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Abstract: We use the embedding of Einstein gravity with cosmological constant into

conformal gravity as a basis for using the twistor action for conformal gravity to obtain

MHV scattering amplitudes not just for conformal gravity, but also for Einstein gravity on

backgrounds with non-zero cosmological constant. The new formulae for the gravitational

MHV amplitude with cosmological constant arise by summing Feynman diagrams using

the matrix-tree theorem. We show that this formula is well-defined (i.e., is independent of

certain gauge choices) and that it non-trivially reproduces Hodges’ formula for the MHV

amplitude in the flat-space limit. We give a preliminary discussion of an MHV formalism

for more general amplitudes obtained from the conformal gravity twistor action in an axial

gauge. We also see that the embedding of Einstein data into the conformal gravity action

can be performed off-shell in twistor space to give a proposal for an Einsten twistor action

that automatically gives the same MHV amplitude. These ideas extend naturally to N = 4

supersymmetry.
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1 Introduction

Witten’s twistor-string theory and related models [1–3] have inspired an extensive list of

recent developments in our understanding of maximally supersymmetric (N = 4) super-

Yang-Mills (SYM) theory. While these original twistor-string theories were limited in their

applicability to perturbative gauge theory due to unwanted contributions from conformal

gravity [4], twistor actions for Yang-Mills theory were discovered which isolated the gauge

theoretic degrees of freedom [5, 6]. In one gauge they reduce directly to the space-time

action. However, in an axial gauge on twistor space, twistor actions lead to particularly

efficient Feynman diagrams, the MHV formalism, that had originally been suggested from

twistor-string considerations [7]. In this formalism, the Maximal-Helicity-Violating (MHV)

amplitudes are extended off-shell to provide vertices of a Feynman diagram-like formalism

that are tied together with massless scalar propagators. The MHV formalism successfully

computes tree and loop amplitudes at least in supersymmetric gauge theories [8]. Twistor

actions have now been applied to study a wide variety of physical observables in N = 4

SYM, including scattering amplitudes, null polygonal Wilson loops, and correlation func-

tions (c.f., [9] for a review).

There is also a twistor action for conformal gravity [5], the conformally invariant theory

of gravity whose Lagrangian is the square of the Weyl tensor. It has fourth-order equations

of motion so its quantum theory is non-unitary and is widely believed to be un-suitable

for a physical theory. Nevertheless, conformal gravity has many interesting mathematical

properties: for instance, it can be extended to supersymmetric theories for N ≤ 4, and

the maximally supersymmetric theory (N = 4) comes in several variants, some of which

are finite and power-counting renormalizable (c.f., [10] for a review). More importantly

for this paper, not only do solutions to Einstein gravity form a subsector of solutions

to the field equations of conformal gravity, Maldacena has shown that evaluated on a de

Sitter background, the tree-level S-matrix for conformal gravity reduces to that for Einstein

gravity when Einstein states are inserted [11].

Here we study the Einstein tree-level S-matrix by reducing the conformal gravity

twistor action to Einstein scattering data. Most of our analysis concerns the reduction

on-shell as in the Maldacena argument, but in fact it can be done off-shell also. This

off-shell reduction leads to a proposal for the twistor action for general relativity itself; up

to now there has only been a twistor action for the self-dual sector of Einstein (super-)

gravity [12]. In any case, the Maldacena argument shows that the on-shell reduction of

the full conformal gravity twistor action will give the correct tree-level Einstein S-matrix

and that is our main focus here as, at this stage we do not have a direct classical off-shell

equivalence between the Einstein twistor action and the standard Einstein action.

Our main focus in this paper is on the MHV amplitude and both twistor actions by

construction give rise to the same formulae for this. In an axial gauge the twistor actions

simplify considerably for the MHV amplitude, although they are by no means as simple

as they are in the Yang-Mills case. We show that the Feynman diagrams for the MHV

amplitudes can nevertheless be summed using the matrix-tree theorem to give new forms

of the gravitational MHV amplitudes valid on backgrounds with cosmological constant.
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However, the transform of these into momentum space is no longer straightforward because

the de Sitter group does not lead to ordinary momentum eigenstates. Nevertheless, these

ideas provide an origin for the tree formula for the MHV amplitude of [13] in terms of

conventional Feynman diagrams and their summation using the matrix-tree theorem as in

[14, 15].

Progress on understanding the amplitudes of (super-)gravity in twistor space has been

much slower than for Yang-Mills–even at tree-level and at MHV. In [16] a form of the

momentum space BGK formula for the MHV amplitude was proved by reformulating a

background coupled scattering problem for a negative helicity particle on a self-dual back-

ground into twistor space. In [17] BCFW recursion was reformulated in twistor space to

give formulae for gravity amplitudes that have similar support to their Yang-Mills counter-

parts. The MHV amplitude was shown to be obtainable as a sum of tree diagrams arising

from BCFW recursion in [13]. Progress was much more rapid after Hodges’ discovery of

a manifestly permutation invariant and compact formula for the MHV tree amplitude of

Einstein gravity [18]. This was related to the tree-diagrams of [13] via the matrix-tree the-

orem in [14]. It was generalized to the Cachazo-Skinner expression for the entire tree-level

S-matrix of N = 8 supergravity in terms of an integral over holomorphic maps from the

Riemann sphere into twistor space [19, 20]. Perhaps most striking is Skinner’s develop-

ment of a new twistor-string theory for N = 8 Einstein supergravity [21] that produces

this formula.

Parallel work sought to derive Einstein amplitudes from Witten and Berkovits’ original

twistor-string formula for conformal gravity amplitudes by restricting to Einstein states

and appealing to Maldacena’s argument to obtain the amplitudes [15, 22]. Although the

correct amplitudes are obtained at three points, the relationship between Einstein and

conformal gravity amplitudes requires minimal conformal supergravity rather than the non-

minimal version arising from the Berkovits-Witten twistor-string (see §A.3 for a discussion

of this distinction). Nevertheless, in [15] it was shown that for MHV amplitudes, the

correct Hodges formula is obtained at n-points when a tree ansatz is imposed on the

worldsheet correlation function of the Berkovits-Witten twistor-string. Although there

is no clear motivation for the tree ansatz within Witten’s and Berkovits’ twistor-string

theory,1 it is natural in the context of the Maldacena argument applied to the twistor

action for conformal gravity [5], which does give the minimal theory. One aim of this

paper is to give a complete presentation of that argument. It also allows us to provide a

generalization of the Hodges formula for the gravitational MHV amplitude to the case of

non-vanishing cosmological constant, which is the regime where the Maldacena argument

is most straightforwardly applicable. We will see that this also arises from a twistor action

for Einstein gravity, obtained by reducing the conformal gravity action to Einstein degrees

of freedom.

A priori one could hope to derive a formula for the gravitational MHV amplitude with

cosmological constant from Skinner’s N = 8 twistor-string [21] as it is formulated for all

1In Skinner’s N = 8 twistor-string the tree ansatz can be understood as arising from cancellation of the

loops due to worldsheet supersymmetry.
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values of Λ. Unfortunately, although this twistor-string theory has been shown to give the

correct tree-level amplitudes at Λ = 0, it has so far not been possible to make sense of the

worldsheet correlations functions for the Λ 6= 0 regime. It is to be hoped that knowing

the answer (1.3) will also allow us to understand how to properly understand this N = 8

twistor-string for Λ 6= 0.

For a cosmological constant Λ 6= 0, the traditional definition of a scattering amplitude

for asymptotically flat space-times no longer applies. When Λ > 0, one can still define

mathematical quantities corresponding to scattering from past infinity to future infinity,

but these are not physical observables because no observer has access to the whole space-

time. These mathematical analogues of scattering amplitudes have become known as meta-

observables [23]: the theory allows them to be computed, even if no single physical observer

can ever measure them. Actual physical observables can still be given in terms of the in-in

formalism, where the observer only integrates over the portion of space-time containing his

or her history. When Λ < 0, this situation is improved and the natural objects to compute

are correlation functions in the conformal field theory on the boundary via the AdS/CFT

correspondence (although mathematically the integration regions are not so dissimilar and

indeed the formulae will be polynomial in Λ so that the analytic continuation from positive

to negative Λ is trivial). Our formulae for the MHV amplitude (see (1.3) below) will

essentially be in the form of an integrand that can be integrated either over all of space-

time, as appropriate for the meta-observable for scattering from past to future infinity of

de Sitter space, or over a different contour as required for the in-in formalism. For the

remainder of this paper, we will refer only to ‘scattering amplitudes’ in de Sitter space,

trusting the reader to keep the implicit subtleties in mind. Furthermore, although we will

focus on the case of Λ > 0 de Sitter space in this paper, most of our arguments (and

certainly the final formula) apply to anti-de Sitter space with trivial changes of sign and

can be applied to the AdS/CFT correspondence.

We begin in Section 2 with a discussion of the reduction of conformal gravity to Ein-

stein gravity. This includes a brief overview of different space-time action principles for

conformal gravity and the relationship with general relativity on an asymptotically de Sitter

background. Maldacena’s argument then indicates that the tree-level S-matrix of Einstein

gravity can be computed from that of conformal gravity by restricting to Einstein degrees

of freedom. From this, we derive a precise version of the correspondence for space-time

generating functionals of MHV amplitudes in Appendix A.2. Since we will be interested

in scattering amplitudes, we also discuss the relationship between polarization states for

conformal and Einstein gravity. These ideas also have a natural extension to maximally

supersymmetric N = 4 conformal supergravity, albeit only in the minimal form as dis-

cussed in detail in §A.3. In §A.2 we explain how the MHV amplitude can be constructed

by scattering a negative helicity particle on a self-dual background, and how the embedding

of Einstein gravity within conformal gravity works in this context.

In Section 3, we study the twistor action for minimal N = 4 conformal supergravity.

After a brief review of some relevant aspects of twistor theory, we recall the definition

of the twistor action for N = 0 conformal gravity, and argue that its straightforward
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generalization to N = 4 produces the minimal supersymmetric theory. In this N = 4

context, the data of conformal gravity is encoded by a vector-valued (0, 1)-form f = f I∂I
on twistor space (PT ) determining the deformation of the ∂̄-operator away from some

choice of background, and a (1, 1)-form g = gIdZ
I , where I is a super-twistor index. The

twistor action takes the form

SCG[g, f ] =

∫
PT

D3|4Z∧gI ∧
(
∂̄f I + [f, f ]I

)
−ε2

∫
M

d4|8x

[∫
X
Y · (∂̄σZ − f) +

(∫
X
g

)2
]
,

(1.1)

where D3|4Z is a top degree form that is holomorphic with respect to the background

complex structure on twistor space, ε is the dimensionless coupling constant of conformal

gravity, and d4|8x is a canonically defined measure on the space of rational curves X ⊂ PT

corresponding to real points in space-time. The first part is a local action on twistor space

for the self-dual sector, and the third provides the required interactions to extend this to

the full theory. It includes an integral over the 4|8 parameter family of rational curves X,

which are holomorphic with respect to the almost complex structure and real with respect

to a choice of reality structure. These are determined by the the second part, a Lagrange

multiplier action
∫

d4|8x
∫
X Y · (∂̄σZ(x, σ) + f(Z)) for the almost complex curves X.

This conformal gravity twistor action is then restricted to Einstein degrees of freedom

in Section 4. This leads to a twistorial expression for the generating functional of MHV

amplitudes in Einstein (super-)gravity, and also results in a proposal for a twistor action

describing Einstein gravity itself. Under this reduction, the data for conformal gravity is

replaced by a pair of (0, 1)-forms h̃, h of weights −2, +2 respectively (corresponding to the

±2 graviton multiplets for N = 4), and twistor space is equipped with complex weighted

Poisson and contact structures, {·, ·} (of weight −2) and τ (a (1, 0)-form of weight +2)

respectively. The reduction to a proposed twistor action for Einstein gravity is then:

SEin[h̃, h] =

∫
PT

D3|4Z ∧ h̃ ∧
(
∂̄h+

1

2
{h, h}

)
−

ε2

Λκ2

∫
M

d4|8x

[∫
X
Y · (∂̄σZ + {h, Z}) +

(∫
X
h̃ ∧ τ

)2
]
, (1.2)

where κ2 = 16πGN and Λ is the cosmological constant.

We consider the Feynman diagrams for these actions in section 5. In an axial gauge

there are propagators on twistor space coming from the first part of the action and one on

the Riemann sphere from the second. For the MHV amplitude, only the Riemann sphere

propagator enters and the calculation is the same for both actions. These CP1 Feynman

diagrams leads to a sum of tree diagrams for computing the Einstein amplitude within

minimal N = 4 conformal supergravity, or equivalently via the candidate Einstein action

(1.2). This turns out to be essentially equivalent to the approach based on the Berkovits-

Witten twistor-string in [15] to obtain Hodges’ formula from the non-minimal conformal

supergravity subject to a tree ansatze on the correlator; hence, we see that the tree ansatz

successfully isolates the minimal sector in the twistor-string (at MHV).
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By use of the matrix-tree theorem (which has already been utilized in the study of the

flat-space MHV amplitude [13, 14]), we sum the Feynman diagrams to derive an expression

for the MHV amplitude in the presence of a cosmological constant. We find

Mn,0 =
1

Λ

∫
d8|8X

vol GL(2,C)

(X2)2
∣∣H12

12

∣∣+
∑
i,j,k,l

ω1
ijω

2
kl

∣∣∣H12ijkl
12ijkl

∣∣∣
 n∏
m=1

h(Z(σm)) Dσm ,

(1.3)

where XI
A modulo GL(2,C) are coordinates on the moduli space of degree one holomorphic

maps Z(σ) from CP1 (with homogeneous coordinates σA) to twistor space; h(Z(σi)) are

twistor representatives for the external states; H is the Hodges matrix2

Hij =


1

(ij)

[
∂

∂Z(σi)
, ∂
∂Z(σi)

]
if i 6= j

−∑k 6=iHik
(ξk)2

(ξi)2
if i = j

,

expressed on twistor space extended to include a non-zero cosmological constant Λ, and

the quantities ω1
ij are given by

ω1
ij = −Λ

(1ξ)4(ij)

(1i)2(1j)2(ξi)2(ξj)2

[
∂

∂Z(σi)
,

∂

∂Z(σj)

]
.

The notation |H12
12| indicates the determinant of H with the row and columns corresponding

to h(Z(σ1)) and h(Z(σ2)) removed, and ξ ∈ CP1 is an arbitrary reference spinor. We prove

that (1.3) is independent of the choice of ξ, and limits smoothly onto Hodges’ formula

when Λ → 0. This is non-trivial as the latter formula is the generalized determinant of a

rank (n−3) matrix whereas our original formula is a rank n−2 determinant; we show how

our formula can be manipulated into such a form, providing the natural generalization of

Hodges’ formula to Λ 6= 0.

Section 6 concludes with a discussion of future directions following on from this work.

Most enticing is the possibility that the twistor actions studied here could be used to define

a MHV formalism [7] for conformal gravity, and in turn Einstein gravity. Indeed, the twistor

action approach for N = 4 SYM is one way of deriving this formalism in the gauge theory

setting [24, 25] where other techniques such as Risager recursion fail in the gravitational

context [26, 27]. We also discuss how the twistor formula (1.3) could be converted into

a meaningful physical observable in de Sitter space, as well as its potential relationship

with twistor-string theory and background-coupled calculations. The Appendices provide

technical details for our arguments, as well as related background material that is not

essential to the main results.

Notation

Throughout this paper, we use the following index conventions: space-time tensor indices

are Greek letters from the middle of the alphabet (µ, ν = 0, · · · , 3); positive and negative

2Here, and throughout the paper, we denote the SL(2,C)-invariant inner product on CP1 coordinates by

(ij) = εABσ
A
i σ

B
j . The notation [ , ] stands for a contraction with a skew bi-twistor IIJ called the infinity

twistor which is introduced in Section 4. Similarly, 〈 , 〉 denotes a contraction with the inverse infinity

twistor IIJ .
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chirality Weyl spinor indices are primed and un-primed capital Roman letters respectively

(A′, B′ = 0′, 1′ or A,B = 0, 1); R-symmetry indices are lower-case Roman indices from

the beginning of the alphabet (a, b = 1, . . . ,N ). We will also use bosonic twistor indices,

denoted by Greek letters from the beginning of the alphabet (α, β), as well as supersym-

metric twistor indices, denoted by capital Roman letters from the middle of the alphabet

(I, J).

