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Abstract

We study the origin of the Higgs field in the framework of the uni-
versal extra dimensions. It is shown that a Higgs-like Lagrangian can be
extracted from a metric of an extra space. The way to distinguish our
model and the Standard Model is discussed.

1 Introduction

It is known that masses of particles can be associated with a hypothetical
scalar field called the Higgs field. Particles of the Standard Model acquire
their masses through interactions with the Higgs field. There is some set of
nontrivial problems concerning the Higgs field [1, 2, 3, 4, 5] and its origin
is one of them. Recently Large Hadron Collider (LHC) collaboration has
succeeded in searching some Higgs-like particle but its properties are still
uncertain and could differ from that of the Standard Model. This has
led to a growing interest in studying of various ways of the Higgs field
origination. Let us briefly review some of the well-known Higgs models.

The Higgs mechanism in the framework of the Standard Model (SM)
[6], [7], [8] is realized by the complex scalar field that is transformed under
the fundamental representation of the SU(2)×U(1) group. The potential
is chosen in the form of Mexican hat which is the simplest form allowing
symmetry breaking and a nonzero vacuum value of a field. The vacuum
expectation value of the Higgs field can be found from the experimental
data of µ-decay

v = (
√
2GF )

− 1
2 = 246 GeV (1)

where GF - Fermi constant.
As was mentioned above the SM suffers some intrinsic problems (mass

hierarchy, origin of SSB and so on). This indicates that the SM is a low-
energy limit of a more general theory. The idea of supersymmetry (SUSY)
[9], [10] provides a good basis for such a theory. Supersymmetry stabi-
lizes the mass hierarchy of the gauge bosons and eliminates the quadratic
radiative corrections.
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The theory of strong dynamics (technicolor theory (TC) [11], [12],
[13]) gives a fresh insight into the problem of the spontaneous electroweak
symmetry breaking. By analogy with the QCD, the TC leads to the con-
finement phenomenon, formation of a fermion chiral condensate and also
has a mass scale of the order of the weak scale. The physical spectrum
of the TC-theory consists of the TC singlets: techibaryons and techn-
imesons. Complete theory should describe techniquark decays into light
leptons and quarks since no stable TC objects are found. Such a the-
ory should also provide masses of quarks and leptons. Technicolor theory
refers to the so-called higgsless theories. After the discovery of a new
particle - candidate for the Higgs boson, made at July, 2012 the destiny
of this theory is vague.

In the Little Higgs Model [14], [15], pseudo-Nambu-Goldstone field
plays the role of the Higgs field. Due to unbroken global symmetries, the
mass of the Higgs boson does not contain the one-loop quadratic diver-
gences. New fields must be introduced to ensure that the global symme-
tries are not broken too strongly. At the same time these fields should
cut off the quadratically divergent top, gauge, and Higgs loops. From
the beginning, the model contains the Higgs field in a form of a mass-
less Nambu-Goldstone field. Gauge interactions, Yukawa couplings and
quadratic terms of the potential are absent. The inclusion of gauge inter-
actions into the model allows the Nambu-Goldstone boson (little Higgs)
to acquire mass through loop corrections. More information about the
little Higgs models can be found in the Little Higgs review [16].

This paper presents one of the realizations of the Higgs mechanism.
Our approach is based on the idea of the universal extra dimensions
(UED), developed in the pioneeric papers [17], [18], [19], [20], and now
one of the main directions of the multidimensional gravity.

Extra components of the multidimensional metric tensor generate scalar
and vector fields due to the reduction to the four dimensional space-time.
The Higgs boson is described by a set of specific off-diagonal components
of the metric tensor and possesses the ordinary features in the low-energy
limit.

Our study follows the general direction associated with the UED - [23],
[24], [25], [26] and based on the idea elaborated in the paper [27]. In the
latter paper, the form of Higgs-like potential depends on initial conditions
of extra metric evolution what leads to problems with extracting specific
values of the initial parameters from an experimental data. In the present
paper we obtain the strict connection between the Lagrangian parameters
and initial parameters like a radius of the extra space.

