
An Introduction to the Einstein Toolkit

Miguel Zilhão1, Frank Löffler2

1 Center for Computational Relativity and Gravitation,
Rochester Institute of Technology, 74-2068, Rochester, NY 14623, USA
2 Center for Computation & Technology,
Louisiana State University, Baton Rouge, LA, USA

E-mail: mzilhao@astro.rit.edu, knarf@cct.lsu.edu

Abstract. We give an introduction to the Einstein Toolkit, a mature, open-source
computational infrastructure for numerical relativity based on the Cactus Framework,
for the target group of new users. This toolkit is composed of several different modules,
is developed by researchers from different institutions throughout the world and is in
active continuous development. Documentation for the toolkit and its several modules
is often scattered across different locations, however, a difficulty new users may at times
have to struggle with. Scientific papers exist describing the toolkit and its methods in
detail, but they might be overwhelming at first. With these lecture notes we hope to
provide an initial overview for new users. We cover how to obtain, compile and run
the toolkit, and give an overview of some of the tools and modules provided with it.

ar
X

iv
:1

30
5.

52
99

v1
 [

gr
-q

c]
 2

3
M

ay
 2

01
3

An Introduction to the Einstein Toolkit 2

1. Introduction

Dating back to Hahn and Lindquist’s first attempts at numerically evolving Einstein’s
field equations for a binary black hole spacetime [1], numerical relativity is now an
essential tool to study systems with strong and dynamical gravitational fields. Originally
motivated essentially from astrophysics and gravitational wave astronomy, it was soon
realized that numerical relativity could be useful to a much wider spectrum, with
additional motivations coming even from fields other than gravity itself. See for
instance [2] for an overview of some of these topics.

Developing efficient computational codes to probe this highly non-linear regime is
a very non-trivial and time-consuming process, however. In fact, only in 2005 were the
first simulations of stable, long-term evolutions of the inspiral and merger of two black
holes [3–5] successfully accomplished. It is therefore a great advantage if well-tested,
easy to use computational infrastructures are available that allow researchers to focus
less on the computational aspect of such tasks, allowing for more time being spent on
the actual physics.

To illustrate the helpfulness of having such an infrastructure, we start by noting
that a typical numerical relativity code will have to, among others, incorporate a mesh
refinement algorithm, use an efficient parallelization scheme, efficiently deal with large
input and output and also use somewhat complex tools for analysis.

In these notes we introduce the Einstein Toolkit [6–8], an open source, community-
driven, freely accessible infrastructure for numerical relativity. The toolkit uses
the BSSN (Baumgarte, Shapiro, Shibata, Nakamura) evolution system for spacetime
evolution [9, 10] with a finite-volume general-relativistic hydrodynamics solver. Within
this document, however, we have chosen to only describe components and tools that
we believe are of most interest for a new user, necessarily leaving out large parts of
the toolkit that are of interest for advanced users. For a more detailed description the
interested reader is directed to [7], and for an overview of the MHD capabilities to [8].

This document is structured as follows. We start with a high-level overview of the
most important modules for new users in section 2, before we describe basic steps to use
the Einstein Toolkit in section 3. Some details about the structure of most modules are
given in section 4, which is not only interesting for users to understand how to configure
simulations, but also for developers that are interested in extending the toolkit. Finally,
some examples show-case Einstein Toolkit usage in section 5, having in mind that these
examples can be used within tutorials or workshops. In particular, this means that these
are not tailored for the best possible physical results, but instead for short run-time and
low system requirements. Finally, we conclude in section 6.

2. Structural Overview

The Einstein Toolkit (ET) consists of quite a large number of components, of which most
currently use the Cactus Computational Toolkit [11, 12] framework, which provides the

An Introduction to the Einstein Toolkit 3

basic modular infrastructure for numerical simulations. A number of tools are provided
surrounding this framework environment, from simulation management to data analysis
and visualization. In the following we briefly introduce Cactus, as well as some of
the arrangements provided with the toolkit. Some of the more important tools are
introduced later in section 3, as part of a description of typical Einstein Toolkit usage.

2.1. Cactus

The Cactus framework [11–13] is a general framework for the development of portable,
modular applications, wherein programs are split into components (called thorns)
with clearly defined dependencies and interactions. Thorns are typically developed
independently and should be interchangeable with others with same functionality. They
usually do not directly interact with each other; rather each of them interacts with the
Cactus framework flesh which provides the “glue” between different thorns. Thorns
can be written in different languages, with C, C++, Fortran, OpenCL and CUDA being
supported currently.

Cactus, originally developed for numerical relativity, is a direct descendant of many
years of code development in Ed Seidel’s group of researchers at NCSA; its version 1.0
was released in 1995. Over the years it has been generalized for use by scientists in
other domains.

At this point, introducing some Cactus-related terminology is beneficial, making
text within this publication compatible to existing documentation within the Einstein
Toolkit.

Cactus simulations require an executable to be compiled, which is done typically
by the users themselves. This setup allows for quick adaptation to changes in the local
environment, e.g., updated libraries, but also for a simple way to tailor the source code
to the users’ needs, most of the time through usage of own modules. This executable
has one mandatory argument: a parameter file. This is a simple text file, containing
key-value pairs of parameter names and the desired settings within the simulation. An
executable from all thorns within the Einstein Toolkit can be used to model a variety
of physical scenarios. The parameter file is used to choose which of these should be
realized.

An often used term within Cactus is a so-called grid function. This is a
(discretization of a) variable which is defined on every point of a given grid. Examples
are the rest-mass density of a fluid which is defined in all cells within a given domain,
or the components of the metric tensor in general relativity. In parallel simulations, a
grid function is typically split across processes, allowing storage of large grid functions
and parallel work on each part.

2.2. Carpet

Cactus separates physics code from infrastructure code, i.e., a typical physics thorn
will not contain any memory management, parallelization, Input/Output (IO) or mesh

An Introduction to the Einstein Toolkit 4

refinement code. Most of these tasks are bundled in one special thorn, the so-called
driver thorn, or driver.

Two drivers are provided with the ET, PUGH and Carpet. PUGH implements a
uniform Cartesian grid, while Carpet [14–16] provides more than unigrid: Berger-Oliger
style [17] adaptive mesh refinement (AMR). Its capabilities include
• splitting grid functions and arrays among the MPI processes,
• setting up a mesh refinement grid hierarchy,
• communicating grid function information between MPI processes,
• communicating between refinement levels by prolongation and restriction,
• modifying grid hierarchy (regridding) when requested,
• performing parallel IO.

Together with the Llama code [18], Carpet can provide multiblock infrastructure,
providing different patch systems that cover the simulation domain by a set of
overlapping patches. Llama is publicly available, but, as of writing, not yet part of
the Einstein Toolkit.

For the sake of simplicity, and because of the almost exclusive usage of Carpet
within numerical relativity using the Einstein Toolkit, we will in the following
concentrate exclusively on examples using the AMR mesh refinement driver, without
multiple patches.

2.3. Arrangements

Arrangements are collections of thorns, usually signaling a common task, or a common
origin. This grouping is solely done for the benefit of a better overview for the user.
Being part of one or another arrangement does not have any special meaning for a
Cactus thorn beyond that.

Let us first give an overview on some of the basic Cactus and ET arrangements,
before we present some details on a few of the more important thorns.

2.3.1. Core Cactus arrangements The main core Cactus arrangements include the
following.
CactusBase

Provides infrastructure thorns for boundary conditions, setting up the coordinates,
Input and Output, symmetries and time.

CactusNumerical
Provides numerical infrastructure thorns for time integration, artificial dissipation,
symmetry boundary conditions, setting up spherical surfaces, interpolation, Method
of Lines (MoL) implementation (see section 4.2.5 for more details), and many others.

CactusUtils
Provides some utility thorns: Formaline (see section 2.4.3 for details), nan-checking,
termination triggering and timer reports.

An Introduction to the Einstein Toolkit 5

ExternalLibraries
Provides external libraries—LAPACK, GSL, HDF5, FFTW, Lorene (for initial
data), MPI, among others—that are automatically configured and compiled if they
are not found on the user’s machine.

