ε
µν∇ε∇λϕ

a + Rσ
ρµν

[

(∆ρ
σ)

a|b ∇λϕ
b − δρλ∇σϕ

a
]

. (36)

Then

∗

∇µ
(ϕ)tµν ≡ −(ϕ)tµλT

λ
µν + 1

2
(ϕ)sπρσR

ρσ
πν +

{

∆I

∆ϕa
∇νϕ

a

}

−α

{

∗

∇µ

(

∂L

∂(∇µ∇κϕa)
[∇κ,∇ν ]ϕ

a

)

+

(

∂L

∂(∇µ∇κϕa)
[∇κ,∇λ]ϕ

a

)

T λ
µν

}

.
(37)
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At the last stage of deducing the identity (37) the formulae (31) and (32) were also used; the expression ∆I/∆ϕa

denotes covariant functional derivative of the action functional I with respect to the material field ϕa:

∆I

∆ϕa

def
=

1√−g

δI

δϕa
=

∂∗L

∂ϕa
−

∗

∇µ

(

∂L

∂(∇µϕa)

)

+
∗

∇ν

∗

∇µ

(

∂L

∂(∇µ∇νϕa)

)

.

Note that the relation (37) is just the identity and not the equation as far as in the process of its derivation the
equations of motion of the fields were not used.
When the equations of motion ∆I/∆ϕa = 0 of non-gravitational fields ϕ hold (on the ϕ-equations) the identity

(37) becomes the equation of balance

∗

∇µ
(ϕ)tµν = −(ϕ)tµλT

λ
µν +

1

2
(ϕ)sπρσR

ρσ
πν

−α

{

∗

∇µ

(

∂L

∂(∇µ∇κϕa)
[∇κ,∇ν ]ϕ

a

)

+

(

∂L

∂(∇µ∇κϕa)
[∇κ,∇λ]ϕ

a

)

T λ
µν

}

(on the ϕ-equations).

(38)

If we require that the equation of balance of the type (19) obtained for the theories with Lagrangian of the type (16)
remains valid in the more general case of the Lagrangian of the type (30) then in the formula (31) one should choose
α = 0. Thus as a correct generalization of the expressions (17) and (18) one should derive

(ϕ)tµν = L δµν − ∆I

∆(∇µϕa)
∇νϕ

a − ∂L

∂(∇µ∇λϕa)
∇ν∇λϕ

a; (39)

(ϕ)sπρσ = 2
∆I

∆(∇πϕa)
(∆[ρσ])

a|b ϕb

−2
∂L

∂(∇π∇λϕa)

[

gλ[ρ∇σ]ϕ
a − (∆[ρσ])

a|b ∇λϕ
b
]

.
(40)

We emphasize that in the expression ∇ν∇λϕ
a in the formula (39) the order of placing the second derivatives is reverse

with respect to the original one (compare with the formula (27)). In the case of the Riemann spacetime R(1, D),
the expressions for the EMT and ST analogous to our expressions (39) and (40) already have been appeared in the
L. Szabados papers [22, 23]. However, no explanations on the reasons of the choice of the order of placing the second
derivatives have been given.
In the completion of this section, notice that in the case of a minimal coupling a requirement for the canonical

EMT t to satisfy the equation of balance of the type (19) (on the ϕ-equations) fixes form of the tensors t and s quite

uniquely: t = (ϕ)t, s = (ϕ)s.

IV. GENERALIZATION TO THE CASE OF NON-MINIMAL g-COUPLING:

TENSORS (R)t AND (R)s

Now, let the Lagrangian L explicitly depends on the curvature tensor R, that is

L = L (g,R; ϕ,∇ϕ,∇∇ϕ). (41)

In this case choosing EMT (ϕ)t and ST (ϕ)s according to the definitions (39) and (40) and acting as in Sect. III
(however, using the identity (B10) instead of the identity (B9) herewith), we obtain the identity

∗

∇µ
(ϕ)tµν ≡ −(ϕ)tµλT

λ
µν + 1

2
(ϕ)sπρσR

ρσ
πν

+
{

1
2Gα

βγδ∇νR
α
βγδ

}

+

{

∆I

∆ϕa
∇νϕ

a

}

.
(42)

Here, {Gα
βγδ} def

= {2∂L /∂Rα
βγδ}. It is evidently that the term 1

2G
αβγδ∇νRαβγδ at the right hand side of the

formula (42) appears in the case only, when the Lagrangian L explicitly depends on the curvature tensor R. One
may suppose that this term displays the availability of additional with respect to (ϕ)t (39) and (ϕ)s (40) contributions
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(R)t and (R)s to the total EMT t and ST s appearing due to the interaction of the fields with the curvature. Then
the identity