We denote the space of smooth n-forms on a manifold M by Ωn
M ; in the presence of

a complex structure we denote the space of smooth (p, q) forms by Ωp,q
M . If we want to

consider these spaces twisted by some sheaf V , then we write Ωn
M (V ) for ‘the space of

smooth n-forms on M with values in V ,’ and so forth. Dolbeault cohomology groups on

M with values in V are denoted by Hp,q(M,V ). The complex line bundles O(k) denote

the bundles of functions homogeneous of weight k on a (projective) manifold, and we make

use of the abbreviation Ωn
M (O(k)) ≡ Ωn

M (k), and so on.

2 Einstein and Conformal Gravity on Asymptotically de Sitter Spaces

This section is concerned with the space-time formulation of the various equations and

structures that we will be dealing with. The next section will carry on with the discussion

in twistor space.

In the first instance we will work on 4-dimensional space-times M with Lorentzian

signature (1, 3) metrics g that are asymptotically de Sitter. By this, we shall mean that

g is complete and M ' S3 × (0, 1) with smooth conformal compactification (M̄, ḡ) for

M̄ ' S3× [0, 1] and ḡ = Ω2g. Here Ω ∈ C∞(M̄) is the conformal factor, with Ω 6= 0 on M ,

but Ω = 0, ḡ( dΩ, dΩ) > 0 at ∂M̄ . The geometry of the conformally flat case is described

in detail in Appendix A.1. In this context, the conformal gravity equations can be applied

equally to g or ḡ. We will see in this section that the Einstein equations imply those of

conformal gravity and that the tree-level S-matrix for Einstein gravity in this context can

be computed by use of that for conformal gravity. This embedding extends to the N = 4

minimal supersymmetric extensions of these ideas and this is discussed on space-time in

Appendix A.3 and in twistor space in the next section, where the extension is easiest to

present. Finally, as far as space-time considerations are concerned, in Appendix A.2 we

show how the MHV amplitude can be obtained by considering the scattering of an anti-self

dual linear field on a nonlinear self-dual background and how the embedding of Einstein

gravity into conformal gravity relates the generating functionals in this context.

2.1 Conformal gravity

Conformal gravity is the theory obtained from the action

SCG[g] =
1

ε2

∫
M

dµ CµνρσCµνρσ =
1

ε2

∫
M

dµ
(

ΨABCDΨABCD + Ψ̃A′B′C′D′Ψ̃A′B′C′D′

)
,

(2.1)

where ε2 is a dimensionless coupling constant, dµ = d4x
√
|g| is the volume element, Cµνρσ

is the Weyl curvature tensor of g, and ΨABCD, Ψ̃A′B′C′D′ are the anti-self-dual (ASD) and

self-dual (SD) Weyl spinors respectively [28]. This theory is conformally invariant and
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hence only depends upon (and constrains) the conformal structure [g] underlying g. The

field equations are the vanishing of the Bach tensor, Bµν , which can be written in a variety

of different forms thanks to the Bianchi identities:

Bµν = 2∇ρ∇σCρµνσ + CρµνσR
ρσ

=

(
2∇ρ∇(µR

ρ
ν) −2Rµν −

2

3
∇µ∇νR− 2RρµR

ρ
ν +

2

3
RµνR

)
0

= 2(∇CA′∇DB′ + ΦCD
A′B′)ΨABCD = 2(∇C′A ∇D

′
B + ΦC′D′

AB )Ψ̃A′B′C′D′ , (2.2)

where the subscript in the second line denotes ‘trace-free part.’ These show that the field

equations are satisfied when M is conformal to Einstein (i.e., gµν ∝ Rµν), or when its Weyl

curvature is either self-dual or anti-self-dual.

For Yang-Mills theory, there are Lagrangians which allow for a direct perturbative

expansion around the self-dual sector based on a Lagrange multiplier action for the self-

dual sector itself (c.f., [29, 30]). Since the field equations for conformal gravity can be

understood as the Yang-Mills equations of the Cartan conformal connection on a SU(2, 2)

bundle [31], it is natural to expect that analogous actions exist for conformal gravity. We

first note that we can add to (2.1) the topological term

1

ε2

∫
M

dµ
(

ΨABCDΨABCD − Ψ̃A′B′C′D′Ψ̃A′B′C′D′

)
=

12π2

ε2
(τ(M)− η(∂M)) ,

where τ(M) is the signature of M and η(∂M) is the η-invariant of the conformal boundary

[32]. This gives the complex chiral action

SCG[g] =
2

ε2

∫
M

dµ ΨABCDΨABCD , (2.3)

which is equivalent to the full action (2.1) up to terms which are irrelevant in perturbation

theory.

To expand around the SD sector, we introduce the totally symmetric Lagrange multi-

plier spinor field GABCD and write the action as [4]:

SCG[g,G] =

∫
M

dµ
(
GABCDΨABCD − ε2GABCDGABCD

)
. (2.4)

This has field equations [5]

ΨABCD = ε2GABCD,
(
∇CA′∇DB′ + ΦCD

A′B′
)
GABCD = 0, (2.5)

so integrating out G returns (2.3). But now ε2 becomes a parameter for expanding about

the SD sector: when ε = 0, the field equations yield a SD solution and GABCD is a linear

ASD solution propagating on the SD background.

2.2 Einstein gravity amplitudes inside the conformal gravity S-matrix

We now review the relationship between conformal gravity and Einstein gravity and how

it is manifested for scattering amplitudes on de Sitter backgrounds following an argument
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due to Maldacena [11]. Similar arguments hold for anti-de Sitter space with some sign

changes and in that form these ideas can be applied to AdS/CFT duality. We review the

geometry of de Sitter space in Appendix A.1.

It is easily seen from the definition of the Bach tensor that Einstein gravity solutions are

also solutions to conformal gravity. However, in order to show that Einstein tree amplitudes

can be obtained from those of conformal gravity we need to relate the actions of the two

theories. This is because we can define the tree-level S-matrix (or at least its phase) to be

the value of the action evaluated on a classical solution to the equations of motion that has

been obtained perturbatively from the given fields involved in the scattering process. More

formally, given n solutions gi, i = 1, . . . , n to the linearized field equations and a classical

background gcl, we construct the solution g to the field equations whose asymptotic data

is
∑

i εigi. We can then define the tree amplitude to be

M(1, . . . , n) = coefficient of
n∏
i=1

εi in S[gcl + g] .

Thus, if the conformal gravity action of a solution to the Einstein equations yields the

Einstein-Hilbert action of that same solution, then the tree-level conformal gravity S-

matrix can be used to compute that for general relativity. We will see that this is the case

up to a factor of Λ.

The Einstein-Hilbert action in the presence of a cosmological constant is

SEH[g] =
1

κ2

∫
M

dµ(R− 2Λ),

where κ2 = 16πGN . On a de Sitter space, the field equations are Rµν = Λgµν , so the action

reads

SEH[dS4] =
2Λ

κ2

∫
dS4

dµ =
2Λ

κ2
V (dS4),

where V (M) is the volume of M . For any asymptotically de Sitter manifold, this volume

will be infinite so the action functional must be modified by the Gibbons-Hawking boundary

term [33]. Additionally, we must include the holographic renormalization counter-terms

(which also live on the boundary) in order to render the volume finite [34, 35]. After

including these additions, one obtains the renormalized Einstein-Hilbert action [36], and if

M is asymptotically de Sitter, we have:

SEH
ren [M ] =

2Λ

κ2
Vren(M), (2.6)

where Vren is the renormalized volume of the space-time (c.f., [37]).

On the other hand, if M was a Riemannian 4-manifold which was compact without

boundary, the Chern-Gauss-Bonnet formula would tell us that

χ(M) =
1

8π2

∫
M

dµ

(
CµνρσCµνρσ −

1

2
RµνR

µν +
1

6
R2

)
.

If M were additionally Einstein (Rµν = Λgµν), then we would have

SCG[M ] =
8π2χ(M)

ε2
− 2Λ2

3ε2
V (M). (2.7)
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When M is (Lorentzian) asymptotically de Sitter, the Chern-Gauss-Bonnet formula re-

quires a boundary term, and the volume is renormalized. However, a theorem of Anderson3

tells us that (2.7) continues to hold even after boundary terms for the Euler characteristic

are taken into account and the volume has been renormalized [38]. Furthermore, since M

is asymptotically de Sitter we can assume that we always perturb around the topologically

trivial case (i.e., χ(M) = 0), so comparing with (2.6) we find

SCG[M ] = −Λ κ2

3 ε2
SEH

ren [M ]. (2.8)

In Appendix A.2, we show that this embedding can be made precise at the level of

generating functionals for the MHV amplitudes of the two theories. In particular, propo-

sition A.2 demonstrates that the Einstein generating functional is equivalent to the one

from conformal gravity, up to the constants predicted by (2.8) and restriction to Einstein

degrees of freedom. Additionally, these ideas extend to a particular phenotype of N = 4

conformal supergravity (CSG), known as the minimal theory. This version of N = 4 CSG

posesses a global SU(1, 1) symmetry acting non-linearly the conformal dilaton; this ex-

cludes any graviton-scalar couplings which have no analogue in Einstein gravity. Appendix

A.3 provides a review of these concepts.

2.3 Relations between Einstein and conformal gravity polarization states

Maldacena also argues that we can single out Einstein scattering states inside conformal

gravity by employing boundary conditions on the metric [11]. We will use an equivalent

explicit formulation in twistor space to compute the tree-level scattering amplitudes of

general relativity by using conformal gravity restricted to Einstein scattering states on a

de Sitter background. This is realized on space-time as follows.

The usual strategy for calculating scattering amplitudes is to express them in terms

of a basis of momentum polarization states. We will in fact use a variety of different

representations arising from twistor space; however, we need some understanding of the

relationship between linearized solutions to the Bach equations (2.2), spin-two fields, and

linearized Einstein solutions. Polarization states for conformal gravity were studied in

[4, 39] and were argued to contain twice as many states as for Einstein gravity. The

representation on twistor space shows that there are actually three times as many conformal

gravity states as for Einstein gravity. In Appendix A.4 we give a momentum space argument

for this; presumably one has simply been missed in earlier treatments. This will not

materially alter our discussion here, as we are concerned more with the embedding of

Einstein states into those for conformal gravity, though.

We use a slightly different formulation from previous treatments that allows us to

retain Lorentz invariance (although not translation invariance), and will also tie in with

our focus on de Sitter gravity. Let {ψABCD, ψ̃A′B′C′D′} be linearized spin-two fields and

{ΨABCD, Ψ̃A′B′C′D′} be the ASD and SD portions of the Weyl tensor. The key point

in connecting conformal gravity to spin-two fields is that the Weyl tensor has conformal

3Note that Anderson’s theorem is actually stated for asymptotically hyperbolic Riemannian four-

manifolds; the extension to asymptotically de Sitter Lorentzian manifolds follows by analytic continuation.
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weight zero, whereas a linearized spin-two field has conformal weight −1 (c.f., [40]). Both

fields satisfy

∇A′A Ψ̃A′B′C′D′ = ∇A′A ψ̃A′B′C′D′ = 0 = ∇AA′ΨABCD = ∇AA′ψABCD , (2.9)

in the Einstein conformal frame but the Weyl tensor only does so in its given Einstein

conformal scale and no other. Einstein conformal scales can be specified as functions Ω of

conformal weight +1 that satisfy the conformally invariant equation [41]

(∇µ∇ν + Φµν)0Ω = 0, (2.10)

where the subscript 0 denotes ‘the trace-free part’ and Φµν is half the trace-free part of the

Ricci tensor.

In flat space, (2.10) has the general solution

Ω = a+ bµx
µ + cx2 . (2.11)

It is clear in general that given such a solution Ω, rescaling so that Ω = 1 gives a metric

satisfying Φµν = 0 from (2.10). This is the Einstein condition, and the solutions (2.11)

give metrics with cosmological constant Λ = 3(bµb
µ − ac). Upon setting

ΨABCD = ΩψABCD, (2.12)

we see that the Weyl spinor ΨABCD has conformal weight zero and satisfies the linearized

vacuum Bianchi identity (2.9) for the conformal scale in which Ω = 1. Since this is

an Einstein scale and the Bach equations are simply another derivative of this equation,

ΨABCD also satisfies the linearized Bach equations. But then, by conformal invariance of

the Bach equations, it does so in any conformal scale.

We refer the reader to Appendix A.4 for some further discussion of momentum eigen-

states that will not be needed in what follows.

3 Twistor Action for Conformal (Super-)Gravity

In this section, we show how conformal gravity and its supersymmetric extension can be

formulated in terms of a classical action functional on twistor space. After first recalling

some background material on twistor spaces for curved space-times, we define the twistor

action for N = 0 conformal gravity [5] and then consider its natural extension to N = 4

supersymmetry. Our treatment here is rather different from that in [5] as we focus on a

coordinate description that has a simple perturbative expansion.

3.1 Curved twistor theory

In flat Minkowski space M, twistor space PT is an open subset of CP3, with homogeneous

coordinates Zα = (λA, µ
A′). The standard flat-space incidence relations

µA
′

= ixAA
′
λA,
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represent a point x ∈ M by a linearly embedded CP1 ⊂ PT. To study conformal gravity

and the MHV generating functional (A.5), we need twistor theory adapted to curved space-

times such as the self-dual background with cosmological constant, M .

The non-linear graviton construction is the basis for curved twistor theory. We state

the theorem in the context of N = 0, but its extension to the N = 4 context is straight-

forward.

Theorem 1 (Penrose [42], Ward [43]) There is a one-to-one correspondence between:

(a.) Space-times M with self-dual conformal structure [g], and (b.) twistor spaces PT (a

complex projective 3-manifold) obtained as a complex deformation of PT and containing at

least one rational curve X0 with normal bundle NX0
∼= O(1) ⊕ O(1). Define the complex

line bundle O(1) → PT so that Ω3
PT
∼= O(−4) (the appropriate 4th root exists on the

neighbourhood of X0 from the previous assumption).

There is a metric g ∈ [g] with Ricci curvature Rµν = Λgµν if and only if PT is equipped

with:

• a non-degenerate holomorphic contact structure specified by τ ∈ Ω1,0
PT (2), and

• a holomorphic 3-form D3Z ∈ Ω3,0
PT (4) obeying τ ∧ dτ = Λ

3 D3Z.

Here D3Z is the tautologically defined section of Ω3
PT (4).

We define the non-projective twistor space T to be the total space of the complex line

bundle O(−1).

Thus, points x ∈ M (for M obeying the conditions of this theorem) correspond to

rational, but no longer necessarily linearly embedded, curves X ⊂ PT of degree 1. The

conformal structure onM corresponds to requiring that if two of these curvesX, Y intersect

in PT , then the points x, y ∈M are null separated. Furthermore, PT can be reconstructed

as the space of totally null self-dual 2-planes in the complexification of M (c.f., [42, 44]).