2.3.2. EinsteinBase EinsteinBase thorns define and register basic variables within
numerical relativity. Thorns that make use of or modify, for example, the ADM [19, 20]
variables, or the stress-energy tensor, should inherit these thorns instead of defining
their own. Almost all thorns relating to the physics of numerical relativity inherit from
some, if not all of these thorns. It is vital even to a new user to have at least an overview
of their structure. Main thorns include:

ADMBase
Defines groups of grid functions for basic spacetime variables, based on the 3 + 1
ADM construction [19, 20], which makes it the natural choice of a common
foundation for exchanging data between modules using different formalisms.
Concretely, ADMBase defines:
• 3-metric γij (gxx, gxy, gxz, gyy, gyz, gzz),
• extrinsic curvature Kij (kxx, kxy, kxz, kyy, kyz, kzz),
• lapse α (alp), shift βi (betax, betay, betaz),
• time derivative of lapse ∂tα (dtalp) and time derivative of shift ∂tβ

i (dtbetax,
dtbetay, dtbetaz).

ADMBase also defines basic parameters to choose the initial data, evolution method
and other details common to a number of other thorns, e.g., schedule groups
(specific points in time within a simulation) for other thorns to schedule their
routines modifying the ADMBase variables. We stress that, by inheriting these
variables from ADMBase, different thorns (typically written by different people) are
then able to interact smoothly.

HydroBase
Defines basic variables and grid functions for hydrodynamics evolutions, e.g.:
• rest mass density ρ (rho),
• pressure P (press),
• specific internal energy ε (eps),
• contravariant fluid three velocity vi (vel[3]),
• Lorentz factor W (w_lorentz),
• electron fraction Ye (Y_e),
• temperature T (temperature),
• specific entropy per particle s (entropy),
• contravariant magnetic field vector Bi (Bvec[3]).

HydroBase also sets up scheduling groups for recommended interaction with the
fluid variables.

An Introduction to the Einstein Toolkit 6

TmunuBase
Defines grid functions for stress-energy tensor (“right-hand-side” of Einstein’s
equations):
• time component T00 (eTtt),
• mixed components T0i (eTtx, eTty, eTtz),
• spatial components Tij (eTxx, eTxy, eTxz, eTyy, eTyz, eTzz).

TmunuBase also sets up scheduling groups for other thorns to schedule routines that
adds to the stress-energy tensor.

2.3.3. EinsteinInitial Arrangement EinsteinInitial contains several initial data
thorns. The most widely used of these include the following:

TwoPunctures
Very efficient pseudo-spectral code that computes puncture-type binary black hole
initial data [21].

TOVSolver
Initial data for a single TOV star.

2.3.4. EinsteinEvolve / McLachlan These arrangements contain several thorns related
with the numerical evolution of Einstein’s field equations:

McLachlan
McLachlan [22–24] is ET’s spacetime evolution code. It uses a accurate finite
differencing scheme up to eighth order with corresponding Kreiss-Oliger dissipation
terms, to discretize spacetime variables in the BSSN form[9, 10, 25]. It is designed
to inter-operate through the ADMBase and TmunuBase interface. All McLachlan
thorns are auto-generated from tensor equations via Kranc [26–28], a Mathematica
application which converts a high-level continuum description of a PDE into a
highly optimized module for Cactus.‡

GRHydro
General relativistic magneto-hydrodynamics (GRMHD) matter evolution [8, 29,
30], also designed to inter-operate through the ADMBase and TmunuBase interface.

PunctureTracker
Takes care of black hole tracking, e.g., to allow the automatic steering of mesh
refinement grids according to black hole positions.

NewRad
Implements radiative, Sommerfeld-type, boundary conditions on specified grid
functions [31].

‡ We note that Mathematica is not needed to compile the thorn.

An Introduction to the Einstein Toolkit 7

2.3.5. EinsteinAnalysis This arrangement includes several thorns useful for analysis:

AHFinderDirect
This thorn finds black hole apparent horizons§ given the 3-metric and extrinsic
curvature [32, 33]. AHFinderDirect is very fast and accurate, but requires an
initial guess for the apparent horizon position.

WeylScal4
Calculates theWeyl scalar Ψ4, often used within the context of the Newman-Penrose
formalism [34]. Ψ4, in the appropriate frame, can be shown to encode the outgoing
gravitational radiation of an asymptotically flat system, making this quantity a
very useful one for gravitational wave analysis. WeylScal4 is auto-generated from
tensor equations via Kranc.

Multipole
Decomposes arbitrary grid functions into spin-weighted spherical harmonics. Often
used in combination with WeylScal4.

ADMAnalysis
Calculates several quantities from the ADM variables. In particular it can compute,
if requested,
• the trace of the extrinsic curvature (trK);
• the determinant of the metric (detg);
• the components of the metric and extrinsic curvature in spherical coordinates

(grr, grq, grp, gqq, gqp, gpp, Krr, Krq, Krp, Kqq, Kqp, Kpp);
• the components of the Ricci tensor (Ricci11, Ricci12, Ricci13, Ricci22,

Ricci23, Ricci33) and the Ricci scalar (Ricci).
EHFinder

Finds event horizons in numerical spacetimes by integrating a null surface
backwards in time. EHFinder is a post-processing analysis thorn. It is therefore
necessary to evolve the initial data forward in time, beforehand, while outputting
enough 3D data. The 3D data is then read back in, in reverse order. EHFinder can
follow the event horizon during the merger of two (or more) black holes into one
black hole. For more information, we refer to [35] and to the thorn’s documentation.

ADMConstraints / ML_ADMConstraints
ADMConstraints calculates the ADM constraints violation (ham, hamnormalized,
momx, momy, momz) from the ADM variables. Note that McLachlan contains
thorn ML_ADMConstraints which calculates the same quantities, but directly
using potentially higher-order derivatives, and is, in general, preferred over
ADMConstraints.

§ More generically, AHFinderDirect looks for a closed 2-surface with S2 topology having any desired
constant expansion.

An Introduction to the Einstein Toolkit 8

2.4. Tools

Having briefly described some of the main arrangements provided with ET, let us now
turn our attention to some tools that are provided as well.

2.4.1. SimFactory SimFactory (for Simulation Factory), to be discussed in more detail
in section 4.3, is a tool that incorporates a set of abstractions for tasks which are
necessary to successfully use the Cactus framework. These abstraction layers include:

• accessing remote systems and synchronizing source code trees;
• configuring and building on different systems semi-automatically;
• providing maintained list of supercomputer configurations;
• managing simulations (follow “best practices” and avoid human errors).

2.4.2. GetComponents As we have seen, the ET is composed of several different
independent components (Cactus, Carpet, and several thorns). Typically, these
different parts are hosted at different repositories, with different version control systems,
and are maintained by different groups. GetComponents [36, 37] provides a unified way
of downloading all of these components in a user-friendly way, hiding this complexity
from the user.

GetComponents is a script with one mandatory argument, a so-called thornlist. This
is a simple text file describing the locations and methods of how to retrieve components.
The ET provides one such thornlist, describing these details for all its components (see
section 3.2). This thornlist can be either given as URL, or as local file name. The most
interesting optional parameter to GetComponents for new users is probably --parallel,
to enable parallel checkouts, reducing the time to retrieve the whole toolkit considerably
at times. Help and a list of other options can be obtained via the --help option.

2.4.3. Formaline Results obtained via computation have to be repeatable. However,
ensuring this in practice can be a tedious task. One tool which can greatly help here is
Formaline. All a user has to do is to compile and active this thorn. Formaline then:

• Ensures that simulations are and remain repeatable, remembering exactly how they
were performed.
• Takes snapshots of source code, system configuration; stores it in executable and/or

git repository.
• Tags all output files.

It should be noted that the usage of Formaline is in no way a guarantee that
simulations are, in fact, repeatable exactly. Almost no simulation can be repeated bit-
identical due to the parallel nature of some algorithms and their inherent “random”
numerical errors. However, Formaline automates tasks a user can do in such a
convenient way that most users actually do them.