1

2
Gαβγδ∇νRαβγδ =

[ ∗

∇µ

(

GαβγµRαβγν

)

+
(

GαβγµRαβγλ

)

T λ
µν

]

+
1

2

[

(−2)

(

∗

∇ηGρσ
πη +

1

2
Gρσ

εηT π
εη

)]

Rρσ
πν ,

(43)

proved in the Appendix C allows to define tensors

(R)tµν
def
= −GαβγµRαβγν ; (44)

(R)sπρσ
def
= (−2)

(

∗

∇ηGρσ
πη +

1

2
Gρσ

εηT π
εη

)

. (45)

Using the formulae (43) – (45) we can represent the identity (42) in the form

∗

∇µ

(

(ϕ)tµν + (R)tµν

)

≡ −
(

(ϕ)tµλ + (R)tµλ

)

T λ
µν

+
1

2

(

(ϕ)sπρσ + (R)sπρσ

)

Rρσ
πν +

∆I

∆ϕa
∇νϕ

a.
(46)

Hence, we obtain the equation of balance

∗

∇µ

(

(ϕ)tµν + (R)tµν

)

= −
(

(ϕ)tµλ + (R)tµλ

)

T λ
µν

+
1

2

(

(ϕ)sπρσ + (R)sπρσ

)

Rρσ
πν (on the ϕ-equations).

(47)

It is clear that this equation will coincide with the equation (19) if in the case of the theories with the non-minimal
g-coupling (41) we define the canonical EMT t and ST s as

tµν = (ϕ)tµν + (R)tµν ; (48)

sπρσ = (ϕ)sπρσ + (R)sπρσ. (49)

Recall that the quantities presented at the right side of the formulae (48) and (49) are determined by the definitions
(39), (40), (44) and (45).
Thus, both in the case of minimal coupling and in the case of non-minimal g-coupling, the requirement, that the

canonical EMT t must satisfy the equation of balance of the type (19) (on the ϕ-equations) fixes form of the tensors
t and s uniquely.

V. GENERALIZATION TO THE CASE OF A NON-MINIMAL T-COUPLING:

TENSORS (T )t, (T )s AND
add

t ,
add
s

At last, consider the case when in addition the Lagrangian L explicitly depends on the torsion tensor T, its first
∇T and second ∇∇T covariant derivatives, that is

L = L (g,R; T,∇T,∇∇T; ϕ,∇ϕ,∇∇ϕ). (50)

A. The Torsion Field T as a Physical Field. Tensors (T )t and (T )s

The explicit dependence of the Lagrangian (50) on the torsion field T makes this field similar to the usual mater
fields ϕ propagating in the space-time C (1, D). Therefore, we can expect that total canonical EMT t and ST s will
contain the contributions (T )t and (T )s induced by the field T, whose structure is analogous to the structure of the
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contributions (ϕ)t and (ϕ)s induced by the fields ϕ. Thus, by analogy with the formulae (39) and (40) we choose
tensors (T )t and (T )s in the form

(T )tµν = − ∆I

∆(∇µTα
βγ)

∇νT
α
βγ − ∂L

∂(∇µ∇λTα
βγ)

∇ν∇λT
α
βγ ; (51)

(T )sπρσ = 2
∆I

∆(∇πTα
βγ)

(∆[ρσ])
α
βγ |η

ζξ T η
ζξ

−2
∂L

∂(∇π∇λTα
βγ)

[

gλ[ρ∇σ]T
α
βγ − (∆[ρσ])

α
βγ |η

ζξ ∇λT
η
ζξ

]

.
(52)

Then, acting as in Sects. III and IV (however, using now the identity (B11)), we obtain the identity

∗

∇µ

(

(ϕ)tµν + (R)tµν + (T )tµν

)

≡ −
(

(ϕ)tµλ + (R)tµλ + (T )tµλ

)

T λ
µν

+
1

2

(

(ϕ)sπρσ + (R)sπρσ + (T )sπρσ

)

Rρσ
πν +

∆∗I

∆Tα
βγ

∇νT
α
βγ +

∆I

∆ϕa
∇νϕ

a.
(53)

In the last formula

∆∗I

∆Tα
βγ

def
=

∂∗L

∂Tα
βγ

−
∗

∇µ

(

∂L

∂(∇µTα
βγ)

)

+
∗

∇ν

∗

∇µ

(

∂L

∂(∇µ∇νTα
βγ)

)

. (54)

For the sake of simplicity we can unite the fields T and ϕ into the unique set φ
def
= {φa} def