Theorem 1 tells us that M corresponds to a curved twistor space PT which arises as

a complex deformation of PT. We will take M to be a finite but small perturbation away

from flat space, so the deformed complex structure on PT will be expressed as a small but

finite deformation of the flat ∂̄-operator:

∂̄f = ∂̄ + f = dZ̄ᾱ
∂

∂Z̄ᾱ
+ f,

where f ∈ Ω0,1
PT(TPT) and Zα are homogeneous coordinates on PT . This induces a basis

for T 0,1
PT and Ω1,0

PT with respect to the deformed complex structure:

T 0,1
PT = span

{
∂

∂Z̄ᾱ
+ fαᾱ

∂

∂Zα

}
, (3.1)

Ω1,0
PT = span{DZα} = span {dZα − fα} , (3.2)

where we have denoted f = fα∂α = fαᾱdZ̄ᾱ∂α. The forms fα must descend from T to

PT , which follows from

Z̄ᾱfβᾱ = 0 , fα(λZ) = λfα(Z) , λ ∈ C∗. (3.3)
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Additionally, the vector field f on T is determined by one on PT only up to multiples of

the Euler vector field Zα∂α, and this freedom can be fixed by imposing

∂αf
α = 0 . (3.4)

As it stands, ∂̄f defines an almost complex structure. This is integrable if and only if

∂̄fα + [f, f ]α = 0, [f, f ]α = fβ ∧ ∂βfα . (3.5)

This integrability condition can be thought of as the twistor form of the field equations

for self-dual conformal gravity. Kodaira theory implies the existence of a complex four

parameter family of rational curves of degree one, and this family is identified with the

complexification of space-time M . Thus to reconstruct M from PT we must find a family

of holomorphic maps

Zα(xµ, σA) : PS→ PT , Zα(x, σ) =
(
λA(x, σ), µA

′
(x, σ)

)
,

where PS ∼= M × CP1 is naturally identified with the un-primed projective spinor bundle

of M and Z(x, σ) is a map of degree one parametrized by x ∈ M . We will often denote

the image of the map for x ∈M as X. The condition that these maps be holomorphic is

∂̄σZ
α(x, σ)− fα(Z(x, σ)) = 0, (3.6)

where ∂̄σ = dσ̄ ∂
∂σ̄ is the ∂̄-operator on X ⊂ PT pulled back to PS.

3.2 Twistor action

We construct a twistorial version of the chiral action (2.4) in twistor space in two parts.

The first is an action for the self-dual sector of conformal gravity. By theorem 1, this is

equivalent to a twistor space with almost complex structure ∂̄f subject to the field equation

that it be integrable. The integrability condition is the vanishing of

∂̄2
f =

(
∂̄fα + [f, f ]α

)
∂α ∈ Ω0,2

PT (TPT ) . (3.7)

This will follow as the field equations from the Lagrange multiplier action [4]:

S1[g, f ] =

∫
PT

D3Z ∧ gα ∧
(
∂̄fα + [f, f ]α

)
, (3.8)

where g := gαDZα ∈ Ω0,1
PT (O(−4)⊗ Ω1) and is subject to Zαgα = 0 because fα is defined

modulo Zα.4 The field equations for this action are

∂̄fα + [f, f ]α = 0, ∂̄f (gαDZα) = 0 . (3.9)

We additionally have the gauge freedom g → g + ∂̄fα for α ∈ Ω1
PT (−4) due to a

Jacobi-like identity for the almost complex structure. Thus, on-shell at least, g defines a

4If we fix this freedom in fα so that ∂αf
α = 0, then we can allow a gauge freedom gα → gα + ∂αχ,

although this makes less geometric sense as then g becomes non-projective.
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cohomology class in H0,1(PT ,Ω1(−4)). We can therefore apply the Penrose transform [45]

to define a space-time field GABCD by:

GABCD(x) =

∫
X
λAλBλCλD g(Z(x, σ)). (3.10)

It is straightforward to show that GABCD satisfies the second field equation of (2.5) using

the properties of the Penrose transform (c.f., [46]). Thus g gives rise to a linear ASD

conformal gravity field propagating on the SD background.

The action (3.8) is therefore equivalent to the first (self-dual) term of the chiral space-

time action (2.4), i.e., with ε2 = 0. To obtain the ASD interactions of the theory, we simply

need to express the second term in (2.4) in twistor space. The Penrose transform (3.10)

can be implemented off-shell to give:

S2[g, f ] =

∫
PS×MPS

d4x ∧ 〈λ1 λ2〉4 g1 ∧ g2, (3.11)

where PS×M PS ∼= M × CP1 × CP1 is the fibre-wise product of PS with itself, and d4x is

an integration measure that, as we will see later, is canonically defined. In this expression

for S2, we implicitly assume that the SD background M is constructed via the non-linear

graviton of theorem 1. This can be made explicit by introducing a Lagrange multiplier

field Y ∈ Ω1,0

CP1(T ∗PT ) and re-writing the action as

S2[g, f ] =

∫
M

d4x

[∫
X
Yα
(
∂̄σZ

α − fα
)

+

∫
X×X

〈λ1 λ2〉4 g1 ∧ g2

]
. (3.12)

Integrating out the field Yα produces the constraint ∂̄σZ
α = fα, matching (3.6) and re-

turning (3.11). Note that the Lagrange multiplier Y appears in a similar fashion in the

worldsheet action of the Berkovits-Witten twistor-string [2, 4].

This gives the twistor action for the full (i.e., non-self-dual) conformal gravity of the

form:

S[g, f ] = S1[g, f ]− ε2S2[g, f ]. (3.13)

We should note that to define the action off shell, we must nevertheless solve (3.6) in order

to define the integrals in S2. This equation can be solved with the standard four complex

dimensional family of solutions irrespective of whether the almost complex structure is in-

tegrable [42, 47]. However, the integral against d4x in (3.11) is over a real four-dimensional

contour, so we must also impose a reality condition on the data in order for the moduli

space of solutions to have a real four-dimensional slice. This can be done by imposing a

reality structure that is adapted to either Euclidean or split signature. For Euclidean sig-

nature we have an anti-linear involution Zα → Ẑα that is quaternionic so that
ˆ̂
Zα = −Zα

and we require f̄ = f(Ẑ). This induces a conjugation on M whose fixed points are a real

slice of Euclidean signature (an ordinary conjugation yields a real slice of split signature).

The following theorem confirms that (3.13) is equivalent to (2.4), as desired:

Theorem 2 (Mason [5]) The twistor action S[g, f ] is classically equivalent to the confor-

mal gravity action (2.4) off-shell in the sense that there exists a gauge in which it reduces
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to the space-time action. In particular, solutions to its Euler-Lagrange equations are in

one-to-one correspondence with solutions to the field equations (2.5) up to space-time dif-

feomorphisms and it correctly gives the value of the action evaluated on such solutions.

We refer to [5] for the proof. While we have expressed (3.13) with respect to a choice of

background complex structure (for comparison to the Einstein case below), the conformal

gravity twistor action can be formulated in a coordinate-invariant way. The theorem is then

proven by going to a coordinate system (xµ, σA) in which (3.6) is solved for the pseudo-

holomorphic curves. In that gauge, fields can be integrated out or compared directly to

their space-time counterparts.

3.3 The N = 4 minimal twistor action

The extension of the above construction to N = 4 supersymmetry is straightforward.

The twistor space PT becomes a projective (3|4)-dimensional supermanifold modeled on

CP3|4 with homogeneous coordinates ZI = (Zα, χa), a = 1, . . . , 4. It is super-Calabi-Yau

being equipped with a (canonical) holomorphic volume measure D3|4Z (i.e., a canonical

holomorphic section of the Berezinian). The data naturally extends to a deformed ∂̄-

operator and (1, 1)-form on PT

∂̄f = ∂̄ + f I
∂

∂ZI
, g := gIDZ

I ∈ Ω1,1
PT , DZI = dZI − f I .

With N = 4 supersymmetry, the conditions ∂If
I = 0 and ZIgI = 0 no longer fix the

gauge freedoms of adding a multiple of ZI to f I or ∂I to g. Since ∂If
I = 0 on account of

fermionic signs, ∂If
I = 0 is compatible with adding a multiple of ZI to f I , and ZIgI = 0

is compatible with adding ∂Iα to g, as α now has homogeneity zero rather than −4.

This allows us to define (3.13) with respect to the new super-geometry by taking:

S1[g, f ] =

∫
PT

D3|4Z ∧ gI ∧
(
∂̄f I + [f, f ]I

)
, (3.14)

S2[g, f ] =

∫
PS×MPS

d4|8x ∧ g1 ∧ g2. (3.15)

Again, as we will see in section 3.4, d4|8x is a canonically defined measure on the (4|8)-

dimensional chiral space-time M , the space of degree-one rational curves in PT . When

restricting to the degrees of freedom of bosonic conformal gravity, the fermionic integrals

just have the effect of producing the factor of 〈λ1λ2〉4 in (3.11). As in the N = 0 setting, we

can make the construction of the SD background M explicit by introducing the Lagrange

multiplier Y and writing

S2[g, f ] =

∫
M

d4|8x

[∫
X
YI
(
∂̄σZ

I − f I
)

+

(∫
X
g

)2
]
. (3.16)

In the supersymmetric setting, gIDZ
I defines a chiral superfield on space-time:

G(x, θ) =

∫
X
g(Z(x, θ, σ)), (3.17)
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where G has an expansion like:

G(x, θ) = ϕ+ · · ·+ θ4 ABCDΨABCD + · · · .

The Penrose transform can be used to show that the individual fields in G correspond to the

chiral (ASD) half of the N = 4 CSG field content, as desired. The space-time translation

of our N = 4 twistor action will look like

S[W,G] =

∫
M

d4|8x
(
W(x, θ) G(x, θ)− ε2G(x, θ)2

)
→ 1

ε2

∫
M

d4|8xW(x, θ)2, (3.18)

where W(x, θ) is the a chiral superfield which, on-shell, is a Lorentz scalar encoding the

N = 4 Weyl multiplet (c.f., [48]).

This action has the correct linear reduction for N = 4 CSG [4], and must correspond

to a minimal theory since the functional form prohibits any cubic couplings between ϕ and

the Weyl curvature (see Appendix A.3 for a discussion). However, note that our twistor

action only possesses the linearized E2 global symmetry of translating the scalar ϕ rather

than the fully non-linear SU(1, 1) of a generic minimal theory.5 Nevertheless, Einstein

supergravity still forms a subsector of this degenerate theory [49], so the embedding of

Einstein states still applies.

3.4 The volume form

To complete the definition of the twistor action, we must specify the volume form d4|8x

used in (3.15); its reduction to d4x in the non supersymmetric case will follow directly

from this. To this end we rewrite (3.6) as an integral equation

ZI(x, σ) = XI
Aσ

A + ∂̄−1
σ

(
f I(Z)

)
, (3.19)

where XI
Aσ

A solves the homogeneous equation and XIA parametrizes its solutions. Since

f I has weight +1, there is an ambiguity in the choice of ∂̄−1
σ , which can be chosen to vanish

at two points on CP1. For simplicity we will require that it vanishes at σA = ξA to second

order by setting

ZI(x, σ) = XI
Aσ

A +
1

2πi

∫
CP1

Dσ′

(σσ′)

(ξσ)2

(ξσ′)2
f I(Z(σ′)). (3.20)

Physical observables such as scattering amplitudes will be independent of ξ at the end of

our calculations and we will perform this consistency check explicitly.

We now write ZI(x, σ) = X IAσA defining

X IA(x, σ) = XIA +
ξA

2πi

∫
CP1

Dσ′

(σσ′)

(ξσ)

(ξσ′)2
f I(Z(σ′)) , (3.21)

which solves

∂̄σX IA(x, σ) =
ξAf I

(ξσ)
. (3.22)

5The additional U(1)-symmetry of the minimal model can be seen as arising from g → e4iβg together

with χa → e−iβχa which induces a similar phase rotation for θaA. This symmetry is the key for ruling out

the ϕ (Weyl)2 couplings and hence ensuring that the embedding of Einstein gravity still applies.
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This enables us to take the exterior derivative of X with respect to the space-time coordi-

nate x, finding

∂̄σ
(
dxX IA(x, σ)

)
= ∂Jf

I ξ
AσB
(ξσ)

dxX JB(x, σ). (3.23)

Since ∂If
I = 0, this means that the top-degree form d8|8X is holomorphic in σ and of

weight zero; by Liouville’s theorem, it is therefore independent of σ. But this means that

d4|8x ≡ d8|8X
vol GL(2,C)

=
d8|8X

vol GL(2,C)
,

is an invariant volume form on the space-time M itself.6

4 Reduction to Einstein Gravity

In this section, we reduce the degrees of freedom in the twistor action for conformal (su-

per)gravity to those of Einstein gravity off-shell. We then use the embedding of Einstein

gravity into conformal gravity described earlier to argue that, upon division by Λ we have

the correct Einstein action. For the sake of convenience, we work primarily in the N = 4

formulation, although the translation to N = 0 conformal gravity and general relativity

should be obvious.

We first illustrate how the twistor data for N = 4 CSG is reduced to the Einstein

subsector. This produces the conformal gravity twistor action restricted to Einstein data,

and in particular leads to a twistorial expression for the MHV generating functional ICG

derived in (A.4). It also leads to a new action functional which we propose describes

Einstein gravity itself. This new twistor action has the correct self-dual sector, can be

defined for N = 0, 4, 8, and also leads to the correct expression for the MHV amplitude,

as we demonstrate in Section 5.

4.1 The Einstein degrees of freedom

We now reduce the data of the N = 4 CSG twistor action to the Einstein subsector.

This will be done off-shell in the first instance. A conformal factor Ω from (2.11) relating

spin-two and linearized Einstein fields can be specified on twistor space by introducing an

infinity twistor IIJ , a skew bi-twistor.7

Choose I0 and I1 to be of rank-two such that

I0 IJZ
IdZJ = 〈λ dλ〉, I1 IJZ

IdZJ = [µ dµ].

6Here GL(2,C) is the choice of homogeneous coordinates σA on X ∼= CP1. The division by vol GL(2,C)

is understood in the Fadeev-Popov sense: one chooses a section of the group action, and multiplies by the

appropriate Jacobian factor to obtain a well-defined volume form on the (4|8)-dimensional quotient. One

can also define this form to be that obtained by contracting a basis set of the generators of GL(2,C) into

the volume form in the numerator and observing that the form is one pulled-back from the quotient.
7In the supersymmetric case, the fermionic part of the infinity twistor corresponds to a gauging of the

N = 4 R-symmetry [50]; this will not play an important role in this paper.
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Then the infinity twistor appropriate to Einstein polarization states with cosmological

constant Λ on the affine de Sitter patch is given by I = I0 +ΛI1. We can define an upstairs

bosonic part by Iαβ = 1
2ε
αβγδIγδ and we will have

IαβI
βγ = Λδγα .

This relation can be extended supersymmetrically if we set:

IIJ =

 εAB 0 0

0 ΛεA′B′ 0

0 0
√

Λδab

 , IIJ =

ΛεAB 0 0

0 εA
′B′ 0

0 0
√

Λδab

 . (4.1)

For brevity we introduce the notation

[A,B] := IIJAIBJ , 〈C,D〉 := IIJC
IDJ . (4.2)

Geometrically, these infinity twistors are encoded into a weighted contact form τ and

Poisson structure on PT :

τ = IIJZ
IDZJ = 〈Z,DZ〉 Π = IIJ∂I ∧ ∂J , {f, g} = IIJ∂If ∂Jg = [∂f, ∂g] . (4.3)

Here, Π is the Poisson bi-vector and {·, ·} is the corresponding Poisson bracket.

We now require that the complex structure ∂̄f be Hamiltonian with respect to Π,

LfΠ = 0, and this implies that

f I = IIJ∂Jh, h ∈ Ω0,1
PT (2).

The integrability condition for such an almost complex structure is the vanishing of

∂̄2
f = IIJ∂J

(
∂̄h+

1

2
{h, h}

)
∂I . (4.4)

The remaining diffeomorphism freedom on PT is captured by the infinitesimal transfor-

mations:

δZα = {Zα, χ} , δh = ∂̄χ+ {h, χ} ,
for χ a weight +2 function [12].

In the linearized setting, we have ∂̄h = 0 and h is defined modulo infinitesimal Hamil-

tonian diffeomorphisms, so h defines a cohomology class in H0,1(PT ,O(2)). The Penrose

transform realizes this as a N = 4 graviton multiplet of helicity +2 via the integral formula

ψ̃(x, θ)A′B′C′D′ =

∫
X

∂4h

∂µA′ · · · ∂µD′ ∧ τ .

Dually, we have the relation gI = IIJZ
J h̃ with h̃ ∈ Ω0,1

PT (−2). In the linearized theory, h̃

will define a cohomology class in H0,1(PT ,O(−2)) and the Penrose transform identifies

this with the on-shell N = 4 graviton multiplet of helicity −2 [46], this time starting with

the scalar

φ(x, θ) =

∫
X
h̃ ∧ τ .
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4.2 The action and MHV generating functional

We can now insert the off-shell Einstein data f I = IIJ∂Jh and gI = IIJZ
J h̃ into the N = 4

CSG twistor action. In the self-dual part of the action (3.14) we get:

S1[g, f ]→ S1[g, h] =

∫
PT

D3|4Z ∧ gI ∧ IIJ∂J
(
∂̄h+

1

2
{h, h}

)
=

∫
PT

D3|4Z ∧ IIJ∂IgJ ∧
(
∂̄h+

1

2
{h, h}

)
= 2Λ

∫
PT

D3|4Z ∧ h̃ ∧
(
∂̄h+

1

2
{h, h}

)
,

(4.5)

with the second line following via integration by parts. This is precisely the self-dual twistor

action for Einstein gravity, up to the factor of Λ required by the embedding of Einstein

gravity into conformal gravity [12, 22].