An Introduction to the Einstein Toolkit 9

3. Using the ET

3.1. Requirements

Cactus and the Einstein Toolkit should run on all major variants of Unix.
Main requirements are the following: C, C++ and Fortran 90 compilers; an MPI
implementation (e.g., OpenMPI, MPICH; will be provided by the ET if not found);
HDF5 (will also be provided if not found); Perl and Python. Obtaining the ET directly
from its repositories also requires Subversion and git tools. All of these requirements
are usually conveniently available via the respective distribution repositories, or are
commonly available on supercomputers.

In the following we will be assuming that all such tools are available.

3.2. Downloading and Running

This tutorial will be based on the latest stable ET release, which at the time of writing
is “Ørsted” (released on November 8th, 2012). We expect a new release of the ET to
be published between submission, and publication of this article. Exchanging the string
ET_2012_11 by ET_2013_05 in the following should be all that is needed to use the new
release.

To download the ET, one must first obtain the GetComponents script and point it
to the appropriate thornlist:
curl -O https :// raw. github .com/ gridaphobe /CRL/ master / GetComponents
perl GetComponents https :// svn. einsteintoolkit .org/ manifest / branches /

ET_2012_11 / einsteintoolkit .th

A thornlist is a text file containing the list of thorns to be downloaded together with
the path and version controlling system used for each thorn. Such a file will typically
have the following structure:
! CRL_VERSION = 1.0

! DEFINE ROOT = Cactus
! DEFINE ARR = $ROOT/ arrangements
! DEFINE COMPONENTLIST_TARGET = $ROOT/ thornlists /

! DEFINE ET_RELEASE = ET_2012_11

Cactus Flesh
! TARGET = $ROOT
!TYPE = svn
! AUTH_URL = https :// svn. cactuscode .org/flesh/ branches / $ET_RELEASE
!URL = http :// svn. cactuscode .org/flesh/ branches / $ET_RELEASE
! CHECKOUT = Cactus
!NAME = .

Cactus thorns
! TARGET = $ARR

An Introduction to the Einstein Toolkit 10

!TYPE = svn
! AUTH_URL = https :// svn. cactuscode .org/ arrangements /$1/$2/ branches /

$ET_RELEASE
!URL = http :// svn. cactuscode .org/ arrangements /$1/$2/ branches /

$ET_RELEASE
! CHECKOUT =

CactusBase / Boundary
CactusBase / CartGrid3D
CactusBase / CoordBase
CactusBase / Fortran
CactusBase / InitBase
CactusBase / IOBasic
CactusBase / IOUtil
CactusBase /Time

(...)

The user is also free to download the list first to a file and then add its own private thorns.
The GetComponents script accepts a thornlist file as an argument. To download all the
thorns specified in the einsteintoolkit.th file (in this example using the --parallel
option to retrieve repositories in parallel to speed-up the process):
perl GetComponents --parallel einsteintoolkit .th

Once GetComponents finishes downloading one should have a folder called Cactus with
the following structure:

Cactus/
arrangements/
bin/
doc/
lib/
manifest/
par/
repos/
simfactory/
src/
thornlists/
utils/
CONTRIBUTORS
COPYRIGHT
Makefile

We are now ready for the configuring and compiling stage. The first step here
is choosing the config (*.cfg) file for the machine. A few examples (which include
the configuration files for Fedora, Debian, Ubuntu and OS X) are provided under
./Cactus/simfactory/mdb/optionlists/. The second step is having the required
thornlist for the configuration intended to be built. Different configurations, compiled

An Introduction to the Einstein Toolkit 11

with different thornlists, are free to co-exist. Note that, typically, one will not be
compiling all the thorns provided with the ET. Compilation is time-consuming, and
different configurations also take a significant amount of disk space. One therefore
typically builds a thornlist that is as small as possible, including only the required
thorns. Care should be taken, though, as there are often non-trivial dependencies
between thorns. If one thorn which is required by another thorn is not mentioned
in the thornlist, compilation will abort (with the corresponding error message).

The traditional way of compiling Cactus (i.e., without SimFactory—see below) is
as follows. First, the configuration is created
cd Cactus
make ET - config options =< machine config file > THORNLIST =<thornlist >

This creates a configuration called “ET”, but any other name could be chosen here.
Once the configuration is done, the compilation process is simply
make -j <number of processes > ET

If everything is compiled correctly, the executable cactus_ET will be created under
./exe/. These steps need to be repeated for every different configuration (typically,
with different thornlists) built.

We should now be ready for running. For this, a parameter file is needed, specifying
which thorns to use within the simulation (not all compiled thorns need to be active),
and which specific model parameters have been chosen. A few examples are provided
under ./Cactus/par/, including the parameter file for an inspiraling collision of black
holes in vacuum (qc0-mclachlan.par) as well as the parameter file for a static TOV star
(static_tov.par). The typical procedure for running, as with other MPI executables,
is
mpirun -np <num procs > ./ exe/ cactus_ET <parameter file >

3.3. Analyzing the output

Output is typically controlled by the following thorns:

CarpetIOASCII
writes 0, 1, 2 or 3D output from the specified variables onto a text file (.asc)

CarpetIOScalar
performs scalar reductions (maximum, minimum, norm, . . .) of the specified
variables and writes onto a text file (.asc);

CarpetIOHDF5
writes 0, 1, 2 or 3D output from the specified grid functions onto an HDF5 file; also
handles check pointing (.h5).

All of these thorns include, among others, the following parameters: out?D_vars,
every?D_vars, where ?=0,1,2,3 for 0-, 1-, 2- or 3-dimensional output respectively.

An Introduction to the Einstein Toolkit 12

out?D_vars is a list of grid functions to output at every every?D_vars iteration. 3-
dimensional output is by default produced over the entire grid; 2-dimensional output is
given at specified 2D-planes (the default being the xy, xz and yz planes containing the
origin); 1-dimensional output is given along lines (default being the x, y and z axis);
0-dimensional output is given at specified points (default being the coordinate origin).

For visualizing 1-dimensional ASCII output, standard tools like matplotlib,
gnuplot and xmgrace are often used; for 2- and 3-dimensional HDF5 output, VisIt
and DV are popular (freely available) options.

4. Anatomy of a Cactus thorn

The knowledge about the structure of Cactus thorns is strictly speaking not necessary
for new users, as information about their interface can be obtained via built
documentation. However, a short overview is given here to illustrate how first steps
towards development within the toolkit look like.

Any given Cactus thorn will have the following directory structure (under
./Cactus/arrangements/)

ArrangementName/ThornName/
COPYRIGHT
README
test/
doc/
par/
configuration.ccl
interface.ccl
schedule.ccl
param.ccl
src/

make.code.defn
COPYRIGHT, README, doc/, test/ and par/ are optional; doc/ will be typically

used to store some documentation related with the thorn, and par/ can have example
parameter files for the thorn. Under src/, the file called make.code.defn is needed
with the list of files to be compiled.

4.1. Cactus configuration files

Knowledge of these files is strictly only necessary for developers, as information within is
automatically included in build documentation. However, we include a short description
of their contents here because even for a new user it can be useful at times to have at
least a general overview of the interface of Cactus thorns with the flesh.

Cactus thorns use four files to specify their interface with the Cactus flesh (three
compulsory and one optional). They can be found in the top level thorn directory, using

An Introduction to the Einstein Toolkit 13

the *.ccl file name extension (Cactus Configuration Language, see [37] for extensive
details).

The file configuration.ccl (optional) lists inter-thorn build dependencies.
interface.ccl is used to define thorn-wide variables, grid functions, and shared
functions. It consists of a header block detailing the thorn’s relationship with other
thorns, a block stating which include files are used from other thorns, and which include
files are provided by this thorn, blocks with aliased functions provided or used by this
thorn and a series of blocks listing the thorn’s global variables. Note that functions
can be called by a different name within a given thorn. schedule.ccl takes care of all
the function scheduling and controls the global storage of grid functions. And finally,
param.ccl defines all parameters (which, in contrast to regular variables can be set at
start-time) and sets their default values.

4.2. Thorn Examples

In the following, we present a few examples of thorns within the Einstein Toolkit, with
the aim of deepening the understanding of Cactus thorns obtained in previous sections.