= {T,ϕ}. Further, thus
we define the total canonical EMT t and ST s as

tµν
def
= (ϕ)tµν + (R)tµν + (T )tµν = (φ)tµν + (R)tµν ; (55)

sπρσ
def
= (ϕ)sπρσ + (R)sπρσ + (T )sπρσ = (φ)sπρσ + (R)sπρσ, (56)

where

(φ)tµν
def
= (ϕ)tµν +

(T )tµν
def
= L δµν − ∆I

∆(∇µφa)
∇νφ

a − ∂L

∂(∇µ∇λφa)
∇ν∇λφ

a; (57)

(φ)sπρσ
def
= (ϕ)sπρσ + (T )sπρσ

def
= 2

∆I

∆(∇πφa)
(∆[ρσ])

a|b φb − 2
∂L

∂(∇π∇λφa)
×
[

gλ[ρ∇σ]φ
a − (∆[ρσ])

a|b ∇λφ
b
]

.
(58)

The expressions for EMT t (55) and ST s (56) include the torsion field T and material fields ϕ in a maximum equal

way.
The variational derivative ∆I/∆Tα

βγ of the action functional I with respect to the torsion field Tα
βγ has the

following structure [15]:

∆I

∆Tα
βγ

=
∆∗I

∆Tα
βγ

+
1

2
bγβα, (59)

where

bγβα
def
= ∆γβα

πρσ

(

(φ)sπ, ρσ + (R)sπ, ρσ
)

= ∆γβα
πρσ s

π, ρσ (60)

is the Belinfante tensor, induced by the ST s and

∆αβγ
πρσ

def
=

1

2

(

δβπδ
α
ρ δ

γ
σ + δγπδ

α
ρ δ

β
σ − δαπ δ

β
ρ δ

γ
σ

)

.



9

Therefore, the last two items in the identity (53) can be represented equivalently as

∆∗I

∆Tα
βγ

∇νT
α
βγ +

∆I

∆ϕa
∇νϕ

a = −1

2
bγβα∇νT

α
βγ

+
∆I

∆Tα
βγ

∇νT
α
βγ +

∆I

∆ϕa
∇νϕ

a def
= −1

2
bγβα∇νT

α
βγ +

∆I

∆φa
∇νφ

a.
(61)

Taking into account the formulae (55), (56) and (61), the identity (53) acquires the form

∗

∇µt
µ
ν ≡ −tµλT

λ
µν +

1

2
sπρσR

ρσ
πν −

1

2
bγβα∇νT

α
βγ +

∆I

∆φa
∇νφ

a. (62)

Hence, on the φ-equations (that is on the T- and ϕ-equations) we get the equation of balance

∗

∇µt
µ
ν = −tµλT

λ
µν +

1

2
sπρσR

ρσ
πν − 1

2
bγβα∇νT

α
βγ (on the φ-equations). (63)

In comparison with the equation (19), the last equation contains at the right hand side an additional item

{−1

2
bγβα∇νT

α
βγ} and is valid on the φ-equations (not on the ϕ–equations). This is the price, which must be

paid for a desire to consider the torsion field T as a physical field, like the material fields ϕ. Although the presence of
the additional terms in the constructed EMT t (55) and ST s (56) looks at as contradicting to the standard definitions,
it is necessary. Indeed, in the general metric-torsion theories of gravitation conserved gravitational current cannot be
constructed without these terms [15].

B. Generalization of the Belinfante Symmetrization Procedure

Let us consider a problem of constructing the symmetrized EMT
sym

t basing on the canonical EMT t (55) and ST
s (56). Using in the formula (62) the identity (D2) we can represent it in the form

∗

∇µ

[

tµν +

(

∗

∇ηb
µη

ν +
1

2
bεηνT

µ
εη + bµβαT

α
βν

)]

≡ −
[

tµλ +

(

∗

∇ηb
µη

λ +
1

2
bεηλT

µ
εη + bµβαT

α
βλ

)]

T λ
µν +

∆I

∆φa
∇νφ

a.
(64)

In the last formula a combination of the Belinfante tensor b
def
= {bγβα} in the parentheses represents generalized (for

the case of presence of a torsion) the Belinfante correction [2, 3]. Therefore, if we define the symmetrized EMT
sym

t
as

sym

t µ
ν

def
= tµν +

(

∗

∇ηb
µη

ν +
1

2
bεηνT

µ
εη + bµβαT

α
βν

)

, (65)

the identity (64) turns into:

∗

∇µ

sym

t µ
ν ≡ −

sym

t µ
λT

λ
µν +

∆I

∆φa
∇νφ

a. (66)

On the φ-equations we have a corespondent equation of balance:

∗

∇µ

sym

t µ
ν = −

sym

t µ
λT

λ
µν (on the φ-equations). (67)

As it should be for the symmetrized EMT
sym

t , spin tensor s does not enter the formula (67).
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C. The Torsion Field T as a Geometrical Field. Tensors
add

t and
add
s

Now, recall that in the field theories defined in the Riemann-Cartan space C (1, D), the torsion field T enters the
Lagrangian not only explicitly (through the arguments T, ∇T and ∇∇T), but also implicitly. In fact, the torsion
T is included in the geometrical structure of space-time C (1, D) itself. Indeed, the torsion T enters a connection

Γ
def
= {Γλ

µν(x)}, with the use of which both the covariant derivatives ∇ and the curvature tensor R are constructed.
Thus, there are no reasons to expect that search for expressions for the total EMT t and ST s contain contributions
from the torsion field T and material fields ϕ in completely equal way. From such a point of view the presence of
the additional term (− 1

2b
γβ

α∇νT
α
βγ) in the equation (63) can be treated as an indication to the existence in the

total EMT and ST additional with respect to (T )t and (T )s terms, which we denote as
add

t and
add
s . Evidently, such

terms destroy a formal similarity between T and ϕ as physical fields. To find these terms note the following. The
structure of the variational derivative {∆I/∆Tα

βγ} (59), (60) shows that it is necessary to introduce an additional ST
add
s = {adds π

[ρσ] =
add
s π

ρσ} and the Belinafante tensor
add

b = {
add

b γβα}, induced by it in the way that the relationships

1

2

add

b
γβ

ε =
∆∗I

∆T ε
βγ

. (68)

and

add

b
γβα def

= ∆γβα
πρσ

add
s π, ρσ (69)

take a place. By the last two formulae, it is easy to determine an explicit form of the tensor
add
s :

add
s π, ρσ = −4g[σ|ε

∆∗I

∆T ε
|ρ]π

. (70)

Then, it is evidently,

∆I

∆Tα
βγ

=
1

2

(

(ϕ)bγβα + (R)bγβα + (T )bγβα+
add

b
γβ

α

)

, (71)

where

(ϕ)bγβα
def
= ∆γβα

πρσ
(ϕ)sπ, ρσ, (R)bγβα

def
= ∆γβα

πρσ
(R)sπ, ρσ,

(T )bγβα
def
= ∆γβα

πρσ
(T )sπ, ρσ.

(72)

Let us return to the identity (53). Using the formula (D2) with the exchange bγβα =
add

b γβ
α, transform the term

∆∗I

∆Tα
βγ

∇νT
α
βγ =

1

2

add

b
γβ

α∇νT
α
βγ .

Then the identity takes the form

∗

∇µ

[

(ϕ)tµν + (R)tµν + (T )tµν −
(

∗

∇η

add

b µη
ν +

1

2

add

b
εη

νT
µ
εη+

add

b
µβ

αT
α
βν

)]

≡
[

(ϕ)tµλ + (R)tµλ + (T )tµλ −
(

∗

∇η

add

b µη
λ +

1

2

add

b
εη

λT
µ
εη+

add

b
µβ

αT
α
βλ

)]

×(−T λ
µν) +

1

2

(

(ϕ)sπρσ + (R)sπρσ + (T )sπρσ+
add
s π

ρσ

)

Rρσ
πν +

∆I

∆ϕa
∇νϕ

a.

(73)

The form of the equality (73) shows that the additional EMT
add

t can be defined as

add

t µ
ν

def
= −

(

∗

∇η

add

b
µη

ν +
1

2

add

b
εη

νT
µ
εη+

add

b
µβ

αT
α
βν

)

. (74)
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Then, the sums ((ϕ)t + (R)t + (T )t+
add

t ) and ((ϕ)s + (R)s + (T )s+
add
s ) have to be considered as the total canonical

EMT and ST. In order to distinguish these quantities from t (55) and s (56) we call them as modified total canonical

EMT and ST and denote through
mod

t and
mod
s . Thus,

mod

t µ
ν

def
= (ϕ)tµν +

(R)tµν + (T )tµν+
add

t µ
ν = tµν+

add

t µ
ν ; (75)

mod
s π

ρσ
def
= (ϕ)sπρσ + (R)sπρσ + (T )sπρσ+

add
s π

ρσ = sπρσ+
add
s π

ρσ. (76)

In the terms of the modified canonical tensors the identity (73) is rewritten as

∗

∇µ

mod

t µ
ν ≡ −

mod

t µ
λT

λ
µν +

1

2

mod
s π

ρσR
ρσ

πν +
∆I

∆ϕa
∇νϕ

a. (77)