This approach allows not only to reproduce the conventional form of
the Higgs sector but also to find deflections what became topical nowa-
days. It is shown that a comparison of the self couplings of the Higgs-like
field to that of the Standard Higgs could give significant information pro-
vided that the LHC luminosity will be increased.
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2 Proto-Higgs field and Higgs-like poten-

tial

According to the previous discussion, the first step consists of extracting
a Higgs-like field from a metric tensor in the framework of multidimen-
sional gravity. The Higgs field is associated with some metric components
of extra space that are transformed according to the fundamental repre-
sentation of the SU(2) × U(1) group.

To be more concrete, consider aD = 10-dimensional Riemannian man-
ifold V10 =M4 × V4 × V2 with the metric tensor of the form:

GAB =









gµν(x)

G
(4)
ab ea(x)

eb(x) −r2d
−r2d sin2 θ.









(2)

Here µ, ν = 1, 2, 3, 4. The subspace V4 with metricG
(4)
ab = −r2cdiag(1, 1, 1, 1)

is described by coordinates ya, a = 5, 6, 7, 8. Our 4-dim space is described
by the coordinates x and a metric tensor gµν . The second subspace V2

has the geometry of sphere with radius rd.
The components ea ≡ ga9 transform under fundamental representation

of a linear group of coordinate transformations in V4. It will be shown be-
low that this property allows one to connect them to the Higgs field. The
metric components which are important for the following consideration
are written explicitly in expression (2).

Let us start with a non-linear F (R) theory in D-dim space. The model
is specified by the action

S =
mD−2

D

2

∫

dDX
√
G · F (R) (3)

where mD is the D-dimensional Planck mass and F (R) is an arbitrary
function of the Ricci scalar.

After standard calculations the scalar curvature R of the space V10

acquires the form

R = R4 +K(e2)(∂µea)
2 +R6(e

2), (4)

K(e2) =
1

2

r2cr
2
d − 5e2

(e2 − r2cr
2
d)

2
(5)

R6(e
2) =

2r2c
r2cr

2
d − e2

(6)

where metric (2) is taken into account. We also use the notations e2 =
e2a = e25 + e26 + e27 + e28 valid for the Euclidean geometry of the subspace
V4 and e =

√
e2.

To facilitate the analysis, slow motion approximation [27] will be used.
In our case this approximation is correct if the Ricci scalar R6 of the extra
space is large comparing to the other terms in (4). The condition of slow
motion

R6(e
2) ≫ α; α ≡ R4 +K(e2)(∂µea)

2 (7)
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allows one to use first terms of the Tailor series

F (R) = F (R6 + α) = F (R6) + α · F ′(R6). (8)

Numerical values of the parameters used below lead to the Ricci scalar

R6(e
2) ∼ 10 TeV 2.

and one can easily check that inequality (7) holds true at temperatures
much smaller than 10 TeV.

Action (3) with Ricci scalar (4) can be integrated over the extra di-
mensional variables. This leads to the effective 4-dimensional action

S =

∫

d4x
√
−g

[

ϕ(e2)
M2

2
R4 + ψ(e2)(∂µea)

2 − U(e2)

]

(9)

where
M2

2
= (2π)5m8

Dr
4
cr

2
d (10)

ϕ(e2) = f(e2)F ′(R6)

ψ(e2) =
M2

2
ϕ(e2)K(e2)

U(e2) = −M
2

2
f(e2)F (R6)

f(e2) =

√

∣

∣

∣

∣

1− e2

r2cr
2
d

∣

∣

∣

∣

After the conformal mapping, see e.g. [28]

gµν = Ω(e2)gµν (11)

Ω(e) = |ϕ(e2)|− 2
D−2

and the change of variables ea → ha

ha =

∫

√

2|L(e2a)|
ϕ(e2a)

dea,

the action acquires the Einstein-Hilbert form in terms of the scalar field
ha.