4.2.1. ADMBase This thorn, already briefly covered in section 2.3.2, is fundamental for
most (if not all) numerical relativity simulations, providing the core infrastructure for
thorns implementing general relativity on a 3D grid in the 3+1 formalism. ADMBase
provides the basic variables (3-metric, extrinsic curvature, lapse function and shift
vector) for the 3+1 formalism. These grid functions are then inherited by every
thorn using them. This allows a well-defined interaction between thorns implementing
fundamentally different functionality, e.g., thorns providing initial data, evolution
methods and analysis routines for the 3+1 formalism.

The ET uses this thorn, ensuring that different analysis and initial data thorns
are able to communicate with each other and evolution thorns, independently of the
variables used for the evolution (typically, not the ADM variables). Generically, an
initial data thorn will initialize the ADMBase variables to the initial data describing
the desired physical configuration. The evolution thorn will then import the ADMBase
variables, convert them into its evolution variables (the BSSN variables, for example)
and perform the evolution using these variables. At every time step, the ADMBase
variables are reconstructed from the evolved variables so that they always contain the
current solution. Analysis thorns such as those for horizon-finding or wave extraction
then use the ADMBase variables as well. This effectively decouples initial-data solvers,
evolution methods and analysis routines, making them inter-changeable and compatible
with each other.

4.2.2. HydroBase Similarly to ADMBase, HydroBase defines and stores the primitive
variables common among hydrodynamic simulations, needed parameters and schedule
groups for the main functions of a hydrodynamics code. HydroBase does not contain

An Introduction to the Einstein Toolkit 14

the actual source code of typical routines of hydrodynamics codes; it merely provides a
common setup in which hydrodynamics codes can schedule their routines.

This way, different modules of hydrodynamics codes (such as initial data solvers
or analysis modules) working only with entities defined in HydroBase can be used
interchangeably. Yet another advantage is that the output generated by different
hydrodynamics codes within Cactus would be the same, including variable names and
unit conventions, thus improving the ability to compare results from different codes.

HydroBase also sets up scheduling blocks organizing main functions which modules
of a hydrodynamics code may need. These scheduling blocks are optional, but when
used may simplify existing codes and make them more inter-operable. Currently the
scheduling blocks are:
• initializing the primitive variables;
• converting primitive variables to conservative variables;
• calculating the right hand side in the method of lines (MoL);
• setting and updating an excision mask;
• applying boundary conditions.

This way, initializing the primitive variables, recovering the conservative variables, and
basic atmosphere handling can be implemented in different thorns while allowing a
central access point for analysis thorns.

4.2.3. SphericalSurface SphericalSurface defines two-dimensional surfaces with
spherical topology. The thorn itself only acts as a repository for other thorns to set
and retrieve such surfaces, making it a pure infrastructure thorn. Different thorns can
then update a given spherical surface, while others then read that information without
having to know about the first thorn.

Within the ET, uses of spherical surfaces include the following: storing apparent
horizon information (used by AHFinderDirect); tracking black hole location (by thorn
CarpetTracker), information which is then used to determine where to perform mesh
refinement.

The thorn provides, for each surface, a two-dimensional grid array sf_radius and
grid scalars sf_origin_x, sf_origin_y, and sf_origin_z. The number of surfaces is
determined by the parameter nsurfaces, which has to be set in the parameter file.

4.2.4. Multipole Multipole is a thorn that decomposes any Cactus grid function into
spherical harmonics on coordinate spheres of given radii. One application is to use it in
combination with the WeylScal4 analysis thorn to produce the mode decomposition of
the Weyl scalars, often used in numerical relativity.

Specifically, a grid function u(t, r, θ, ϕ) is expanded in spin-weight s spherical
harmonics:

u(t, r, θ, ϕ) =
∞∑

l=0

l∑
m=−l

C lm(t, r)sYlm(θ, ϕ),

An Introduction to the Einstein Toolkit 15

where the coefficients C lm(t, r) are given by

C lm(t, r) =
∫

sY
∗

lmu(t, r, θ, ϕ)r2dΩ.

The thorn computes C lm(t, r) for the requested grid functions at given coordinate radii
ri.

To use this thorn, one specifies the grid functions to decompose, as well as the
number and radii of the extraction spheres, as in the following example parameter file:
ActiveThorns = " AEILocalInterp Multipole "
Multipole :: nradii = 3
Multipole :: radius [0] = 10
Multipole :: radius [1] = 20
Multipole :: radius [2] = 30
Multipole :: variables = " MyThorn ::u"

The default parameters will compute all l = 2 modes assuming a spin-weight s = 0
on every iteration of the simulation.‖ The coefficients C lm will be output in files with
names of the form mp_<var>_l<lmode>_m<mmode>_r<rad>.asc:
mp_u_l2_m2_r10 .00. asc
mp_u_l2_m -1 _r20 .00. asc

Note that, unlike most thorns, and since the spherical harmonic coefficients are
defined on coordinate spheres (and not on the whole grid), Multipole takes care
of the output by itself. There is thus no need to give Multipole grid functions to
CarpetIOASCII or CarpetIOHDF5 in order to have output.

4.2.5. MoL The Method of Lines (MoL) is a technique for numerically integrating time
dependent partial differential equations (PDEs). The method discretizes only the spatial
derivatives of the PDE, thereby converting it into a large system of ordinary differential
equations (ODEs). This system can then be integrated using well-known methods (such
as Runge-Kutta and Crank-Nicolson). Consider the following PDEs system

∂tq + Ai(q)∂iB(q) = s(q),

which we re-write in the form

∂tq = L(q). (1)

Assuming that the right-hand side is discretized, this is nothing but a system of ODEs,
which, as we mentioned, can be integrated using known ODEs integrators.

The MoL thorn provides a simple interface that implements this technique inside
Cactus. We will here provide only some basic information about the thorn; for more
information we refer to its documentation.

The idea behind the MoL thorn is that the user should not be concerned with writing
the integration procedure itself. Instead, in the user’s evolution thorn, grid functions

‖ Note that for gravitational wave extraction, one will typically be interested in a spin-weight s = −2
decomposition.

An Introduction to the Einstein Toolkit 16

that are to be evolved are flagged as evolved variables, and their right-hand side (cf.
equation (1)) is given. The MoL thorn is then called where appropriate and takes care of
the evolution procedure itself, using the method chosen by the user (currently supported
include Runge-Kutta of different orders, Iterative Crank-Nicolson (with and without
averaging)).

For MoL, grid functions need to be split into four categories: variables for which
we have a time evolution equation are evolved; variables which the thorn sets but does
not evolve are constrained; any other variable which the thorn reads during evolution
is a save and restore variable; other variables can be ignored. Bear in mind that,
generically, one can have different variables being evolved by different thorns. A grid
function can thus be an evolved variable from the point of view of one thorn and a
save and restore from the point of view of another—each thorn should register the grid
function as they see it. An example would be the metric components in a general
relativistic hydrodynamics evolution: the hydrodynamics thorn will see the metric as a
save and restore variable whereas the spacetime evolution thorn will see the metric as
evolved. The MoL thorn takes care automatically of the right treatment of each variable.

In section 5.3 we will present a simple example of how to use MoL, to see how this
procedure works in practice when evolving the wave equation.

4.3. Using SimFactory

The Simulation Factory [38, 39] is designed to manage several tasks necessary to set
up and execute successful numerical simulations using Cactus. Consider the following,
very typical, scenario: an ET user performs all his code development locally on a laptop,
where a few simple low resolution runs can be performed. To test more time consuming
cases the user may use a local workstation, which implies syncing the code and parameter
files, compiling and running the code on the workstation, and then analyzing the output.
For higher resolution cases, the user may have to resort to computer clusters, and the
whole process of syncing, compiling, running and analyzing will be repeated. It is easy
to see that this process can be very error prone.

SimFactory provides an easy abstraction layer to this process, allowing the user
to do all his code development locally, and then syncing and compiling to all other
machines he may use with simple commands. A record is also kept of where and what
simulations have been run.