The Einstein reduction for the second term of the twistor action (3.15) is simply:

S2[g, f ]→ S2[h̃, h] =

∫
M

d4|8x

[∫
X
YI
(
∂̄σZ

I − IIJ∂Jh
)

+ ε2

(∫
X
h̃ ∧ τ

)2
]
, (4.6)

giving the explicit construction of M via the non-linear graviton. From our discussion in

Appendix A.2, we know that this is the MHV generating functional for conformal gravity,

restricted to Einstein states. Then by proposition A.2, it follows that this should provide

the generating functional for Einstein gravity MHV amplitudes:

IGR[1−, 2−,M+] = − 3ε2

Λ κ2
S2[h̃, h].

The perturbative content of the n − 2 positive helicity gravitons is encoded by h, and in

the next section we describe in detail the Feynman diagram calculus which allows us to

recover the n-point MHV amplitude from this expression.

The restriction to Einstein states does more than provide us with a twistorial expression

for the MHV generating functional. Combining (4.5) and (4.6), we can divide by a power

of Λ in accordance with the embedding of Einstein gravity into conformal gravity to define

an Einstein twistor action (for N = 4):

SEin
N=4[h̃, h] =

∫
PT

D3|4Z ∧ h̃ ∧
(
∂̄h+

1

2
{h, h}

)
−∫

M
d4|8x

[∫
X
YI
(
∂̄σZ

I − IIJ∂Jh
)

+
ε2

Λκ2

(∫
X
h̃ ∧ τ

)2
]
. (4.7)

We do not currently have a direct proof (analogous to theorem 2 for conformal gravity)

that this action corresponds to Einstein gravity. In this paper, we justify its validity by the

calculations that follow and by the embedding of Einstein gravity in conformal gravity. In

particular, (4.7) is obtained from the conformal gravity twistor action by simply restricting

to Einstein degrees of freedom and then applying Maldacena’s argument. Furthermore,

when ε = 0 it reduces to the correct twistor action for self-dual Einstein gravity [12], and
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in the next section, we show that the non-self-dual interactions produce the correct MHV

amplitude.

It is worth noting that we can easily define similar actions for N = 0 and N = 8

Einstein gravity. In the first case, the two gravitons of general relativity are given (off-

shell) in twistor space by h̃ ∈ Ω0,1
PT (−6), h ∈ Ω0,1

PT (2). The resulting twistor action is

then

SEin
N=0[h̃, h] =

∫
PT

D3Z ∧ h̃ ∧
(
∂̄h+

1

2
{h, h}

)
−∫

M
d4x

[∫
X
Yα

(
∂̄σZ

α − Iαβ∂βh
)

+
ε2

Λκ2

∫
X×X

〈λ1λ2〉4 h̃1 ∧ τ1 ∧ h̃2 ∧ τ2

]
. (4.8)

For N = 8 supersymmetry, twistor space is topologically CP3|8 and the single graviton

multiplet is encoded by h ∈ Ω0,1
PT (2), which incorporates the negative helicity graviton in

the term χ8h̃. This leads to an action:

SEin
N=8[h] =

∫
PT

D3|8Z ∧ h ∧
(
∂̄h+

1

3
{h, h}

)
−∫

M
d4|16x

[∫
X
YI
(
∂̄σZ

I − IIJ∂Jh
)

+
ε2

Λκ2

∫
X×X

h1 ∧ τ1 ∧ h2 ∧ τ2

〈λ1λ2〉4
]
. (4.9)

5 Perturbation theory and the MHV Amplitude

In this section, we consider the perturbation theory associated to our twistor actions, and

use it to derive a formula for the MHV tree amplitude of Einstein gravity in the presence

of a cosmological constant, Λ in twistor space. This provides a check on our claim that the

twistor action (4.7) describes Einstein gravity.

We first make some general remarks about the perturbation theory for the twistor

actions in an axial gauge (otherwise known as the CSW gauge in the case of Yang-Mills,

[7]). Our discussion here will take place in twistor space, and our development of the

Feynman diagrams will be restricted to those that are required for the MHV amplitude.

We discuss the extension to more general amplitudes in Section 6.

For the conformal gravity twistor action (3.13), the axial gauge is a choice of coordi-

nates and gauge for g so that one of the anti-holomorphic form components of f and g

vanish, say in the direction of some fixed choice of reference twistor Z∗:

Z∗ ·
∂

∂Z
yf = 0 = Z∗ ·

∂

∂Z
yg , (5.1)

with identical restrictions on h and h̃ in the Einstein case. This has the effect of eliminating

the cubic term in the self-dual part of the twistor action, so all remaining vertices are in

the non-self-dual interaction terms. In the case of conformal gravity, these vertices can be

read off from (3.16):

Vf =

∫
M

d4|8x

∫
X
YIf

I , Vg =

∫
M

d4|8x

∫
X×X

g1 ∧ g2. (5.2)
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The axial gauge leaves us with two kinetic terms: gI ∂̄f
I (or h̃∂̄h) from the self-dual

portion of the action, and YI ∂̄σZ
I from the second part. The first lives on twistor space

and the second on the Riemann sphere X ∼= CP1, so they lead to propagators ∆(Z,Z ′) on

twistor space connecting an f and a g (or a h and a h̃), and ∆(σ, σ′) on X connecting a Y

and a Z.

The MHV degree k of a tree amplitude is the count of the number of external gs (or

h̃s) in an amplitude minus 2. Since each Vg inserts two gs, and each propagator ∆(Z,Z ′)

takes the place of one g, we have

k = |Vg|+ l − 1 (5.3)

where |Vg| is the number of Vg insertions and l is the number of loops in the diagram

obtained by deleting all the propagators on the Riemann sphere (this follows because

l = 1 + |∆(Z,Z ′)| − |Vg|). For the rest of this section we will be working at tree-level, and

concerned with computing the MHV amplitude. This means that we need only consider a

single Vg vertex with no ∆(Z,Z ′) propagators in play.

While we will focus on Einstein states in the following, much of our calculation is

easily applicable to conformal gravity since polarization states for this theory can be ex-

pressed in terms of Einstein states with different conformal factors. Given the permutation

symmetry of the positive helicity and negative helicity fields amongst themselves, we can

generate all conformal gravity amplitudes by considering Einstein states with one choice of

infinity twistor for the positive helicity states (upstairs indices), and a different one for the

negative helicity states (downstairs indices). Restricting to the Einstein subsector is then

accomplished by requiring these infinity twistors be compatible as in (4.1).

5.1 A Feynman diagram calculus for the MHV amplitude

In this subsection we obtain the Feynman diagrams that contribute to the MHV amplitude

and in the next sum them using the matrix-tree theorem to give a compact formula in terms

of reduced determinants analogous to that of Hodges [18]. This explains the use of the

matrix-tree theorem for this amplitude as first described in [14, 15] and elaborated below.

At MHV, and in the axial gauge, the only part of the twistor action which is relevant

for the computation is∫
M

d4|8x

[∫
X

(
YI ∂̄σZ

I + [Y, ∂h]
)

+

∫
X×X

h̃1 τ1 ∧ h̃2 τ2

]
, (5.4)

where we have included the Lagrange multiplier field YI as in (3.16). Note that since

there are no ∆(Z,Z ′) propagators, the perturbation theory associated to (5.4) is the same

for both twistor actions and is also equivalent to the perturbative expansion of the MHV

generating functional (A.5).

We consider only Feynman tree diagrams, and read off from the action the vertices:

Vh =

∫
M

d4|8x

∫
X

[Y, ∂h] , Vh̃ =

∫
d4|8x

∫
X×X

h̃1 τ1 ∧ h̃2 τ2. (5.5)
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We only use the propagator for the Y -Z kinetic term, which is fixed to coincide with (3.20):

〈
YI(σi) Z

J(σj)
〉

= ∆(σi, σj) =
(ξσj)

2Dσi
(ξσi)2(σiσj)

=
(ξj)2Dσi
(ξi)2(i j)

, (5.6)

suppressing the delta function in x (which just restricts the calculation to the Riemann

sphere X leaving one overall integral over space-time).

It follows from the remarks above that the Feynman diagrams contributing to the n-

point MHV amplitude are those in which there is one Vh̃ vertex, which contains two external

wavefunctions (the negative helicity h̃s), and n− 2 Vh vertices. On-shell Y vanishes, being

holomorphic on CP1 of negative weight, so the n − 2 Y s (one in each of the Vh vertices)

must each be contracted via a propagator ∆(σ, σ′). These in turn connect with Zs, which

occur in the hs, h̃s, and τs of the other vertices.

It is convenient to expand the vertex Vh̃ into four separate vertices in the diagram, each

corresponding to the four sites of Z-dependence that a Y -Z propagator can attach itself

to. Thus, the Feynman diagram calculus on CP1 for the nth-order perturbative evaluation

of the generating functional (5.4) is defined as follows:

• Draw a black vertex for each of h̃1, h̃2.

• Draw a grey vertex for each contact structure τ1, τ2.

• Draw a white vertex for each of the n− 2 vertices Vhi , i = 3, . . . , n− 2.

• Draw an oriented edge out from each white vertex to some other vertex such that

the resulting diagram is a forest of trees rooted at a black or grey vertex.

h̃ τ h

Figure 1. Building blocks for Feynman diagrams

Each diagram corresponds to an integrand to be integrated over the n-fold product

of the CP1 factor in (5.4) and then the final expression must be integrated against the

measure d4|8x. The vertices are each associated to a point σi on the ith CP1 factor. For

i = 1, 2 we have

hi := h̃i(Z(σi)) , τi := IIJZ
I(σi)∂Z

J(σi)

at the black and grey vertices respectively. Writing

Zi = Z(σi) , ∂iI =
∂

∂ZI(σi)
, YiI = YI(σi) , hi = hi(Z(σi)),

(and often suppressing the I, J indices) we obtain the n − 2 white vertices of the form∫
[Yj , ∂jhj ]. The kinetic term YI ∂̄σZ

I defines the propagator (5.6), and the removal of a Z

from a vertex to replace with the end of the propagator corresponds to differentiation with
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respect to Z. Thus an edge from a white node j > 2 to a black or white node i corresponds

to the differential operator
(ξσi)

2 Dσj
(ξσj)2(σjσi)

[∂jhj , ∂i] (5.7)

acting on the wave function at the ith node of the diagram. We give the action on τ at a

grey vertex below.

Since there is a single YI in each white vertex, there are n − 2 total edges in each

diagram. The wavefunctions h̃, h depend non-polynomially on Z, so the white and black

vertices can have have an arbitrary number of incoming edges. Since τ = 〈Z(σ), ∂Z(σ)〉 is

of order two in Z, the grey vertices can absorb at most two edges.

To summarize, we represent the perturbative expansion of the MHV generating func-

tional (5.4) by using a CP1-Feynman diagram calculus. Since we work classically, each

diagram corresponds to a forest of trees on n+ 2 (2 τs + 2 h̃s + n− 2 hs) vertices, rooted

at a black or grey vertex.

Propagators ending on τ

Each diagram has two grey vertices corresponding to the contact structures τi = 〈Zi, ∂Zi〉,
i = 1, 2 in the Vh̃ vertex. These are quadratic in Z and so can have at most two incoming

arrows; higher numbers of incoming arrows will vanish. If the upstairs infinity twistor is

the inverse of the downstairs one (as in the Einstein case), other contributions vanish as

follows.

Lemma 5.1 If a Feynman diagram has a disconnected piece with just one white vertex

connected to a grey vertex, we refer to it as isolated if the corresponding white vertex has no

incoming arrows, as in (a.) of Figure 2. An isolated disconnected piece in a diagram leads

to a factor which vanishes after integration by parts. In particular, an isolated propagator

connecting a white vertex i to a grey vertex 1 produces a factor

2ΛDσ1 σ1A

∫
CP1

di

(
σAi (ξ1)hi
(1i)2(ξi)

)
,

where di is the exterior derivative in the σi variable and integration by parts makes the

contribution vanish.

(a.) (b.)

Figure 2. An isolated (a.) and un-isolated (b.) component.

The proof follows by observing that when the ith white node is connected to Z1 we

must replace

ZI(x, σ1)→
∫
Xi

Dσi
(1i)

(ξ1)2

(ξi)2
IIJ∂Jhi . (5.8)

The lemma results from a direct but slightly tedious computation which is relegated to

Appendix A.5.
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(a.)

(b.)

Figure 3. Some diagrams for the 5-point amplitude which have a non-vanishing (a.), or ex-

cluded/vanishing (b.) contribution.

Thus we can neglect any isolated arrows to the contact structures in our diagrams.

However, if τ1 is connected to vertex i which is in turn connected to vertex j, then additional

σi-dependence is introduced by the propagator from the jth vertex and we no longer obtain

the total derivative in lemma 5.1. Similarly, we eliminated the second Z1 in τ using the

linear dependence of Z on σ but a second propagator could have been inserted there, so

for higher order contributions we will need further calculation as follows.

When a propagator connects to a grey vertex, there is always a contraction between

the upstairs and downstairs infinity twistors so we obtain a factor of Λ. After a bit of

algebra, we find a single propagator plugged into the contact structure (say, τ1) is given

by:

ψ1
i = Λ

Dσi(ξ1)4

(1i)2(ξi)2
d1

(
(i1)

(ξ1)2
ZI1

)
∂iIhi = Λ

Dσ1Dσi(ξ1)

(1i)2(ξi)2

[
(ξi) ZI1 + (1i) ZI(ξ)

]
∂iIhi , (5.9)

where the first formula must be used when further propagator insertions are required, as

the second uses the linearity of Z as a function of σ. Similarly, for two propagators plugged

into the contact structure we obtain:

ω1
ij = −Λ

Dσ1DσiDσj(1ξ)
4(ij)

(1i)2(1j)2(ξi)2(ξj)2
[∂i, ∂j ]hihj . (5.10)

Note that there are many equivalent formulae for these following from the Schouten identity

but these are what we will use in the following calculations.

Clearly, at any order in n there are many diagrams which can be drawn on the n+ 2

vertices which are either excluded or vanish. In Figure 3, we illustrate several examples

for the case of the 5-point amplitude. All the diagrams in (a.) give a non-vanishing

contribution, while all those in (b.) are either excluded or vanish. In the latter case, the

first diagram of (b.) is excluded because of the loop; the second vanishes because there are

isolated propagators to the contact structure so lemma 5.1 applies; and the third vanishes

because there are more than two propagators ending in a contact structure.
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5.2 Matrix tree formulae for the MHV amplitude

For a n-point MHV diagram, we must sum all of the associated CP1 Feynman diagrams as

described above. Each of these diagrams will have the structure of a set of tree graphs (i.e.,

a forest) on n + 2 vertices, where each tree is rooted at one of the black or grey vertices

and the edges/arrows correspond to propagators. The most efficient way to perform this

sum is by using a powerful result from algebraic combinatorics known as the matrix-tree

theorem (textbook treatments of can be found in [51–53]).

Let us review this theorem in the context of an arbitrary graph. Suppose G is some

oriented graph with a set of n vertices V = {i}i=1,...,n and edges E , where an edge connecting

vertex i to vertex j is denoted by (i, j) ∈ E . We can promote G to a weighted graph by

endowing each edge (i, j) with a weight wij ∈ C. This data is naturally encoded into the

weighted Laplacian matrix of G, which is a n× n matrix with entries:

Lij(G) =


−wij if i 6= j and (i, j) ∈ E∑

(i,k)∈E wik if i = j

0 otherwise

.