A correspondent equation of balance has the form:

∗

∇µ

mod

t µ
ν = −

mod

t µ
λT

λ
µν+

mod
s π

ρσR
ρσ

πν (on the ϕ-equations). (78)

This equation has exactly the form of the equation (19), also it takes a place only, when the equations of motion of
the material fields ϕ hold.
It is interesting to note also that, in fact, a disturbance of the ϕ – T similarity occurs not because of the geometrical

character of the torsion field, but as a result of non-minimality of T-coupling (see the formulae (68), (54), (74)). The
non-minimal T-interaction, on the one hand, brings a formal ϕ – T similarity, on the other hand, at the same time

it destroys the similarity by the terms
add

t and
add
s . Note that in the case of minimal T-coupling a contribution into

the ST and EMT from the torsion as a physical field is absent at all.
Using the formulae (75), (76), (74), (55), (56), (65), it is easy to establish that the symmetrized EMT

sym

t µ
ν

def
=

mod

t µ
ν +

(

∗

∇η

mod

b
µη

ν +
1

2

mod

b
εη

νT
µ
εη+

mod

b
µβ

αT
α
βν

)

, (79)

constructed with the use of the modified canonical EMT
mod

t and
mod
s in the same manner as the symmetrized EMT

(65) coincides with
sym

t (65), although the last has been constructed thorough the canonical EMT t (55) and s (56).

Notice that
mod

b = 0 on the T-equations (see the formulae (71) and (76)) and, hence, according to (79),
sym

t and
mod

t
are equal:

mod

t µ
ν =

sym

t µ
ν (on the T-equations). (80)

VI. SUMMARY

In the present paper, the expressions for the canonical energy momentum tensor (EMT), spin tensor (ST), and the
Belinfante symmetrized EMT have been constructed in the case, when the Lagrangian has the form

L = L (g,R; T,∇T,∇∇T; ϕ,∇ϕ,∇∇ϕ)
def
= L (g,R; φ,∇φ,∇∇φ),

that is it contains the higher (second) covariant derivatives of the material fields ϕ as well as the non-minimal
coupling both with the metric field g and with the torsion field T. It has been shown that in the presence of the
higher derivatives the standard Noether procedure is ambiguous, whereas in the presence of the non-minimal g- or
T-coupling it is generally inapplicable (for details, see the discussion in the Sec. I). Therefore the canonical EMT and
ST have been determined by the requirement that they must satisfy the standard equation of balance

∗

∇µt
µ
ν = −tµλT

λ
µν +

1

2
sπρσR

ρσ
πν (on the ϕ-equations).
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This equation was obtained earlier for the much more restricted class of field theories in Refs. [8, 9, 11, 26, 27]. The

final most general expressions for the (modified) canonical EMT
mod

t and ST
mod
s have, respectively, the form:

mod

t µ
ν =

{

L δµν − ∆I

∆(∇µφa)
∇νφ

a − ∂L

∂(∇µ∇λφa)
∇ν∇λφ

a

}

+
{

−GαβγµRαβγν

}

+

{

−
(

∗

∇η

add

b µη
ν +

1

2

add

b
εη

νT
µ
εη+

add

b
µβ

αT
α
βν

)}

;

mod
s π

ρσ =

{

2
∆I

∆(∇πφa)
(∆[ρσ])

a|b φb

−2
∂L

∂(∇π∇λφa)

[

gλ[ρ∇σ]φ
a − (∆[ρσ])

a|b ∇λφ
b
]

}

+
{

(−2)
( ∗

∇ηGρσ
πη + 1

2Gρσ
εηT π

εη

)}

+

{

add
s π

ρσ

}

.

The nontrivial manifestly generally covariant generalization of the Belinfante symmetrization procedure, suitable for

an arbitrary Riemann-Cartan space, has been found. The correspondent symmetrized EMT
sym

t has the form

sym

t µ
ν

def
=

mod

t µ
ν +

(

∗

∇η

mod

b
µη

ν +
1

2

mod

b
εη

νT
µ
εη+

mod

b
µβ

αT
α
βν

)

and satisfies the standard equation of balance

∗

∇µ

sym

t µ
ν = −

sym

t µ
λT

λ
µν (on the φ-equations).

Appendix A: The Condition for a Lagrangian to be a Scalar

Let a Lagrangian

L = L (g,R; T,∇T,∇∇T; ϕ,∇ϕ,∇∇ϕ) (A1)

be a generally covariant scalar. To reduce the formulae let us unite temporarily the fields T = {Tα
βγ} and ϕ = {ϕa}

into the unique set φ = {φa}:

T, ϕ → φ = {T,ϕ}.