S =

∫

d4x
√

−g
[

sign(ϕ)

[

M2

2
R4 + sign(L)

1

2
(∂µha)

2

]

− V (h2)

]

. (12)

Here the notations

L(e2a) = ϕ(e2)ψ(e2) +
3

2

M2

2

(

∂ϕ(e2)

∂e

)2

and
V (h2) = |ϕ(e2)|−2U(e2), (13)

were introduced. The effective potential V depends on the new field ha

as long as ea = ea(h). Equalities sign(ϕ) = sign(L) = 1 are checked to
be true in our case.
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The standard form of the Hilbert-Einstein action with the Λ term is

S =

∫

d4x
√
−g

[

M2
pl

2
R − 2Λ

]

In our case the cosmological constant is hidden in the potential V (h2). We
assume that the effect we study here is not the only one that contributes
to the cosmological constant and the Planck mass. In particular one could
add an additional extra space so that its Ricci scalar contributes to the
vacuum energy and shifts the cosmological term to the observed value.
Moreover the values of these parameters are not important for particle
physics considered in the Minkowski space. In this case the Ricci scalar
equals zero and we may omit the first term in (12).

Till now we did not discuss the form of F (R) function to maintain
the general form of equations and formulas. As a next step let us choose
specific form of the function F (R)

F (R) = R + cR2 + bR3 − 2Λ. (14)

The following analysis is strongly simplified if the metric fluctuations
e are small:

e2a << r2cr
2
d. (15)

This checked to be true in the vicinity of the minimum of the potential,
where e2a/(r

2
cr

2
d) ≈ 0.009 << 1 for the parameter values rc = rd = 0.06,

mD = 3.29 and η = 246 GeV, see the figure caption. Moreover the field
ha is proportional to the field ea with two percent accuracy,

ha ≃ M√
2rcrd

ea, (16)

in this case. This strongly facilitates the analysis and leads to the explicit
form of potential (13)

V (h2
a) =

M2

2r2d

1
√

1− 2h2
a

M2






1 +

c1

1− 2h2
a

M2

+
c2

(

1− 2h2
a

M2

)2







−2

(17)

×






− 2

1− 2h2
a

M2

− c1
(

1− 2h2
a

M2

)2 −
2
3
c2

(

1− 2h2
a

M2

)3 + 2Λr2d






,

where c1 = 4 · c · r−2
d , c2 = 12 · b · r−4

d and expression (14) is used.

Let us express the four-component column ĥ = (h5, h6, h7, h8) in terms
of two-component complex fields X,Y in the following way

ĥ ≡
(

X
Y

)

(18)

and define new two-component complex column H - the Higgs field - as

H = X + iY. (19)
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The correspondence between the fields H and h can be described by
using the matrix

P =
1√
2

(

1 0 i 0
0 1 0 i

)

(20)

The matrix (20) “projects” one representation of the Higgs field, ĥ =
(h5, h6, h7, h8), onto the other,

H = Ph. (21)

so that

H =

(

h5 + ih7

h6 + ih8

)

(22)

The transformation properties of this field are discussed in the next Sec-
tion.

In terms of the field H the Lagrangian can be obtained by combining
equations (17) and evident equality haha = H+H. Its final form

LH =
1

2
(∂µH)+(∂µH)− V (H+H), (23)

V (H+H) =
M2

2r2d

1
√

1− 2H+H
M2






1 +

c1

1− 2H+H
M2

+
c2

(

1− 2H+H

M2

)2







−2

×
[

−2

(

1− 2H+H

M2

)−1

− c1

(

1− 2H+H

M2

)−2

− 2

3
c2

(

1− 2H+H

M2

)−3

+ 2Λr2d

]

includes the same parameter values as in (17)
The form (23) does not look like the standard Higgs potential. Never-

theless, it has appropriate low-energy behavior for some parameter values
which can be found from the conditions

d

dh
V (h2 = η2) = 0, (24)

d2

dh2
V (h2 = η2) = m2

h,

where h =
√
H+H =

√

h2
5 + h2

6 + h2
7 + h2

8 (see (22)) and η = 246 GeV
is the standard Higgs vacuum expectation value. Recent results on Higgs
search indicate that its mass mh is about 125 GeV and we base on this
value to determine the parameters of our model. Numerical calculation
of the Higgs potential (17) of our model, is represented in Figure 2.