The weighted Laplacian matrix is the basic ingredient in the matrix-tree theorem,

which tells us how to count tree subgraphs of G including weights. A tree of G rooted at

i ∈ V is a sub-graph T (i) = (V, E(i)) of G such that: (1.) T (i) has no oriented cycles; (2.)

vertex i has no outgoing edges; and (3.) every other vertex j 6= i has one outgoing edge.

We have denoted the edges of the tree T (i) by E(i) ⊂ E . A collection of r rooted trees of G

is called a rooted forest ; we will denote the set of such forests rooted at vertices {i1, . . . , ir}
by F (i1,...,ir)(G).

The matrix-tree theorem for rooted forests on the directed graph G is then given by:

Theorem 3 (Weighted Matrix-Tree Theorem for Forests) Let F (i1,...ir)(G) be the

set of forests of G rooted at {i1, . . . , ir} ⊂ V and L(G) be the weighted Laplacian matrix of

G. For each F ∈ F (i1,...ir)(G), denote by EF ⊂ E the set of edges in the forest. Then

∣∣∣L(G)i1···iri1···ir

∣∣∣ =
∑

F∈F(i1,...ir)(G)

 ∏
(i,j)∈EF

wij

 , (5.11)

where
∣∣L(G)a···bc···d

∣∣ denotes the determinant of L(G) with the rows {a, . . . , b} and columns

{c, . . . , d} removed.

A proof of this particular version of the matrix-tree theorem can be found in [14].

For the situation we are interested in, G is the graph on n + 2 vertices (2 grey, 2

black, and n−2 white) with all possible propagator edges drawn in. The weights for edges

between white and black or white and white vertices correspond to the propagators (5.7):

wij ↔
(ξj)2 Dσi
(ξi)2(ij)

[∂ihi, ∂j ] ,
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and edges to a grey vertex correspond to the propagators (5.9) or (5.10). This clearly

constitutes all the data required to build the weighted Laplacian matrix for G and then

apply theorem 3.

To proceed, denote the set of all Feynman diagrams contributing to the n-point am-

plitude as Fn. This set has a natural disjoint-union splitting based upon the number of

arrows which are incoming at each of the two contact structures (grey vertices) τ1, τ2.

Explicitly, we have

Fn =
4⊔

k=0

Fnk ,

where each diagram Γ ∈ Fnk is a forest on n+2 vertices which has k arrows into the contact

structures (for k > 4 all the diagrams have a vanishing contribution since τ is quadratic in

Z).

The simplest case involves no propagators to the contact structures, where we can

write τ1,2 = X2 Dσ1,2 for X2 ≡ IIJXI
AX

JA. The contribution to the n-point vertex can be

written as ∑
Γ∈Fn0

∫
d4|8x (X2)2 FΓ

n∏
i=1

hi Dσi,

where FΓ encodes the contribution from diagram Γ built out of the propagators, which are

all of the form (5.7).8

Since there are no propagators to the grey vertices, each term in this sum corresponds

to a forest of trees rooted at the two black vertices corresponding to h̃1 and h̃2. We can

perform this sum using theorem 3 after constructing the weighted Laplacian matrix for

the remaining propagators, as was first shown in [14, 15]. Up to an irrelevant conjugation,

this weighted Laplacian matrix takes the form of the ‘Hodges matrix’ H whose entries are

given by:

Hij =

{
1

(ij) [∂i, ∂j ] if i 6= j

−∑j 6=iHij
(ξj)2

(ξi)2
if i = j

, (5.12)

in accordance with (5.7). Note that this means the entries in our Laplacian matrix take

the form of differential operators which will (after applying the matrix-tree theorem below)

act on the wavefunctions {hi}. With momentum eigenstates and a generic infinity twistor

these operators become rather complicated, involving derivatives of delta-functions. Our

manipulations would be considerably simpler if we could treat these terms algebraically.

This can be accomplished by working with dual twistor wavefunctions:

h(Z(σi)) =

∫
C

dti

t1+wi
i

exp (itiWi · Z(σi)) , wi =

{
−2 if i = 1, 2

2 otherwise
. (5.13)

Here Wi I = (µ̃A, λ̃iA′) are coordinates on n copies of dual twistor space, PT∨. These

wavefunctions have been used before in other contexts [17, 20], and can be paired with

momentum eigenstates in an appropriate manner to obtain functionals of momenta at the

8Here, we think of the integral as being over M× (CP1)n but this can also be thought of as an integral

over Mn,1, the moduli space of n-pointed holomorphic maps ZI : CP1 → PT of degree one [54].
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end of any calculation. Furthermore, the scaling parameters ti can be absorbed into the

worldsheet coordinates by defining a new set of non-homogeneous coordinates: σiti → σi,

dtiDσi → d2σi.

With (5.13), all the propagators of the Feynman diagram calculus become purely

algebraic. In particular, we now have:

Hij = − [Wi,Wj ]

(ij)
,

so the weighted Laplacian matrix (5.12) becomes an algebraic object. The propagators

involving the contact structure also become algebraic in this picture:

ψ1
i = Λ i

(ξ1) Wi I

(1i)2(ξi)2

[
(ξi) ZI(σ1) + (1i) ZI(ξ)

]
, ω1

ij = Λ
[Wi,Wj ] (1ξ)4(ij)

(1i)2(1j)2(ξi)2(ξj)2
.

Hence, we always have the option of moving from generic twistor states, where the propa-

gators and Laplacian matrix take the form of differential operators, to dual twistor states

where they become algebraic quantities.

Returning to the sum of Feynman diagrams in Fn0 , we apply theorem 3 to obtain the

contribution ∫
d4|8x (X2)2

∣∣H12
12

∣∣ n∏
i=1

hi Dσi. (5.14)

The notation |H12
12| indicates the determinant of H with the row and columns corresponding

to h̃1 and h̃2 removed.

We can now apply the matrix-tree theorem in a similar fashion to the other subsets

of Feynman graphs Fnk>0. For instance, consider graphs in Fn1 . The single deformation

of the contact structure may come from any white vertex i = 3, . . . , n, and results in a

propagator ψ1
i or ψ2

i from (5.9). All the remaining arrows in the graph will correspond to

propagators captured by the weighted Laplacian matrix (5.12), so once we factor out the

propagator to τ we are in the business of counting forests of trees rooted at vertices 1, 2,

or i. Via theorem 3, we then have:

∑
Γ∈Fn1

∫
d4|8x X2 FΓ

n∏
i=1

hi Dσi =

∫
d4|8x X2

n∑
i=3

ψ1
i

∣∣H12i
12i

∣∣ n∏
j=1

hj Dσj + (1↔ 2). (5.15)

Note that there is only a single power of X2 appearing as an overall factor in this expression;

the other has been eaten by the propagator ψ1
i . Also recall that although ψ1

i and the entries

of H are generally differential operators, we can think of them as algebraic quantities by

working with the dual twistor wavefunctions (5.13).

A similar pattern follows for the remaining subsets in Fn. Adding all of them together

and including the required factor of Λ−1 from the embedding of Einstein gravity into
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conformal gravity gives us the following formula for the MHV amplitude:

Mn,0 =
1

Λ

∫
d4|8x

(X2)2
∣∣H12

12

∣∣+X2
∑
i

ψ1
i

∣∣H12i
12i

∣∣+X2
∑
i,j

ω1
ij

∣∣∣H12ij
12ij

∣∣∣
+
∑
i,j

ψ1
i ψ

2
j

∣∣∣H12ij
12ij

∣∣∣+
∑
i,j,k

ψ1
i ω

2
jk

∣∣∣H12ijk
12ijk

∣∣∣+
∑
i,j,k,l

ω1
ijω

2
kl

∣∣∣H12ijkl
12ijkl

∣∣∣
 n∏
m=1

hm Dσm + (1↔ 2).

(5.16)

In this expression, the sums are understood to run over all indices which are not excluded

from the determinant, and also to symmetrize on those indices. For instance, in the first

term of the second line
∑

i,j runs over all i, j = 3, . . . n with i 6= j.

This formula is a perfectly valid representation of the MHV amplitude with cosmolog-

ical constant; it can be simplified substantially if we investigate its properties a bit further,

however. To do this, we adopt the dual twistor wavefunctions (5.13) so that all propaga-

tors become algebraic. Working with the re-scaled coordinates σiti → σi, the product of

wavefunctions and measures can be expressed compactly as

n∏
i=1

hi Dσi = eiP·X d2σ, PAI =

n∑
i=1

Wi Iσ
A
i , d2σ ≡

n∏
i=1

d2σi.

Now note that the second term in the first line of (5.16) can be written as∫
d4|8x X2

∑
i

ψ1
i

∣∣H12i
12i

∣∣ eiP·Xd2σ

= Λ

∫
d4|8x X2

∑
i

∣∣H12i
12i

∣∣ ((ξ1)(ξi)σA1 + (ξ1)(1i)ξA

(1i)2(ξi)2

)
∂eiP·X

∂σAi
d2σ,

where we have used the algebraic expression for ψ1
i . This is expected as a result of lemma

5.1, which tells us that a propagator to one of the contact structures takes the form of a

derivative with respect to σi. Hence, we can integrate by parts with respect to d2σi to find:∫
d4|8x X2

∑
i

ψ1
i

∣∣H12i
12i

∣∣ eiP·Xd2σ

= −Λ

∫
d4|8x X2eiP·X

∑
i

∂

∂σAi

(∣∣H12i
12i

∣∣ (ξ1)(ξi)σA1 + (ξ1)(1i)ξA

(1i)2(ξi)2

)
d2σ

= −Λ

∫
d4|8x X2eiP·X

∑
i,j

∣∣∣H12ij
12ij

∣∣∣ [Wi,Wj ](1ξ)
4(ij)

(1i)2(1j)2(ξi)2(ξj)2
d2σ

= −
∫

d4|8x X2
∑
i,j

ω1
ij

∣∣∣H12ij
12ij

∣∣∣ eiP·Xd2σ.

with the third line following after symmetrizing over (i ↔ j) and several applications of

the Schouten identity.
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Thus, we see that following an integration by parts the second term in (5.16) cancels

the third term. A similar calculation demonstrates that the fourth and fifth terms also

cancel with each other. We are therefore able to reduce our formula for the amplitude to

one with only two terms:

Mn,0 =
1

Λ

∫
d4|8x

(X2)2
∣∣H12

12

∣∣+
∑
i,j,k,l

ω1
ijω

2
kl

∣∣∣H12ijkl
12ijkl

∣∣∣
 n∏
m=1

hm Dσm + (1↔ 2), (5.17)

where we have restored arbitrary twistor wavefunctions and homogeneous coordinates.

Clearly this formulation is an improvement over (5.16) in terms of simplicity.

A non-trivial test which any formula forMn,0 must pass is that it must be independent

of the reference spinor ξ ∈ CP1. This entered the definition of the propagator ∆(σ, σ′) due

to the ambiguity in defining ∂̄−1
σ on forms of positive degree. Hence, the choice of ξ is

equivalent to a choice of gauge for the propagator on CP1; by (3.21) a variation in ξ

should correspond to a diffeomorphism on the projective spinor bundle PS. In other words,

observables such as Mn,0 should be independent of the reference spinor.

An obvious way of demonstrating this is to consider the infinitesimal variation gener-

ated by the derivative dξ = dξA ∂
∂ξA

. The calculation of dξMn,0 is a lengthy but relatively

straightforward procedure which is carried out in Appendix A.6; the final result is that

dξMn,0 =

∫
d8|8X

vol GL(2,C)

∂

∂XIA
V IA = 0, (5.18)

where V IA are the components of a smooth vector field (roughly speaking, on Mn,1). The

fact that dξMn,0 vanishes as a total divergence indicates that a variation in ξ corresponds

to a diffeomorphism on the spinor bundle PS, and proves that (5.16), (5.17) is a well-defined

formula for the amplitude.

5.3 The flat-space limit and the Hodges formula

A final test which our expression for Mn,0 must pass is the flat-space limit, where it

should reproduce Hodges’ formula for the MHV amplitude [18]. In the language of N = 4

supergravity, Hodges’ formula is:9

MHodges
n,0 (Λ = 0) =

∫
d4|8x

(12)2

(1i)2(2i)2

∣∣H12i
12i

∣∣ n∏
j=1

hj Dσj . (5.19)

Initially, it appears that the structure ofMn,0 is a long way off from Hodges’ formula.

If we use dual twistor wavefunctions (5.13), then (5.17) takes the form

Mn,0 =
1

Λ

∫
d8|8X

vol GL(2,C)

(X2)2
∣∣H12

12

∣∣+
∑
i,j,k,l

ω1
ijω

2
kl

∣∣∣H12ijkl
12ijkl

∣∣∣
 eiP·X d2σ. (5.20)

9Note that there are many equivalent representations of this formula, we have simply presented the one

which connects most directly to our conformal gravity arguments.
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This expression appears to diverge as Λ→ 0, and the leading contribution is a twice-reduced

determinant, where each reduction corresponds to the two negative helicity gravitons of the

amplitude. However, the fundamental object in Hodges’ formula (5.19) is a thrice reduced

determinant; this can be seen as a relic of N = 8 supergravity where all external states are

in the same multiplet.

Despite these apparent roadblocks, we will now demonstrate (building upon calcula-

tions which appeared in [15]) thatMn,0 is smooth in the Λ→ 0 limit, can be given in terms

of a thrice-reduced determinant, and reproduces the Hodges’ formula in the flat-space limit.

Focusing on the first term in (5.20), note that we can represent each factor of X2 by

a differential ‘wave operator’ acting on eiP·X :

X2 → 2 :=
IIJ
(12)

∂

∂W1 I

∂

∂W2 J
. (5.21)

Doing this allows us to re-write the twice-reduced contribution to Mn,0 as

1

Λ

∫
d8|8X

vol GL(2,C)
d2σ

∣∣H12
12

∣∣ 22eiP·X =
1

Λ

∫
d2σ

vol GL(2,C)

∣∣H12
12

∣∣ 22δ8|8(P). (5.22)

On the support of this delta-function, we know that the matrix H has co-rank three [18, 19]

so we can integrate by parts once with respect to ∂
∂W2

to give

− 1

Λ

∫
d2σ

vol GL(2,C)

∂

∂W2 J

∣∣H12
12

∣∣ IIJ
(12)

∂

∂W1 I
2δ8|8(P)

= −
∫

d2σ

vol GL(2,C)

∑
i

(ξ2)2

(12)(i2)(ξi)2

∣∣H12i
12i

∣∣ Wi ·
∂

∂W1
2δ8|8(P).

Once again, the support of the delta-function indicates that we can take Wi · ∂
∂W1

= σ1 · ∂∂σi ,
and then integrate by parts once again with respect to d2σi. This leaves us with∫

d2σ

vol GL(2,C)

∑
i

(12)2

(1i)2(2i)2

∣∣H12i
12i

∣∣ 2δ8|8(P)

+

∫
d2σ

vol GL(2,C)

∑
i,j

(
(ξ2)2(1ξ)(ji) + (ξ2)2(1j)(ξi)

(12)(i2)(ji)(ξi)(ξj)2

)
Hij

∣∣∣H12ij
12ij

∣∣∣ 2δ8|8(P). (5.23)

The contribution from the second line can be further simplified by noting that the

summation entails symmetrization, term-by-term, in both 1↔ 2 and i↔ j. A straightfor-

ward calculation involving several applications of the Schouten identity allows us to reduce

this to ∫
d2σ

vol GL(2,C)

∑
i,j

(
(ξ1)2(i2)(j2) + (ξ2)2(i1)(j1)

(1i)(2i)(1j)(2j)(ξi)(ξj)

)
Hij

∣∣∣H12ij
12ij

∣∣∣ 2δ8|8(P).
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Upon using the symmetry of i ↔ j and the basic properties of determinants, we are

finally left with an expression for the amplitude with thrice-reduced determinants:

Mn,0 =

∫
d4|8x

X2
∑
i,j

(
(ξ1)2(i2)(j2) + (ξ2)2(i1)(j1)

(1i)(2i)(1j)(2j)(ξi)(ξj)

) ∣∣H12i
12j

∣∣
X2
∑
i

(12)2

(1i)2(2i)2

∣∣H12i
12i

∣∣+
1

Λ

∑
i,j,k,l

ω1
ijω

2
kl

∣∣∣H12ijkl
12ijkl

∣∣∣
 n∏

m=1

hm Dσm, (5.24)

where we have reverted to arbitrary twistor wavefunctions. This shows that the apparent

singularity in Λ−1 of the leading term in (5.20) is artificial, and also castsMn,0 in a format

based on determinants of (n− 3)× (n− 3) matrices.