To use SimFactory, we must first configure it. For machines known to SimFactory
this step consists essentially in configuring the user name and email address (for job
submission status emails). If a given machine configuration is not already stored,
SimFactory also needs an optionlist to use for the ET build.
cd Cactus
./ simfactory /bin/sim setup --optionlist =< machine .cfg file >

The ET will then be built using

An Introduction to the Einstein Toolkit 17

./ simfactory /bin/sim build [< configurationname >] --thornlist =<
thornlist >

The configuration name can be omitted, in which case it will default to “sim”. Different
configurations, with different thornlists and configuration files, can co-exist.

To run, for example, the static_tov.par parameter file and follow the output, one
would then execute
./ simfactory /bin/sim submit static_tov --configuration <

configurationname > --parfile =par/ static_tov .par --procs =1 --
walltime =8:0:0

./ simfactory /bin/sim show - output --follow static_tov

In this example we created a simulation called “static_tov”, only one processor was
requested and the simulation will abort after the specified walltime of 8 hours. As
for building, if --configuration <configuration> is omitted, the default “sim”
configuration is used.

This specific parameter file sets up a static TOV star (a model of a single neutron
star) with a mass of 1.4 solar masses, and integrates the combined relativistic fluid
dynamics and spacetime evolution equations in time. The spacetime is evolved using
the BSSN 3+1 formulation of Einstein’s equations and the fluid is evolved using a high
resolution shock capturing method.

To check the status of the simulation, use
./ simfactory /bin/sim list - simulations

If you accepted the default values at the setup stage, simulations will run in the
$HOME/simulations folder (which needs to be created beforehand).

4.3.1. Configuring additional machines Let us now see how to add an additional
machine (say, your local workstation) to SimFactory. The first step is adding the
configuration <machine name>.ini file to ./simfactory/mdb/machines/. Such a file
can be easily adapted from the provided generic.ini:
[generic]

Machine description
nickname = generic
name = Generic Machine
location = somewhere
description = Whatever
status = personal

Access to this machine
hostname = generic .some.where
aliaspattern = ^ generic \. some \. where$

Source tree management
sourcebasedir = /home/ @USER@
optionlist = generic .cfg

An Introduction to the Einstein Toolkit 18

submitscript = generic .sub
runscript = generic .run
make = make -j2
basedir = /home/ @USER@ / simulations
ppn = 1 # or more
max -num - threads = 1 # or more
num - threads = 1 # or more
nodes = 1
submit = exec @SCRIPTFILE@ < /dev/null > /dev/null 2> /dev/

null & echo $!
getstatus = ps @JOB_ID@
stop = kill @JOB_ID@
submitpattern = (.*)
statuspattern = "^ * @JOB_ID@ "
queuedpattern = $^
runningpattern = ^
holdingpattern = $^
exechost = echo localhost
exechostpattern = (.*)
stdout = cat @SIMULATION_NAME@ .out
stderr = cat @SIMULATION_NAME@ .err
stdout - follow = tail -n 100 -f @SIMULATION_NAME@ .out

@SIMULATION_NAME@ .err

For the most straightforward cases, it should be enough changing the Machine
description, hostname, aliaspattern and optionlist. Examples for optionlists can be
found in ./simfactory/mdb/optionlists/, and if none of these can be used directly,
a new list can be created and placed within that directory.

Once this is done, the newly added machine should appear in the list of known
machines:
./ simfactory /bin/sim list - machines

and its configuration
./ simfactory /bin/sim print -mdb <machine >

We should now be ready to synchronize our files
./ simfactory /bin/sim sync <machine >

Once that is done, we repeat the building process from before, but with the
--remote <machine> argument:
./ simfactory /bin/sim --remote <machine > build [< configuration name >]

--thornlist =<thornlist >

All SimFactory commands accept the --remote option, taking a machine name as
argument. This allows one to build, submit and manage simulations on several machines
without ever having to directly login.

For more information, check [39].

An Introduction to the Einstein Toolkit 19

5. Examples

So far, we described core parts of the Einstein Toolkit as generally as possible to give
a consistent overview of its capabilities and components. Quite often however, simple,
additional examples can help to provide deeper understanding. This is especially true
in a workshop-like setting where teaching time is usually scarce. Therefore, we present
in this section three very hands-on examples of how to use the Einstein Toolkit.

The first two examples, an evolution of a black hole binary, and the evolution of
a stable star, only present how users would set parameters to obtain the respective
simulations, using existing code and without the need to change it. In contrast to these
two, the third and last example show-cases an implementation of the wave-equation, in
particular using MoL.

5.1. Binary black hole coalescence

The ET provides, out-of-the-box, all the tools needed to evolve, with minimal input
from the user, a vacuum binary black hole coalescence. We will here not describe all
the modules involved in such a simulation; we will merely briefly go over the provided
parameter file adapted for such an evolution and note the parameters that a user would
first change for slightly different physical configurations.

Having obtained the ET as explained in the previous sections, a few
example parameter files are provided within the directory ./Cactus/par/. In
particular, ./Cactus/par/arXiv:1111.3344/bbh/BBHLowRes.par (and corresponding
higher resolution versions) uses the thorn TwoPunctures [21] to set up initial data for
two black holes located at the x-axis with (opposite) linear momentum along the y-
axis. This configuration is then evolved using the ML_BSSN (McLachlan BSSN) thorn.
AHFinderDirect searches for the black hole’s apparent horizons at the designated
intervals and WeylScal4 extracts gravitational wave information. We should note that
modern initial data using the TwoPunctures technique uses a few more tricks to obtain
more realistic initial data (e.g. by reducing the initial eccentricity), but the simpler
procedure presented here is sufficient to capture the main ideas of such an evolution,
and is therefore preferred in a workshop or tutorial setting.

A streamlined, easier to follow, version of BBHLowRes.par is provided
at http://blackholes.ist.utl.pt/nrhep2/?page=material, under the name
inspiral_d06_lres.par. Let us now explore some of the parameters within this file.
We begin by noting the following group:
ActiveThorns = " ReflectionSymmetry RotatingSymmetry180 "
ReflectionSymmetry :: reflection_z = yes
CoordBase :: domainsize = " minmax "
CoordBase :: xmin = 0.00
CoordBase :: ymin = -120.00
CoordBase :: zmin = 0.00
CoordBase :: xmax = +120.00
CoordBase :: ymax = +120.00

http://blackholes.ist.utl.pt/nrhep2/?page=material

An Introduction to the Einstein Toolkit 20

CoordBase :: zmax = +120.00
CoordBase ::dx = 2.00
CoordBase ::dy = 2.00
CoordBase ::dz = 2.00

This sets up the overall size of the numerical grid, which spans
[[xmin, xmax], [ymin, ymax], [zmin, zmax]] = [[0, 120], [−120, 120], [0, 120]]. The
problem has a mirror-symmetry in the plane of the inspiral, which is used here to
reduce the computational cost by a factor of 2 by not evolving the domain with z < 0.
In addition, the π-symmetry in the problem can be used to only evolve points with
x > 0 (populating the missing part by rotating the existing domain for 180 degrees
along the z-axis). This again reduces the computational cost by about a factor of 2, and
is achieved by activating thorn RotatingSymmetry180. The grid-spacing given here
corresponds to the coarsest grid. The grid-spacing of the inner regions (using AMR)
will then depend on how many refinement levels are chosen. Each level refines the
region it is covering by a factor of two. A user wanting to experiment with different grid
sizes and/or different resolutions would need to change these parameters accordingly.

The group
CarpetRegrid2 :: num_centres = 2

CarpetRegrid2 :: num_levels_1 = 7
CarpetRegrid2 :: position_x_1 = 3.0
CarpetRegrid2 :: radius_1 [1] = 64.0
CarpetRegrid2 :: radius_1 [2] = 16.0
CarpetRegrid2 :: radius_1 [3] = 8.0
CarpetRegrid2 :: radius_1 [4] = 4.0
CarpetRegrid2 :: radius_1 [5] = 2.0
CarpetRegrid2 :: radius_1 [6] = 1.0
CarpetRegrid2 :: movement_threshold_1 = 0.16

CarpetRegrid2 :: num_levels_2 = 7
CarpetRegrid2 :: position_x_2 = -3.0
CarpetRegrid2 :: radius_2 [1] = 64.0
CarpetRegrid2 :: radius_2 [2] = 16.0
CarpetRegrid2 :: radius_2 [3] = 8.0
CarpetRegrid2 :: radius_2 [4] = 4.0
CarpetRegrid2 :: radius_2 [5] = 2.0
CarpetRegrid2 :: radius_2 [6] = 1.0
CarpetRegrid2 :: movement_threshold_2 = 0.16

defines the number and radii of the inner refined regions, centered around each
of the black holes. Should a user wish to change the initial position of the
black holes, it is important to also modify the CarpetRegrid2::position_x_1,
CarpetRegrid2::position_x_2 settings accordingly.