Then

L = L (g,R; φ,∇φ,∇∇φ).

In accordance with the definition of the scalar its total variation δ̄L induced by an infinitesimal diffeomorphism

xµ → x′µ = xµ + δxµ(x), (A2)

is equal to zero:

δ̄L
def
= L

′(x′)− L (x) = 0.

Taking into account the connection between the total δ̄ and the functional δ variations

δ̄ = δxλ∂λ + δ, (A3)

we find

δxλ∂λL + δL = 0. (A4)
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Let us compute δL . It is evidently

δL =

{

∂∗L

∂gαβ
δgαβ +

∂L

∂Rα
βγδ

δRα
βγδ

}

+

{

∂∗L

∂φa
δφa +

∂L

∂(∇κφa)
δ (∇κφ

a)

+
∂L

∂(∇κ∇εφa)
δ (∇κ∇εφ

a)

}

=

{

∂∗L

∂gαβ

[

−δxλ∂λgαβ + δ̄gαβ
]

+
∂L

∂Rα
βγδ

×
[

−δxλ∂λR
α
βγδ + δ̄Rα

βγδ

]}

+

{

∂∗L

∂φa

[

−δxλ∂λφ
a + δ̄φa

]

+
∂L

∂(∇κφa)

×
[

−δxλ∂λ (∇κφ
a) + δ̄ (∇κφ

a)
]

+
∂L

∂(∇κ∇εφa)

[

−δxλ∂λ (∇κ∇εφ
a) + δ̄ (∇κ∇εφ

a)
]

}

,

(A5)

where at the second step we used the connection between the total and the functional variations (A3). In the last
formula ∂∗L /∂gβγ means explicit derivative with respect to gβγ , that is the differentiation is provided only with
respect gβγ , which are not included in R and ∇; analogously, ∂∗L /∂φa means differentiation only with respect to
φa, which is not included in ∇φ and ∇∇φ. Note now that

{

∂∗L

∂gαβ
∂λgαβ +

∂L

∂Rα
βγδ

∂λR
α
βγδ

}

+

{

∂∗L

∂φa
∂λφ

a +
∂L

∂(∇κφa)
∂λ (∇κφ

a)

+
∂L

∂(∇κ∇εφa)
∂λ (∇κ∇εφ

a)

}

= ∂λL .
(A6)

Next, take into account tensorial nature of the quantities {gαβ}, {Rα
βγδ}, {φa}, {∇κφ

a}, {∇κ∇εφ
a}. Then, by

definition, for the infinitesimal diffeomorphisms (A2) we have:






































δ̄gαβ = (∆σ
ρ) αβ |ηζ gηζ × ∂σδx

ρ;

δ̄Rα
βγδ = (∆σ

ρ)
α
βγδ|η ζϕξRη

ζϕξ × ∂σδx
ρ;

δ̄φa = (∆σ
ρ)

a|b φb × ∂σδx
ρ;

δ̄ (∇κφ
a) =

[

(∆σ
ρ)

a|b ∇κφ
b −

(

δσκδ
π
ρ

)

∇πφ
a
]

× ∂σδx
ρ;

δ̄ (∇κ∇εφ
a) =

[

(∆σ
ρ)

a|b ∇κ∇εφ
b −

(

δσκδ
π
ρ

)

∇π∇εφ
a −

(

δσε δ
π
ρ

)

∇κ∇πφ
a
]

∂σδx
ρ,

(A7)

(A8)

(A9)

(A10)

(A11)

where {(∆σ
ρ)

a|b} are the Belinfante-Rosenfeld symbols (see, for example, Ref. [15]). Using in the right hand side of
the formula (A5) the formulae (A6) – (A11), we find

δL = − (∂λL )× δxλ +

({

∂∗L

∂gαβ
(∆σ

ρ) αβ |ηξ gηξ +
∂L

∂Rα
βγδ

(∆σ
ρ)

α
βγδ|η ζϕξRη

ζϕξ

}

+

{

∂∗L

∂φa
(∆σ

ρ)
a|b φb +

∂L

∂(∇κφa)

[

(∆σ
ρ)

a|b ∇κφ
b − δσκ∇ρφ

a
]

+
∂L

∂(∇κ∇εφa)

[

(∆σ
ρ)

a|b ∇κ∇εφ
b − δσκ∇ρ∇εφ

a − δσε∇κ∇ρφ
a
]

})

× ∂σδx
ρ.