Now, let us consider the flat-space limit. Since ω1,2
ij ∼ O(Λ), it is clear that

lim
Λ→0
Mn,0 = lim

Λ→0

∫
d4|8x

X2
∑
i,j

(
(ξ1)2(i2)(j2) + (ξ2)2(i1)(j1)

(1i)(2i)(1j)(2j)(ξi)(ξj)

) ∣∣H12i
12j

∣∣
+X2

∑
i

(12)2

(1i)2(2i)2

∣∣H12i
12i

∣∣] n∏
k=1

hk Dσk (5.25)

In the flat-space limit, the second summation in this expression is manifestly independent

of ξ ∈ CP1, and a residue calculation shows that the first summation is also ξ-independent

(c.f., Lemma 4.4 of [15]). This means that we can set ξ = σ1 without loss of generality,

leaving us with:

Mn,0(Λ = 0) =

∫
d4|8x

∑
i,j

(12)2

(1i)(1j)(2i)(2j)

∣∣H12i
12j

∣∣+
∑
i

(12)2

(1i)2(2i)2

∣∣H12i
12i

∣∣ n∏
k=1

hk Dσk.

(5.26)

In arriving at this expression, we use that X2 → 1 as Λ → 0 and understand that the

entries of H are computed with respect to a flat-space infinity twistor.

The final step is to realize that on the support of overall momentum conservation, every

term in (5.26) is equivalent. This follows from the basic properties of reduced determinants

and is built into the Hodges’ formula itself, which has many equivalent expressions [18,

19]. So up to an irrelevant integer constant (which can be accounted for with proper

normalizations), we find:

lim
Λ→0
Mn,0 =

∫
d4|8x

(12)2

(1i)2(2i)2

∣∣H12i
12i

∣∣ n∏
j=1

hj Dσj =MHodges
n,0 (Λ = 0),

as required.

6 Conclusions and further directions

In this paper, we have developed the perturbative analysis of the twistor action for confor-

mal gravity so as to obtain the MHV amplitudes. We then went on to use the embedding
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of Einstein states into conformal gravity to deduce new formulae for MHV amplitudes in

de Sitter (and AdS) for Einstein gravity. An off-shell version of this embedding led to the

proposed new action functionals for Einstein gravity itself.

The conformal gravity twistor action is classically equivalent off-shell to the space-

time action following from theorem 2. What we do not currently have is an analogue of

theorem 2 for Einstein gravity, largely because at this stage the geometric structure in

the Einstein case is presented in a coordinate form. This is clearly a major outstanding

question which we hope to address in future work. Although a proposal was made for an

Einstein twistor action with Λ = 0 in [16], this is more robust because in that case the

MHV generating formula was only ever presented in a gauge fixed form, whereas here the

gauge is not so completely fixed and there is the possibility of transforming to a space-time

gauge. Our Einstein twistor action (4.7) has the correct self-dual reduction, produces the

correct MHV amplitude (i.e., the same as obtained via conformal gravity), and is derived

from the Einstein gravity embedding in conformal gravity. The Einstein twistor action (if

correct) would be an important tool as, in principle, it would allow us to perform loop

computations.

The new formulae are striking in view of their structure as rank n−2 determinants that

degenerate as Λ→ 0, rather than the rank n− 3 generalized determinant of Hodges. This

is perhaps reminiscent of the two versions of the KLT relations [55]. We discuss further

issues in separate sections below.

6.1 Axial gauge and the MHV formalism

One of the important applications of the twistor action for N = 4 SYM is that it leads to

a derivation of the MHV formalism [7] for Yang-Mills by virtue of an axial gauge choice

[24, 25]. The key benefit of this gauge choice is that it exploits the integrability of the self-

dual sector, essentially trivializing it by knocking out the non-linear terms in the self-dual

part of the action so that the only vertices are those arising from the non-local part. The

existence of a MHV formalism for gravity remains controversial [26, 27].10 Nevertheless,

we saw at the beginning of Section 5 that the axial gauge can also be imposed on the

twistor actions for conformal and Einstein gravity, resulting in a twistor space propagator

∆(Z,Z ′) and Riemann sphere propagator ∆(σ, σ′).

The propagator ∆(Z,Z ′) was not used in this paper, but it will essentially be the same

as in the Yang-Mills case but with different weights to account for the different helicities

involved. We refer the reader to [9, 25, 58] for the definition of this propagator in the

Yang-Mills case; it is essentially a delta function constraining Z,Z ′ and Z∗ to be collinear

in twistor space, and with a Cauchy pole when Z and Z ′ come together. The effect of

the Riemann sphere propagator and the Y · f vertices is wrapped up into the full MHV

amplitude. This can still be extended off-shell to become a MHV vertex on twistor space

by allowing ourselves to insert one or other end of the propagator ∆(Z,Z ′) instead of the

f or g (or h and h̃ in the Einstein case). Thus the propagator connects the vertices which,

10It is worth mentioning the recent work of [56], which proposes a MHV-like formalism based on delta-

function relaxation in a Grassmannian representation of the gravitational amplitudes [20, 57].
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on-shell, give the MHV amplitude, so it induces a MHV formalism for Einstein gravity in

twistor space.

To compute a NkMHV amplitude in conformal gravity reduced to Einstein gravity,

we must sum diagrams with k + 1 MHV vertices and k propagators, then divide by the

overall factor of Λ required by the embedding of Einstein gravity in conformal gravity. If

our proposed Einstein twistor action is correct, this should give the same answer as the

computation using k propagators from the Einstein gravity twistor action replacing h and h̃

in the vertices. Compatibility would essentially provide a proof that our proposal is correct

(at least at the level of perturbation theory). Preliminary calculations indicate that they

are in fact compatible and we hope to pursue this elsewhere.

The framework developed in this paper is sufficient for computing formulae for gravity

amplitudes in twistor space along the lines of [25]; there is much work needed to make

contact with momentum space formulae, though. It is interesting to note that the struc-

ture of the twistorial MHV formalism differs significantly from what has been proposed

previously in momentum space formulae. In particular, the functional form ofMn,0 begins

with a twice-reduced determinant, as in (5.16) or (5.17). While we were able to obtain

a thrice-reduced determinant form in (5.24), the arguments which produced this were on-

shell in nature, making them unsuitable for treating a vertex instead of an amplitude. This

indicates that in flat space, the MHV formalism that arises from this twistor action will not

simply correspond to an off-shell extension of the Hodges formula linked with p−2 propa-

gators; or at least, not in any obvious way. Rather, we might expect an off-shell extension

of the twice-reduced formula (5.16), with a propagator prescription given by translating

∆(Z,Z ′) to momentum space.

6.2 Connections to the N = 8 twistor-string formulae

Equation (5.24) is most closely related to the formulae that arise from Skinner’s N = 8

twistor-string, which makes direct contact with the Hodges formula at MHV. Skinner’s

N = 8 twistor-string is the first example of a theory which treats Einstein supergravity

directly with twistor methods [21]. As a string theory, it is anomaly free for any genus

worldsheet and is known to produce the complete tree-level S-matrix of N = 8 supergravity

on a flat background. Furthermore, the worldsheet theory is perfectly well-defined for a

non-simple infinity twistor, so in principle it should also be able to produce (after truncation

to N = 4 supersymmetry) the same twistor space formulae we have derived here.

Unfortunately, it is not currently known how to compute meaningful worldsheet corre-

lators of gravitational vertex operators with a cosmological constant in Skinner’s twistor-

string (beyond three-points). The issues which arise are the failure of the correlators to

be independent of the position of picture changing operators as well as reference spinors

(analogous to ξ ∈ CP1); this indicates that the correlators are not gauge invariant with

respect to the worldsheet degrees of freedom. These problems could stem from any number

of sources, including an incomplete understanding of the full spectrum of vertex operators

for the theory, or the worldsheet Feynman rules when Λ 6= 0. Hence, it seems natural to

ask if our formulae for Mn,0 could shed any light on this twistor-string calculation.
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Just as in Hodges formula, the fundamental object for computing the MHV amplitude

in Skinner’s twistor-string is a thrice-reduced determinant, corresponding to building a

top-degree form on the space of fermionic automorphisms of the worldsheet [21]. Note

that not only does (5.24) have the desired thrice-reduced determinants, but it also features

Vandermonde factors in the coordinates σi which arise in the context of twistor-string

theory. In particular, it is not immediately clear how the final term (with a six-times

reduced determinant) might arise from the twistor-string theory and this might provide

some clues as to how to better understand computations in that theory at Λ 6= 0.

6.3 Physical observables

Throughout this paper, we have referred to our formula for the MHV amplitudeMn,0 as a

‘scattering amplitude’ for general relativity on a background with cosmological constant. As

pointed out in the introduction, we have adopted this terminology for convenience and the

notion of a physically observable scattering amplitude on de Sitter space is not completely

well-defined. The final formulae we obtain for Mn,0 on twistor space make mathematical

sense for arbitrary choices of twistor wavefunctions hi and h̃i, as well as integration region

or contour for the d4x (or d4|8x in the N = 4 case) integral in conformally compactified

Minkowski space. A priori, the twistor wavefunctions can be the Penrose transform of

choice of space-time wave-function, although for convenience we used the dual ‘elemental’

twistor states (5.13) for calculational purposes in Section 5. More usually, amplitudes are

expressed in terms of momentum eigenstates. Twistor wavefunctions that correspond to

momentum eigenstates (c.f., [9]), with four-momentum kAA′ = pAp̃A′ are given by

h(Z(σ), kAA′) =

∫
C

ds

s1+w
δ̄(sλA − pA) es[µp̃], (6.1)

where w = −6 for a negative helicity graviton and w = 2 for a positive helicity graviton.

These are somewhat unnatural from the point of view of de Sitter geometry, since

there is no four dimensional abelian subgroup for the de Sitter group. They nevertheless

make sense conformally and can be set up with respect to either of the flat coordinate

backgrounds in the coordinate forms in (A.3) or (A.2). In the first of these, the infinity of

the coordinate patch is the lightcone of a finite point and so these eigenstates are singular

on this finite light cone and don’t recognize the infinity of global de Sitter space. This is

nevertheless the more convenient representation for studying the Λ→ 0 limit.

The second coordinate system is more satisfactory physically because the infinity of

the coordinate system is now the lightcone of a choice of a point at infinity. Then one

can consider the half of the space-time to the past of that light cone to be the observable

universe of a physical observer. Furthermore, at least the 3-dimensional abelian subgroup

of spatial translations is a subgroup of the de Sitter group, so these make more sense in

this context.

Similarly, we need to choose a contour for the integral over d4x which corresponds to

the real slice of space-time. Integrating over the full real slice of de Sitter space is equivalent

to integrating over the full conformal compactification and so doesn’t require any choice of

coordinates. It corresponds to computing a I − to I + scattering process where I ± are
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the future/past space-like infinities of de Sitter space. Although no observer could measure

this, the theory knows how to compute this amplitude and so this has sometimes become

known as a meta-observable [23, 59]. Using the eigenstates (6.1) and in the affine patch

(A.3), the three-point amplitude in this set-up is [22]

M3,0 =
〈12〉6

〈23〉2〈31〉2 (2− Λ2k) δ
4

(
3∑
i=1

ki

)
, (6.2)

where 2k is the wave operator on momentum space. It limits onto the definition of the

scattering amplitude when Λ → 0. Using this prescription for Mn,0 will produce an

operator of leading order 2n−2
k .

To obtain an honest physical observable, one should use twistor momentum eigenstates

(6.1) but now adapted to de Sitter space in the form (A.2), and choose the contour of

integration for d4x to correspond to a physically observable region of dS4, say t > 0 and

the integration contour can be displaced into the complex so as to coincide with the in-in

formalism. Prescriptions of this sort have been used to calculate the non-Gaussianities in

the gravitational bispectrum from inflation (c.f., [60, 61]).

6.4 Space-time background-coupled calculations

A challenge for these kinds of techniques is to extend the calculation to one off other

backgrounds; particularly interesting choices might be black holes or even plane waves.

Indeed, the calculation here can already be viewed in these terms, but as one off a self-

dual background as in Appendix A.2. Restricting to the axial gauge on twistor space

and considering only MHV amplitudes removes the twistor propagator ∆(Z,Z ′) from the

calculations. In the Einstein case, the remaining elements of perturbation theory were the

vertices Vh, Vh̃, and the propagator ∆(σ, σ′). To compute the n-point MHV amplitude, the

addition of the n− 2 Vh vertices is equivalent to expanding to (n− 2)th order the vertex:

1

Λ

∫
M

d4|8x

(∫
X
h̃ ∧ τ

)2

, (6.3)

which is evaluated on the fully non-linear self-dual background space-time M .

By theorem 1, M can be obtained via the non-linear graviton construction. The

equation for the holomorphic curve X now reduces to

∂̄σZ
I(x, σ) = IIJ∂Jh(Z) , (6.4)

which has the four complex parameter family of solutions defining (complexified) space-

time [42, 47].11 The Feynman diagram formalism on CP1 introduced in Section 5 generates

the perturbative solution to (6.4), substituted into (6.3). Since the curve X ⊂ PT is con-

structed from the classical solution to (6.4), only tree diagrams contribute to the Feynman

diagram calculus. This provides a geometric viewpoint for the Feynman rules of the twistor

action which live on the Riemann sphere: they operationalize the perturbative expansion

of the non-linear self-dual background M .

11When Λ = 0, it is a twistorial formulation of the ‘good cut equation’ [62–64].
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It should therefore be possible to understandMn,0 in purely geometric terms, without

reference to a Feynman diagram formalism. That is, one should be able to derive our tree

formulae by iteratively solving (6.4) around the background built from the n − 2 positive

helicity scattering states. It would be interesting to see if backgrounds more complicated

than the self-dual one studied here can also be described in this way.
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A Appendices

A.1 The conformal geometry of de Sitter space

De Sitter, anti-de Sitter, and flat space-times in n-dimensions possess only scalar curvature

and are hence conformally flat. Each is a dense open subset in the conformal compactifica-

tion which is a projective quadric of signature (2, n) in RPn+1 of topology S1 × Sn−1/Z2.

The infinite points are respectively a space-like, time-like or null hypersurface (in fact a

lightcone) in the conformal compactification obtained as the intersection of a hyperplane

of appropriate signature in RPn+1.

In four dimensions, de Sitter space (dS4) is topologically R× S3, and can be realized

as the pseudosphere in R1,4 with coordinates (w, xµ), µ = 0, . . . , 3 via the embedding [65]:

ηµνx
µxν − w2 = x2 − w2 = − 3

Λ
, ηµν = diag(1,−1,−1,−1) .

This makes manifest the isometry group SO(1, 4), the Lorentz group inherited from the

embedding space. The embedding as a projective quadric in RP5 can be realized with

homogeneous coordinates (t, w, xµ) as the t 6= 0 portion of:

2Q ≡ t2 − w2 + x2 = 0,

with scale-invariant metric

ds2 =
3

Λ

dt2 − dw2 + ηµνdxµdxν

t2
. (A.1)

The intersection of Q with the plane t = 0 corresponds to the spatial S3 at infinity, and

is the identification of the past (I −) and future (I +) infinities (ordinarily, we will not

make this identification); see Figure 4. The pseudosphere in R1,4 is recovered by taking

the patch t =
√

3/Λ.
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Q

t = 0

I +

I −

Figure 4. De Sitter space as the quadric Q ⊂ RP5 and the identification of infinity.

t > 0

t < 0

(a.) (b.)

Figure 5. De Sitter space on the affine Minkowski patch (a.), and the Poincaré patch (b.)

On de Sitter space, one can work with various convenient coordinate patches. We note

here two conformally flat choices. The first and most commonly used one is the Poincaré

patch which corresponds to x0 + w = 1, with metric:

ds2 =
3

Λ

dt2 − δijdxidxj
t2

. (A.2)

The t = 0 slice is infinity minus a point whose light cone divides de Sitter space into two

halves (t > 0 and t < 0), demonstrating that a physical observer at I ± has access to at

most half of the space-time. The Poincaré patch manifests the three-dimensional rotation

and translation symmetries of dS4, but is not so well-behaved in the Λ → 0 limit; see

Figure 5, (b.).