In Figure 1 we show the used grid setup in the xy plane, including all nested grids.
Note that only one of the finest region is shown because of the used symmetries.

The initial physical configuration is handled by the initial data thorn, which in this
case is TwoPunctures. The group

An Introduction to the Einstein Toolkit 21
0 120

0 10

Figure 1. Sketch of the used grid setup. Note that only one of the finest region is
shown because of the used symmetries. Also note that some of the overhead points
are not shown, i.e. the ghost zones at the edge of refinement levels. On the right we
show the same, but zoomed-in (with the outer-most three levels not shown).

TwoPunctures :: par_b = 3.001
TwoPunctures :: par_m_plus = 0.47656
TwoPunctures :: par_m_minus = 0.47656
TwoPunctures :: par_P_plus [1] = +0.13808
TwoPunctures :: par_P_minus [1] = -0.13808

defines the initial positions of the black holes to be at (x, y, z) = (±3.001, 0, 0) (by
default, TwoPunctures places the black holes along the x-axis—use the parameter
swap_xz to place them along the z-axis), sets the black holes’ “bare mass” parameter
and its Bowen-York linear momentum parameter. This would be the first place to
change should a different physical configuration be needed.

When changing the initial position of the black holes, besides changing the position
of the inner refined regions, it is also important to correspondingly change the initial
guess for the apparent horizon finder:
AHFinderDirect :: origin_x [1] = +3.0
AHFinderDirect :: initial_guess__coord_sphere__x_center [1] = +3.0

AHFinderDirect :: origin_x [2] = -3.0
AHFinderDirect :: initial_guess__coord_sphere__x_center [2] = -3.0

In Figure 2 we plot the evolution of the mean apparent horizon radius of each black
hole during the evolution of this setup. The script and data files used to produce the plot
are available at http://blackholes.ist.utl.pt/nrhep2/?page=material. An easy
way to produce a simpler version of the figure, also with matplotlib, is the following:
ipython --pylab

In [1]: xbh1 , ybh1 = np. loadtxt (" BH_diagnostics .ah1.gp", usecols
=(2 ,3) , unpack =True)

In [2]: xbh2 , ybh2 = np. loadtxt (" BH_diagnostics .ah2.gp", usecols
=(2 ,3) , unpack =True)

In [3]: axis (" equal ")
In [4]: plot(xbh1 , ybh1 , linestyle ="-", color =" black ")
In [5]: plot(xbh2 , ybh2 , linestyle ="-.", color =" red ")

http://blackholes.ist.utl.pt/nrhep2/?page=material

An Introduction to the Einstein Toolkit 22

−3 −2 −1 0 1 2 3
x/M

−3

−2

−1

0

1

2

3
y/

M

Figure 2. Puncture locations and mean radius of the corresponding apparent horizons
(plotted every 15M) during the binary inspiral.

5.2. Simple TOV star

The TOVSolver routine in the Einstein Toolkit solves the standard TOV¶ equations
[40, 41] for the pressure, enclosed gravitational mass Me, and gravitational potential
Φ = logα in the interior of a spherically symmetric star in hydro-static equilibrium.
Details of the procedure, including equations, can be found in [7]. We will use these
initial data to show linear oscillations of an otherwise stable TOV star.

The system setup by TOVSolver is evolved using the BSSN evolution system
implemented in McLachlan and the hydrodynamics evolution system implemented in
GRHydro.

For the simple evolution presented here, we set up a stable TOV star described by
a polytropic equation of state with K = 100 and Γ = 2, and an initial central density of
ρc = 1.28× 10−3. This model can be taken to represent a non-rotating NS with a mass
of M = 1.4M�, and an EOS which mimics a cold neutron star reasonably well, at least
to the extend the EOS of such an object is currently known.

For reasonably accurate results of an evolution of such a system, runs are typically

¶ Tolman-Oppenheimer-Volkoff

An Introduction to the Einstein Toolkit 23

0 150 300 450 600 750
t [M]

0.96

0.97

0.98

0.99

1.00

$
c/

$
c(

0)
0.0 0.6 1.2 1.8 2.4 3.0 3.6

t [ms]

Figure 3. Evolution of the central density for the TOV star. Clearly visible is an
initial spike, produced by the mapping of the one-dimensional equilibrium solution
onto the three-dimensional evolution grid. Visible following this, however, are damped
oscillations of the central density of the star.

performed with fixed mesh refinement, using about 5 levels of refinement on a quadrant
grid (symmetries provided by ReflectionSymmetry and RotatingSymmetry180). The
outer boundaries are placed at a few hundredM (more then ten times the stellar radius),
and refined boxes are centered around the star at the origin, each doubling the resolution.
Typical resolutions on the finest grid covering the entire star are 0.500M to 0.125M.

Evolutions of this size take much too long for a fast-paced tutorial where
participants are expected to run these on their own, however. Computational resources
might also be an issue if these resolutions would be tried. For such a tutorial setting,
though, a much lower resolution and a smaller global grid usually suffices, lowering the
computational requirements and time substantially. It should, of course, be noted that
results from such ultra-low resolution runs are not to be trusted for scientific work, but
that is not the aim here. Increasing the parameters for resolution and grid size is an
easy task, best left to the interested participant, as follow-up after the workshop. Thus,
the evolution presented here only covers a global domain of 120M, just about ten times
the stellar radius. Only four levels of mesh refinement are used, with a fine resolution
of 1M. Note that this means that there are only a few tens of points across the star
diameter—probably one of the lowest resolutions possible using the methods used here
that still produces somewhat sensible results.

In Figure 3 we show the evolution of the central density of the star over an evolution
time of 750M (3.6ms). The initial spike is due to the perturbation of the solution
resulting from the mapping onto the evolution grid. After this (about 1ms), regular star
oscillations can be seen, damped mostly by adiabatic heating.

Figure 3 represents a paper-quality plot of the central density. During a workshop,
quality requirements are much less stringent and interactivity is much more important.

An Introduction to the Einstein Toolkit 24

One easy way to plot the same data much quicker would be using matplotlib:
ipython --pylab

In [1]: Fx , Fy = loadtxt (" hydrobase :: rho. maximum .asc", comments ="#" ,
usecols =(1 ,2) , unpack =True)

In [2]: plot(Fx , Fy/Fy [0])

As mentioned before, these results are in general to be considered quite poor.
However, the goal was not accuracy here. This becomes clear when considering the
computational requirements: about 400MB of memory and about 2.5 core-hours (2.5
hours on one current compute core). This code can take advantage of both multi-code
machines, as well as multi-node clusters (usually a combination of these), reducing the
overall physical runtime substantially.

5.3. WaveMoL

Let us explore a quite small thorn: CactusExamples/WaveMoL. While not a part of the
Einstein Toolkit, this thorn illustrates the basic of usage of the previously introduced
MoL (Method of Lines) Cactus thorn, which is used by McLachlan and GRHydro.

The MoL thorn, already introduced in section 4.2.5, provides a convenient way to
implement the Method of Lines technique inside Cactus. The advantage of using this
thorn is that one does not need to worry about writing the time integration procedure
itself; instead, one simply flags the variables that will be evolved and provide their
“right-hand-sides”. MoL will then take care of the evolution procedure using one of
the implemented methods, e.g., second, third of fourth order Runge-Kutta, or Iterative
Crank-Nicolson (to be chosen by the user at start-time).