Substituting this expression into the formula (A4) and taking into account the arbitrariness of the vector field {δxµ(x)},
we obtain

{

∂∗L

∂gαβ
(∆σ

ρ) αβ |ηξ gηξ +
∂L

∂Rα
βγδ

(∆σ
ρ)

α
βγδ|η ζϕξRη

ζϕξ

}

+

{

∂∗L

∂φa
(∆σ

ρ)
a|b φb +

∂L

∂(∇κφa)

[

(∆σ
ρ)

a|b ∇κφ
b − δσκ∇ρφ

a
]

+
∂L

∂(∇κ∇εφa)

[

(∆σ
ρ)

a|b ∇κ∇εφ
b − δσκ∇ρ∇εφ

a − δσε∇κ∇ρφ
a
]

}

≡ 0.

(A12)

Appendix B: The Calculation of ∇νL

For the transformations presented in the main text of the paper one needs the explicit expression for the ∇νL .
Let us calculate it. Because L is a generally covariant scalar of the type (A1) one has

∇νL = ∂νL = L.H.S. of the eq. (A6). (B1)
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Using the expressions for the covariant derivatives {∇νgαβ}, {∇νR
α
βγδ}, {∇νφ

a}, {∇ν∇κφ
a}, {∇ν∇κ∇εφ

a}














































∇νgαβ = ∂νgαβ + Γρ
σν(∆

σ
ρ) αβ|ηζ gηζ ;

∇νR
α
βγδ = ∂νR

α
βγδ + Γρ

σν(∆
σ
ρ)

α
βγδ|η ζϕξ Rη

ζϕξ;

∇νφ
a = ∂νφ

a + Γρ
σν(∆

σ
ρ)

a|b φb;

∇ν (∇κφ
a) = ∂ν (∇κφ

a) + Γρ
σν

[

(∆σ
ρ)

a|b ∇κφ
b − δσκ∇ρφ

a
]

;

∇ν (∇κ∇εφ
a) = ∂ν (∇κ∇εφ

a)

+ Γρ
σν

[

(∆σ
ρ)

a|b ∇κ∇εφ
b − δσκ∇ρ∇εφ

a − δσε∇κ∇ρφ
a
]

,

(B2)

(B3)

(B4)

(B5)

(B6)

we find the partial derivatives {∂νgαβ}, {∂νRα
βγδ}, {∂νφa}, {∂ν(∇κφ

a)}, {∂ν(∇κ∇εφ
a)} and substitute them into

the formula (B1). After a rearrangement of items we obtain

∇νL =

({

∂∗L

∂gαβ
∇νgαβ +

∂L

∂Rα
βγδ

∇νR
α
βγδ

}

+

{

∂∗L

∂φa
∇νφ

a +
∂L

∂(∇κφa)
∇ν (∇κφ

a)

+
∂L

∂(∇κ∇εφa)
∇ν (∇κ∇εφ

a)

})

− Γρ
σν × ( L.H.S. of the eq. (A12)) .

(B7)

Taking into account in this relationship the identity (A12) and metric-compatible condition ∇νgαβ = 0, we find the
search expression:

∇νL =

{

∂L

∂Rα
βγδ

∇νR
α
βγδ

}

+

{

∂∗L

∂φa
∇νφ

a +
∂L

∂(∇κφa)
∇ν∇κφ

a +
∂L

∂(∇κ∇εφa)
∇ν∇κ∇εφ

a

}

.
(B8)

For the cases of interest this expression takes the following forms:

1. The case of minimal coupling, L = L (g; ϕ,∇ϕ,∇∇ϕ),

∇νL =

{

∂∗L

∂ϕa
∇νϕ

a +
∂L

∂(∇κϕa)
∇ν∇κϕ

a +
∂L

∂(∇κ∇εϕa)
∇ν∇κ∇εϕ

a

}

; (B9)

2. The case of non-minimal g-coupling, L = L (g,R; ϕ,∇ϕ,∇∇ϕ),

∇νL =

{

∂L

∂Rα
βγδ

∇νR
α
βγδ

}

+

{

∂∗L

∂ϕa
∇νϕ

a +
∂L

∂(∇κϕa)
∇ν∇κϕ

a +
∂L

∂(∇κ∇εϕa)
∇ν∇κ∇εϕ

a

}

;
(B10)

3. The case of non-minimal g- and T-coupling, L = L (g,R; T,∇T,∇∇T; ϕ,∇ϕ,∇∇ϕ),

∇νL =

{

∂L

∂Rα
βγδ

∇νR
α
βγδ

}

+

{

∂∗L

∂ϕa
∇νϕ

a +
∂L

∂(∇κϕa)
∇ν∇κϕ

a +
∂L

∂(∇κ∇εϕa)
∇ν∇κ∇εϕ

a

}

+

{

∂∗L

∂Tα
βγ

∇νT
α
βγ +

∂L

∂(∇κTα
βγ)

∇ν∇κT
α
βγ +

∂L

∂(∇κ∇εTα
βγ)

∇ν∇κ∇εT
α
βγ

}

.