A less conventional choice is an affine patch in which the vertex of the light cone at

infinity for the affine coordinate patch is taken to be at a finite point. This corresponds to

t+ w = 1 and after re-scaling the affine Minkowski coordinates xµ the metric becomes

ds2 =
ηµνdxµdxν

(1− Λx2)2
. (A.3)

Most of de Sitter infinity is then located at finite points in the affine space where x2 = Λ−1,

although this has an S2 intersection with the affine coordinates’ infinity. Here the flat

space-time emerges as Λ→ 0; see Figure 5, (a.).
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n− 1−

2+

· · ·

dS4
1−

n+

M

Figure 6. Geometric picture of MHV graviton scattering

A.2 The MHV amplitude as a SD background coupled field calculation

We will focus on the tree-level Einstein Maximal Helicity Violating (MHV) amplitudes

which correspond to the scattering of two negative helicity gravitons and n − 2 positive

helicity gravitons. These are maximal because the positive and negative helicity states

are dual to each other, so an ‘all +’ amplitude would correspond to a positive helicity

particle picking up some negative helicity scattering on a positive helicity background. But

this cannot happen by virtue of the consistency of the self-duality equations for general

relativity. Similarly, the one negative and rest positive helicity amplitude vanishes because

the self-dual sector is integrable (it would correspond to the non-trivial scattering of a

linear positive helicity particle on a positive helicity background). See lemma A.1 below

for more details.

Following [16], we absorb the n − 2 SD gravitons of the MHV amplitude into a fully

nonlinear SD background space-time M , which can subsequently be perturbatively ex-

panded to recover the individual particle content. Reversing the momentum of one of the

two negative helicity gravitons, the MHV amplitude is the probability for a pure ASD state

at I − to propagate across M and evolve into a SD state at I + as illustrated in Figure 6.

The generating functional for MHV amplitudes in conformal gravity is given by the

second term in (2.4). The first term is precisely the action for the self-dual sector, so the

second term is therefore the action for the first non-trivial deformation of the SD sector

that is quadratic in the ASD part of the field. Evaluated on-shell with Einstein scattering

states, the two ASD gravitons are given by Weyl spinor perturbations ψ1, ψ2 and the

generating functional reads:

ICG[1−, 2−;M+]
∣∣
Ein

=
2i

ε2

∫
M

dµ ψABCD1 ψ2 ABCD, (A.4)

where M is again the SD background which encodes the n− 2 remaining gravitons.

We now derive the generating functional for these amplitudes in Einstein gravity using

the Einstein-Plebanski action to perturb about the SD sector in proposition A.1. This leads

to a generating functional that we denote by IGR and is given in (A.21). In proposition

A.2, we show that on a self-dual background this arises from the reduction of (A.4) to
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Einstein data, so that

IGR[1−, 2−;M+] = − 3ε2

Λ κ2
ICG[1−, 2−;M+]

∣∣
Ein

, (A.5)

in accordance with (2.8). Thus we can use either as a generating function to compute the

MHV amplitude.

We will exploit the chiral formulation of general relativity [66]: for a general space-

time M with metric specified by a tetrad of 1-forms ds2 = εABεA′B′e
AA′ ⊗ eBB′ , the basic

variables are three ASD 2-forms:

ΣAB = eA
′(A ∧ eB)

A′ ,

and the ASD spin connection ΓAB. With a cosmological constant Λ, the action of general

relativity is:

S[Σ,Γ] =
1

κ2

∫
M

(
ΣAB ∧ FAB −

Λ

6
ΣAB ∧ ΣAB

)
, (A.6)

where

FAB = dΓAB + ΓCA ∧ ΓBC (A.7)

is the curvature of the ASD spin connection. This action produces two field equations, to

which we append a third (the condition that ΣAB be derived from a tetrad) [29]:

DΣAB = 0, (A.8)

FAB = ΨABCDΣCD +
Λ

3
ΣAB, (A.9)

Σ(AB ∧ ΣCD) = 0. (A.10)

Here, D is the covariant derivative with respect to the ASD spin connection:

DΣAB = dΣAB + 2Γ
(A
C ∧ ΣB)C .

Following [16], we can express a tree-level MHV amplitude as the classical scattering

of two negative helicity gravitons off a SD background space-time, which (perturbatively)

encodes the remaining positive helicity gravitons. For a SD background, we have ΨABCD =

0, so (A.9) can be solved for Σ in terms of F while (A.8), (A.10) result in an algebraic

condition on the curvature of the ASD spin connection. To be precise, a SD solution

(Σ0,Γ0) obeys [67]:

ΣAB
0 =

3

Λ
FAB0 , (A.11)

F0(AB ∧ F0 CD) = 0. (A.12)

Now consider small perturbations away from this SD background of the form Σ =

Σ0 + σ0, Γ = Γ0 + γ. This results in a set of linearized field equations:

D0σ
AB = −2γ

(A
C ∧ Σ

B)C
0 , (A.13)

D0γAB = ψABCDΣCD
0 +

Λ

3
σAB, (A.14)

σ(AB ∧ Σ
CD)
0 = 0, (A.15)
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where D0 is the covariant derivative with respect to the background ASD spin connection

Γ0. It is fairly easy to see that the field ψABCD corresponds to a linearized ASD Weyl

spinor propagating on the SD background (Σ0,Γ0) [46].

Our goal is now to formalize the picture of an MHV amplitude in terms of linearized

solutions propagating on a SD background. If S is the space of solutions to the full field

equations (A.8)-(A.10), then solutions to the linearized equations (A.13)-(A.15) are a vector

space V corresponding to the fiber of TS over the SD solution (Σ0,Γ0). Now, a linearized

SD solution is fully characterized by the ASD spin connection, since

σAB =
3

Λ
D0γAB, D0γ

(AB ∧ FCD)
0 = 0. (A.16)

This allows us to define the SD portion of V as

V + =
{

(σ, γ) ∈ V : D0γ
(AB ∧ FCD)

0 = 0
}
,

and a corresponding V − by the quotient map in the short exact sequence:

0 −→ V + ↪→ V −→ V − −→ 0.

In particular, this means we have

V − ≡ V/V + = {(σ, γ) ∈ V } /
{
γ : D0γ

(AB ∧ FCD)
0 = 0

}
.

The space of solutions S comes equipped with a natural symplectic form ω given by

the boundary term in the action [68]:

ω =
1

κ2

∫
C
δΣAB ∧ δΓAB, (A.17)

where C is a Cauchy surface in M (when Λ > 0, there is always a slicing where C ∼= S3

topologically) and δ is the exterior derivative on S. It is straightforward to show that

ω is independent of the choice of Cauchy surface and descends to a symplectic form on

S/Diff+
0 (M) [46].

This symplectic form induces an inner product between points in the linearized solution

space V : for hi, hj ∈ V we take

〈hi|hj〉 = − i

κ2

∫
C
σABj ∧ γi AB. (A.18)

An important fact about this inner product (which is obvious in the Λ = 0 setting, c.f.,

[16]) is that it annihilates the SD sector:

Lemma A.1 Let hi, hj ∈ V + on the SD background with (Σ0,Γ0). Then 〈hi|hj〉 = 0, or

equivalently: for all hi ∈ V +, 〈hi|·〉|V + = 0.

Proof: The inner product is skew-symmetric under interchange of hi and hj , so

〈hi|hj〉 = − i

2κ2

∫
C

(
σABj ∧ γi AB − σABi ∧ γj AB

)
.
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Suppose hj ∈ V +; then (A.14) implies that D0γj AB = Λ
3 σj AB. In the Λ = 0 limit, the

ASD spin connection is trivial D0 → d, so γABj |Λ=0 = 0, and we can write γABj = ΛνABj for

some array of space-time 1-forms νABi . With this representation, the linearized SD field

equation gives σj AB = 3D0νj AB, and the inner product becomes:

− i

2κ2

∫
C

(
3dνABj ∧ γi AB + 6Γ

(A
0 C ∧ ν

B)C
j ∧ γi AB − σABi ∧ γj AB

)
=

i

2κ2

∫
C

(
3νABj ∧D0γi AB − σABi ∧ γj AB

)
,

where the second line follows by integration by parts and a re-arranging of index contrac-

tions. Once again using γj AB = Λνj AB, we have:

〈hi|hj〉 =
i

2κ2

∫
C
νABj ∧ (3D0γi AB − Λσi AB) =

3i

2κ2

∫
C
νABj ∧ ψi ABCDΣCD

0 ,

using (A.14) for hi. Hence, if hi ∈ V + then ψi ABCD = 0 and the inner product vanishes.

2

Note that lemma A.1 confirms that the all-positive helicity and (−+ · · ·+) amplitudes

of general relativity vanish even with a cosmological constant in play. In the first case, we

see that the SD field equations are integrable since their solutions are characterized by a

single algebraic relation (A.12). In the second case, the fact that the inner product anni-

hilates the SD sector ensures that scattering with only a single negative helicity graviton

is also trivial.

We can use this inner product to define ASD solutions at the boundary of our M as

in [16]: take a one-parameter family of Cauchy hypersurfaces Ct → I ± as t→ ±∞. Then

we say that hj = (σj , γj) is ASD at I ± if

lim
t→±∞

∫
Ct

σABj ∧ γi AB = 0 for all hi = (σi, γi) ∈ V −. (A.19)

Now we want to build the generating functional for the MHV amplitudes, which mea-

sure the probability for a pure ASD state at I − to propagate across a SD background M

and evolve into a SD state at I +. Hence, we take the incoming state to be h1|I− ∈ V −.

Since the inner product annihilates the SD sector, we need to compute the inner product

between h1 and some other state h2|I + ∈ V − at the future conformal boundary I +:12

This gives the generating functional for the MHV amplitudes as

IGR[1−, 2−,M+] = 〈h2|h1〉 = − i

κ2

∫
I +

σAB1 ∧ γ2 AB. (A.20)

This form of the generating functional is not particularly illuminating because the role of

the SD background M is implicit. However, we can manipulate (A.20) into a format which

is explicitly in terms of an integral over the entire background space-time.

12As mentioned in the text, this corresponds to a ‘meta-observable’ since we integrate over the entire

space-like surface I +.
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Proposition A.1 The amplitude 〈hn|h1〉 is given by the formula:

IGR[1−, 2−,M+] =
i

κ2

∫
M

(
ΣAB

0 ∧ γC1 A ∧ γ2 CB −
Λ

3
σAB1 ∧ σ2 AB

)
, (A.21)

where M is a SD background space-time described by (Σ0,Γ0).

Proof: Recall that ∂M = I + −I −, so Stokes’ theorem gives

− i

κ2

∫
I +

σAB1 ∧ γ2 AB = − i

κ2

∫
M

(
dσAB1 ∧ γ2 AB + σAB1 ∧ dγ2 AB

)
− i

κ2

∫
I−

σAB1 ∧ γ2 AB.

Now, the second term on the right vanishes, since h1 ∈ V − at I −. Using the linearized

field equations (A.13), (A.14) it follows that

dσAB1 = −2γ
(A
1 C ∧ Σ

B)C
0 − 2Γ

(A
0 C ∧ σ

B)C
1 ,

dγ2 AB = ψ2 ABCDΣCD
0 +

Λ

3
σ2 AB − 2Γ0 C(A ∧ γC2 B),

and the generating functional becomes

i

κ2

∫
M

(
ΣAB

0 ∧ γC1 A ∧ γ2 CB + σAB1 ∧ ΓC0 A ∧ γ2 CB + σAB1 ∧ Γ0 CA ∧ γC2 B

−Λ

3
σAB1 ∧ σ2 AB − σAB1 ∧ ψ2 ABCDΣCD

0

)
.

The last term vanishes due to the linearized field equation (A.15) and the fact that

ψABCD = ψ(ABCD), while the second and third terms cancel after restructuring the spinor

indices.

All that remains is to check that (A.21) has the correct gauge invariance: if one of

the ASD states is pure gauge, the amplitude must vanish. Suppose that h1 is pure gauge:

ψ1 ABCD = 0. By (A.16), we know that Λ
3 σ

AB
1 = D0γ

AB
1 , and integrating by parts in (A.21)

gives

IGR[1−, 2−,M+]|ψ1=0 =
i

κ2

∫
M

(
ΣAB

0 ∧ γC1 A ∧ γ2 CB + γAB1 ∧D0σ2 AB

)
−
∫
∂M

γAB1 ∧σ2 AB.

The boundary term vanishes at I + since h2|I + ∈ V −, and also at I − since h1 is pure

gauge. This leaves us with the bulk terms, which can be evaluated using the linearized

field equation (A.13) for h2:∫
M

(
ΣAB

0 ∧ γC1 A ∧ γ2 CB + γAB1 ∧D0σ2 AB

)
=

∫
M

(
ΣAB

0 ∧ γC1 A ∧ γ2 CB − 2γAB1 ∧ γ2 C(A ∧ ΣC
0 B)

)
= 0,

with the final equality following after re-arranging contractions on spinor indices. 2

The final step is to obtain the conformal/Einstein gravity correspondence for this

generating functional. Upon restricting to Einstein scattering states, it is obvious that the
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generating functional in conformal gravity with two negative helicity gravitons and a SD

background is given by the second term in (2.4):

ICG[1−, 2−,M+] =
2i

ε2

∫
M

dµ ψABCD1 ψ2 ABCD, (A.22)

where M is again the SD background which encodes the n − 2 remaining gravitons. By

the conformal/Einstein gravity correspondence, we should be able to relate ICG to IGR

on-shell (i.e., by apply the field equations of general relativity), and this is indeed the case

[46].

Proposition A.2 On-shell, IGR[1−, 2−,M+] = − 3ε2

Λκ2
ICG[1−, 2−,M+].

Proof: (A.22) is equivalent to

ICG[1−, 2−,M+] =
i

ε2

∫
M
ψABCD1 Σ0 CD ∧ ψ2 ABEFΣEF

0 .

Using the linearized field equation (A.14) for h2, this becomes

i

ε2

∫
M
ψABCD1 Σ0 CD ∧

(
D0γ2 AB −

Λ

3
σ2 AB

)
.

Integrating by parts in the first term gives

−
∫
M

D0ψ
ABCD
1 Σ0 CD ∧ γ2 AB +

∫
∂M

ψABCD1 Σ0 CD ∧ γ2 AB =

∫
∂M

ψABCD1 Σ0 CD ∧ γ2 AB,

since ψ1 is a linearized Weyl spinor. In the second term, a combination of both field

equations (A.14) for h1 and (A.13) for h2 as well as integration by parts leaves

−2Λ

3

∫
M
γAB1 ∧ γ2 C(A ∧ ΣC

0 B) +
Λ2

9

∫
M
σAB1 ∧ σ2 AB −

Λ

3

∫
∂M

γAB1 ∧ σ2 AB.

Combining both terms gives:

ICG[1−, 2−,M+] =
i

ε2

(
−2Λ

3

∫
M
γAB1 ∧ γ2 C(A ∧ ΣC

0 B) +
Λ2

9

∫
M
σAB1 ∧ σ2 AB

)
− i

ε2

(∫
∂M

ψABCD1 Σ0 CD ∧ γ2 AB −
Λ

3

∫
∂M

γAB1 ∧ σ2 AB

)
= −Λκ2

3ε2
IGR[1−, 2−,M+] + boundary terms.

The proof is complete if we can show that the boundary terms vanish. Applying (A.14)

to the first of these terms leaves us

boundary terms ∼
∫
∂M

D0γ
AB
1 ∧ γ2 AB −

Λ

3

∫
∂M

γAB2 ∧ σ1 AB −
Λ

3

∫
∂M

γAB1 ∧ σ2 AB,

with the second and third terms cancelling due to skew symmetry in h1, h2. Finally,∫
∂M

D0γ
AB
1 ∧ γ2 AB =

∫
I +

D0γ
AB
1 ∧ γ2 AB −

∫
I−

D0γ
AB
1 ∧ γ2 AB

= −
∫

I +

γAB1 ∧D0γ2 AB −
∫

I−
D0γ

AB
1 ∧ γ2 AB = 0,
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by the fact that h1|I− ∈ V − and h2|I + ∈ V −, as required. 2

Note that the result of this proposition is in precise agreement with the prefactors

predicted by Anderson’s theorem in (2.8).