Let us compare the coupling constants derived from the Standard
Model to the one derived from our model. In our model, Taylor series
of the Higgs-like potential include an infinite number of vertexes

V (h2) = V (η) +
m2

h

2
ρ(x)2 + λ1ρ(x)

3 + λ2ρ(x)
4 + λ3ρ(x)

5 + ..., (25)

where h = η+ρ(x). Numerical calculation of the coupling constants λ1, λ2

and so on gives the following numbers

λ1 = 0.0337, λ2 = 0.0445, λ3 = 0.0279; V (η) = 0.5 (26)
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Figure 1: Higgs-like potential. The parameter values are rc = rd = 0.06 TeV−1,

mD = 3.29 TeV, c1 = 10061.94, c2 = −6244.86, 2Λr2
d
= 10100.03

Recall that mh = 0.125 TeV and η = 0.246 TeV.
As was mentioned above an absolute value of the potential is not im-

portant since gravitation has not been taken into account. Nevertheless
we represented this value for completeness.

The Higgs potential in the Standard Model has the form

USM (H) =
m2

h

2
ρ(x)2 + λ1ρ(x)

3 + λ2ρ(x)
4 (27)

where the numerical values of coupling constants

λ1 = 0.0317, λ2 = 0.0322, λn>2 = 0 (28)

are connected to the Higgs mass which was determined recently.
One can see that the corresponding coupling constants in expressions

(26), (28) have different values. This point could be checked in the forth-
coming LHC experiments. Non-zero value of the coupling constant λ3

represents crucial difference between Standard Model and our one.

3 Interaction between the Higgs-like field

and the gauge fields

Up to now we have not considered the transformation properties of the
field ha and its relation to the Higgs field H of the Standard Model. This
point was discussed in [27] and we shortly remind the idea.
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In our approach, symmetries of a Lagrangian depend on symmetries
of a compact space in the Kaluza-Klein spirit. Consider a class T of linear
coordinate transformations of our extra space with metric (2)

y′a = T a
by

b, a, b = 5, ..., 8. (29)

It is supposed that the matrices T = T1T2 form a Lie group of isometries
of the extra space. The set of 4× 4 matrices T1, T2 is defined as follows

T1 =

(

I cosφ −I sinφ
I sinφ I cosφ

)

, T2 =

(

A −B
B A

)

, (30)

where I is the unit 2× 2 matrix and matrices A,B satisfy the conditions

ATA+BTB = 1, ATB −BTA = 0, det(A+ iB) = 1. (31)

Under these conditions a real 4-parametric group T is isomorphic to the
group SU(2) × U(1) [27]. Transformation properties of the proto-higgs
fields ea and ha are the same as in (29),

h′a = T a
bh

b, a, b = 5, ..., 8. (32)

and hence this field transforms under fundamental representation of the
group T .

According to (18), (19) the doublet H is connected to the proto-Higgs
field ea. As was shown in [27], the described transformation properties of
the proto-Higgs field leads to proper transformations of the field H . The
latter is transformed by the fundamental representation of the electroweak
group SU(2) × U(1)

H ′ = ω1ω2H = (A+ iB)eiφH (33)

and hence could be considered as a candidate to Higgs boson.
We have singled out the components of the metric tensor interpreted

as the Higgs bosons. The way of extracting gauge fields from the extra-
dimensional metric is well known. Namely, the metric (2) is represented
in a standard form (see, e.g., [21, 22]), where the following components of
the total metric (2) will be of interest for us:

gµν(x, y) = gµν(x) + gabk
a
i (y)A

i
µ(x)k

b
j(y)A

j
ν(x), (34)

gµa(x, y) = gabk
a
i (y)A

i
µ i, j = 1, 2, 3, 4.

The set of Killing vectors kai acts in the subspace V 4 with the metric G
(4)
ab .

