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              Abstract 

 

 Curvature and torsion are the two tensors characterizing a general Riemannian space-time. In 

Einstein’s General Theory of Gravitation, with torsion postulated to vanish and the affine 

connection identified to the Christoffel symbol, only the curvature tensor plays the central role. 

For such a purely metric geometry, two well-known topological invariants, namely the Euler class 

and the Pontryagin class, are useful in characterizing the topological properties of the space-time. 

From a gauge theory point of view, and especially in the presence of spin, torsion naturally comes 

into play, and the underlying spacetime is no longer purely metric. We describe a torsional 

topological invariant, discovered in 1982, that has now found increasing usefulness in recent 

developments. 

 

 Professor C. N. Yang played a leading role in laying the foundation for the development of 

gauge theories in particle physics. His hallmark contribution is the Yang-Mills nonabelian gauge 

theory [1]. My first learning of the Yang-Mills gauge theory came in 1963 when Professor Julian 

Schwinger, my thesis advisor, assigned me to investigate the question of mass of the Yang-Mills 

gauge particle; apparently he himself was thinking about the mass problem of gauge bosons 

during that period [2]. After struggling for about a year, of course, nothing came out of it. It was 

also around that time Schwinger taught in his quantum field theory class Herman Weyl’s 1929 

formulation of Dirac electrons in the gravitational field [3], in which Einstein’s gravitational 

theory is cast as a gauge theory of local Lorentz gauge symmetry. In the mid 1970’s, after the 

standard model of Glashow-Weinberg-Salam had more or less settled down and after the 

appearance of Professor Yang’s 1974 paper on gravitation [4], I became interested in learning 

again about the theory of gravitation. In the spirit of gauge theory, in which the connection, or the 

gauge field, plays central role, Weyl’s and Fock’s pioneering formulation [3] together with its 

revival by Kibble [5] and Sciama [6] in the early 1960’s clearly indicate that torsion [7], in 

addition to curvature, could play an important role in the development of gravitational theory. It 

was during this learning process that an identity relating the totally antisymmetric part of the 

curvature tensor with torsion was found, which M.L. Yan and I later published in 1982 [8]. This 

leads to a topological invariant that characterizes the torsional property of the spacetime, and has 



found increasing usefulness in recent developments. It is this work I will report on . 

 

     Riemann-Cartan Space-time 

 

The Yang-Mills gauge theory is based on the premise of local freedom in defining isospin. To 

make “compatible” the definitions of isopin at neighboring spacetime points, a connection field, or 

the Yang-Mills gauge field, is introduced. Einstein’s theory of general relativity is based on 

Riemannian geometry, in which local definitions of vectors and tensors at neighboring space-time 

points are correlated by the familiar Christoffel connection. The Christoffel connection, though 

expressed in terms of the metric tensor, thus plays the role of a gauge field for the group of general 

coordinate transformations GL(4). Other than electromagnetic theory, the theory of general 

relativity is indeed the earliest gauge theory, and with a very rich structure. The Dirac spinor, on 

the other hand, is a two-valued representation of the Lorentz group SO(3,1), which has very 

different transformation properties from vector representations. To accommodate local freedom of 

defining spinor property with respect to local Lorentz frames at neighboring spacetime points, 

Weyl and Fock [3] introduced a new connection, the Lorentz connection or spin-connection, to 

relate local definitions of a Dirac spinor. Again, this is very much a play of the gauge concept. 

Under Lorentz transformations of the local Cartesian frame, which is represented by the four 

orthonormal vectors )(xea
 , the “vierbeins”, the Dirac spinor )(x transforms according to [9] 
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The Roman letters a, b, etc. are the frame indices, while the Greek letters ,   , etc. the 

coordinate indices. The corresponding connection field )(xab
 , commonly called the spin 

connection or Lorenz connection, is introduced such that the covariant derivative 
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transforms in a covariant way: 
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This requires that the spin connection field )(xab
  transforms according to  

   ,][)()(')( )()()()( xixixixi eeiexexx 






       (4) 

where 

  

.)(
4

1
)(

,)(
4

1
)(

ab
ab

ab
ab

xx

xx



 





 

The spacetime metric is defined by 

     ba
ab eeg              (5) 

while the proper definition for the GL(4) connection, which plays the role of the gauge field for 

general coordinate transformations, is given by [5] 
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The “minimum” combination 
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where 


ae  is the inverse of 
ae , being invariant under local Lorentz transformations as well as 

under the GL(4) general coordinate transformations when the transformation properties of the 

vierbein fields are correspondingly defined, is the natural choice as the Dirac Lagrangian in 

curved spacetime.  

We note that, in this formulation, there are two sets of field variables: the spin-connection 

fields )(xab
  and the “vierbein” fields 

ae . In defining covariant derivatives, )(xab
  and 


  are the gauge fields for the local Lorentz transformations and the general coordinate 

transformations, respectively. The corresponding “curvature” tensors or field strengths are given, 

respectively, by 
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Having the property: 
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these two curvature tensors are closely related. 