A.3 Minimal and non-minimal conformal super-gravity

It is natural to ask if the embedding of Einstein gravity into conformal gravity persists in the

presence of supersymmetry. Analogues of conformal gravity with extended supersymmetry

were first constructed in [48], and it is believed that these theories are well-defined for

N ≤ 4 (c.f., [69, 70]). In this paper, we are concerned primarily with N = 4 conformal

supergravities (CSGs), since this is the degree of supersymmetry that arises most naturally

in twistor theory. This N = 4 CSG comes in two basic phenotypes: minimal and non-

minimal based upon the presence of a certain global symmetry. The non-minimal type

depends essentially on a free function of one variable. Einstein supergravity embeds into

minimal CSG, but not into the non-minimal models.

The field content of N = 4 CSG consists of the spin-2 conformal gravitons along

with bosonic fields V a
µ b, anti-self-dual tensors T abµν , scalars {Eab, Dab

cd, ϕ} and fermions

{ψaµ, χabc, λa}, where a = 1, . . . , 4 is a SU(4) R-symmetry index. Minimal N = 4 CSG

is characterized by a global SU(1, 1) symmetry acting non-linearly on the complex scalar ϕ

(essentially the action of SU(1, 1) on the upper-half plane) [48]. This relates to the presence

of N = 4 Poincaré supergravity sitting inside the CSG [49]. The minimal model also has a

degenerate limit where SU(1, 1) is replaced by a linear E2 action (the Euclidean symmetries

of the plane); once again this has an analogue in N = 4 Einstein supergravity, and also

arises in coupling N = 1 supergravity to a scalar multiplet [49, 71, 72].

A general conformally invariant theory of gravity has a Lagrangian of the form

L = f(ϕ)Ψ2 + ϕ22ϕ̄+ c.c.+ . . . ,

where we just give two indicative terms of a rather extended Lagrangian. Because the field

ϕ has conformal weight zero, we are allowed an arbitrary function f(ϕ) as a coefficient

of the self-dual Weyl tensor squared Ψ2. This will have a supersymmetric extension for

arbitrary analytic f .

In the minimal N = 4 case, the aforementioned SU(1, 1) symmetry leads to a unique

N = 4 CSG Lagrangian. It follows from symmetry under the U(1) subgroup of SU(1, 1)

that we must have f ≡ 1, giving the Lagrangian:

Lmin = CµνρσCµνρσ + ϕ22ϕ̄+ · · · .

Einstein supergravities at N = 4 can be constructed from minimal CSG [73] and so re-

stricting to Einstein scattering states, Maldacena’s argument should still apply and we can

extract the tree-level Einstein gravity scattering amplitudes (see Figure 7 (a)).

Without the global SU(1, 1) symmetry, there are no constraints on f(ϕ), which leads

to couplings between the complex scalar ϕ and the Weyl curvature. Such N = 4 CSG

theories are referred to as non-minimal, and were first conjectured to exist in [10, 74]. If

f ′ 6= 0, the Weyl tensor will provide a source for the scalar field and vice versa, so even if ϕ
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(a.) (b.)

ϕ

Figure 7. In minimal N = 4 CSG, couplings between gravitons and the scalar ϕ are excluded in

the bulk (a.); in the non-minimal model they are not (b.).

vanishes asymptotically it will become nontrivial in the interior. Einstein gravity will not

be a subset of this theory and there will in general be no embedding of Einstein solutions

into non-minimal CSG.

At the level of scattering amplitudes, conformal graviton scattering states in the non-

minimal theory can interact with the scalar in the bulk via three-point vertices of the

form ϕ(Weyl)2. This means that a tree-level scattering amplitude for conformal gravitons

will include Feynman diagrams for which there is no analogue in Einstein supergravity, as

illustrated in Figure 7 (b). Without a consistent algorithm for subtracting these diagrams,

Maldacena’s argument can not be applied to non-minimal CSG. The theory arising from

the Berkovits-Witten twistor string is understood to be an example of non-minimal CSG,

with f(ϕ) = eϕ [4]. And indeed, spurious amplitudes related to the non-minimal coupling

between conformal gravitons and scalars were found explicitly in [22, 75].

While there is some doubt over whether non-minimal CSG is well-defined at the quan-

tum level [76, 77], minimal conformal gravity maintains some independent interest. It

has been shown that minimal N = 4 CSG interacting with a SU(2) × U(1) N = 4 SYM

theory is ultraviolet finite and power-counting renormalizable [10, 78]. This theory can be

obtained as a gauge theory of the superconformal group SU(2, 2|4). A weaker version of

the minimal Lagrangian can also be obtained by coupling abelian N = 4 SYM to a N = 4

CSG background [73, 79] and extracting the UV divergent portion of the partition function

[77, 80]. The theory has even been proposed as a basic model for quantum gravity (c.f.,

[39, 81]).

A.4 Further remarks on conformal gravity polarization states

We include the following in order to make contact with standard calculations. Standard

momentum eigenstates for spin-two fields with 4-momentum kAA′ = pAp̃A′ are given by

ψABCD = pApBpCpDeik·x ,

where the polarization information is contained in the choice of scale of pA.

As conformal gravity has fourth-order equations of motion, we need more polarization

states and–as mentioned above–it is usually thought that twice as many suffice [4, 39],

although we will present three here to line up with the counting from twistor space. The

first two arise from (2.12) as the pair

ΨABCD = pApBpCpDeik·x , Ψ′ABCD = x2pApBpCpDeik·x , (A.23)
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and similarly for Ψ̃, Ψ̃′. This framework can be used to characterize Einstein polariza-

tion states inside conformal gravity by taking the linear combination of conformal gravity

polarization states which vanishes at the hypersurface at infinity. On the affine patch of

metric (A.3) we have

ΨΛ
ABCD = (1− Λx2)pApBpCpDeik·x , (A.24)

while on the Poincaré patch of de Sitter space (A.2), this is

ΨΛ
ABCD =

√
Λ

3
t pApBpCpDeik·x . (A.25)

Another linearized conformal gravity solution that is missed by the above is

ΨABCD = α(ApBpCpD)e
ik·x , (A.26)

where αA is an arbitrary constant spinor. The general solution for the spin two equation

can be expressed by Fourier transform as

ψABCD(x) =

∫
d4k δ(k2) ψ(k) pApBpCpDeik·x .

Similarly, the general solution to the linearized Bach equations can be expressed as

ΨABCD(x) =

∫
d4k

(
δ(k2)Ψ0(k)(A + p(Aδ

′(k2)Ψ1(k)
)
pBpCpD)e

ik·x . (A.27)

This can be seen by taking the Fourier transform of the Bach equations to yield

kAA
′
kBB

′
ΨABCD(k) = 0.

Multiplying by k twice more we discover that (k2)2ΨABCD(k) = 0 so that

ΨABCD(k) = Ψ0 ABCD δ(k2) + Ψ1 ABCD δ′(k2).

Introduce pA = kAA′o
A′ so that kAA

′
pA = k2

2 o
A′ . Then it is straightforward to see that the

field equations are satisfied by (A.27) and that this is the general solution. Integrating by

parts in (A.27), we can eliminate δ′(k2) in favour of δ(k2) but will then pick up explicit

dependence on xµ making contact with the polarization states (A.23).

A.5 Proof of Lemma 5.1

In this appendix, we provide the proof of lemma 5.1 from the text, regarding propagators

involving the contact structure τ .

Lemma A.2 A Feynman diagram containing an isolated propagator connecting a white

vertex to a grey vertex vanishes following integration by parts. In particular, an isolated

propagator between a white vertex i and a grey vertex 1 leads to a factor

2ΛDσ1 σ1A

∫
CP1

di

(
σAi (ξ1)hi
(1i)2(ξi)

)
,

where di is the exterior derivative in σi.
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Proof: Consider a diagram with a disconnected component with a single isolated arrow

from (white) vertex i to τ1. Using the fact that the propagator replaces Z(x, σ1) according

to

ZI(x, σ1)→
∫
CP1

Dσi
(1i)

(ξ1)2

(ξi)2
IIJ∂Jhi, (A.28)

we see that this disconnected component corresponds to a factor

IIJ

∫
CP1

Dσi
(1i)2

(ξ1)

(ξi)2

[
(ξ1)(1i) dZJ1 I

IK∂Khi + ((ξ1)(idσ1) + 2(1i)(ξdσ1))ZI1I
JK∂Khi

]
= IIJ

∫
CP1

Dσi
(1i)2

(ξ1)

(ξi)2

[
(ξ1)(1i) dZJ1 I

IK∂Khi + (Dσ1(ξi) + (1i)(ξdσ1))ZI1I
JK∂Khi

]
,

with the second expression following by the Schouten identity. The map to twistor space

takes the form ZI(σ) = XI
Aσ

A = (Xσ)I , so the Schouten identity gives

dZJ(σ1) (1i) = ZJ(σi) Dσ1 − ZJ(σ1) (idσ1),

and feeding this into the above expression leaves us with

IIJDσ1

∫
CP1

Dσi
(1i)2

(ξ1)

(ξi)2

(
2(ξi) ZI1 − (ξ1) ZIi

)
IJK∂Khi .

Using IIJI
JK = ΛδKI we have

ΛDσ1

∫
CP1

Dσi (ξ1)

(1i)2(ξi)2

(
2(ξi)ZI1 − (ξ1)ZIi

)
∂Ihi

= 2ΛDσ1

∫
CP1

Dσi (ξ1)

(1i)2(ξi)2
((ξi)σ1 · ∂ihi − (ξ1)hi)

= 2ΛDσ1σ1A

∫
CP1

∂

∂σiA

(
Dσi (ξ1)hi
(1i)2(ξi)

)
= 2ΛDσ1σ1A

∫
CP1

∂i

(
σAi (ξ1)hi
(1i)2(ξi)

)
.

In the second line we have used the homogeneity relation, chain rule, and the linearity of

Zi in σi to deduce that σ1 · ∂ih(Z(σi)) = ZI(σ1)∂Ih(Z(σi)).

The integrand of this expression has potential poles at σi = σ1, ξ which could lead to

boundary contributions when we apply Stokes theorem. If we take σi = σ1 + zξ, then the

integral takes the form:∫
CP1

∂i

(
g(z)dz̄

z

)
=

∮
r=∞

g(z)dz̄

z
−
∮
r=0

g(z)dz̄

z
,

where g(z) is a smooth weighted holomorphic function. Writing z = reiθ, we are left with

−i
∮
r=∞

g(z)e−2iθdθ + i

∮
r=0

g(z)e−2iθdθ = 0,

so any potential boundary terms do indeed vanish. The case with two isolated contractions

into τ1 from vertices i and j follows similarly. 2
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A.6 Independence of the Reference Spinor

In this appendix we explicitly compute the infinitesimal variation dξMn,0. This is easiest

if we use the representation of Mn,0 given by (5.16); the proof of ξ-independence can also

be accomplished using (5.17), but requires a bit more finesse.

We can compute the variation directly from (5.16) by using the basic property of

determinants: dξ|H| = tr[adj(H)dξH]. This leads to (ignoring irrelevant overall factors):

dξMn,0 =

∫
Mn,1

d4|8x

[∑
i

∣∣H12i
12i

∣∣ ((X2)2 dξHii +X2 dξψ
1
i

)
+
∑
i,j

∣∣∣H12ij
12ij

∣∣∣ (X2 ψ1
i dξHjj +X2 dξω

1
ij + dξψ

1
i ψ

2
j + ψ1

i dξψ
2
j

)
+
∑
i,j,k

∣∣∣H12ijk
12ijk

∣∣∣ (X2 ω1
ij dξHkk + ψ1

i ψ
2
j dξHkk + dξψ

1
i ω

2
jk + ψ1

i dξω
2
jk

)
+
∑
i,j,k,l

∣∣∣H12ijkl
12ijkl

∣∣∣ (ψ1
i ω

2
jk dξHll + dξω

1
ij ω

2
kl + ω1

ij dξω
2
kl

)

+
∑

i,j,k,l,m

∣∣∣H12ijklm
12ijklm

∣∣∣ ω1
ij ω

2
kl dξHmm

 n∏
s=1

hs Dσs + (1↔ 2). (A.29)

To study dξMn,0, we need the individual variations which appear in (A.29). These

are easily obtained by working with the dual twistor wavefunctions (5.13); after a bit of

algebra (including the Schouten identity) we find

dξHii = 2

n∑
j=1

[Wi,Wj ](jξ)

(iξ)3
Dξ = 2

[Wi,P · ξ]
(iξ)3

Dξ, (A.30)

dξψ
1
i = 2i Λ

Z(ξ) ·Wi

(iξ)3
Dξ, dξω

1
ij = 2Λ

[Wi,Wj ](ij)(1ξ)
3

(1i)2(1j)2(iξ)3(jξ)3
[(jξ)(i1) + (iξ)(j1)] Dξ.

(A.31)

We will now use these facts to show that dξMn,0 is a total divergence with respect to the

coordinates XJA, and hence vanishes.

We can proceed order-by-order with respect to the sums appearing in (A.29). For

instance, the integrand of the first line is

−2i
∑
i

∣∣H12i
12i

∣∣ (i(X2)2 [Wi,P · ξ]
(iξ)3

− 2Λ X2Z(ξ) ·Wi

(iξ)3

)
eiP·X .

But upon inspection, this takes the form of a total divergence:

− 2i
∂

∂XJA

[
(X2)2 eiP·X

∑
i

∣∣H12i
12i

∣∣ IIJWi Iξ
A

(iξ)3

]
(A.32)

The key observation is that (for all terms contributing to dξMn,0) X-dependence only

appears through explicit powers of X2, the wavefunction factor of eiP·X , ψ1
i , or dξψ

1
i .
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Applying this philosophy to the rest of (A.29), we can show that line-by-line it is equal to

a total divergence.

If we refer to the contribution of (A.32) as the ‘third-order’ contribution (counting the

number of rows and columns missing from the determinant factor), then divergences at

each order are given as follows: At fourth-order,

− 2i
∂

∂XJA

X2 eiP·X
∑
i,j

∣∣∣H12ij
12ij

∣∣∣ ψ1
i I

IJWj Iξ
A

(jξ)3

 + (1↔ 2). (A.33)

At fifth-order:

− 2i
∂

∂XJA

eiP·X∑
i,j,k

∣∣∣H12ijk
12ijk

∣∣∣ (X2ω1
ij − ψ1

i ψ
2
j

)
IIJ

Wk Iξ
A

(kξ)3

 (1↔ 2). (A.34)

At sixth-order:

− 2i
∂

∂XJA

eiP·X ∑
i,j,k,l

∣∣∣H12ijkl
12ijkl

∣∣∣ ψ1
i ω

2
jk I

IJWl Iξ
A

(lξ)3

 + (1↔ 2). (A.35)

At seventh-order, we only have a single term:

2

∫
d4|8x

∑
i,j,k,l,m

∣∣∣H12ijklm
12ijklm

∣∣∣ ω1
ij ω

2
kl

[Wm,P · ξ]
(mξ)3

eiP·Xd2σ.

After using the GL(2,C)-freedom to fix the scale and position of σ1 and σ2, we can simply

perform the remaining d8|8X integral (since ω1,2
ij is independent of X), leaving:

2

∫
d2σ δ8|8(P)

∑
i,j,k,l,m

∣∣∣H12ijklm
12ijklm

∣∣∣ ω1
ij ω

2
kl

[Wm,P · ξ]
(mξ)3

= 0. (A.36)

So the seventh-order contribution to dξMn,0 vanishes simply due to momentum conser-

vation. Note that in the calculation of each of these divergences, care must be taken to

symmetrize over all indices in the summation as well as (1↔ 2) in order to get the correct

result.

Finally, we can combine (A.32)-(A.36) to see that

dξMn,0 =

∫
Mn,1

d8|8X

vol GL(2,C)

∂

∂XIA
V IA = 0. (A.37)

This vanishing occurs because there are no ambiguities with respect to the compactification

of the moduli space at degree one, and V IA is smooth with respect to the X coordinates.
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