For our example, let us then consider the wave equation

∂2
t φ = ∂2

xiφi

To illustrate usage of the MoL thorn, we rewrite the equations in first order form, as was
done in section 4.2.5:

∂tΦ = ∂xiΠi, (2)
∂tΠj = ∂xj Φ, (3)
∂tφ = Φ, (4)
∂xjφ = Πj. (5)

The first three equations (five separate PDEs) will be evolved. The final equation is
used to set the initial data and can be thought of as a constraint. This determines how
each of these variables has to be registered with MoL.

To obtain WaveMoL, save the following text to a file (called, e.g., WaveMol.th)
! CRL_VERSION = 1.0
! DEFINE ROOT = Cactus
! DEFINE ARR = $ROOT/ arrangements
! DEFINE COMPONENTLIST_TARGET = $ROOT/ thornlists /
! DEFINE CACTUS_RELEASE = Cactus_4 .1.0

An Introduction to the Einstein Toolkit 25

! TARGET = $ARR
!TYPE = svn
! AUTH_URL = https :// svn. cactuscode .org/ arrangements /$1/$2/ branches /

$CACTUS_RELEASE
!URL = http :// svn. cactuscode .org/ arrangements /$1/$2/ branches /

$CACTUS_RELEASE
! CHECKOUT =
CactusExamples / IDWaveMoL
CactusExamples / WaveMoL

and then use GetComponents as previously:
./ GetComponents WaveMol .th

You should now have (under ./Cactus/arrangements/CactusExamples/) the
following directory structure

WaveMoL/
configuration.ccl
interface.ccl
schedule.ccl
param.ccl
src/

InitSymBound.c
Startup.c
WaveMoLRegister.c
WaveMoL.c
make.code.defn

The .ccl files were already covered in section 4, so we will here look into the C
source code files.

We start with the WaveMoL_RegisterVars routine, under WaveMoLRegister.c:
void WaveMoL_RegisterVars (CCTK_ARGUMENTS) {

DECLARE_CCTK_ARGUMENTS ;
DECLARE_CCTK_PARAMETERS ;
CCTK_INT ierr = 0, group , rhs , var;

group = CCTK_GroupIndex (" wavemol :: scalarevolvemol_scalar ");
rhs = CCTK_GroupIndex (" wavemol :: scalarrhsmol_scalar ");
ierr += MoLRegisterEvolvedGroup (group , rhs);

group = CCTK_GroupIndex (" wavemol :: scalarevolvemol_vector ");
rhs = CCTK_GroupIndex (" wavemol :: scalarrhsmol_vector ");
ierr += MoLRegisterEvolvedGroup (group , rhs);

var = CCTK_VarIndex (" wavemol :: energy ");
ierr += MoLRegisterConstrained (var);

}

Note here how the variables wavemol::scalarevolvemol_scalar and
wavemol::scalarevolvemol_vector are being flagged as evolved for MoL, with right-

An Introduction to the Einstein Toolkit 26

hand side wavemol::scalarrhsmol_scalar and wavemol::scalarrhsmol_vector
respectively. As we explained in section 4.2.5, this allows the MoL thorn to evolve these
grid functions from one time step to the next and there is no need for the user to
explicitly code any time-integration routine.

For completeness, let us briefly look under the WaveMoL.c file, where we find the
routine WaveMoL_CalcRHS:
void WaveMoL_CalcRHS (CCTK_ARGUMENTS) {

DECLARE_CCTK_ARGUMENTS ;
int i,j,k, index , istart , jstart , kstart , iend , jend , kend;
CCTK_REAL dx ,dy ,dz , hdxi , hdyi , hdzi;

/* Set up shorthands */
dx = CCTK_DELTA_SPACE (0); dy = CCTK_DELTA_SPACE (1); dz =

CCTK_DELTA_SPACE (2);
hdxi = 0.5 / dx; hdyi = 0.5 / dy; hdzi = 0.5 / dz;
istart = 1; jstart = 1; kstart = 1;
iend = cctk_lsh [0] -1; jend = cctk_lsh [1] -1; kend = cctk_lsh [2] -1;

/* Calculate the right hand sides. */
for (k=0; k< cctk_lsh [2]; k++) {

for (j=0; j< cctk_lsh [1]; j++) {
for (i=0; i< cctk_lsh [0]; i++) {

index = CCTK_GFINDEX3D (cctkGH ,i,j,k);
phirhs [index] = phit[index];
phitrhs [index] = 0;
phixrhs [index] = 0;
phiyrhs [index] = 0;
phizrhs [index] = 0;

}
}

}
for (k= kstart ; k<kend; k++) {

for (j= jstart ; j<jend; j++) {
for (i= istart ; i<iend; i++) {

index = CCTK_GFINDEX3D (cctkGH ,i,j,k);
phitrhs [index] =

(phix[CCTK_GFINDEX3D (cctkGH , i+1, j, k)] -
phix[CCTK_GFINDEX3D (cctkGH , i-1, j, k)]) *hdxi

+ (phiy[CCTK_GFINDEX3D (cctkGH , i, j+1, k)] -
phiy[CCTK_GFINDEX3D (cctkGH , i, j-1, k)]) *hdyi

+ (phiz[CCTK_GFINDEX3D (cctkGH , i, j, k+1)] -
phiz[CCTK_GFINDEX3D (cctkGH , i, j, k -1)]) *hdzi;

phixrhs [index] = (phit[CCTK_GFINDEX3D (cctkGH , i+1, j, k)] -
phit[CCTK_GFINDEX3D (cctkGH , i-1, j, k)]) *

hdxi;
phiyrhs [index] = (phit[CCTK_GFINDEX3D (cctkGH , i, j+1, k)] -

phit[CCTK_GFINDEX3D (cctkGH , i, j-1, k)]) *
hdyi;

phizrhs [index] = (phit[CCTK_GFINDEX3D (cctkGH , i, j, k+1)] -
phit[CCTK_GFINDEX3D (cctkGH , i, j, k -1)]) *

An Introduction to the Einstein Toolkit 27

hdzi;
}

}
}

}

This routine computes the right-hand sides from equations (2–5) using first order finite-
differencing. These, as seen above, are then given to the MoL thorn for the time-evolution.

Analogous, albeit more complicated procedures, are used within the McLachlan
and GRHydro thorns for evolving Einstein’s field equations and the dynamics of matter
within.

6. Final remarks

In these notes we hope to have provided a useful first guide for new users of the
Einstein Toolkit, an open-source computational infrastructure for numerical relativity
and relativistic astrophysics. Its capabilities include:

• evolutions of vacuum spacetimes (e.g., binary black hole coalescence) through
the BSSN general relativity spacetime evolution equations with standard “moving
puncture” Gamma-driver and 1+log gauge conditions;
• general-relativistic magneto-hydrodynamics evolutions, allowing, for example,

simulations of magnetized isolated and binary neutron stars and collapsing stellar
cores;
• various initial data solvers or data importers for configurations of general relativistic

objects;
• tools for apparent and event horizon finding, black hole excision, gravitational wave

extraction and spherical harmonics decomposition;
• multidimensional Input/Output using HDF5, ASCII, Images;
• Method of Lines time integration;

Tools and capabilities we have not explored include Kranc [26, 28]—a Mathematica
application that converts continuum descriptions of PDEs into a Cactus thorn; and
Llama [18]—a 3-dimensional multiblock infrastructure with adaptive mesh-refinement
providing different patch systems that cover the simulation domain by a set of
overlapping patches.

We emphasize that we have here barely scratched the surface of the current state
of the toolkit and that large parts of it have intentionally been left out. The goal of this
work is not to provide an overview of all capabilities of the ET, but to provide insight
into the usage of the toolkit using a few simple examples. Advanced users are then
referred to more literature covering parts of the toolkit, e.g. [7, 8], and are encouraged
to seek direct contact to other active users of the toolkit, e.g., using the ET mailing list
users@einsteintoolkit.org.

REFERENCES 28

Acknowledgments

We wish to thank the organizers and participants of the NR/HEP2 Spring School for the
success of the event. We also thank Bruno Mundim, Joshua Faber and Yosef Zlochower
for suggestions and Erik Schnetter and Manuela Campanelli for a careful reading of the
manuscript.