 There are the following two possibilities, yielding different theories [10]: (i) Both )(xab
  



and 
ae  are taken to be independent field variables in the theory and are to be determined by the 

theory. (ii) )(xab
  is given by the Ricci coefficients of rotation in terms of 

ae  and has the 

property of satisfying the required transformation property [5]: 
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where 
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When one opts for the possibility (ii), only 
ae  are basic field variables of the theory and the 

GL(4) connection field 
  defined by (7) is the Christoffel connection: 
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which is symmetric and yields vanishing torsion tensor 
C , where the torsion tensor is defined 

by 
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If, on the other hand, we accept spinors as physically fundamental and regard Lorentz group as the 

fundamental gauge group, then the spin connection )(xab
  should be regarded as basic field 

variables. Namely, one would opt for the possibility (i) mentioned above. The GL(4) connection 

field 
  as defined by (7) is then, in general, not symmetric: 




  , giving rise to 

non-vanishing torsion tensor. It is clear from the Dirac Lagrangian (5) that when the connection 

field or the gauge field )(xab
  is taken to be an independent variable in the theory, it receives 

contribution from the Dirac field in the form of 
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This is the origin of a non-vanishing torsion tensor. It is thus seen that torsion could play an 

important role in gauge theories of gravitation when the Dirac field is brought into the system of 



consideration. 

 

           Gauss-Bonnet Identities 

 

 In purely metric Riemannian space-time, the Euler and Pontryagin 4-forms 

   





  RRg , (Euler)    

   
 RRg , (Pontryagin) 

are well known to satisfy the Gauss-Bonnet identities. In the case of non-vanishing torsion, the 

identification (10) allows verification of these identities [11] by making use of the Clifford algebra 

satisfied by the Dirac matrices.  

 Define 
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where in the last step use has been made of the Lorentz algebra: 

   adbcacbdbcadbdaccdab

i  ],[
2

.    (17) 

Denoting by abcd  the totally anti-symmetric Minkowski tensor, with 10123  , and noticing  

     dcba
abcd eeee ,  ggea   det)(det 2 ,  (18) 

the Euler 4-form can be expressed in the form: 
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where, with  

3210
5  i ,  

use has been made of 

     abcdcdab iTr  45  . 

On account of (14) and 
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This is the Gauss-Bonnet formula for the Euler 4-form. It is due to this property of being a total 

derivative that the volume integral of the Euler 4-form is a topological invariant. 

 Along the same vein, we can verify that in the case of non-vanishing torsion the Pontryagin 

4-form satisfies the following Gauss-Bonnet type identity: 
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 We can extend the above derivation to a larger set of field variables. The larger set [8,11] 

contains the spin connection fields )(xab
  and the vierbein fields 

ae , which we group 

together to form antisymmetric  AB  (A,B = 0,1,2,3,5)  

  abAB   (for A,B = 0,1,2,3)           (22) 
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where a constant l with the dimension of length is added to match the dimension of )(xab
 [12]. 

As 53210 ,,,,   form a set five anti-commuting matrices, we can easily construct a set of 

anti-symmetric ABX  (A, B = 0,1,2,3,5) satisfying the de Sitter or anti-de Sitter algebra: 
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with )1,1,1,1,1( AB . Letting 
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we define F  and 
ABF  according to 
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The 
ABF  so defined is given by, according to (24),  
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which has the contents (a,b = 0,1,2,3) : 
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where 
C  is the torsion tensor defined in (13). Following the same procedure as in deriving 

the identities (20) and (21), we can derive a similar identity for 
ABF : 

   ][2 



  FFTrgFFg AB

AB   

    )]
3

2
(8[ 


  

i
Trg .    (30) 

 

      Torsional Topological Invariant 

 

On account of (28) and (29), we have the difference of the two Pontryagin 4-forms: 
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Substracting (30) from (21) yields 
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or, in the more compact form: 
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The 4-form  
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is thus seen to be the exterior derivative of the Chern-Simons type term: 

   
 Cg             (34) 

It follows from the identity (32) that 
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Like the Euler class and the Pontryagin class, the left-hand side of the above equation is a 

topological invariant [12]. It is an invariant that characterizes the torsional topology of the 

underlying space-time; with vanishing torsion, each individual term on both sides of (32) and (35) 

vanishes.  

The identity (32) can also be derived directly [8] from the Bianchi identity for non-vanishing 



torsion [11]. But, the derivation presented here has the advantage of making the meaning of the 

topological invariant more transparent. The geometric properties of the invariant have been 

studied by Chandia and Zanelli [12] and others [13]. It is well known that the Pontryagin or 

Chern-Weil class for the Lorentz group, 
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is a topological invariant with an integral spectrum of values. Likewise, the Pontryagin class for 

the de Sitter or anti-de Sitter group, 
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is also a topological invariant with an integral spectrum of values. It is seen from (31) that the 

torsional topological invariant 
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is proportional to the difference of the two Pontryagin classes (36) and (37), and thus has a 

discrete spectrum of values [12]. The dimensional constant l appearing in (31), however, is an 

unknown parameter with no clear physical identification. In de Sitter type gravitational theories, 

the constant l could conceivably play the role of the length characterizing the breakdown of the de 

Sitter symmetry.  

 Torsion is a geometric property not well investigated in mathematics. It is physicists’ search 

for an extension of Einstein’s general theory of relativity that torsion naturally appears. The 

properties of the torsional topological invariant (35) remain to be studied. 
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