(B11)

Appendix C: The Transformation of the Expression
(

1
2
G

αβγδ
∇νRαβγδ

)

Transform the expression 1
2G

αβγδ∇νRαβγδ as follows. Substituting the Ricci identity in the form

∇νRαβγδ ≡ − (∇γRαβδν +∇δRαβνγ +RαβενT
ε
γδ +RαβεγT

ε
δν +RαβεδT

ε
νγ) ,
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one obtains

1

2
Gαβγδ∇νRαβγδ = −Gαβγδ∇γRαβδν −

(

GαβγδRαβεγ

)

T ε
δν − 1

2

(

GαβγδT ε
γδ

)

Rαβεν .

Differentiating by parts the first item in the right hand side one finds

1

2
Gαβγδ∇νRαβγδ =

[ ∗

∇µ

(

GαβγµRαβγν

)

+
(

GαβγµRαβγλ

)

T λ
µν

]

+
1

2

[

(−2)

(

∗

∇ηG
ρσπη +

1

2
GρσεηT π

εη

)]

Rρσπν .

Appendix D: The Transformation of the Expression
(

−1
2
b
γβ

α∇νT
α
βγ

)

Let {bγβα} def
= {∆γβα

πρσ s
π, ρσ}, where {sπ, [ρσ] = sπ, ρσ}, be an arbitrary tensor with such a symmetry. Then b[γβ]α =

bγβα. Based on this, transform the expression
(

−1
2 bγβα∇νT

α
βγ

)

as follows.

1. Substituting the Ricci identity in the form

∇νT
α
βγ ≡ Rα

νβγ +Rα
βγν +Rα

γνβ

−
(

∇βT
α
γν +∇γT

α
νβ + Tα

λνT
λ
βγ + Tα

λβT
λ
γν + Tα

λγT
λ
νβ

)

= Rα
νβγ + 2Rα

[βγ]ν − 2∇[βT
α
γ]ν − Tα

λνT
λ
βγ − 2Tα

λ[βT
λ
γ]ν,

one obtains

−1

2
bγβα∇νT

α
βγ ≡ −1

2
bγβαR

α
νβγ − bγβαR

α
βγν + bγβα∇βT

α
γν

+
1

2
bγβαT

α
λνT

λ
βγ + bγβαT

α
λβT

λ
γν.

(D1)

2. Turn to the first term on the right hand side of (D1). Then, recall the identity (C2) in the Appendix C.1 of the
Ref. [14]:

∗

∇µ

[

∗

∇ηθν
µη +

1

2
θν

ρσT µ
ρσ

]

≡ −1

2
Rλ

νρσθλ
ρσ,

change here θν
µη = bµην and obtain for this term:

−1

2
bγβαR

α
νβγ = −

∗

∇µ

[

∗

∇ηb
µη

ν +
1

2
bεηνT

µ
εη

]

.

3. The second term on the right hand side of (D1) is equal to

−bγβαR
α
βγν = −bγβαRαβγν = −∆γβα

πρσ s
π, ρσRαβγν

= −1

2

(

sβ, γα + sα, γβ − sγ, βα
)

Rαβγν

=
(

s(α, β)γ − 1
2s

γ,αβ
)

Rαβγν = −1

2
sπ, ρσRρσπν ;

4. Using the differentiation by part in the third term on the right hand side of (D1), one finds

bγβα∇βT
α
γν = −

∗

∇µ

(

bµβαT
α
βν

)

−
( ∗

∇ηb
µη

λ

)

T λ
µν ;

5. At last, one rewrites fourth and fifth terms on the right hand side of (D1), respectively, as

1

2
bγβαT

α
λνT

λ
βγ = −1

2
(bεηλT

µ
εη) T

λ
µν

and

bγβαT
α
λβT

λ
γν = −

(

bµβαT
α
βλ

)

T λ
µν .
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Combining the results of the points 2 – 5 in the formula (D1), one obtains the search identity:

−1

2
bγβα∇νT

α
βγ ≡ −

∗

∇µ

[

∗

∇ηb
µη

ν +
1

2
bεηνT

µ
εη + bµβαT

α
βν

]

−
[

∗

∇ηb
µη

λ +
1

2
bεηλT

µ
εη + bµβαT

α
βλ

]

T λ
µν − 1

2
sπρσR

ρσ
πν .

(D2)
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