They satisfy the relations

kai ∂ak
b
j − kaj ∂ak

b
i = f l

ijk
b
l (35)

where f l
ij are structure constants of the Lie group T = T1 · T2. It can be

shown, see e.g. [22] that the fields Ai
µ(x) transform exactly as gauge fields

under the action of the group T

Ai
µ + δAi

µ = Ai
µ − ∂µε

i + f i
lkA

l
µε

k (36)
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if the infinitesimal coordinate transformations

x′µ = xµ, y′µ = yµ + kai ε
i (37)

in V 4 take place.
The structure of the term Lint(A,h), containing interaction between

the field ha and the gauge fields Ai
µ, can be obtained from general con-

siderations. The initial Lagrangian is invariant under general coordinate
transformations and therefore under those belonging to the group T . This
also relates to those part of the Lagrangian containing the fields ha and
Ai

µ as well. On the other hand transformations (32) and (36) are known
as gauge transformations and hence the fields A and h must enter the
Lagrangian in a certain gauge-invariant combination. The latter is well-
known and has the form

Lint(A, h) = gµν(Dµha)
+(Dνh

a),

(Dµh)a =
(

δab∂µ +Ai
µ(x)ti,ab

)

hb.

As was shown in [27] the explicit form of the group generators ti,ab contains
the Pauli matrices τm. The transition (21) to the field H leads to the
standard form of interaction of the gauge and Higgs fields

Lint(A,H) = gµν(DµH)+(DνH), (38)

where the gauge-invariant derivative of the field H has the form

Dµ ≡ (∂µ + Am
µ τm +BµI), Bµ ≡ A0

µ.

The expression (38) represents the standard form of interaction be-
tween the gauge fields and the Higgs field belonging to the fundamental
representation of the gauge group and corresponding to the boson sector
structure of the SM.

4 Discussion

In this paper we study one of the possible origin of the Higgs phenom-
ena. It was shown that the Higgs field is constructed from the metric
components of the 6-dim extra space. The parameters of the effective
Lagrangian i.e. the Higgs mass and the coupling constants depend on the
sizes of extra spaces.

Variation of initial parameters like the extra space sizes rc and rd al-
lows to obtain different values of the Higgs boson mass and proper vacuum
expectation value equals 246 GeV. In this paper we limit ourselves by a
Higgs mass about 125 GeV. Main difference between our model and the
Standard Model lies in different values of coupling constants, see expres-
sions (26) and (28) for comparison. Future measurements of the 3- and 4-
vertex coupling constants will clarify the situation. If the coupling con-
stants appear to be different this will indicate a possible existence of an
extra space.

The SM is proved to be a renormalizable theory, in particular due to
the form of the Higgs potential. The properties and the existence of the
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SM Higgs field itself are postulated from the beginning. Our aim was
to derive its properties by defining it as the off-diagonal components of
the metric tensor of extra space. The Higgs-like potential obtained here
reveals a non-renormalizability of the effective theory what is common
situation when dealing with gravity. In fact, every field theory becomes
”slightly nonrenormalizable” when an interaction with gravity is involved.
Main signature of the nonrenormalizable character of our Higgs-like La-
grangian is the nonzero value of the parameter λ3 in (26). Thus an exper-
imental search for the 5-vertex self-interaction of the Higgs-like particle
would be very instructive though very difficult.

There are several points that must be discussed in the future. Firstly,
the problem of stabilization of extra space is not considered here, though
the gravity with higher derivatives contains such possibility, see [25]. Sec-
ondly, the coupling constants of the Higgs field and gauge ones remain
uncertain. At last, we found those components of the extra metric which
behaves like the Higgs field. Other components of the extra metric are
not discussed.

The authors are grateful to R. Konoplich for fruitful discussions. The
work of AVG was supported by the grant 14.132.21.1446 of Ministry of
Education and Science of the Russian Federation. The work of SGR was
partially supported by the grant 14.A18.21.0789 of Ministry of Education
and Science of the Russian Federation.
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