M.Z. is supported by NSF grants AST-1028087, PHY-0969855, PHY-1229173, OCI-
0832606. The Einstein Toolkit is directly supported by the National Science Foundation
in the USA under the grant numbers 0903973 / 0903782 / 0904015 (CIGR) and
1212401 / 1212426 / 1212433 / 1212460 (Einstein Toolkit). Computational resources
use regularly by the Einstein Toolkit maintainers for testing and development includes
resources provided by Louisiana State University (allocations hpc_cactus, hpc_numrel
and hpc_hyrel), by the Louisiana Optical Network Initiative (allocations loni_cactus
and loni_numrel), by the National Science Foundation through XSEDE resources
(allocations TG-PHY060027N, TG-ASC120003, TG-PHY100033, TG-MCA02N014,
and TG-PHY120016).

Figures were generated with the Python-based matplotlib package [42].

References

[1] Hahn S G and Lindquist R W 1964 Annals of Physics 29 304–331
[2] Cardoso V, Gualtieri L, Herdeiro C, Sperhake U, Chesler P M et al. 2012 Class.Quant.Grav. 29

244001
[3] Pretorius F 2005 Phys. Rev. Lett. 95 121101
[4] Baker J G, Centrella J, Choi D I, Koppitz M and van Meter J 2006 Phys. Rev. Lett. 96 111102
[5] Campanelli M, Lousto C O, Marronetti P and Zlochower Y 2006 Phys. Rev. Lett. 96 111101
[6] Einstein Toolkit: Open software for relativistic astrophysics URL http://einsteintoolkit.org/

[7] Löffler F, Faber J, Bentivegna E, Bode T, Diener P, Haas R, Hinder I, Mundim B C, Ott C D,
Schnetter E, Allen G, Campanelli M and Laguna P 2012 Class. Quantum Grav. 29 115001

[8] Moesta P, Mundim B C, Faber J A, Haas R, Noble S C, Bode T, Löffler F, Ott C D, Reisswig C
and Schnetter E 2013 (Preprint 1304.5544)

[9] Baumgarte T W and Shapiro S L 1999 Phys. Rev. D 59 024007
[10] Shibata M and Nakamura T 1995 Phys. Rev. D 52 5428–5444
[11] Cactus Computational Toolkit URL http://www.cactuscode.org/

[12] Goodale T, Allen G, Lanfermann G, Massó J, Radke T, Seidel E and Shalf J 2003 The Cactus
framework and toolkit: Design and applications Vector and Parallel Processing – VECPAR’2002,
5th International Conference, Lecture Notes in Computer Science (Berlin: Springer) URL http:
//edoc.mpg.de/3341

[13] Allen G, Goodale T, Lanfermann G, Radke T, Rideout D and Thornburg J 2011 Cactus Users’
Guide URL http://www.cactuscode.org/Guides/Stable/UsersGuide/UsersGuideStable.pdf

[14] Carpet: Adaptive Mesh Refinement for the Cactus Framework URL http://www.carpetcode.
org/

[15] Schnetter E, Hawley S H and Hawke I 2004 Class. Quantum Grav. 21 1465–1488
[16] Schnetter E, Diener P, Dorband E N and Tiglio M 2006 Class. Quantum Grav. 23 S553–S578

http://einsteintoolkit.org/
1304.5544
http://www.cactuscode.org/
http://edoc.mpg.de/3341
http://edoc.mpg.de/3341
http://www.cactuscode.org/Guides/Stable/UsersGuide/UsersGuideStable.pdf
http://www.carpetcode.org/
http://www.carpetcode.org/

REFERENCES 29

[17] Berger M J and Oliger J 1984 J. Comput. Phys. 53 484
[18] Pollney D, Reisswig C, Schnetter E, Dorband N and Diener P 2011 Phys. Rev. D 83 044045
[19] Arnowitt R L, Deser S and Misner C W 2008 General Relativity and Gravitation 40 1997–2027
[20] York Jr J W 1979 Kinematics and dynamics of general relativity Sources of Gravitational Radiation

ed L L Smarr (Cambridge and New York: Cambridge University Press) pp 83–126
[21] Ansorg M, Brügmann B and Tichy W 2004 Phys. Rev. D 70 064011
[22] Brown J D, Diener P, Sarbach O, Schnetter E and Tiglio M 2009 Phys. Rev. D 79 044023
[23] Reisswig C, Ott C D, Sperhake U and Schnetter E 2011 Phys. Rev. D 83 064008
[24] McLachlan, a public BSSN code URL http://www.cct.lsu.edu/~eschnett/McLachlan/

[25] Alcubierre M, Brügmann B, Dramlitsch T, Font J A, Papadopoulos P, Seidel E, Stergioulas N and
Takahashi R 2000 Phys. Rev. D 62 044034

[26] Husa S, Hinder I and Lechner C 2006 Comput. Phys. Commun. 174 983–1004
[27] Lechner C, Alic D and Husa S 2004 Analele Universitatii de Vest din Timisoara, Seria Matematica-

Informatica 42
[28] Kranc: Kranc assembles numerical code URL http://kranccode.org/

[29] Baiotti L, Hawke I, Montero P J, Löffler F, Rezzolla L, Stergioulas N, Font J A and Seidel E 2005
Phys. Rev. D 71 024035

[30] Hawke I, Löffler F and Nerozzi A 2005 Phys. Rev. D 71 104006
[31] Alcubierre M, Brügmann B, Diener P, Koppitz M, Pollney D, Seidel E and Takahashi R 2003

Phys. Rev. D 67 084023
[32] Thornburg J 2004 Class. Quantum Grav. 21 743–766
[33] Thornburg J 1996 Phys. Rev. D 54 4899–4918
[34] Newman E and Penrose R 1962 J.Math.Phys. 3 566–578
[35] Diener P 2003 Class. Quantum Grav. 20 4901–4918
[36] Seidel E L, Allen G, Brandt S R, Löffler F and Schnetter E 2010 Simplifying Complex Software

Assembly: The Component Retrieval Language and Implementation Proceedings of the 2010
TeraGrid Conference (Preprint arXiv:1009.1342[cs.PL])

[37] Allen G, Goodale T, Löffler F, Rideout D, Schnetter E and Seidel E L 2010 Component
Specification in the Cactus Framework: The Cactus Configuration Language Grid2010:
Proceedings of the 11th IEEE/ACM International Conference on Grid Computing (Preprint
arXiv:1009.1341[cs.DC])

[38] Thomas M and Schnetter E 2010 Simulation factory: Taming application configuration and
workflow on high-end resources Grid Computing (GRID), 2010 11th IEEE/ACM International
Conference on pp 369 –378 (Preprint arXiv:1008.4571[cs.DC])

[39] SimFactory: Herding numerical simulations URL http://simfactory.org/

[40] Tolman R C 1939 Phys. Rev. 55 364–373
[41] Oppenheimer J R and Volkoff G M 1939 Phys. Rev. 55 374–381
[42] Hunter J D 2007 Comput. Sci. Eng. 9 90–95

http://www.cct.lsu.edu/~eschnett/McLachlan/
http://kranccode.org/
arXiv:1009.1342 [cs.PL]
arXiv:1009.1341 [cs.DC]
arXiv:1008.4571 [cs.DC]
http://simfactory.org/

	1 Introduction
	2 Structural Overview
	2.1 Cactus
	2.2 Carpet
	2.3 Arrangements
	2.3.1 Core Cactus arrangements
	2.3.2 EinsteinBase
	2.3.3 EinsteinInitial
	2.3.4 EinsteinEvolve / McLachlan
	2.3.5 EinsteinAnalysis

	2.4 Tools
	2.4.1 SimFactory
	2.4.2 GetComponents
	2.4.3 Formaline

	3 Using the ET
	3.1 Requirements
	3.2 Downloading and Running
	3.3 Analyzing the output

	4 Anatomy of a Cactus thorn
	4.1 Cactus configuration files
	4.2 Thorn Examples
	4.2.1 ADMBase
	4.2.2 HydroBase
	4.2.3 SphericalSurface
	4.2.4 Multipole
	4.2.5 MoL

	4.3 Using SimFactory
	4.3.1 Configuring additional machines

	5 Examples
	5.1 Binary black hole coalescence
	5.2 Simple TOV star
	5.3 WaveMoL

	6 Final remarks

